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ABSTRACT:

General circulation model (GCM) studies have examined the growth of

disturbances in initially zonally symmetric basic states. Several studies

(e.g. Gall et al. 1979b; MacVean 1985) used hemispheric GCMs which did not

include orography, land-sea contrasts or any geographically fixed features.

An unexpected finding in these studies was that after several days of model

integration, long waves (i.e. scales of zonal wavenumbers k = 1 to 5) grew

faster than predicted by linear theory. In some cases, the long waves grew

more rapidly than any normal mode. Gall et al. and later MacVean suggested

that this fast growth was caused by interactions with synoptic-scale waves

(i.e. scales of zonal wavenumbers k 8 to 20). In this thesis, we use

both analytic and numerical methods to study the synoptic/planetary-scale

interactions in an attempt to better understand the unexpectedly fast

growth of long waves as found by the GCM experiments.
For our theoretical analysis, we employ a two-level quasi-geostrophic

beta-plane model. In our model, we assume that the amplitude of the long

wave varies on a time scale that is slow compared with the period of the

more unstable synoptic-scale waves. In addition, we assume that the

synoptic-scale waves are inviscidly unstable, but are rendered neutral by

dissipation (i.e., a modified baroclinic adjustment holds). The model is

then used to address the following sequence of questions: first, how a long

wave spatially modulates a synoptic-scale wave; second, how the fluxes of

that synoptic-scale wave vary on the planetary scale; and finally how those

fluxes may themselves alter the evolution of the original transient long

wave.
In the first part of the thesis, we examine a synoptic-scale wave

growing in the presence of a fixed long wave. We find planetary-scale

modulations of the amplitude, local wavelength, and vertical tilt of the

synoptic-scale wave. Our results are consistent with previous findings,
but since the parameter dependences are readily apparent in our analysis,

we are to provide additional physical interpretations of the previous

results.
In the second part of our analysis, we use the results from the first

part to find heat and relative vorticity fluxes of the synoptic-scale wave.

These fluxes, which have a planetary-scale modulation, can directly force

the long wave. In the third part, we find that these fluxes may alter the

vertical structure of the long wave which can then become more capable of

extracting zonal available potential energy (ZAPE). (The synoptic-scale

waves are essentially catalytic.) We conclude that by altering the
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structure of the long wave, synoptic-scale waves can increase the growth

rate of long waves. This provides a possible basis for the unexpectedly
rapid growth of the long waves in the GCM experiments.

We then proceed to examine the results of a nonlinear time-dependent

numerical model. The modeling results support our previous findings. In

particular, the baroclinic adjustment hypothesis, a cornerstone of our

analysis, was found to hold under conditions defined later. In addition,
the energy fluxes of the long/synoptic-scale interactions compared favor-
ably with the theory's predictions when the long waves were weaker than the
synoptic-scale waves.

We have also examined the interaction of topographically forced waves
with synoptic-scale waves. According to our model, non-resonant long waves
are not sensitive to the synoptic-scale waves in the sense that small eddy
fluxes produce only small changes in the long waves. Near resonance,
however, the stationary long waves were sensitive to the synoptic-scale
waves, as well as to all other factors.

Based on our analytic and modeling results, we conclude that the
baroclinic adjustment hypothesis can be a good approximation, the effect of
inviscidly unstable synoptic-scale waves on long waves can differ greatly
from the effect of inviscidly neutral waves, and that the synoptic-scale
waves can help destabilize transient long waves through a mutual inter-
action process.

Thesis Supervisor: Dr. Randall M. Dole
Title: Professor of Meteorology

Thesis Supervisor: Dr. D. E. Harrison
Title: Research Scientist
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Symbol List

P beta, df/dy

T streamfunction, for two-layer model:

9 thermal streamfunction, for two-layer model:

e radiative equilibrium thermal streamfunction
e

length scale parameter, L /L << 1
syn ps

strength of basic-state wave, IU'I/IUl << 1

Sdensity

syn / syn

coi imag(co)

cor real(co)

f coriolis parameter

F Froude number

Fr friction

g acceleration by gravity

H density scale height

J jacobian, J(A, B) dA dB dA dB
dx dy dy dx

k,l zonal and meridional wavenumbers

k 2 7T/ X, smallest k in the model

K2 <k>2+12

ki imag(k)

kr real(k)

L synoptic length scalesyn

L planetary length scale

10 7/ Y, smallest 1 in the model

M K2 (K2 + 2F)



N Brunt-Vaisala frequency

p pressure

q,Q diabatic heating

t time

td  time scale of dissipative processes

trad  time scale of radiative cooling

u zonal wind

U zonal wind of the basic state

<U> zonally averaged U

Ut thermal wind of the basic state

v meridional wind

V meridional wind of the basic state

w frequency (complex)

W vertical velocity in pressure coordinates
DT

wi imag(w), growth rate

wr real(w), frequency

x distance along the zonal direction

X length of the periodic beta-plane channel, or a slowly

varying x variable

y distance along the meridional direction

Y width of the beta-plane channel

aa-x partial derivative with respect to x

D
-- derivative with respect to T
DT

V2  Laplacian operator

(..)ps variable associated with the planetary scales

(..) variable associated with the synoptic scalessyn
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Chapter 1

Introduction

General circulation model (GCM) studies have examined the growth of

disturbances on initially zonal symmetric basic states. Early work by Gall

et al. (1979a, b) used a hemispheric GCM with neither mountains nor land-

sea contrasts. The initial conditions were a zonal symmetric flow with

small random perturbations. Initially, the fastest growing disturbances

had wavenumbers between 5 and 20 - these have been frequently linked with

baroclinically unstable synoptic-scale waves. The long waves (k < 5), on

the other hand, initially tended to decay. After about 10 model days,

however, the long waves grew faster than predicted by linear theory, and

sometimes grew faster than any linear normal mode. These long waves were

mid-latitude tropospheric disturbances with synoptic meridional scales

(Gall et al., 1979b). We shall call these disturbances "planetary-scale

waves" or "long waves."

These growing long waves could not be due to topography for the GCM

had no mountains or oceans. The internal dynamics must somehow enhance the

growth rate. Gall et al. (1979b) suggested that cyclone-scale disturbances

could be forcing the long waves to grow faster than expected by linear

theory. They stated, "[These cyclones are] manifestations of the portion

of the spectrum that is growing by baroclinic instability." Generally,

these cyclones will vary in strength and will be unequally spaced around a

latitude circle. Hence, their heat flux will be unevenly distributed about

the hemisphere, with maxima associated with stronger cyclones. This

unsymmetric heat flux could directly force the planetary-scale waves. The

strongest evidence was that the structure of the long waves was consistent
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with forcing by the cyclones' heat fluxes. Unfortunately, their analysis

was not complete. They did not show that the cyclones added APE to the

long waves (i.e., force the waves), nor did they show that the response

(long waves) had the frequency of the forcing (cyclones). Such calcul-

ations could either invalidate their hypothetical mechanism, or yield more

supporting evidence for the mechanism as suggested by Gall et al..

MacVean (1985) performed an experiment similar to Gall et al. (1979a,

b). MacVean, however, could vary the horizontal resolution of the GCM. He

found, to no great surprise, that the growth was initially linear with the

most linearly unstable modes (i.e. synoptic-scale waves) growing fastest.

By about day 15, however, the long waves were growing faster than predicted

by linear theory. Moreover, MacVean found that the low-resolution model

only predicted a slow growth for the long waves. Since the low-resolution

GCM did not include synoptic-scale waves, MacVean concluded that the

presence of synoptic-scale waves could enhance the growth of the long

waves.

Young and Villere (1985) used a spherical GCM, and also found the long

waves grew faster than predicted by linear theory. Moreover, when the GCM

neglected the wave-wave interactions, the long waves grew slowly, at rates

consistent with linear theory. They concluded that wave-wave interactions

can be important for the growth of the long waves.

In all these GCM studies, the long waves grew faster than predicted by

linear theory (until the flow began to 'equilibrate'). These long waves

were mainly confined to the troposphere, and had synoptic-scale meridional

lengths. In addition, Young and Villere (1985) suggested that wave-wave

interactions were responsible for the growth of long wave, and MacVean

(1985) suggested that the synoptic-scale waves were important. Unfortu-
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nately, the GCM output has been insufficiently analyzed, and the analysis

has neither fully confirmed nor disproved the mechanism suggested by Gall

et al. (1979b). However, these GCM studies do suggest that the

synoptic/planetary-scale interactions may be important for determining the

growth and behavior of long waves.

The general goal of this thesis is to explain the interactions of the

"planetary-scale" and the synoptic-scale waves. To accomplish this goal,

we will use a simple model in hopes of understanding the first order

effects of these interactions.

The problems we wish to consider are intrinsically nonlinear. To

circumvent some of the primary problems associated with nonlinearity, we

will use a simple model, the two-level quasi-geostrophic beta-plane model.

We will also assume that the synoptic-scale waves have zonal scales shorter

than the long waves. Furthermore, we will assume that the amplitude of the

long wave varies on a time scale that is slow compared with the period of a

synoptic-scale wave. These assumptions allow us to apply WKB techniques to

find how the planetary-scale waves modulate the synoptic-scale waves. We

use this result to parameterize the effects of the synoptic eddies, and

then determine its effect on the linear growth of the long waves.

Basically, we will approach the problem of the synoptic/planetary-

scale interactions using WKB and multiple-time-scale techniques. The

latter requires that the synoptic-scale waves cannot grow on a fast time

scale; otherwise, the synoptic-eddy fluxes would also change on the fast

time scale, and ruin the time-scale separation. To avoid this problem, we

will assume that the zonal flow has equilibrated to a state where the

most unstable modes have a near zero growth rate. (This assumption is

examined in chapter 5.) This zonal flow could be achieved by a modified
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baroclinic adjustment (Stone, 1978). In Stone's adjustment, unstable modes

would grow and eventually stabilize the zonal flow by their heat fluxes.

On the other hand, if all modes were decaying, radiative forcing will

eventually destabilize the flow, and allow unstable modes to neutralize the

instability.

A specific goal of this thesis is to determine potential mechanisms by

which the synoptic-scale waves could 'destabilize' the long waves in the

GCM experiments. Based on our analysis, we conclude that a symbiotic,

nonlinear interaction between synoptic- and planetary-scale waves can help

destabilize the planetary-scale waves. On the fast time scale, the

synoptic-scale waves see a "basic state" which consists of the zonal flow

and a pre-existing long wave. This "basic state" will spatially modulate

the synoptic-scale wave, and produce planetary-scale variations in the heat

and relative-vorticity fluxes of the synoptic-scale wave. These fluxes can

then alter the long wave on the slow time scale.

At first glance, the evidence for a symbiotic interaction between the

synoptic-scale and long waves appears weak. For example, the atmospheric

transient eddies reduce the APE in the stationary waves with time scale of

1.5 to 4.5 days (winter; Lau, 1979b). Holopainen et al. (1982) found that

although the transient-eddy vorticity flux added energy to the stationary

waves, the heat-flux terms appeared to dominate. Hence, they concluded

that these eddies reduced the net energy in the stationary waves. But the

direct effects of the transient eddy fluxes are not the only factor

determining whether or not the synoptic-scale waves can destabilize the

long waves. We will discuss two other mechanisms by which the synoptic-

scale waves can influence the long waves. Both mechanisms do not directly

change the energy in the long waves, but may alter their vertical structure
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so that they can more efficiently extract ZAPE. These mechanisms could

then provide an alternative explanation for why linear theory underest-

imated the growth of long waves in the GCM experiments.

A numerical model was developed to test the baroclinic-adjustment

hypothesis and the synoptic-eddy parameterization. The model explicitly

calculates all the non-linear interactions, and so it can be used to find

the conditions for which our theory is valid. The model was also used to

examine the effect of the transient eddies on stationary long waves. This

was done by comparing the stationary long waves predicted by linear theory,

by linear theory with synoptic-eddy fluxes, and by nonlinear theory (i.e.

the time-mean solution of the numerical model).

The outline for the remainder of this thesis is as follows. Chapter 2

briefly reviews previous related studies. In chapter 3, we find the

spatial structure of a normal-mode instability. From this, we get the eddy

fluxes. Here, we implicitly assume that the synoptic-scale waves have

properties like those of normal-mode instabilities. In chapter 4, we

determine the effect of these eddy fluxes on the growth rate of a long

wave. Using a perturbation analysis, we identify terms which influence the

growth rate. Chapter 5 compares the results of our analytical theory with

those of the numerical model. In addition, we also address the questions

of baroclinic instability, and limitations of our theory. Chapter 6

examines the effects of the synoptic-scale waves on stationary long waves,

and chapter 7 contains the summary and main conclusions of this thesis.

Chapter 1: Introduction



Chapter 2

2.0 Previous Work

The spatial modulation of the synoptic waves has been examined by C.

A. Lin (1980a, b), Frederiksen (1978, 1979a, 1979b, 1980, 1982, 1983a,

1983b) and Niehaus (1980, 1981). Frederiksen and Niehaus examined the

instability of non-zonal flows, and for specific flows they numerically

found the most unstable modes which had synoptic scales. Niehaus (1981)

found an analytical expression, but it too was numerically evaluated due

to the complicated expression. These studies found solutions for specific

flows, including the climatological-mean flow. However, the basic

parameter dependences, and physical interpretation are not evident in these

studies. On the other hand, we consider a simple model, and are able to

obtain basic parameter dependences. Some relations were unexpected, and in

some cases were different from published conjectures. Thus, the two

approaches are complementary; we consider simple flows and find some basic

parameter dependences; previous studies considered more realistic flows,

but were unable to arrive at convincing physical interpretations.

The question of whether the synoptic eddies (de)stabilize the long

waves has not been throughly examined. Some studies (e.g. Lin 1980a) have

looked at energy transfers, but the energy fluxes of the synoptic eddies do

not determine whether the synoptic eddies are themselves (de)stabilizing.

Of more relevance are the GCM experiments discussed earlier which found

that the long waves grew faster than predicted by linear theory (e.g. Gall

et al., 1979a, b; MacVean, 1985; Young and Villere, 1985). MacVean's

experiment, in particular, provides strong evidence that interactions

between synoptic- and planetary-scale waves are responsible for destabil-

izing the planetary-scale waves. These GCM experiments are useful but they
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do not explain the synoptic/planetary-scale interactions.

In this thesis, we examine the effects of the synoptic-scale waves on

stationary waves by comparing linear theory, linear theory with parameter-

ized synoptic-scale waves, and the time-mean solution from a nonlinear

model. This approach is similar to that of Opsteegh and Vernekar (1982),

Nigam (1983), and Nigam et al. (1986). A major difference with our study,

however, is that the previously mentioned works used transient-eddy fluxes

obtained from observations or model simulations which restricts the number

of cases that may be considered.

2.1 Brief Review of Non-linear Theories

Few nonlinear theories analyze the problem of synoptic/planetary-scale

interactions. We will briefly describe the results of the mixing-length

hypothesis, and geostrophic-turbulence theory.

The mixing-length hypothesis assumes that smaller eddies mix conserved

quantities similar to a strong molecular viscosity. This hypothesis is not

based on the quasi-geostrophic equations, but it is used frequently to

parameterize unresolved eddies in meteorological models. Mixing-length

theory, by being diffusive, suggests that the synoptic-scale waves should

stabilize the long waves (White and Green, 1982). This stabilization does

not appear consistent with the results of GCM studies; therefore, 'mixing-

length theory is probably poor for the problem at hand.

Geostrophic turbulence is based on the quasi-geostrophic equations and

assumes that the fluid is nonlinear and quasi-random. Barotropic geo-

strophic turbulence theory probably doesn't apply to the GCM experiments

for both the synoptic- and planetary-scale waves show strong conversions of
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zonal to eddy baroclinic energy. Salmon's model (1982) for geostrophic

turbulence in a two-layer flow is more relevant (figure 1). In this model,

solar radiation adds baroclinic energy to the system which moves to smaller

scales by turbulent processes. At the Rossby radius of deformation, baro-

clinic instability dominates, and converts baroclinic energy to barotropic

energy. Finally, the barotropic energy flows into the low wavenumbers by a

barotropic energy cascade. There is some evidence of such a process in the

atmosphere; a barotropic energy cascade is observed, and so is a reverse

cascade for APE (Boer and Shepherd, 1983).

wind or soclar
net input

baLrocLinic energy

scacttering
into 3-d.
turbulence

c b6rotropic energy "

net loss to bounac.ry
Layer friction

Fig. 1. The energy flow for a two-layer system. -The solid

arrows represent energy flow and the dashed arrows represent

the potential-enstrophy flow (Salmon, 1982).
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Chapter 3

3.0 The Model

In the GCM experiments, the long waves had synoptic meridional scales

(Gall et al., 1979b). We will, therefore, use the QG1 quasi-geostrophic

equations in our study. (The QG1 equations [White, 1982) are the commonly

used quasi-geostrophic equations.) As a preliminary study, we analyze a

model simpler than a GCM; we use the quasi-geostrophic equations for a two-

level beta-plane channel. This system can, although crudely, model

baroclinic instability and storm tracks. The former is important for both

the synoptic- and planetary-scale waves gain much of their energy by

converting ZAPE into EAPE. The storm tracks are important because they are

regions of large heat fluxes due to synoptic-scale eddies. These fluxes

can directly force long waves.

We rejected the one-level or barotropic model because it cannot model

baroclinic instability. A model with more than two layers is more accur-

ate, but it is harder to solve and may not give a better understanding.

There are two major differences between the two-level model and a

continuously stratified model. The two-level model can only crudely

reproduce the vertical structure of waves, and it cannot model the vertical

energy propagation by waves. The latter flaw will produce artificial

normal modes (Lindzen et al., 1968).

The top of the model is at 200 mb, and the bottom of the model is at

900 mb which are approximately the top of the troposphere and planetary-

boundary layer, respectively.
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pressure level

p= 200 mb 0 W0 = 0

pl = 375 mb 1 I1 Fr1

p2 = 550 mb 2 Q Y2' 32

P3 
= 725 mb 3 Y3 Fr3

P4 = 900 mb 4 4

Where T is the streamfunction

Fr is the friction

Q is the heating

W~ is the vertical velocity in pressure coordinates

The equations for the two-level model in pressure coordinates are:

(See Yao, 1980)

t2T + J(V' 121) + 1x  1  o(L 2 - u 0 ) / dp + Fr 1  (3.1)

2a tV2x p 3 + j(o 3 , + = a' fo(W -u2) / dp + Fr3  (3.2)

t (I1-3) + J( 2 , f1-P3) - dp* SpOJ 2 =dp R.Q / (fo Cp p2) (3.3)

Where = Dt
Dt

dp = 350 mb

1
\F2 = 2 (1 + \3) (3.4)

=0 (3.5)

S = N2 / fo g2 (550 mb) 2  (3.6)

Fr is the friction

Q is the heating
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The equation forw 2 can be found by taking V2 of (3.3), subtracting

(3.1) and adding (3.3).

(-2fo/dp + dp-Sp 2) 2 _J(el 72I)+ J(Tr )2y 3) (3.7)

S2 '2 1 3

- fo.4 / dp - R-dp V2 Q / (fo Cp.p 2 ) + Frl - Fr3

The above equations were scaled. Time is measured in inertial periods

(1/fo), length is measured in units of the internal Rossby radius of

deformation (NH/fo), and pressure is measured in atmospheres (1000 mb).

Time = 1/fo (=6 hours) (3.8)

L = NH / f (~-1000 km) (3.9)

N g 2 1 ae (3.10)8 (z - 0 ap

Primed variables are non-dimensional

t = t'/f 0  (x, y) = (L x', L y')

Yi = L2fo i' W= Poofo ° '
1 0 

350b35
p = (f /L) p' dp' 1000mb = 0.35

Fr = f 2Fr
i o 1

Define F = L2 . f / Sp(550mb) dp2  (3.11)
o

Q = fo3 L2 , Cp-p 2 Q' / R-dpF (3.12)

8' = 1 (T - '3') (3.13)

8' is proportional to the temperature

1= 12 (Y1' + 9)') (3.14)

Fr' = ! (Fr ' + Fr 3 ') (3.15)
2 1 3
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After scaling, one-half of the sum of (3.1) and (3.2) is given by

(3.16). One-half of the difference of (3.1) and (3.2) is given by (3.17),

and (3.3) becomes (3.18).

a 2-t + J (, V2') + I af' 9 2') =11' / 2dp' + Fr' (3.16)

a e, j(, 2,a) + , x' + J(e', V2 ') = (3.17)

-2dp' 2 12) (Fr+ Fr'

+ J(T', 8') - t2' / 2Fdp' 2F (3.18)

Using (3.17) and (3.18) to eliminate o2' gives (3.19).

S22 2
t(72 - 2F)e' + J(', (92 - 2F)G') + J(9', 2y') = (3.19)

ae' 1- L'axe -C' / 2dp' + (Fr ' - Fr ') Qax 4 2 1 3

The governing equations (3.16, and 3.19) have only two parameters when

the flow is inviscid, adiabatic, and w4 is zero. These parameters, P' and

F, are a scaled beta and a Froude number respectively. For our results, '

is set to one-quarter, and F is set to 3.7415 which is approximately the

value when H is 9 km and the temperature at 550 mb is 2500 K.

p' = (L/fo) p ~ (3.20)

Using (3.6), (3.11), and dp Z f-g.dz, F can be rewritten as (3.21) or

(3.22).

F (fL)2 (3.21)N dz
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F = (H.gp / dp)2 = (H-g'p) 2 (dp'R'T) - 2  (3.22)

dp = 350 mb = 3.5x10 5 pascal p = p2 = 5.5x10 5 pascal

g = 9.8 m s-2 R = 287 J deg- 1 kg-1 for dry air

H = 9 km T = 249.665 K

Using the above values, F = 3.7415 (3.23)

For the rest of the thesis, these primes will be dropped.

Boundary Conditions

For the vertical boundary conditions, we must know La at the top and

bottom. At the top, Li is set to zero (4j = 0). At the bottom (level 4), W
o

will be caused by Ekman pumping and orographic forcing.

The vertical velocity at the surface is given by (3.24) (Holton,

1972). His result can be converted into pressure coordinates (3.25) where

'd ' is a function of the surface conditions and atmospheric stratific-o

ation. The control run uses d = 0.025 which gives a decay time of 7 dayso

for a barotropic wave. This Ekman pumping is weaker than Holton's (1972)

suggested 4-day decay time.

Dz = 2 
(3.24)

Dt c7 2' op of boundary layer (3.24)
Dz
Dt - 4 /pg

=4 - do 2
3 + 04 (due to orography) (3.25)

d = 0.025 for control run (3.26)

The model is periodic in 'x' (periodic beta-plane channel) and it has

no flow through the meridional boundaries at y = 0, Y.
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These meridional and vertical boundary conditions have been employed

in many beta-plane models. The major effect of the boundary conditions is

to "trap" the energy within the channel. This trapping can produce

artificial vertical modes (Lindzen et al., 1968; Dickinson, 1968), and

artificial meridional modes (Kasahara, 1980). This trapping definitely

and significantly affects the stationary waves (Held, 1983), so one must

interpret the results in chapter 6 with consideration to Held's results.

The effect of the boundary conditions on the transient waves is more

uncertain. Perhaps, these effects may be minimal since we are only looking

at the gross aspects of the wave interactions. Nevertheless, such specul-

ations should be examined with a more realistic model.

Barotropic Dissipation

Fr includes the effects of viscosity and unresolved motions, and it

will be modeled as a horizontal eddy viscosity. The coefficient of eddy

viscosity (v) depends on many factors, including the horizontal resolution

of the model. The term 'v' was chosen so that the shortest barotropic wave

in our numerical model had a decay time of 7.5 days. The longer modes are

less damped by the eddy viscosity, and the longest, widest mode had a decay

time of roughly 90 days.

Fr = v 7 4 (3.27)

v for the control run (3.28)
125
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Baroclinic Dissipation and Forcing

Many terms affect the baroclinic part of the flow (6). These factors,

which are listed below, are not independent. For example, the surface heat

flux is forced by solar radiation, and depends on the vertical eddy fluxes.

1
Some Factors determining - (FrI - Fr3 ) and Q

1. Solar forcing

2. Heat flux from the surface

3. Latent heat release

4. Radiative cooling

5. Fluxes of heat and momentum by unresolved motions

The factors determining (Fr -Fr 3 ) and Q are difficult to model
2  1 3

accurately, especially in a two-level model. As our primary goal of this

thesis is to understand the scale interactions, precise determination is

not likely to be necessary. We, therefore, use a simple linear para-

meterization.

1
S(Fr-Fr3 ) - Q 2F(e - e) / t (3.29)

1 t (K2 + 2F) is the decay time
2F rad

trad = 40 for the control run (10 days) (3.30)

Note: trad includes the effects of unresolved eddy fluxes, so it

should be smaller than the Newtonian-cooling time scale.

e is the radiative equilibrium temperature (thermal forcing)

For most runs, = - 0.3 ( - ) (3.31)e Y 2
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The radiative damping is stronger than determined by radiation calcul-

ations (trad = 0(30 days)). We have used a strong radiative damping

because we are implicitly including the effects of unresolved eddy fluxes

which are presumably dissipative.
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3.1 Theory Introduction

C. A. Lin (1980) calculated the linear instability properties of

small- and large-amplitude planetary-scale waves, where large was deter-

mined by the ratio of the wave's meridional wind to its Doppler-shifted

phase speed (i.e. v/lc-UI). The instability properties suggest some char-

acteristics of the nonlinear flow.

When the basic state had a large-amplitude long wave, Lin found that

the dominant linear instability consisted of long waves. This is a reason

to suspect that long waves may dominate the flow and energetics. One may

also expect nonlinear interactions among these planetary-scale waves to be

important and perhaps a dominant process.

On the other hand, when the basic-state long wave was weak, the

dominant linear instability consisted of synoptic-scale waves with a

planetary-scale modulation. One could, therefore, expect that these modul-

ated waves are important. In addition, the unstable waves, due to this

planetary-scale modulation, could interact with the planetary-scale waves.

In our study, we anticipate that the flow containing a strong basic-

state wave will differ greatly from a flow with a weak wave. We will focus

on the latter case for we expect that the synoptic/planetary-scale

interactions will be more important in that situation, and may prove more

helpful to us in explaining the GCM results.

Strategy

The strategy for examining the synoptic/planetary-scale interactions

is to assume that the synoptic-scale wave has a faster time scale than the
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long wave. The time scale of a traveling planetary-scale wave is made

longer by working in the frame of reference of that traveling wave. Hence,

the slow time scale is that of the amplitude of the long wave, and the fast

time scale is period of the synoptic-scale wave. The amplitude time scale

of observed long waves needs to be evaluated; however, the ultra-long waves

have a lifetime of roughly 20 days (Ahlquist, 1985) which is much longer

than the period of synoptic-scale waves (2.5 to 6 days; Blackmon, 1976).

With this separation of time scales, the synoptic-scale wave only sees

a wavy basic state that is unchanging on the fast time scale. We find the

synoptic-scale wave by a linear, WKB analysis. This procedure determines

the properties of the synoptic-scale wave up to a positive factor, the

synoptic-eddy amplitude. In our study, this factor is either a free

parameter or determined by the numerical model.

The zonal and planetary-scale flows, by assumption, vary slowly

compared to the synoptic eddies, so that the large-scale flow only sees the

'time-averaged' flux due to the synoptic eddies. We determine these fluxes

using the previous analysis. Basically, the effects of the synoptic eddies

are now a linear function of the large-scale flow and the synoptic-eddy

amplitude; i.e., the synoptic-scale waves are parameterized.

The evolution of the planetary-scale waves can be found using linear

quasi-geostrophic equations and the linear synoptic-eddy parameterization.

We can then find a linear growth rate of the long waves assuming that the

zonal flow changes slowly.

The details of the analysis are broken into three parts. First, the

growth of a synoptic-scale wave on a simple, wavy basic state is found.

Using the WKB technique, the synoptic-scale wave is found to have a spatial

modulation of its amplitude, local wavelength and vertical tilt. To keep
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the synoptic-scale wave from growing on the fast time scale, the zonal flow

is assumed to have equilibrated to where the growth rate of the most

unstable modes is nearly zero. Basically, this is a form of baroclinic

adjustment which is tested in chapter 5.

In this chapter, the fluxes of the modulated synoptic-scale wave are

also found. These fluxes have a planetary-scale component which can

directly force a long wave. These fluxes can then be parameterized in

terms of the synoptic-eddy amplitude, zonal basic state, and the basic-

state long wave.

In chapter 4, we examine the effect of the eddy fluxes on transient

long waves. We find that the synoptic-eddy fluxes can increase the growth

of the long waves. In addition, we identify the role of individual terms

in the limit of small fluxes and dissipation.
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3.2 Theory: Part A

In this section, the growth of a synoptic-scale wave on a wavy basic

state is found. For our purposes, the large-scale basic state is invariant

in time, and we will look for the normal-mode instabilities. In the next

section, we will assume that the normal-mode instability is representive of

the synoptic-scale waves, and will use it to find the eddy fluxes of the

synoptic-scale waves.

This instability calculation has been done on a computer as an eigen-

vector problem (e.g. Frederiksen, 1978; Niehaus, 1980). Unfortunately,

these results don't yield the insight required for our analysis, and are

only valid for specific flows. Instead, we will apply the WKB technique

because its results are more readily interpreted, and its results can be

used to parameterize the synoptic eddies.

The first step in determining the synoptic modulation is to linearize

the equations about a non-zonal basic state. For our theory, the basic

state consists of a zonal flow with a single small-amplitude stationary

long wave. This is a minor restriction since a zonal translation will make

a traveling wave stationary, and, as our theory is linear, multiple waves

can be handled separately.

Dissipation for the synoptic-scale waves is assumed to be linear in

the potential vorticity (3.33). The dissipation can then be removed by a

simple transformation (3.34). We used this dissipation for it simiplifies

the calculations and probably doesn't change the largest order behavior of

the synoptic-scale waves.

+ J(, q) + = D(q) (3.32)

q is the potential vorticity, T is the streamfunction
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Let the dissipation D(q) = - r.q (3.33)

Let- = + r (3.34)at at

After using (3.16), (3.19), and (3.34), the governing equations are

at V2. = _ 2 j) 2 J 6, V26) (3.35)at ax
a - 2F) = - - J((', (y2 - 2F) 6) - J(e, 2 ,f) (3.36)

Define t(x,y,t) = o(x,y) + \'(x,y,t)

G(x,y,t) = eo(x,y) + e'(x,y,t)

'", 9' are the streamfunctions for the synoptic-scale wave

o', 6 are the basic-state streamfunctions

Linearizing (3.35) and (3.36) gives:

a2-t4 o - J ', V2y) J(o' 2 )) -, j(e', o2 e ) (3.37)
ax o

-J(e o , V2e,)

(V2 - 2F)8' = - ax -J( (72 - 2F) 6') (3.38)at -a J 0

- j(e, (2 + 2F)\f') - J(I', 2eo- J(e' V2V 0

The boundary conditions are that

Y/', 6' are periodic in x, and are zero at y = (0, Y).

Let the widest meridional wavenumber be 1 = '/ Y
o

We will make the following assumptions. (1) The calculation is only

for the most unstable modes because the nonlinear terms between the larger

amplitude transients will dominate the equations governing the smaller

amplitude transients. (2) The most unstable transient wave varies on the
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synoptic scale which is much shorter than the basic-state wave (i.e., E =

L syn/Lps << 1). (3) Last, the basic-state wave is weak (i.e., =

IU'I/IUo << 1).

We will look for solutions which have a sin(ly) structure, and we will

ignore the interactions between different meridional modes. The Galerkin

approximation (Gottlieb and Orszag, 1977) and a power expansion in C are

used to simplify the (3.37-3.38), giving (3.41) and (3.42). (Appendix H

contains more details.)

Define 1 = j -1

Let F'(x,y,t) = a(x,t)sin(ly) (3.39)

e'(x,y,t) = b(x,t)sin(ly) (3.40)

d (axx- 12a) a + U(12a - a ) + Ut(l2b - b ) (3.41)

+ DU*a + DUt.b
x x

t(bxx - 12b - 2Fb) - bx + U [(2F + 12) b - b ] (3.42)

- Ut [ (2F -12) a + a ] + DU-b + DUta

The terms U(x), Ut(x), DU(x), and DUt(x) are defined below. They are

the Galerkin approximations to the barotropic and thermal zonal winds, and

the "curvature" of the barotropic and thermal zonal winds, respectively.

Define <A I B> = A*B dy
U(x) = <-aio/ay sin(ly) I sin(ly)> is the zonal wind (3.43)

Ut(x) = <-ae /ay sin(ly) I sin(ly)> is the zonal thermal wind (3.44)

DU(x) = <-a 3  /y 3 sin(ly) I sin(ly)> is the curvature of U(x) (3.45)
0
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DUt(x) = <-a3 o/ay 3 sin(ly) I sin(ly)> is the curvature of Ut(x) (3.46)

For convenience, we assume <DU>, <DUt> are both 0(6)

V(x) = <a o/dx cos(ly) I sin(ly)>
0

Vt(x) = <G 0 /ax cos(ly) I sin(ly)>

DV(x) = <a(V o)/adx cos(ly) I sin(ly)>

DVt(x) = <a(7 2 6e )/x cos(ly) I sin(ly)>

Note, the above quantities are a function of x and the meridional mode 'j.'

Equations 3.41 and 3.42 are ordinary differential equations, and can

be solved using the WKB technique. The form of the WKB solution is given

by (3.47) and (3.48). The range of validity of the solutions is examined

in Appendix A.

Y(x,t) = sin(ly) exp{i-g o ( X)/ + i.g1(X) + i'-,g 2(X) + .. (3.47)

- i-w t - i,,wt - .. }

e(x,t) = (co(X) + 'c 1 (X) + .. ) Y (3.48)

A local wavenumber is defined by k(X) - xgo)

Using the local wavenumber, (3.47) becomes

S= exp( i k(x)dx + i.gl(X) + ... - iOwot + ... ) (3.49)

Equations 3.48 and 3.49 can be combined with (3.41) and (3.42).

Ignoring terms of O(), the results are two third-order polynomials in k.

These two polynomials can be manipulated to find an expression for co.
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[(w - U(x),k(x)) (k(x) 2 + 1 2) + (p - DU(x)) k(x)]
co(x) = !

[Ut(x)4k(x).(k(x)2 + 12) + DUt(x).k(x)]
(3.50)

Using these two polynomials to eliminate co, one gets a sixth order

polynomial in k (3.51). (See appendix H for more details.)

Sa kn = 0on

U2 _ Ut2

- 2Uw

2W2~ + 2U 2 (l2 + F) - 20effU + 2Ut;= 2eff - 4wU'(1 + F)

= - 12 (1 - 2F) Ut - DUt - 2(1 2

2w 2 2
+ 2w (12 + F) + eff - 2(2 2

2w [Peff(l2 + F) - U 12(12 + 2F

w212(12 + 2F)

f = P - DU is the effective beta

(3.51)

2(F - 12) - 2Ut*DUt

- F) Ut DUt

12 12 ) U2
+ F) PeffU + (1 + 2F)U

Frequency, and Growth Rate

Co (3.50) and H(k,w) (3.51) govern the synoptic-scale wave. Co deter-

mines the vertical structure of this wave, while H fixes the wave's growth

rate, frequency, and local wavenumber. H is a 6th order polynomial in k

with two unknowns, k and w. If we were to solve for k using a predeter-

mined w, we would find six values of k(x), which correspond to the six

possible roots. We would then have to find the roots which correspond to

physical solutions. [Pierrehumbert (1984) found the local instabilities by

this procedure.]

A simpler method uses the zonal average of H (3.51). Since the zonal
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asymmetries of U, Ut, DU, and DUt are 0(o), they can be neglected. If the

zonal asymmetry of k(x) is 0(S), it too can be ignored. (After completing

the analysis, one should verify that Ik'I < 0(6).) The final result is an

equation for the 0(1) frequency (3.52). Here, the frequency is a function

of the zonal-mean wavenumber.

w° =<U><k> - <k> (K2 + F) + (3.52)o M
.<k> 2 2  2 2 1/2
i--- [-( F) + <Ut> MK (2F - K)]

Where K2  <k>2 + 12 (3.53)

M = K2 (K2 + 2F) (3.54)

Where <..> is the zonal average,

and (..)' is the perturbation from the zonal mean.

The 0($) correction to the frequency is zero. This result comes from

expressing H in a Taylor series of the zonal asymmetries, k', U', Ut', DU',

and DUt'. On zonally averaging this Taylor series, the linear perturbation

terms disappear leaving quadratic perturbation terms of 0(62). Thus,

the correction to w is 0(62) which implies that changes in the frequency

and growth rate can be ignored.

Local Wavelength

In our analysis, the local wavenumber is complex and a function of

location. This is different from the analysis of zonal and nonzonal stable

flows which have real wavenumbers. The imaginary part of the wavenumber is

extremely important for it creates 0(1) spatial variations in the eddy

amplitude, and eddy fluxes. This, in turn, allows strong interactions

Chapter 3: Part A



between the synoptic- and planetary-scale waves, and may help explain the

strength and locations of storn tracks.

The variations of the local wavenumber, k, can be found by a Taylor's

expansion of H (3.55). In this equation, the partial derivatives are

evaluated at the zonal-mean state, and are given by (3.56-3.61).

H H aH HH
-k' + U' + Ut' + aH DU' + aH DUt' = 0 (3.55)
ak au aUt aDU aDUt

As shown in appendix I,

aH -2i<k> imag(w)'M (3.56)

=2<k>2 <Ut> K2 (K 2 - 2F) (3.57)aUt
U -2<k> 2 <Ut> (K 2 - F) (3.58)

U = 2 <k>2 F2 - 2i~imag(w) <k> (K2 + F) (3.59)

imag(4-) = 2imag(w) [- U.M + P.(K 2 + F) - 2 <k> 2  (3.60)

- 4 M <k>2 F 2

M

real() = - 4<k> (K2 + F) imag(w)2 (3.61)
dk

+ 2<k> <Ut> 2 [2<k> 2 (F - K2 ) - K2(K 2 - 2F)]

<k> 2 2 2 2 2
+ 2 F [ -1 + <k> (K + F) ]

M M

In our analysis, the synoptic-scale wave has one free parameter, its

mean wavenumber. Knowing the mean wavenumber, the wave's frequency (3.52),

local wavenumber (3.55) and vertical structure (3.50) are determined.

An important and special case occurs when the synoptic-scale wave has

the most unstable zonal wavelength. It is an important because one might

expect that this wave will have a large amplitude. It is special because a

aw/ak is real, and aH/ak has a simple form. Because of the simple form of

aH/ak (3.63), this case is often considered in the following analyses.
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Special Case: k = most unstable zonal wavenumber
c

aH
aw = 2i'M'imag(w) from 3.51 and 3.52. (3.62)

Since H(k, w) = 0

ZIH SH dw
then - (aw) (w)k w k

But at the most zonal unstable wavelength, imag( ) = 0
aw

and real(-) Cg where c is the 'group velocity'
k g

Therefore ~= - 2i*Mimag(w).g (3.63)

at the most unstable zonal wavenumber

Co

Co is the ratio of the baroclinic and barotropic components of the

synoptic-scale wave (3.48). This term is complex valued because there are

phase shifts between the baroclinic and barotropic components. As a

result, co is important for determining the local vertical phase tilt, and

heat flux.

Co' can be determined from (3.50); however, (3.68) will be used

instead. This equation includes the small terms, V, Vt, DV, and DVt which

are formally of O(C). However, using these small terms is not inconsistent

because the exact value of co never enters into the calculations. The

smaller terms do not significantly increase the computational costs, and

they do make a minor improvement in the results.

cor = real(co) (3.64)

coi = imag(co) (3.65)
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<cor> M <Ut>

<ooi> = imag(w)<k><Ut>

(3.66)

(3.67)

Note that <coi> is proportional to the meridional heat flux, and not

surprisingly, <coi> is also proportional to the (inviscid) growth rate.

[2<k> (w - U<k>) + P]

[<k> Ut K2

<U>

<k> <Ut>

2<co> <k>

K
2

<co>
- - } k'

<k>

(U' + <co> Ut') il (V' + <co> Vt')

<Ut> <k> <Ut>

(DU + <co> DUt) ii (DV + <co> DVt)

<Ut> K <k> Ut K2
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3.3 Theory Part B:

Spatial Modulation

The imaginary part of k(x), ki, controls the local eddy amplitude and

the planetary-scale modulation of the synoptic-eddy fluxes. When ki is

negative, the amplitude of the synoptic-scale wave is larger to the east

(3.69). This condition will be called 'spatial growth downstream', or

'spatial growth.' Downstream is unambiguous for reasonable mid-latitude

flows; the phase and group velocities of most unstable synoptic-scale wave,

and the zonal-mean flow are all eastward. (For atypical flows, downstream

is in the direction of the group velocity of the synoptic-scale wave.)

The synoptic-eddy amplitude is given by ITI = 1oo e ki(x)'dx (3.69)

-ki = spatial growth, -ki > 0 implies spatial growth downstream

Effects of Ut'

The zonal asymmetries of the zonal thermal wind, Ut', will modulate

synoptic-scale waves by (3.70). Basically, a strong Ut' produces spatial

growth downstream, as illustrated by figure 3.

ak aH aH
dUt - dUt ak
ki 2 2 H aH (3.70)-t = 2<k> 2 <Ut> K (K2 - 2F) imag( ) -1 (3.70)

Note that baroclinically unstable waves must have K2 < 2F

and imag(T) = (from 3.60)

= 2imag(w) [-<U> M + (K2 + F) - 2P <k> 2 - 4 - <k> 2 F 2 ] (3.71)
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UT'

X

Fig. 2. The Ut' for figures 3-5. Ut' is the zonally asymmetric

thermal wind of the basic-state flow. U' is zero.

SYNOPTIC EQOY AMPL ITUOE

Fig. 3. The synoptic-eddy amplitude as determined by theory.
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Fig. 4. J(Tsyn' es) The divergence of the eddy heat flux as

y tDfsyn

determined by theory. (Deviation from the zonal mean is shown.)

Fig. 5. J(syn 2syn ) The divergence of the vorticity flux

as determined by theory. (For levels 1, 2, and 3.)
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Fig. 6. Like fig. 5 except the spatial growth rate (or length

of the channel) is 10 times larger.

Using 3.52, one can find that

aw 2 2 < 2 2M-real() = <U> M - p (K2 + F) - 2 P <k>2 + 4 <k> 2 (K2 + F) 2
2 M

= <U> M - (K2 + F) - 2 <k> 2 [M - 2 (K2 + F) 2

= <U> M - (K2 + F)- 2 <k >2 (-M - 2F 2)

= <U> M - (K2 + F)+ 2 <k> 2 + 4 <k>2 ( K2 + F)2

- imag() / 20imag(w)

Thus imag( a =-2wimag(w)*M-real(a) (3.72)iak i

Using (3.70) and (3.72), -Ut < 0 when real( ) > 0

aki ak

The term y-j is negative when real( k) is positive. For this typical

case, a stronger than average thermal wind (Ut' > 0), implies that ki is

negative. Hence, regions of large Ut' should show spatial growth down-

stream. If the variations were sinusoidal, then the eddy amplitude should
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peak wavelength (or 900) downstream of the strongest thermal winds.

The perturbation thermal wind (Ut') affects the spatial growth in a

predictable way. Where Ut' is positive, the local baroclinic instability

is larger than average. A cyclone moving in this more unstable region,

will grow as it moves downstream. If one calculates the average amplitude

of many cyclones as a function of position, one would expect to see spatial

growth in the more unstable regions.

Ut: Ut' > 0 Ut' < 0

w: strong local instability weak local instability

ki: ki < 0 ki > 0

spatial growth to east spatial decay to east

ITI: mean large mean small

< ------------------- x --------------------- >

Equation 3.70 is simpler when the synoptic-scale wave has the most

unstable zonal wavelength (3.63 and 3.70 give 3.73). Here, the spatial

growth is inversely proportional to the group velocity.

ki <k>2 <Ut> K2 (2F - K2 )

ki
U -- - i c(3.73)

M~imag(w). cg

(at most unstable zonal wavelength)

awCg = is the group velocity (The group velocity for the most unstable

wave is its'wave packet velocity.)
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The term ki (from 3.73) blows up when the group velocity is zero. For

this situation, the spatial modulation is undefined because the waves do

not 'move' in a wave-tracing sense (Yeh, 1949). The waves in one region do

not influence those in other regions; hence, the spatial modulation is

unconstrained.

The term ki also blows up when the inviscid growth rate (i.e. ignoring

dissipation) is zero. When 'wi is small, a(wi)/aUt is very large because

the growth rate has a square root dependence on the thermal wind (3.52).

Thus, a small change in the perturbation thermal wind will produce a larger

change in the local growth rate, and consequently the spatial modulation.

dH aH
dk = - ( / H) dUt (most unstable wave)aut ak

tH Bw aH
dk = [ / ( a) I dUtaUt ak dw

Therefore, dk = - [ t / Cg dUt (3.74)

note: -t is imaginaryaut x

Jau Ut'(x) dx
IT1 = exp (3.75)

c
g

The terma w/aut is imaginary for the most unstable wave, and deter-

mines the effect of Ut' on the local growth rate.

Equation 3.74 has a simple interpretation. Consider a synoptic eddy

moving into a region of strong thermal wind (Ut = <Ut> + Ut'). Its

inviscid growth rate is imag(w + (aw/dUt)Ut'). Its real growth rate,

however, is only imag((aw/aUt),Ut') since its 'global' growth is zero

(baroclinic adjustment hypothesis). As a result, the eddy's amplitude

grows like e imag(aw/aUt)'Ut't. The eddy also travels at its group

velocity. Suppose the eddy's position is given by the equation x = c t.
g

I1 f



Then, the eddy's amplitude, which is a function of time, is also a function

of position, e imag(aw/aut).t'x/cg. This is like (3.75). Hence, we have

given both wave and particle interpretations to the Ut' effects.

Ut' can also change the local wavelength (3.76). Waves longer

(shorter) than the most unstable wave, have their local wavelength reduced

(increased).

akr - 2<k> 2 <Ut> K2 (K2 - 2F) real( dH dH-2 (3.76)
"Ut dk dk

Effects of U'

The most direct effect of U' is to change the local wavelength of the

synoptic-scale wave. When the zonal wind is stronger than average, the

local wavelength is longer so that the frequency remains constant. (See

3.77 and 3.78.) This wavelength modulation is easily seen in Frederiksen

(1980).

ak -2i <k> imag(w) M / dH from (3.55) (3.77)
U dk

The zonal wind perturbation can influence the spatial growth of the

synoptic-scale wave. This may seem surprising since the zonal wind does

not alter the baroclinic stability in the Phillips' model (e.g. Pedlosky,

1979). The barotropic zonal wind controls the spatial growth indirectly.

When the zonal wind (U' > 0) is stronger than average, the local wavelength

is longer to keep the frequency constant. (This is true only when

real(hw/ak) > 0.) In turn, the larger local wavelength changes the local

instability, and can produce spatial growth.

Chapter 3: Part B



When U' is positive, the synoptic-scale waves will have a longer local

wavelength. Waves that are longer than the most unstable wave will become

more stable and experience spatial decay, and shorter waves will show

spatial growth.

- <k> / c
9

at the most unstable wave number (3.78)

U' > 0 U' < 0

kr' < 0 kr' > 0

k < <k> < k <k> < k < k
o o

weaker local instability stronger local instability

spatial decay downstream spatial growth downstream

ki > 0 ki < 0

Effect of U' on longer synoptic-scale waves

k = most unstable zonal wavenumber
o

Effects of DU'

DU' ( 2U'/ay2) is the curvature of the basic-state wave's zonal wind.

This term modulates the synoptic-scale wave by changing the effective beta.

A strong effective beta reduces the instability (3.52); therefore, regions

of a strong effective beta should show spatial decay downstream.

Peff = - Uyy = - DU'

ak aH aH=  - /  --
aDU' aDU ak

2 2 2 dH
[-2 <k> 2 F2 + 2i-imag(w) <k> (K2 + F)] / Md-dk

(3.79)

When the synoptic-scale wave has the most unstable zonal wavenumber,
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(3.79) can be simplified by using dH/dk = -2i imag(w) M c .g

_k ip <k> 2 F2  <k> (K2 + F)
-- - - (3.80)aDU' M2 imag(w)'c M'c

g g

(for the most unstable zonal wavelength)

Effects of DUt'

The curvature of the basic-state wave's thermal zonal wind, DUt', can

modulate the synoptic-scale wave. For the most unstable zonal wavelength,

(3.82) suggests that the effect of DUt' is opposite to that of DU' (when

K2 > F). This opposite effect is reasonable since a positive DUt'

increases the effective beta in the lowest layer unlike DU'. The lowest

layer tends to control baroclinic instability for it is easier to change

the sign of the potential vorticity gradient in that layer.

ak aH / H
aDUt = - aDUt ak

2 2 dH
2<k> 2 <Ut> (K2 - F) / Z (3.81)

At the critical wavenumber, (3.81) can be simplified by using

dH-k -2i.imag(w) M*c

2 2
i <k> 2 <Ut> (K - F)ak

giving -DUt - (3.82)

M imag(w)c g

(for the most unstable zonal wavelength)
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Effects of <U>, Beta

The zonal-mean barotropic wind, <U>, has a direct effect on the

spatial modulation of the synoptic-scale waves. A large <U> increases the

wave's group velocity. By (3.74), (3.78), (3.80), and (3.82), a larger

group velocity decreases the spatial modulation. Basically, a large c
g

implies the cyclones move faster. Consequently, the cyclones spend less

time in regions of strong thermal winds before entering regions of weak

thermal winds. Therefore, the are less influenced by zonal asymmetries,

and show a smaller spatial modulation.

aw <U>- (K2 + F) + 2 AM <k> 2 F 2 (3.83)

= group velocity at the most unstable zonal wavelength

One must remember that <U> is measured relative to phase speed of the

long wave. A different zonal wind will alter both the phase speed of the

transient long wave and the group velocity of the synoptic-scale wave.

Since <U> alters both velocities by similar amounts, the changes cancel

each other. Hence, the interactions between synoptic-scale and transient

long waves should be relatively insensitive to the zonal-mean barotropic

winds.

Beta is important since it helps determine the relative group velocity

(3.83). A small beta makes the medium weakly dispersive, and increases the

effect of the synoptic eddies. For example, our analysis blows up on an f-

plane, suggesting strong eddy effects.

For stationary planetary-scale waves, <U> is measured relative to the

ground. Thus, the zonal wind is important for determining the group vel-

ocity of the synoptic-scale wave, and consequently the spatial modulation.
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A stronger zonal wind will decrease the interaction between the stationary

long and synoptic-scale waves for typical situations.

Effects of <Ut>

Increasing the zonal-mean thermal wind, <Ut>, decreases the term

<Ut>/imag(w) (except on an f-plane). As a result, the spatial amplitude

modulation that is caused by Ut', and DUt' is reduced (3.73, and 3.81). Of

course, in the real world, changes in <Ut> are likely to be associated with

changes in the synoptic-eddy amplitudes, which may counteract the direct

effect of <Ut>.

Summary

In summary, we looked at the spatial modulation of a synoptic-scale

wave, and found some terms which affect the amplitude modulation. We found

that the equations lead to some physical interpretations, particularly at

the most unstable zonal wavelength.

Regions where the basic-state thermal wind is larger than average

(Ut' > 0) show spatial growth downstream. If one only considers Ut', then

the amplitude of the synoptic-scale wave should peak 900 downstream of the

strongest thermal winds.

The thermal wind modulates the synoptic-scale wave by changing the

local instability. When the thermal wind is larger than average, the wave

is more locally unstable, and the wave shows spatial growth downstream. At

the most unstable wavenumber, this spatial growth is proportional to the

dwi
local growth rate ( wi -Ut') and inversely proportional to the 'group

aut
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velocity' (3.74).

U' can also modulate the synoptic-scale wave. It changes the local

wavelength for the frequency must be independent of location. A differing

local wavelength will consequently change the local growth rate. If the

local growth rate is positive, we find spatial growth downstream.

The curvature of the zonal flow modulates the synoptic-scale wave by

changing the local effective beta. Where the effective beta is weak, the

local instability is strong and the region shows spatial growth downstream.

<U> is important for stationary planetary-scale waves. A larger <U>

increases the group velocity of the synoptic-scale wave, and consequently

reduces the spatial modulation of the synoptic-scale wave. Thus, the

effects of the synoptic-eddy fluxes are reduced. Fortunately, the exact

value of <U> is not critical because it only changes the magnitude and not

the phase of the eddy fluxes.

Beta has an important role for transient planetary-scale waves because

it is proportional to the group velocity. (The group velocity is measured

relative to the planetary-scale wave.) As a result, a more dispersive

medium shows less interaction between the synoptic- and planetary-scale

waves.
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3.4 Theory: Part C

In Part B, we described the spatial structure of synoptic-scale waves.

In this section, we use those results to find the large-scale variations of

the waves' heat and (relative) vorticity fluxes. We find that the heat

flux tends to reduce, and the vorticity fluxes tend to enhance the energy

in the long waves. This is similar to observations (stationary waves:

Holopainen et al., 1982) and to calculations (f-plane: Niehaus, 1980).

Our analysis is based on the separation of length and time scales.

With the scale separations, the equations governing the slowly varying,

large-scale flow are (3.84) and (3.85). The variables without subscripts

denote the slowly varying, large-scale flow. The last two jacobians in

(3.84) and (3.85) are the effect of synoptic eddies on the large-scale

flow. We evaluate these jacobians using the previous results.

t 7 -  J - J (  V27 2) - J(e, 2e) J(syn' (3.8)
at ax syn' syn

2 - 2F) ) = - - J(,72 2F) 6) -J( sy,?)  (3.85), 2e )+gsyn syn( ae - - 3.82t(2 2- J(,2 ( 2F) ) - J(, 2P ) (385)

syn syn syn syn

Y is the large scale, slowly varying barotropic streamfunction

6 is the large scale, slowly varying baroclinic streamfunction

g, and h are dissipative effects from radiative cooling, friction and

Ekman pumping.
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Eddy Heat Flux

The divergence of the eddy heat flux (DHF) is calculated using our

analytical solution (3.48 and 3.49). The growth rate can be ignored by the

baroclinic adjustment hypothesis, so after some manipulation one can get

(3.86) which is illustrated in figure 4.

J(T ) =  l'sin(21y)-kr-coi A(x)2 + smaller terms (3.86)
syn syn 2

= DHF

Where A(x) = A e Jki(x)dx is the local eddy amplitude

The above equations can be linearized in the zonal asymmetries.

<J(T esyn)> = - sin(21y) <k> <coi> A 2 (3.87)syn syn 2 0

J(syn' syn)' = 1 sin(21y) A 2 (3.88)syn syn 2 o

{ -2<coi> <k>.ki(x).dx + <coi>,kr'+ <k> coi'

Note: A strong DHF in the southern region indicates a strong poleward heat

flux.

Equation 3.88 can be simplified using (3.66-3.68).

J(syn' sy )n)' =  lsin(21y) A 2{ -2<coi> <k>,ki(x)-dxsyn syn 2 o

U (K2 + F) 29 <k> 2  ki <coi> <k> Ut'
- [ <u> - + ] --

M K <Ut> <Ut>

1 (V' + <cor> Vt') <k> <coi> DUt' 1(DV' + <cor> DVt')
+ -+

<Ut> <Ut> K2  <Ut> K2

Using (3.52) gives:

J(yn' syn)' = 1 1sin(21y) A 2 { S -2<coi> <k> ki(x)°dx (3.89)
syn' syn 2 o
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real(w) 2f <k> 2  ki <coi> <k> Ut' (V' + <cor> Vt')
- + ) +

<k> K <Ut> <Ut> <Ut>

<k> <coi> DUt' 1(DV' + <cor> DVt')
+

<Ut> K2  <Ut> K2

Note: by convention <k> > 0, <coi> > 0, and usually real( ! ) > 0

Ut' and ki are two major factors in (3.89). By this equation, a large

eddy amplitude (i.e., -ki'dx is large) produces a large poleward heat

flux. In addition, regions of strong spatial growth (ki < 0) have strong

poleward heat fluxes.

The term <coi>-<k>,Ut' / Ut (3.89) suggests that a stronger thermal

wind will decrease the heat flux. However, a perturbation thermal wind

also increases the spatial growth. The latter dominates when imag(w)/<Ut>

is small. Hence, a positive perturbation of the thermal wind usually

implies stronger a poleward heat flux.

In summary, the strongest poleward heat fluxes should occur where the

eddy amplitude and spatial growth are large, and these two factors will

combine in an intermediate location. Since the eddy amplitude peaks

downstream of the largest spatial growth, both factors will combine

downstream of the largest spatial growth, and upstream of the largest eddy

amplitude. Since one expects the spatial growth to be in phase with Ut',

the DHF should reduce the baroclinic energy in the long waves.
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Vorticity Flux-Barotropic

The synoptic eddies affect the barotropic flow through the divergence

of their vorticity fluxes (DVFBT, 3.90). The DVFBT was calculated using

(3.48) and (3.49), and it is roughly proportional to the spatial growth

(see figure 5).

Equation 3.90 is flawed, for the zonal-mean DVFBT is zero at leading

order. This result, unlike in the atmosphere, is a consequence of using a

solution that is separable in x and y. This solution only introduces an

O(S) error in the DVFBT; however, this error is the largest term in the

zonal-mean DVFBT. Our analysis, thus, cannot predict the zonal-mean

barotropic flow. Fortunately, the 0(S) error has no great bearing on the

interactions between the synoptic- and planetary-scale waves for the larger

terms are not neglected. Therefore, the separable solution is formally

justified in our problem.

The vorticity fluxes which affect the barotropic flow (DVFBT) are:

J( ,2 2 )+J( 2 (3.90)syn, syn syn syn

I 2 ) + I 2 22 syn,1 syn,1 2 s,3 syn,3

S-1-ki-kr 2 11 + col 2 A(x) 2 sin(21y)

where y = s + e = is streamfunction at level 1
syn,1 syn syn

yn,3= syn - 6 syn= is streamfunction at level 3syn,3 syn syn

X

A(x) = A e -ki(x)dx is the synoptic eddy amplitude
o

Linearizing (3.90) in the zonal asymmetries gives

J(syn 2syn) + J( syn 2 e ) (3.91)
syn syn syn syn

= - ki(x)'l <k> 11I + <co>2 A 2 sin(21y)
0
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In regions of spatial growth (ki < 0), the DVFBT has the form sin(21y)

(see 3.91). Here, the DVFBT enhances the poleward barotropic-vorticity

gradient. Now consider a typical planetary-scale wave; its baroclinic and

barotropic components are almost in phase (i.e. equivalent barotropic).

Regions of strong barotropic winds (U' > 0, ar'/ay < 0) are also regions of

strong thermal wind (Ut' > 0, ae'/dy < 0). This strong thermal wind

implies spatial growth (ki < 0). In addition, dY'/ay < 0 suggests that

a 3 ,'/dy3 > 0. However in regions of spatial growth, the synoptic eddies

enhance the poleward barotropic-vorticity gradient (3.91). Therefore, the

synoptic eddies tend to enhance the existing meridional vorticity gradients

(a3 , /dy3 ).

Since the DVFBT typically enhances the existing meridional vorticity

gradients, the DVFBT adds barotropic energy to the long wave. Roughly,

equal amounts of energy comes from the baroclinic and barotropic components

of the synoptic eddies. (The ratio is I col2.)

The linearized divergence of the vorticity fluxes (3.92) shows that

the structure of vorticity fluxes are identical in each layer. The

magnitude of these fluxes increases with height.

J(Y . 7r2/ ) = -ki-l<k> 2 C2 A 2 sin(21y) (3.92)syn,i' syn,i o

Where C = 11 + <co>I, 1, 11 - <co>l for levels 1, 2, and 3 respectively

Note that real<co> = P-F / M,<Ut> > 0

Vorticity Flux-Baroclinic

The synoptic eddies can affect the baroclinic flow through the
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divergence of their vorticity fluxes (DVFBC, 3.93). The DVFBC was

calculated using (3.48) and (3.49), and has the same structure as the

DVFBT. Since the DVFBT enhances the barotropic component of the planetary-

scale wave, the DVFBC should, by similar reasoning, enhance the baroclinic

component of the planetary-scale wave.

J(Tsyn , 72esyn ) + J(6syn , 72 syn )  (3.93)
1 (2 1 2
2 syn,1 syn,1 2 syn,3 syn,3

= -2 ki-l-kr2 cor-A(x) 2 sin(21y)

Linearizing the above equation gives

(n' 2 y ) + J(y, ( ) = -2ki -l-<k>2 <cor>-A 2 sin(21y) (3.94)
syn syn syn' syn

The DVFBC tends to increase the baroclinic energy of the long wave,

whereas the DHF decreases the energy. We calculate the net effect below.

d (Baroclinic energy in the planetary-scale waves) due to syn. eddiesdt

S<6' (J(V 2, ) J( )I - 2FJ(T , 6 )'I >syn syn syn syn syn' syn

Where <A I B> = X A - B-dx.dy

Using (3.66), (3.89), and (3.94) gives:

S<6' (A 2 / <Ut>) { -2plF <k>2 ki + 1-F (real(w)
SM <k>

+ 2 <k> 2 / K ) ki + lF<coi>-<k>-Ut ' } > + smaller terms

The above result assumes <8' I ki(x) dx> = 0. This is true

when 8' is sinusoidal and ki o( -'.

Using (3.52), (3.67), and (3.73)
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<0' I l'Fki A 2 { 4P <k> 2 F / K2 M + real(w) / <k>

- imag(w)2 c M / [<k> 2 <Ut> 2 K2 (2F - K2 ) ] } / <Ut> >

The synoptic-scale wave drains baroclinic energy from the basic-state

wave when the last term of this equation is small (i.e. for small

imag(w)/<Ut>). These results, however, are different for the Eady model.

When beta is zero, imag(w) is proportional to <Ut>, and the last term can

dominate. (See chapter 4.)

Potential-Vorticity Flux

The quasi-geostrophic equations were written using the baroclinic and

barotropic streamfunctions. In this formulation, the heat and (various)

vorticity fluxes of the synoptic eddies appear in the equations for the

large-scale flow. If the quasi-geostrophic equations were written with the

upper and lower potential vorticity, the potential vorticity flux is then a

natural way to describe the synoptic eddies' fluxes.

+ J(, q) + -J( , q ) + Dissipation
at ax syn syn

where qi = 2i + F (T3- T 1) for levels 1 and 3

J(T 1,syn' q ,syn) = J(,syn' 72  ,syn -F'( 1 ,syn - 3,syn

J(t , )7Jt2I + F(' -))
3,syn 3,syn J3,syn 3,syn 1,syn - 3,syn

The divergence of the potential vorticity flux (DPVF) can be rewritten

using the heat and vorticity fluxes (3.95 and 3.96). The zonal-mean DPVF

(3.97) is determined by the heat flux, and it is down gradient, consistent

with baroclinic instability theory.

Phk.~4-n 3. vm* r



J(1 ,syn 1,syn ) = J(1l,syn' 1 1,syn)- s2FJ(fsyn' 9syn)

J("3,syn' q3,syn ) = J(3,syn' 723,syn) + 2FsJ(ysyn' esyn)

<J(syn q )> = '1F-sin(21y) <k> <coi> A 2
syn syn 0

for level 1/3

When the effects of DUt' and DU' are smaller than those of U' and Ut',

the wavy part of the DVPF is given by (3.98) and (3.99). (Using equations

3.89, 3.92, 3.95, 3.96.)

1,syn' ,syn ) =  1,syn' ,syn

= - 1-ki-<k>2 (1 + <co>i 2 sin(21y)

x real(w)
-2<coi> <k> ki(x) dx - ( +

<k>

J('3,syn' 3,syn) 3J( 3 ,syn' 72"3,syn

= - l ki.<k>2 11 - <co>I 2 sin(21y)

pY real(w)
-2<coi> <k> ki(x) dx - ( +

<k>

- 2FJ( , sy n ) (3.98)syn syn

A -2 lF-sin(21y) A {
o o

2p <k> 2  ki <coi> <k> Ut'

K <Ut> <Ut>

+ 2FJ(yn , esy n )  (3.99)syn' syn

A 2 + 1-F"sin(21y) A 2
O O

2P <k>2 ki <coi> <k> Ut'

S <Ut> ) -<Ut
K <Ut> <Ut>

The DPVF can either enhance or lessen the potential vorticity in the

long wave; no general rule exists because the DPVF is primarily controlled

by Ut' whereas the potential vorticity is determined by U' and Ut'. (If U'

were arbitrary, the eddy fluxes could be up or down gradient.) Long waves,

however, do not have an arbitrary structure. We will consider a simple

case where the inviscid growth rate is small, and where the long wave is

equivalent barotropic with no surface winds (i.e. = 6).

In this special case, the integrals in (3.98) and (3.99) are 900 out
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of phase with the long wave, and <coi> Ut' is smaller than ki. Therefore,

the in-phase DPVF is:

1,syn' q1,syn (in phase)
2 2 2

- l'ki <k> 11 + <co>l 2 sin(21y) A
0

2 (real(w) 2 4 ki
+ 1.F.sin(21y) A real( + 2<k> / K ) k

0 W> <Ut>
2

= lki'sin(21y) A
o

[- <k> 2 11 + <co>l 2 + t>F real()> + 2 <k> 2 / K ) ]

F real(w) 2 4
Now if <U> 7 <Ut>, then <Ut> + 2  <k> / K  ) F

J, q ) 2 l(ki sin(21y) A ( _ <k> 2 11 + <co> 2 + F )
1,syn' 1,syn l'ki sin(2oy) A

If <k> 2 11 + <co> 2 > F, and since kick -Ut' then

J(f1,syn' ql,syn) o( Ut'(x) sin(21y)

Since q 1 ' = V21 - F ( I .1 ) =  2( + 9) - 2F,6

and It' z ',

Therefore, q' =V 2( + e) - 2F.8

- Ut(x)'sin(21y)

- -J(Yl,syn' ql,syn)

Here, the DPVF increased the potential vorticity of the long wave in

the upper layer. On the other hand, the longer synoptic-scale waves (i.e.

<k> 2 11 + <co>l 2 < F) decrease the potential vorticity in the upper layer.

The in-phase DPVF for the lower layer is

3,syn' q 3 ,syn (in phase) =
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2 22=- l ki <k> 2 11 - <co>l 2 sin(21y) A 2

- 1-Fasin(21y) A 2 (real(w) + 2 <k>2 / K ) ki0 <k> <Ut>
2= 1kisin(21y) A0

2 2 F real(w) 2P <k> 2

[-k> 11 - <co> -- ( + ) ]
<Ut> <k> K

F realw) 2 4
Now if <U> = <Ut>, then U> real(w) + 25 <k>2 /K ] z F

Therefore, J(3,syn q ) 1-ki'sin(21y) A2 { - <k> 2 11 - <co> 2 - F I3,syn 3,syn o

J(T 3,syn' q 3,yn) c Ut'(x) sin(21y)

If e , then q3 =V2 3 + F C\I -T2)

or q3 o 2FG-

Ut'(x) sin(21y)

3,syn' 43,syn)

The DPVF decreased the potential vorticity of the long wave in the

lower layer.

In summary, the zonal-mean potential vorticity flux is down gradient.

The wavy part of the DPVF can, in general, either increase or decrease the

potential vorticity in the long wave. However in the simple situation, the

DPVF decreased the long waves' potential vorticity in the lower layer. The

synoptic-scale wave also enhanced the upper layer's potential vorticity

when <k>2 11 + <co>l 2 was larger then F.

Discussion

According to our analysis, the zonal-mean heat flux is poleward, pro-

portional to the square of the synoptic-eddy amplitude, and proportional to

the inviscid growth rate. If the inviscid growth rate is balanced by

dissipation, then the dissipation determines the amplitude of the synoptic
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eddies, and consequently the degree of nonlinearity. Therefore, dissip-

ation is a critical factor.

The synoptic-eddy heat flux has large-scale variations which are

controlled by the spatial growth and the local eddy amplitude. Regions of

spatial growth, show strong poleward heat fluxes; regions of large eddy

amplitudes also show strong poleward heat fluxes. The two factors combine

to produce the strongest heat fluxes downstream of the peak spatial growth

and upstream of the largest synoptic-eddy amplitudes.

The various (relative) vorticity fluxes are controlled by the spatial

growth. Typically, the barotropic component of the long wave is in-phase

with the baroclinic component. The vorticity fluxes will then add

baroclinic and barotropic energy to the long wave. This flux would look

like a convergence of zonal momentum into the regions of spatial growth.

The potential vorticity flux reduced the zonal-mean potential

vorticity, as one would expect from baroclinic instability theory. The

flux, however, could either strengthen, or weaken the potential vorticity

in a long wave. But for the case of an equivalent barotropic wave with

small surface winds, the fluxes decreased the potential vorticity in the

lower layer. (A decrease occurred in the upper layer when <k> 2 11 + <co>l 2

was less than F.)
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Chapter 4

4.0 Growth rate of Long Waves

In the previous chapter, we looked at a synoptic-scale wave growing on

a fixed large-scale flow. In this chapter, we use this analysis to examine

the temporal evolution of a small-amplitude long wave in the presence of

synoptic-scale waves. Our analysis is restricted to small amplitudes so

that the dynamics are linear, the eddy parameterization can be used, and

finally, so that the long wave does not alter the mean flow.

If atmospheric observations can be used as guide, Lau (1979b) found

that the transient-eddy heat flux extracted energy from the stationary-wave

APE, with a time scale of 1.5 to 4.5 days. The vorticity fluxes appeared

to be less important than the heat flux (Holopainen et al., 1982). We

might then expect that the synoptic-scale waves stabilize the long waves

since the eddy heat flux reduces the baroclinic energy in the long wave.

An Upper Bound on the Growth Rate

Before discussing potentially destabilizing mechanisms, we will find

an upper bound on the growth rate. Consider a flow with no zonal curvature

and with no dissipation. The change of the eddies' energy is approximately

given by (4.1). This energy change only comes from the ZAPE, and not from

the zonal barotropic energy (ZBT). Since the zonal flow has no curvature,

and zonal momentum is conserved, d(ZBT)/dt is zero.

1 K2  2
The eddy baroclinic energy (EBC) = (K + 2F) 10,12

SK2

The eddy barotropic energy (EBT) 1= 2 - J ,12
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d d
The total energy change is dt (EBC + EBT) -2F <e> <v','> (4.1)

Now v' and 98' can be written with the EBC and EBT.

Iv'I2 = 2 k 2 EBT / K2  (4.2)

l9'l2 = 2 EBC / (K2 + 2F) (4.3)

Defining a growth rate as:

Id
growth rate = log(EBC + EBT)

2 dt

Then using (4.1), the growth rate = -F - <> <v'6'> / (EBC + EBT)

Equations 4.2 and 4.3, gives an upper bound for the growth rate.

2 <>-k-F- (EBCEBT)
/2

growth rate < - 2 1/2
K-(EBC + EBT) (K + 2F)

EBT
Defining R E

EBC

a 1/2
-2F - <0> k- R

growth rate < (4.4)
2 1/2

K (1 + R) (K + 2F)

Energy is not conserved in this linear system; however, energy is

conserved if we include a source of energy (GE). Similarly, potential-

enstrophy is conserved if we have a source of potential enstrophy (GPE).

Since GE and GPE are related, GE and GPE can be eliminated by using the

conservati6n of energy and potential-enstrophy, and we can find a better

upper bound for the growth rate.

ZBC = energy in the zonal baroclinic flow (constant)

d d
Conservation of energy implies: GE + d EBC + A EBT = 0 (4.5)

dt dt

where GE = generation of ZBC
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Now K2 . EBT is eddy potential enstrophy in the barotropic eddies,

(K2 + 2F)-EBC is the eddy potential enstrophy in the baroclinic eddies,

and GPE = 2F*GE is the generation of zonal potential enstrophy.

Conservation of potential enstrophy implies

2 d 2d
2F-GE + (K2 + 2F) - EBC + K EBT = 0 (4.6)dt dt

Combining (4.5) and (4.6) to eliminate GE gives:

2d 2 d
K EBC + (K - 2F) - EBT = 0 (4.7)dt dt

The amplitude of a normal mode varies with time, but its structure is

fixed. Therefore, EBC/EBT must be independent of time for a normal mode.

EBT K2

R = = - (4.8)2
EBC 2F - K

The short-wave cutoff (K2 > 2F implies stability) is a consequence of

2
energy and potential-enstrophy conservation. If K > 2F, then (4.8)

implies the instability has negative energies which are physically

impossible (unless your name is Dirac).

The short-wave cutoff can also be viewed as a triad interaction. We

can define a total wavenumber as K2 and K2+2F for barotropic and baroclinic

waves, respectively. Then the source of energy must have the middle wave-

number. If K2 > 2F, then the zonal baroclinic flow has the smallest total

wavenumber, and it cannot be the source of the instability.

Once EBT/EBC is found, the estimate of the growth rate can be refined.

(Equations 4.4 and 4.8 are combined to eliminate EBC, and EBT.)
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growth rate < - Z <0> k [(2F - K2) / (K2 + 2F)] 1 / 2  (4.9)
ay

The above expression is an upper bound on the growth rate, and it is

largest when K2 = 21/2F, and 1 = 0. This happens to be the critical wave-

number. [Only the critical wavenumber is unstable when Ut = / 2F in the

Phillips model (Pedlosky, 1979).] The upper bound is approximately

-k a<o>/ay, for long waves (K2 << 2F). Thus, the long waves are only

weakly unstable, if at all. The long waves are weakly unstable at best

because most of the energy from the ZBC goes into the EBC, whereas

baroclinic instability requires both EBC and EBT.

A Non-energetic Factor

The synoptic-scale wave drains energy from the long wave through its

heat flux. Energy changes, however, are not the only stability criterion.

For example, consider a hypothetical process which conserves energy but

converts the long wave's baroclinic energy into barotropic energy. (This

process conserves the total energy but reduces the potential enstrophy.)

This hypothetical process increases R (i.e. EBT/EBC). By (4.4), this

process increases the upper bound of the long wave's growth.

According to the theory, the synoptic eddies reduce the long wave's

EBC and increase the EBT (when the barotropic and baroclinic components are

nearly in phase). Like our hypothetical process, the synoptic eddies are

transferring EBC to EBT. (Unlike the hypothetical process, the net long-

wave energy can change.) Perhaps, the synoptic eddies are destabilizing

the long waves by converting the long wave's EBC into EBT.
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Another Non-Energetic Factor

The phase of the eddy fluxes is also important. If the eddy flux is

900 out-of-phase with the long wave, then the long wave's energy doesn't

change. However, if the out-of-phase fluxes alter the long wave's vertical

tilt, the modified long wave can be potentially more unstable.

The heat flux has a component out of phase with Ut'. The (wavy) out-

of-phase heat flux reduces the thermal wind east of the largest thermal

wind, and increases it to the west. This flux attempts to shift the

thermal wave westward. If the baroclinic component is moved towards the

ideal position, 900 west of the barotropic component, the poleward heat

flux and conversion of ZAPE to EAPE are maximized. The stronger conversion

could increase the growth rate of the long wave.

Three mechanisms were discussed in the preceding paragraphs. The

synoptic eddies can stabilize the flow by draining energy from the long

waves. The conversion of baroclinic to barotropic energy increases the

upper bound of the growth rate, so the synoptic eddies might be destabili-

zing. The third mechanism, the out-of-phase heat flux, alters the struc-

ture of the planetary-scale wave which could make the wave more unstable.

To find the quantitative changes in the growth rate, a set of equations is

developed below.

Equations for Planetary-Scale Motions

The time evolution of the large-scale flow is found by assuming that

the large-scale flow varies on a slow time scale, and by using a multiple-

time-scale analysis. Basically, we use the equations for the long waves
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with parameterized synoptic-scale waves. For a consistent analysis, the

synoptic-scale waves can only grow on the slow time scale. This would

occur if the largest growth rates are nearly zero (baroclinic adjustment).

The equations for the planetary-scale waves can be derived by splitting

the flow into three components: synoptic scale, planetary scale, and zonal.

S= syn(t'T',x,X) + t (T,X) + <Y'(t,T)> (4.10)
syn ps

e = 6syn(t,T,x,X) + eps(T,X) + <e(t,T)> (4.11)

T = E-t is the slow time scale

X = E.x is the long length scale

a < 0(1)

\ syn' syn - synoptic-scale streamfunctions

Sps' eps - planetary-scale streamfunctions

<9>, <8> - zonal flow

f s' eps = 0(6) << 1

syn' syn <  1/2

i) The leading order equation for Tsyn' and esy n is the same as in

Part A. Using that section, one finds syn = A(T)Y(t,x,X). As
syn

previously mentioned, the growth rates must be small (baroclinic

adjustment hypothesis).

ii) The scaling for the leading order equation for Yps is:

J(<>, 72\F ) = o(E ) (U = 0(1))

S ps ps
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J( , 2 ) IF 2
syn syn Pps syn

= effect of the synoptic-scale waves on the

planetary scale

This last scaling is suggested by the WKB analysis.

Note that 12 = 0(1).

This scaling suggests that the long wave cannot vary on the fast time

scale. If it did, no term could balance the term 7Vy . Therefore, the't ps

long wave must vary on the slow time scale, which provides some justific-

ation for using two time scales.

The terms of the form J(fyn "7syn) are included in the equation for

the long wave under the restriction that Isyn 2 is 0(£). In addition,

terms like J(Y ps, ' 2  ) are small, and can be neglected.ps ps

iii) Consider the baroclinic equation for the zonal flow.

-(2F + 12) <6> = - J(v, (72 - 2F) e) - J(e, 72Vp) + Heating

J(T (72 - 2F) ) = 0( 2
syn syn syn

J(6 7 2 ' ) (IF 2
syn syn syn

J (If,, (r2 - 2F)O )=0(C*j 2ps ps o ps

J(e ,V 2  ) 2 0( 2
ps ps ps

For the multiple-time scales to work, <8> must vary on the slow time

scale. Either the heating is weak, O(&.<G>), or the heating is balanced by

the eddy heat flux. In the latter case, heating cannot be too large or

else the synoptic eddies would strong and nonlinear in the 0(1) equation.

Hence, the heating must be 0(E 0) or smaller.

Chapter 4: Growth Rate



By assumption, we are examining weak long waves, so we can use linear

versions of the governing equations (4.12 and 4.13) and synoptic-eddy para-

meterization. The only difficulty is that the synoptic eddies' amplitude,

A(T), is undetermined. We, however, circumvent this problem by considering

the synoptic-eddy amplitude to be a free parameter.

a 72yp = _pIV JC , 72,f ) _ J(<>, 72e) + v 174 1 (4.12)at ps x ps  ps ps ps

- do V 2 (T - )- J (Y 2\ 9-2 C)
ps ps) - Jps syn' syn ps syn syn

a ( V2 - 2F) - es- J(< f, (72 - 2F) eps) (4.13)Tt ps ax ps ps
- J(<G>, (72 + 2F) ps) + r'ps - do 72 (e - ps )

- J (T 2 (72 _ 2F)J )-J (6 , 72e )
ps syn syn ps syn syn

ps' ps sin(ly).exp i(kpsx - wt)

J is the projection of the jacobian onto the planetary-scale waves
ps

do - Ekman pumping

v, r - damping due to unresolved motions, and Newtonian damping

The effects of the synoptic-scale wave (J ps) on the planetary-scales

are given below.

J ( ,7 2 )+J P 72y ) (4.14)ps syn syn ps syn syn

= -<k> 2 m-sin(2my) A(T)2 (1 + <co>) 2 ki(X) + smaller terms

J (0 , 2  ,v 2  ) = (4.15)ps syn syn ps syn syn

= -2m-<k> 2 <cor> sin(2my) A(T) 2 ki(X)
X

2 F*Jps (Iyn, syn = m.F.sin(2my){- 2<coi>'<k>-ki(x)-dx (4.16)

+ <coi> kr'(X) + <k> coi'(X) } A(T) 2 + smaller terms

= mF.*sin(2my){ - 2<coi> <k> ki'dx
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Sreal(w) 2 -4 ki
- ( > + 2( <k> K - 4 ) ki<k> r<Ut>

- <k> <coi>Ut' - <k> <coi> DUt / <Ut> K2 } A(T)2
<Ut>

+ smaller terms

A(T) is the average amplitude of the synoptic-scale wave.

k (m) is the zonal (meridional) wavenumber of the synoptic-scale wave.

Note that the terms in (4.14-4.16) are linear functions of the basic-state

wave - a necessary condition to linearize (4.12) and (4.13).

Define

ps

ae
ps

psps

[J (T ,V2 )+ J ( , 2e )
ps syn' Vfsyn)+  Jps syn syn

[J 24 , -Z ) +J Ce ,2 )
ps syn syn ps syn syn

[J (e y , 2 n  C , 2-2F)e y)][pse ssy +n ps syn' ( F)syn)

J CE J I' , C2 72-2F)e )Jps syn syn ps syn syn

Now the fluxes can be written

Jps(T , V7 ) + J (synps syn syn ps syn'

Jp (6 , 72n syn ) + Jp(yn ,
ps syn syn ps syn

with A, B, C and D.

V2e yn ) = - A ps - C-eps
syn ps ps

(V2-2F)e ) = - BAP' - D-6syn pa ps

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

Equations 4.12 and 4.13, can be rewritten into a linear system for any

single planetary-scale wave.

iwps = a'Ysps ps
+ b-6 (from 4.11, 4.21, and 4.22)
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iw*8 = cYF + d'Oeps ps ps
(from 4.12, 4.21, and 4.22)

The frequency, w, is an eigenvalue of the matrix formed from the elements

a, b, c, and d.

1 1 2 1/2bc] (.23)
(growth rate) - i'real(w) = (a + d) + [- (a - d)2 + b /2 (4.23)

2 2 4
a = ikp / K 2 - ik *U - K v - do - A / K 2 (4.24)

ps ps ps ps ps

b = -ik Ut + do - C / K 2 (4.25)
ps ps

c = [-ikps Ut (K - 2F) + doK ps - B] / (K ps + 2F) (4.26)

d = -ikps U + [ikps - r - do'K p D] / (K + 2F) (4.27)

Where K 2 k 2 +12
ps ps

2 2
M = K (K + 2F)

ps ps ps
2 2 2

Note: K = k + m is the square of the synoptic wavenumber

Equation 4.23 determines the growth rate for small-amplitude long

waves on a uniform zonal flow. Figure 7 shows the linear growth rate for

some large-scale modes. (Parameter values correspond to those used in the

numerical model.) As shown by figure 7, the 2k , 21 mode was not destab-

ilized by the parameterized eddies. The other three modes, however, grow

faster with stronger synoptic eddies. It, therefore, appears that the

parameterized eddies can increase the growth rate of long waves even though

the eddy heat fluxes may reduce the energy of the long waves.

Figures 8-13 show how <Ut> and <U> affect the growth rate. Since the

long wave is growing by a modified baroclinic instability, a stronger <Ut>

always increases the growth rate. A smaller <U> decreases the 'group

velocity' of the synoptic-scale waves, and consequently increases the

effect of the synoptic eddies (3.73).
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Approximate growth rate

Equation 4.23 is still not illuminating, so we make a perturbation

expansion in order to isolate the growth-rate factors. We assume the

meridional velocity, dissipation and synoptic-eddy effects are small.

Furthermore, the synoptic-scale wave will have the most unstable zonal

wavelength. With these assumptions, we can reasonably approximate the

spatial growth as a function of Ut'. (DUt' is simply -(12 +k 2)Ut'). Oneps

also finds that the heat flux (<coi>kr' + <k>coi') depends only on Ut'.

(k' and coi' both depend on U', but their dependences cancel each other.)

Therefore, the synoptic-eddy fluxes only depend on 8ps, and terms A (4.17)

and B (4.19) are both zero.

The growth rate depends on real part of the right-hand side of (4.23).

The first term, real(a+d)/2, shows that the viscosity (v), Ekman pumping

(do) and Newtonian cooling (r) reduce the growth rate (4.28).

1 1 2 2 2 2
- real(a+d) = - K v - r / 2(K +2F) - do(K +F)/(K +2F) (4.28)
2 2 ps ps ps ps

2
- real(D) / 2(K +2F)

ps
1 2 2
-imag(a+d) = - k U + k p(K +F) / M - imag(D) / 2(K +2F)

A= 0

Real(D) is the only synoptic-eddy term in real(a+d). This term has2

both negative and a positive contributions; however, the term d(ki)/dUt is

positive, and dominates (see below).
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Using DUt= - K ps 2 Ut', and (3.15), (3.16), and (3.20) gives

2 dki
D = m.A(T) { 2<k> 2 <cor> (4.29)

dUt
dki

- 2F.<coi> <k> / i-k
dUt ps

- <> [real(wsyn) / <k> + 2 <k> 2 / K dki
<Ut> syn dUt

- F <k> <coi> (1 - K 2 / K2 ) } (dUt'/de)
<Ut> ps ps

Using <cor>= - gives
M <Ut>

2 dki
D = m*A(T) { - 2F <coi> <k> / i-k (4.30)dUt ps

<Ut> (F real(w ) + 4 AF2 <k> 2 ) dki
<Ut> <k> syn dUt

- F<k> < [1 - K / K ] } (dUt'/de p)
<Ut> ps syn ps

dk<k> 2 <Ut> K2 (2F - K2 )
dki

-=- < 0 (4.31)
dDUt imag(w sy n ) Cg

Since e ps Ut', dUt'/d6 8 is positive.

For example, if e = c(x) sin(21oy), then Ut'(x) = c. (See Appendix B.)

By (4.30), imag(D) < 0 and real(D) > 0 (when the last term is small

compared with the penultimate term). This condition will occur when the

inviscid growth rate is small.

Since real(D) is positive, it is a stabilizing factor (4.28). This

stabilization can be identified with the synoptic eddies extracting

baroclinic energy from the long wave.

The square-root term (4.23) also affects the long wave's growth rate.

Let E = -(kp F/ Mp)2 + (k Ut)2 (2F - 2 2
Let E = -(kp F/ M ) + (k Ut) (2F - K ) / (2F + ) (14.32)

P Ps PS PS
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1
Then (growth rate) - i*real(w) = (a + d) + { E (4.33)2

+ ik ps F [ -vK + r / (K + 2F) - 2do'F / (K + 2F)
ps ps

2
+D / (K ps 2 + 2F)] / Mps

2 2 2
- ik Ut [(2F - K ) C - 2doK (F - K 2 )] / M p 1/2

ps ps ps ps ps

+ smaller terms

Case 1: E is positive, Inviscidly Unstable Case

When E is positive, the planetary-scale wave is inviscidly unstable.

Equation 4.33 can evaluated using a Taylor series about the point where the

dissipation and synoptic-eddy effects vanish. Retaining only the linear

terms gives (4.34).

growth rate = real(a + d) + E / 2 { - (4.34)
2

kps p'F-Imag(D) / 2E'(K ps+ 2F)*M

Note that imag(C) = 0, and imag(D) < 0.

The '+' root must be used since it corresponds to the more unstable

mode. Here, only the synoptic-eddy term, D, affects the growth rate.

Real(D) stabilizes the flow by reducing the energy in the long wave through

the term I real(a+d). Imag(D), the out-of-phase heat flux, increases the
2

growth rate even though it does not affect the energy. The out-of-phase

heat flux shifts the baroclinic component of the long wave westward which

allows the long wave to extract more ZAPE which can be destabilizing.

Change in growth rate due to Imag(D), the out-of-phase heat flux,

-1/2 2= E k ps*.F-Imag(D) / 2(K ps+2F) Mps

a 1/k
ps
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2
Since E 4k 2 and Imag(D) - I/kps ps

The out-of-phase heat flux favors long, narrow waves for the change in

the growth rate goes as 1/kps. The waves need be narrow for they must be

inviscidly unstable. Of course, the waves cannot be too narrow else they

will be stable due to the short-wave cutoff. More limiting, however, is

that the long waves cannot be much narrower than the synoptic-scale waves,

otherwise no interaction can occur.

The growth rate is a sum of the growth rate without synoptic eddies

and the change caused by the synoptic eddies. The former does not

encourage long wavelengths, while the latter does. Therefore, an inter-

mediate wavelength is favored for instability.

Case 2: E is Negative, Inviscidly Stable Case

When E is negative (4.32), the long wave is inviscidly stable.

Equation 4.33 can be expanded in a Taylor series about the point of

vanishing dissipation and synoptic-eddy effects, giving equation 4.35 for

the growth rate.

growth rate = real(a + d) + (k / 2Mp) { (4.35)2 ps ps
2 2 2

+ F [-Kps v + r / (K + 2F) - 2do*F / (K + 2F)

+ real(D) / (Kp2 + 2F)]
ps

- Ut.[(2F - K 2) real(C) - 2do'K 2(F - K 2)] I} IEl/2
s thaps p

Note that real(D) > 0.
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C can be found using (4.14) and (4.18).

2 2 2 ki ut
C = <k>

2 mA(T)2 11 + <oo>I
2

aut e
ps

Therefore, real(C) < 0, and imag(C) = 0

Equation 4.35 has two possible normal modes which are artifacts of the

two-level model. The positive root (4.35) will be called the 'external'

mode, and the other will be called the 'internal' mode. The 'external'

mode is barotropic (i.e. external) when <Ut> is zero.

Properties of the two modes:

1) Wext - U-kps < Win t - U'kps < 0 (from 4.35)

2) For inviscidly stable waves, corps is given by,

cor = kps Ut (Kps - 2F) / [(w - Uk )(K p s 2 + 2F) + kps]5rps ps ps ps

Therefore (EBC/EBT)ext < (EBC/EBT)int  (assuming Kps2 < 2F)

4) The 'external' mode is real and the 'internal' mode is artificial

when <Ut> is zero (Lindzen et al., 1968; Held, 1983).

The growth rate of the 'external' mode is given by the positive root

of equation 4.35. The eddy fluxes, real(D), and real(C), increase the

growth rate. The 'internal' mode, on the other hand, has a smaller growth

rate.

This instability process prefers narrow waves because real(C), and

real(D) are proportional to '1'. However, it strongly prefers small values

of IEI which correspond to stable waves near neutral (inviscid) stability.
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Summary

In summary, our analysis provides a possible answer to the question

raised in the introduction, "Why did the long waves grow faster in the GCM

experiments than predicted by linear theory?" We find that synoptic-scale

waves can destabilize the long waves by a symbiotic mechanism.

We identified three growth-rate factors. The in-phase transient-eddy

heat flux reduced the long wave's baroclinic energy. This flux helped

stabilize the long wave. The 900 out-of-phase heat flux destabilized the

inviscidly unstable long wave by moving the long wave's baroclinic

component westward. The out-of-phase flux changed the long waves' vertical

tilt, allowing the long wave to extract more ZAPE which can destabilize the

long wave.

The eddy vorticity fluxes were the other destabilizing factor. These

fluxes added baroclinic energy to the long wave which helped counteract the

stabilizing in-phase heat flux. Moreover, the vorticity fluxes could help

destabilize the inviscidly stable 'external' waves. This mechanism works

by increasing the barotropic energy which favors inviscidly stable waves.

All these synoptic-eddy effects have a preference for narrow long

waves. The restriction, of course, is that the long waves cannot be too

narrow else they would not interact with the synoptic eddies.

Chapter 4: Growth Rate



4.1 Frequency Changes

The synoptic-eddy fluxes can affect the long wave's frequency. Here,

we examine these changes with assumptions similar to the preceding section.

Case 1: E is Positive, Inviscidly Unstable Case

When E is positive (4.32), the long wave is inviscidly unstable. For

small dissipation, and eddy effects, (4.33) can be expanded in a Taylor

series about the inviscid flow.

real(w) = kp U - k ps (Kps2 + F) / Mps + imag(D) / 2(Kps2 + 2F) (4.36)

2 2 2
+ -kps { F -Kp v + r / (K + 2F) - 2do.F / (K + 2F)

ps ps ps ps

+ real(D) / (K p2 + 2F)]

- Ut [(2F - K 2)real(C) - 2do'K 2(F - K 2)] / (2M E1 / 2 )
ps ps ps ps

Note: The '+' root is important because it corresponds the unstable mode.

The change in real(w) due to synoptic eddies = (4.37)

imag(D) k . Freal(D)

2 1/2 2
2(K ps+2F) M E (K + 2F)

2
- Ut(2F - K ) real(C) }

ps

Note that real(C) < 0, real(D) > 0, and imag(D) < 0

The equation for the frequency (4.37) contains many terms. The effect

of the synoptic eddies is to reduce the long wave's frequency.
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Case 2: E is Negative, Inviscidly Stable

When E is negative, the long wave is inviscidly stable. The lowest

order Taylor series for the frequency is given by (4.38).

2 2
real(w) = kpsU - kps (K ps + F) / Mps + imag(D) / 2(Kps + 2F) (4.38)

+ -tlEl { 1 + k ps imag(D) / 2(Kps 2 + 2F) M IEl}

Change in frequency due to D =

= imag(D) / 2(K ps2 + 2F) {1 + - kps P F / Mps 1E11 /2}

Remember that imag(D) < 0

The frequency change depends on IEi. When IEt is large, the synoptic

eddies decrease the frequency of the external mode ('+' root). (Note:

equation 4.38 is not valid for small IEt.) The frequency of the internal

mode is given by negative root of equation 4.38, and it is decreased by the

synoptic eddies.

Summary

In summary, the parameterized synoptic eddies can alter the frequency

of long waves (for example, figure 14). For the inviscidly unstable long

wave and the internal modes, the synoptic eddies reduce the frequency of

the long wave. For the external mode, the frequency change depends on the

difference of terms, so we cannot make a general statement.

Chapter 4: Frequency



4.2 Atmospheric Observations

In the previous sections, we examined a synoptic-scale wave that was

modulated by a long basic-state wave. The analysis, although for a simple

situation, shows that the synoptic-scale wave can have planetary-scale

modulations of its amplitude, heat and vorticity fluxes. In this section,

we check whether our analysis is consistent with atmospheric observations

and some instability calculations.

There are two problems with using atmospheric observations: the

synoptic/transient-long wave interactions are poorly analyzed, and a beta-

plane channel is unlike a sphere. In an attempt to overcome these

problems, one can restrict observations to stationary planetary-scale waves

in the latitude band between 30 N and 60 N, and process the synoptic-eddy

data with a Blackmon band-pass filter (Blackmon, 1976). This filter

retains frequencies characteristic of synoptic eddies (2.5 to 6 days).

The synoptic-scale wave, according to our theory, has only two spatial

characteristics, k(x) and co(x). Both quantities are complex numbers and

are difficult to measure. More easily measured are the vertical phase tilt

and -ki, the spatial growth.

Spatial Growth

Many factors affect the spatial growth; however, here we will only

consider Ut'. Ignoring the other factors is probably not too bad because

(1) U' is not important at most unstable wavenumber, (2) effects of DU' and

DUt' are smaller by scaling, and (3) U', DU', DUt' are probably strongly

(anti-)correlated with Ut'. Therefore, for our purposes, we can consider

the spatial growth to be proportional to Ut' (4.39).
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<k>2 <Ut> K2 (2F - K2 )

Theory: ki ~ - - Ut' (4.39)
M-imag(w) c

g

(from equation 3.73)

Note that K2 < 2F, imag(w) > 0, and c > 0
g

Observations: Isy I = T e -ki(x)dx

Therefore, ki = - ~ logsy n I where sy n I can be measured (4.40)

The results of Lau et al. (1981) (figures 15-17) qualitatively show

the expected theoretical result. The thermal wind peaks at 80 W and 130 E;

the 500 mb geopotential variations peak at 55 W and 175 E. (The 850 mb

temperature field was shown because it better represents the stability

properties.) Like the theory, the spatial growth peaks downstream of the

strongest thermal winds (o -dT/dy).

Using the root-mean-square 500 mb height variations, the spatial

growth was estimated by (4.40). This estimated -ki has a correlation of

0.70 with the 850 mb thermal wind at 45 N. With 18 points, this correl-

ation is significant at the 0.9995 confidence level (figure 18). Thus, the

observations are consistent with the spatial growth being proportional to

the thermal wind (4.39).

Vertical Tilt

Synoptic-scale waves usually tilt westward with height. This tilt

depends on many factors. Nevertheless, the situation is simple when the

basic-state surface wind is zero, and the meridional winds are neglected.

According to scaling theory, the tilt can only be a function of U F / B,

and Ut'. Figure 19 shows that the westward tilt is stronger with Ut'.
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Fig. 15. Root-mean-square of 500 mb height variations in
winter (Blackmon band-passed fields from Lau et al., 1981).

Fig. 16. Root-mean-square of 500 mb temperature variations in
winter (Blackon band-passed fields from Lau et al., 1981).

_oo ' Fig. 17. 850 mb winter temperatures

(Lau et al., 1981).
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0 60 120 180 240 300 360

Longitude

Spatial Growth estimated from fig. 15
- -- o< -dT/dy (from fig. 17)

Fig. 18 Thermal wind versus spatial growth at 45 N
during winter. (abscissa:longitude,
ordinate: arbitary units)
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Lau (1979a) calculated the phase lag between the 500 and 850 mb waves

that had periods between 4 and 6.5 days (figure 20). In this figure, an

arrow pointing north indicates no phase lag, and eastward pointing arrow

indicates the 500mb wave lags the 850mb wave by 45 degrees. Thus, a clock-

wise rotation is rough measure of westward tilt with height. Lau's results

are consistent with our theory; regions with the largest thermal winds have

the largest vertical tilts.

Heat Flux

The zonal asymmetries of the heat flux are primarily determined by the

local spatial growth, Ut', and DUt' (3.89). When imag(w)/<Ut> is small,

the terms involving ki are largest and the heat flux should peak downstream

of the strongest spatial growth and upstream of the largest synoptic-eddy

amplitudes. Blackmon and White (1982) mentioned that they found the

largest heat fluxes were west of the largest transient-eddy amplitudes.

Over the western Atlantic and western Pacific, the eddy heat flux

converges in the north, and diverges in the south (figure 21; Holopainen,

1983). The sign of this 'dipole' is consistent with our theory. (These

dipoles correspond to the left side of figure 4, where Ut' is large.)

Vorticity Flux

Lau (1979b) computed the 300 mb vorticity flux and he found a north-

south dipole structure off the eastern coasts of Asia and the United States

(figure 22). The northern pole is convergent, and the southern pole is

divergent, consistent with our theory (left side of figure 5).

According to the theory, however, dipoles of one sign should exist in
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Fig 19. Vertical tilt as function of U F
Solid: d(vertical tilt)/DUt
Dashed: d(coi)/dUt
Dark Solid: d(cor)/dUt
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Fig. 20. Phase shifts from
Lau (1979a). A clockwise
rotation indicates a
westward tilt with height

Fig. 21. Convergence of heat flux
(winter, 500 mb, band passed)
from Holopainen (1983)

Fig 22. Convergence of 300 mb
vorticity flux (winter,
band passed) from Lau (1979b)
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regions of spatial growth, and opposite-signed dipoles should exist in

regions of spatial decay. Figure 22 does not show dipoles over regions of

spatial decay. Perhaps, if the zonal mean were removed, other dipoles

would appear.

Energy

The heat and vorticity fluxes can affect the long wave's energy.

According to our theory, the heat flux reduces the baroclinic energy of the

long wave, and the vorticity flux adds energy. Lau (1979b) and Holopainen

et al. (1982) found that the transient-eddy heat flux drains APE from the

stationary winter planetary-scale waves. Holopainen et al. (1982) found

that the vorticity flux did add energy to the stationary planetary-scale

waves, again consistent with our results.

In summary, the atmospheric observations show some features which are

consistent with our analysis. For example, the correlation of the thermal

wind and spatial growth (0.70 at 45N) is moderately strong. In addition,

the observed heat and vorticity fluxes, and vertical tilt of the transient

eddies qualitative agree with our theory.

Chapter 4: Observations



4.3 Comparison with Niehaus

Our analysis is based on a WKB solution of the most unstable mode. It

describes the spatial modulation of a synoptic-scale wave. Others [e.g.

Frederiksen (see references); Niehaus, 1980] have used computers to solve

the eigenvector problem to get precise answers for specific situations.

This section will attempt to explain Niehaus' results (1980, 1981) using

our analysis.

Model

Basic State: '(x,y,z) = - y*(z + 0.5) + H(z).cos(kx + ly)

0<z< 1

H(z)-cos(kx + ly) is a basic-state wave forced by a

surface vertical velocity. H(z) is given by:

H(z) = ae Kz + be-Kz

Where K2 = k 2 + 12

a and b are defined by

1 dH1 d(0) - H(0) = g
2 dz

3 ) )- H(1) 0

where g is the strength of the surface forcing

Some

(see

i.

ii.

iii.

(4.42)

(4.43)

(4.44)

properties of the Eady model (with no basic-state wave):

Gill, 1982)

Waves longer than a critical value are unstable.

The unstable waves have the same phase velocity, i.e. U(z=1/2).

For unstable waves, real(aw/dk) = U(z=1/2).
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iv.

V.

vi.

Maximum growth rate = 0.3098
dz

2 dU2 1 K 1 1 K 1
S= (dU)2 ( tanh(K) - -(- coth(-) - -)

dz 2 2 K 2 2 K

Most unstable zonal wavenumber is k = 1.606 (1 = 0)

When the basic-state meridional wavenumber was zero, Niehaus (1980)

found the most unstable mode was unaffected by the basic-state wave. Her

result is like our analysis since this particular state has a uniform zonal

flow, and an unmodulated synoptic-scale wave.

In this section, the local eddy amplitude, and the local wavelength

from Niehaus (1980) are compared with our analysis. The three cases, which

we examine, are listed in table 1.

Table 1: Niehaus' Results

Standard 1 Standard 2

k
ps

1
ps

g

growth rate

a

b

U'(z=O)

U'(z=1/2)

U'(z=1)

dU'
(z=0)

dz
dU'
d' (z=1/2)
dz

(z=1)dz

.2

-.1

.25

.2999

-10.94

8.515

.2425

.4620

.6873

.4350

.4438

.4582

.4

-. 2

.5

.3110

-2.677

1.290

.2774

.4633

.6725

.3549

.3917

.4483

basic-state wave-

numbers

surface forcing

.3098 for zonal flow

from (4.42-4.44)

* sin(kx + ly)

It

It
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-. 2

.2

.3101

-1.071

.5161

.1110

.1853

.2690

.1419

.1567

.1793



To compare Niehaus' results with the WKB results, we will use the

zonal asymmetries at z = 1/2 as representative of the flow.

i.e. U'(x) = U'(x)z=1/2 (for comparison)

SU(x) = U(
dz az z=1/2

The local wavelength (4.45) for the most unstable zonal wavenumber can

be simplified by property 'iii' of the Eady model (i.e., c is one). In

addition, the most unstable zonal wavenumber is 1.606 (property vi) which

further simplifies to (4.46). Using U' from table 1, Standard 1's local

wavelength is given by (4.47). This result compares nicely with figure 23

from Niehaus (1981).

kr'(x) - <k> U'(x) / c (4.45)
g

Since c = 1, kr'(x) = - <k>*U'(x)

Since the most unstable wavenumber is (k,l) = (1.606, 0)

real k(x) 5 1.6 - 1.6.U'(x) (4.46)

For Standard 1, U' = 0.46.sin(kx)

real k(x) = 1.6 - 0.7-sin(kx) for Standard 1 (4.47)

The spatial growth at the most unstable zonal wavenumber is given by

(4.48). This equation can be simplified by setting P to 0, cg to 1, F to

4, and noting that the curvature terms are small compared with other terms.
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Fig. 23. Local wavenumber for
Standard-i at z=0 (Niehaus,
1981). 1)Phase function
2) Multiple-scales solution
3) Numerical solution

z

40

Fig. 25. Like Fig. 24 except
for Standard-2.

Fig. 24. Standard-I (Niehaus,
1981) at z=0. a) solid
line: [T' , dashed: v'T',
dotted: u'v'
b) phase(V'), c) solid:
t/1'., dashed: u', dotted:
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Fig. 26. Like Fig. 24 except
for Weak-2.
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imag(w) Ut'(x) k2 F DU'(x) k2 Ut (K2 - F) DUt'(x)

ki(x) + __ ____ _- (4.48)
c M2 ' imag ( w) c+ M-imag(w)c -

g g g

( imag(w)) Ut'
ki(x) = -

c
g

or ki(x) imag(w) z(x) (4.49)

The partial derivative in (4.49), can be evaluated in the two-level

model; however, the exact result is used instead (k = most unstable, 1= 0,

property 'iv' of the Eady model).

Uz imag(w) = 0.3098

Therefore ki(x) - 0.3098-d (x)

-kiodx dU'
and II oo e = T exp 0.3098- *dx (4.50)

Since sin(kx + ly)
dz

ki -kio sin(kx + ly)

Im exp(ki o / kps)
which implies -- max exp

mi n  exp(-ki 0 / kps)

exp( 2ki / k )o ps

The (relative) eddy-amplitude is easily determined from the spatial

growth by (4.50). The predicted amplitude is a deformed sinusoid with a

peak at 1800. The distortion flattens the troughs and sharpens the peaks.

Niehaus' results (figures 24c, 25c, and 26c) are roughly like the WKB

solution. However, the WKB solution under predicts the peak amplitude and

shifts the peaks eastward.
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Table 2: WKB Predictions

Standard 1 Standard 2

dU'
dz

ki
0

l1max min

I' max min

I Imax/ 11min

angle of ITIma

.4438

.14

4.0

4.3

1500

.3917

.12

1.8

3.2

2.6

2.4

1450

.1567

.049

1.3

1.5

1300

Niehaus (z=1/2)

.3098 dU'/dz

WKB at z=1/2

Niehaus (z=0)

Niehaus (z=1/2)

Niehaus (z=1)

Niehaus (z=0)

The perturbation zonal winds are large according to Table 1. For

example, U'(1) is 69% of the steering-level winds in "Standard 1."

Clearly, the basic-state wave is not weak, and parameter b is not small.

We can improve our results by including the 0(S) correction described in

Appendix A.

I e ki(x).dx + gl(x) (includes S correction)

1 dH
Where gl(x) =- log -H from

At the most unstable zonal wavenumber, real d -0

and dH - 2ioimag(w) U(x) M(x) from (3.60)
dk

Where M(x) = (k2(x) + 12) (k2(x) + 12 + 2F)

For Niehaus' model F = 4
x

- ki(x)dx

Therefore HIY dlI 1/2 with 0(

dk

(A.5)

6) correction

For the purposes of the calculations, we let <k> = 1.6 and 1 = 0
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The O(b) correction improved our results. (Compare figures 27, 28,

and 29 with 24c, 25c, and 26c.) The eddy's amplitudes and phases are

better predicted (table 3). The barotropic winds, which strongly control

the 0(8) correction, shifted the strongest eddy amplitudes westward and

increased the spatial modulation.

Table 3: WKB Predictions with the 0(8) Correction

Standard 1 Standard 2 Weak 2 Comments

IT max/ Ilmin 4.7 2.7 1.5 WKB

I1fIax /1Imin 4.3 3.2 1.5 Niehaus (z=0)

angle of IVImax 1400 1150 1250 WKB

angle of Isimay 1500 1450 1300 Niehaus (z=0)

angle of tIFmin  3400 3300 3200 WKB

angle of "TImin  3300 3300 3200 Niehaus (z=0)

Discussion

Our analysis reproduces Niehaus' results fairly well, even though the

models differ significantly, and basic-state waves are strong. Ut strongly

controlled the instability's amplitude, while U influenced the amplitude by

an 0(6) correction. The curvature of the zonal flow had almost no effect

on the instability, unlike Niehaus' conjecture (1981).

Some of our results were not apparent in Niehaus' work. For example,

the local instability properties were important in determining the spatial

modulation; the local instability and the local group velocity do not
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cancel each other as suspected by Niehaus (1981). In addition, the

curvature of the basic-state flow was not significant as Niehaus (1981)

speculated.

The surface wind, which was arbitrarily set to 0.5, was important. It

controls the group velocity which helps determine the spatial modulation.

Decreasing the surface wind by 10% should produce a 5% increase in spatial

modulation (i.e. k'). The factor of 1/2 comes from the 'group velocity'

being twice as fast as the surface wind speed.

Beta, which is missing in the Eady model, was also important. It

controls a(imag(w))/dUt, an important factor in the spatial growth. It

also controls the group velocity, another important factor. For example in

the Eady model, the phase speed and real(aw/ak) are equal for synoptic-

scale and transient long waves. Therefore, the (relative) group velocity

is zero, suggesting extremely large interactions.

4.4 Comparison With Frederiksen

Frederiksen (see references) has computed the instability of many non-

zonal flows using a multi-level spherical model. He was attempting to

explain the locations of storm tracks and cyclogenesis. Since he was

looking for the most unstable normal modes, one may expect that the local

wavenumbers are given by the following relationships.

For the most unstable wavenumber and ignoring the curvature terms,

real(k') "- <k>'U' / cg

ki z - -- imag(w)'Ut' / caut g
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These equations are consistent with some of Frederiksen's results.

The instabilities are strongest downstream of the strongest thermal winds,

and long wavelengths occur in regions of strong barotropic winds. There

are, however, significant differences. For instance, when the basic-state

wave was purely barotropic, we may expect that the instability's wavelength

changes, not its amplitude. However, Frederiksen (1978, 1979b, and 1980)

found substantial amplitude variations. Perhaps the basic-state wave is so

strong that changes of the local wavelength alter the local instability.

[In Frederiksen (1978), the local wavelength varies by a factor of two.

Here, regions of average wavelength should show spatial growth.] Another

explanation is that the barotropic basic-state wave changes the wavetrain's

latitude. In many of Frederiksen's basic states, the local instability is

a strong function of latitude. This latitude factor could explain

some of Frederiksen's calculations (1979b and 1980).

In summary, Frederiksen has calculated the normal modes of many non-

zonal flows. The instabilities' amplitude and heat fluxes appear to be

qualitatively explained by the local instability properties. The thermal

wind has a direct effect on the local instability. The barotropic wind may

indirectly alter the local instability by changing the local wavelength,

and by making the wavetrain meander through regions of differing local

instability.
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Chapter 5

5.0 Description of the Numerical Model

We developed a numerical model to test our analytical theory. In the

model, we do not use a separation of time and length scales, so the model

can be used to test the accuracy and sensitivity of our theory. In partic-

ular, we calculate the energetics of the synoptic/planetary-scale interac-

tions, examine the sensitivity to radiative forcing and dissipation, and

test the baroclinic-adjustment hypothesis.

The numerical model simulates a two-level quasi-geostrophic flow on a

periodic beta-plane channel. The model is based on equations that are

identical to the theory's except the theory used a simpler dissipation.

Model Equations

( vF _ - j(t, 72T) _ J(0, 720) + v74 (5.1)

- do 72(- 6) + org
org

(7 2 - 2F)e = -0 - J(, (V2 - 2F)e) - J(e, 72) (5.2)

- do 2 (e - p) + r (e - e) -f org

xe(x,y,t) = 0 for y = 0, Y (5.3)

txf(x,y,t) = 0 for y = 0, Y (5.4)

O(x, y, t) = e(x + X, y, t); Y(x, y, t) = Y(x + X, y, t) (5.5)

0 = scaled beta parameter = 0.25 for calculations

F = scaled Froude number = 3.7415 for calculations

1
v = scaled eddy diffusion coefficient = 1

125

do = scaled Ekman parameter = 0.025 for most calculations
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ee(y) = radiative equilibrium temperature

= - 0.3 ( y - 1 ) for most calculationsY 2

r = Newtonian cooling, 2F/r = 40 inertial time periods for

most calculations

Worg (x,y) is a surface vertical velocity due to orography

Qf(x,y) is the diabatic heating (excluding Newtonian cooling)

Qf and Worg are zero except in the section on forced waves.

The model equations (5.1 and 5.2) have been scaled. Time was scaled

by 1/f ('~ 6 hours), distance was scaled by the internal Rossby radius of

deformation (z 1000 km), and pressure was scaled by the average surface

pressure (1000 mb). The top and bottom of the model are at 200 and 900 mb

respectively, approximately at the tropopause and top of the planetary

boundary layer. [If the vertical boundaries were at 0 and 1000 mb, F would

decrease (3.11). Decreasing F would increase the critical shear (P/Ut) and

2 1/2
lengthen the critical wavelength (K = 2 F).]

Numerics

We used a spectral model for it requires fewer degrees of freedom to

accurately determine the group velocities which control the spatial modul-

ation of the synoptic eddies. As an alternative, a grid-point method is

less accurate. For example, fourteen grid points per wavelength are needed

to model the group velocity to within 10%. [This is for a second-order

centered space differencing and a linear advection equation (Mesinger and

Arakawa, 1976).]

By design, our model conserves energy and enstrophy in the inviscid
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system for small time steps (i.e. no aliasing). Conservation prevents non-

linear computational instabilities as discussed by Phillips (1959). We

avoided aliasing by using 50% more collocation points in each direction

than degrees of freedom. For example, the model had 10 degrees of freedom

in the zonal direction, so a 16-point fast Fourier transform was used.

The model's spectral modes (5.6-5.7) satisfy the boundary conditions

(5.3-5.5), and are eigenvectors of the operator V2. The latter property

makes the operator 7 2 easy to invert. The former is necessary for the

Galerkin approximation (Gottlieb and Orszag, 1977). The zonal-mean field

was expanded in cosines instead of sines because cosines reduce the Gibbs

phenomena when trying to describe the field 'U = constant'. Cosines,

however, make the jacobian more difficult to evaluate using the fast,

pseudo-spectral method. (See Appendix E.)

an0 cos(n 1o y ) + ,. Real anm sin(n 1 y ) exp(im k x) (5.6)

Sn0 cos(n y) nm o o

0 b os(n 1 Y) + Real b sin(n 1 y) exp(im k x) (5.7)

0 < y < Y = 7r/ 1o

For the numerical model, n = 0,...,5 m = 1,...,5

The numerical model has 110 degrees of freedom.

Alternate Equations

The numerical model can use (5.1) and (5.2). However, an alternative

set of equations (5.8-5.10) was used because it is faster to solve. Three

jacobians are evaluated per time step instead of four.
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d(2F - ~ 2 2F, + F-J(T I  2 1) - F 3J(T3 , 723) (5.8)
dp 2 P'ax

- 2 24 2(Q + r (e - 6 ))
'a (2 y+ v T4 I (5 9 )

'f ax d 4 2 e2
itx ' 3  3 '23 d 2 (5.9)

e -J( ) + r (e - e Q  (5 10)at 2F dp 2 2F e 2F

Where 1 = 2e + 3

Equation 5.8 determines the vertical velocity at the middle level, and

it includes dissipation. Equation 5.9 is the vorticity equation for the

lowest layer, while equation 5.10 is the thermo-dynamic equation.

Time Stepping

We used the Lorenz-n-cycle scheme (Lorenz, 1971) to integrate (5.8-

5.10) forward in time. Using four substeps per time step, this scheme is

second order (i.e., the error is 0(dt3)). To the scheme's advantage, it

needs initial conditions at only one time, and it is very accurate for the

linear advection problem, dh/dt = U'dh/dx. The latter property may be good

for modeling group and phase velocities.

The model used a time step of 5 inertial periods except for one simul-

ation. The exception, the low-friction/strong-radiative-forcing case, used

a time step was 2.5 inertial periods. In this case, the nonlinearities and

waves were very large.

Domain size

The domain size is dynamically important, especially for a limited-
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resolution model. The domain size determines whether the synoptic- and

planetary-scale waves are resolved, and whether the baroclinic adjustment

hypothesis holds. Given the constraints, the length scale was chosen

(ko, 1o = .67) so that the most unstable mode had k ' 3ko. With this

choice, the model can resolve some long waves (k = ko, 2k o ) and some

shorter waves (k = 4ko, 5k ). The width of the beta-plane is /lo , or

roughly 4700 km. Thus, the model can be viewed as a beta-plane channel

with terrestrial length scales but with a wavenumber 3 symmetry.
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5.1 Cases

The numerical model was run

The different cases were used to test

with several different parameters.

the sensitivity of the system.

Control run

Strong forcing

Thermal equilibrium temperature gradient was increased by 4/3.

Weak friction

Ekman pumping, and Newtonian cooling were reduced by 1/2

Weak friction/Strong forcing

Ekman pumping, and Newtonian cooling were reduced by 1/2. The

thermal-equilibrium temperature gradient was doubled to approximate the

control run's radiative forcing.

Quasi-linear

Only wave-mean flow interactions were allowed.

Wide basin

Meridional width of the domain was doubled. This case shows the

dependence of baroclinic adjustment on the domain width.
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Gross Features of the Numerical Simulations

The numerical model had some features common to more complicated

models. The zonal flow was driven by radiation, and the eddies converted

ZAPE into EAPE. In the control run, most of the conversion of ZAPE into

EAPE was done by the synoptic-scale modes (k=3k ). Some other cases showed

significant conversions by longer waves.

Common Features

1. The surface zonal flow is small.

2. The upper-layer flow is westerly (thermal wind balance).

3. The flow has a westerly jet except in the wide-basin case.

4. The zonal flow was linearly unstable, and strongly unstable in the wide-

basin and weak-friction/strong-forcing cases.

In the model, only the surface drag (Ekman pumping) can change the

mean zonal momentum. If the zonal flow reaches a steady state, the surface

drag cannot add zonal momentum. Thus, the mean surface wind must be

small, and the upper-level flow must be westerly by thermal wind balance.

The flow didn't reach a steady state in the model (the model had not

obvious stable equilibrium state). The amplitudes of the synoptic eddies

changed continuously, and the zonal flow changed in response to the eddies.

The oscillations were caused by a coupling of the synoptic-scale waves, the

zonal flow and the radiative forcing. When the zonal flow was unstable,

the synoptic eddies grew, and made the zonal flow neutral by reducing the

temperature gradient and ZAPE. Even though the flow became neutral, the

eddies continued to extract ZAPE. However, the eddies were too strong, and

they continued to extract more ZAPE than supplied by radiative forcing.
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Consequently, the flow became stable, and the eddies began to decay. The

heating eventually made the flow unstable, repeating the process. The

oscillation's period should be determined by the radiative time scale.

The model had multiple time-mean states, which should not be confused

with multiple equilibria. The off-center westerly jet can appear in the

either side of the channel because of a symmetry property (figure 30).

These states are curious but are not important in this thesis because they

don't change the energetics or conclusions. (See Appendix F.)

The zonal flow was sensitive to the dissipation and the forcing. The

westerly jet was stronger in the strong-forcing cases (figures 31, and 32),

and the weak secondary jet disappeared in the weak-friction cases.

5.2 Energetics I

The more-or-less traditional energy cycle (figure 33) is similar to

the atmosphere's. Radiation heats the southern regions and cools the

northern regions, creating zonal baroclinic energy. Fluid motions then

transform this energy into eddy baroclinic and eddy barotropic energies.

The energy that has not been lost to dissipation is then converted from

eddy barotropic energy into zonal barotropic energy. (Unlike the energy

cycle that is divided into APE and KE, there is no direct conversion

between the zonal baroclinic and zonal barotropic energies.)

The zonal baroclinic cos(loy) mode had the most energy, and it was

strongly forced by radiation. The zonal barotropic mode cos(loy) had the

second most energy. This mode was not forced by solar radiation, but by

the requirement that the surface wind be small (at equilibruim, the mean

surface drag cannot remove zonal momentum). Unexpectedly, the barotropic
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energy in the zonal cos(loy) mode did not come from the Ekman pumping even

though the pumping 'forces' the barotropic mode. Instead, the energy came

from the btw-btw-btz and bcw-bcw-btz triads.

In the control run and low-friction cases, the synoptic-scale waves

(k=3ko ) had the most wave energy, and dominated the energy conversions. In

the other cases, (strong radiative forcing, weak-friction/strong-radiative

forcing), the large-scale waves (k=ko, 2ko) were much stronger, and were

comparable to the synoptic-scale waves. Increasing the radiative forcing

by one-third (strong-radiative forcing) increased the amplitude of the long

(2ko, 1 o ) modes by two orders of magnitude. Thus, the model was very

sensitive to the radiative forcing.

The modes in the model fall into one of four groups; they are either

baroclinic (BC) or barotropic (BT), and either zonal (Z) or wavy (W).

Among the four groups, there are only 5 triad interactions (see below).

Figure 34 shows the energy flow calculated by triad type.

Fundamental Triad Types

Baroclinic zonal-Barotropic wave-Baroclinic wave (BCZ-BTW-BCW)

Barotropic zonal-Barotropic wave-Barotropic wave (BTZ-BTW-BTW)

Barotropic zonal-Baroclinic wave-Baroclinic wave (BTZ-BCW-BCW)

Baroclinic wave -Baroclinic wave-Barotropic wave (BCW-BCW-BTW)

Barotropic wave -Barotropic wave-Barotropic wave (BTW-BTW-BTW)

The prominent feature in figure 3 4 was the large BCZ-BCW-BTW triad.

This triad is a conversion of ZAPE into EKE and EAPE, and the large values

implies that baroclinic-instability-type processes dominate the energetics.

The BTZ-BTW-BTW triad moved energy from the barotropic waves to the
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barotropic zonal flow. This energy flux is consistent with a barotropic

energy cascade as predicted by geostrophic turbulence theory.

The BTZ-BCW-BCW triad moved energy from the baroclinic waves to the

barotropic zonal flow. This energy flux is approximately equal to that of

the BTZ-BTW-BTW triad, suggesting that the barotropic zonal flow is main-

tained by both baroclinic and barotropic processes.

The BTW-BTW-BTW triad shifted energy between the barotropic modes.

This triad moved energy from the synoptic scale (k=3k o ) to other length

scales (table 4). The simulations showed a cascade of barotropic energy

into the longer waves.

Table 4: Barotropic Energy Changes by Zonal Wavenumber
Caused by BTW-BTW-BTW Triads.

k Control Weak-fr. Strong rad. Strong rad/
weak fr.

k 1.46x10 - 8  1.87x10 -8  3.10x10 -6  4.45x10 -5

o

2k 2.33x10 9  1.52x10 8  1.94x0 - 6  -1.49x10 6

o

3k0  -2.48x10 - 8  -6.21x10 8  -7.58x10 - 6  -2.74x10 5

4k 4.65x10- 9  1.87x10 8  5.00x10 7  -1.28x10 5

5k 3.31x10 - 9  9.44x10- 9  2.04x10 -6  -3.82x10 - 6

The BCW-BCW-BTW triads converted eddy baroclinic energy into eddy

barotropic energy. This triad is, in some sense, a measure of the wave-

wave interactions. It was stronger when the radiative forcing was strong

(strong radiative forcing, and weak-friction/strong-forcing cases). Tables

5 and 6 show the energy changes caused by the BCW-BCW-BTW triads. The

common features are that the 2ko and 3ko modes lost while the shorter modes
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(4ko, 5ko) gained baroclinic energy. In addition, the long waves gained,

while the short waves lost barotropic energy.

Table 5: Barotropie Energy Changes by Zonal Wavenumber
Caused by BCW-BCW-BTW Triads.

k Control

1.60x10 - 8

-9
6.79x10 9

-1 .50x10 9

-4.43x10 -9

-3.86x10 - 9

Weak-fr.

-8
2.72x10

2.43x10- 8

-8
-2.15x10

-9
-1.35x10

9

-9
-9.92x10

Strong rad.

4.9 4 x10 - 6

1.43x10- 6

8.15x10- 8

-8.02x10 -7

-4.63x10
- 7

Strong rad/
weak fr.

4.90x10
- 5

4.06x10
- 5

1.88x10 - 5

-6
3.75x10

6

-5.25xi0 - 6

-5.25x10

The BTW-BTW-BTW triads and BCW-BCW-BTW triads had similar effects on

the barotropic energy of the long modes. This is like our analysis where

modulated synoptic-scale waves convert similar amounts of baroclinic and

barotropic energy into long-wave barotropic energy. (The case of strong-

forcing/weak-friction was the exception. However, the theory's assumptions

were poor in that case.)

Table 6: Baroclinic energy changes by zonal wavenumber
caused by BCW-BCW-BTW triads.

k Control

k 1.79x10 8

0

2k -1.60x10- 8

3k -4.29x10-8

4k 1.73x10 -8

O

5k 1.06x10-8

Weak-fr.

1.73x10 8

-1 .64x10 - 8

-9.63x10 - 8

2.81x10 - 8

4.86x1i - 8

Strong rad.

2.18x10-6

-9.82x10 -6

--6
-3.75x10

6

-6
2.77x10 6

3.44x10 -6

Strong rad/
weak fr.

-1.74x10
- 5

-1.02x10 4

-7.16x10
-5

-5
3.66x10

5

4.74x10
- 5
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Geostrophie Turbulence

Salmon (1982) presented an idealized picture of two-layer geostrophic

turbulence (figure 1). Solar radiation adds baroclinic energy to the very

large scales; turbulence moves baroclinic energy to smaller scales;

baroclinic instability, a process with length scales of the Rossby radius

of deformation, converts baroclinic energy into barotropic energy; a

barotropic energy cascade then moves barotropic energy to the large scales.

Salmon's idealized picture and our numerical results differ. The

barotropic zonal flow in the model gained like amounts of energy from the

barotropic and baroclinic waves. Similarly, the energy cascade among the

barotropic waves was comparable with the energy flux from the BTW-BCW-BCW

triads. These differences were due to the scale of the models. In

Salmon's work, the Rossby radius of deformation is assumed to be many

scales shorter than the very large-scale flow, so that active triads tend

to be 'local.' Our model, on the other hand, only has a restricted range

of scales, so all triads can be active.

In the context of two-layer turbulence, the atmosphere has a larger

range of scales than our numerical model; however, it is still not large.

The zonal wavenumber of the most unstable mode is approximately 10, and the

distance from 30 N to 60 N is about 3 Rossby deformation radii. Our

numerical model, therefore, suggests that the atmosphere may not have the

necessary range of scales for two-layer geostrophic turbulence.
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5.3 Linear Stability

The linear growth rate is a useful diagnostic quantity for it deter-

mines whether linear waves grow or decay. A difference from the model's

results must be caused by nonlinearites or temporal variations of the zonal

flow. We also calculate the growth rates to check the baroclinic adjust-

ment hypothesis which is used by our analysis (i.e., linear modes can only

grow on the slow time scale).

The growth rates were calculated by the procedure documented in

Appendix G. The calculated growth rate includes the effects of dissipation

and limited spatial resolution.

A normal mode of the zonal flow has the form:

{, 0} = I {gn, hn) sin(n'loy) e ikx - iwt

Where k = ko , 2k o ,...,5ko

The model has 50 different normal modes for a zonal basic state.

Table 7: E-folding time:most unstable mode (in days)
(negative numbers imply decay)

k Cntl Weak-fr Strong rad Strong rad/ q-lin
weak fr.

k -14 -32 -18 -104 -14
o

2k -76 -179 43 35 -66

3ko  125 132 50 15 192

4k -13 -14 -12 -11 -13

5k -5 -6 -5 -5 -5O
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The longest waves, k , were always stable, while the 2k waves were

stable except when the radiative forcing was strong. If linear dynamics

holds, the 'stable' long waves should decay with time. A non-vanishing

long wave implies that wave-wave interactions may be important for main-

taining that long wave.

The length of the 3ko wave was set near the critical wavenumber by

design. Not unexpectedly, a 3ko mode was the most unstable in all but the

strong-forcing case. Since the growth rate was always positive for this

mode, some mechanism prevented these modes from growing indefinitely.

Probably, wave-wave interactions are stabilizing these modes, although we

can not rule out temporal variations of the zonal flow.

Baroclinic Adjustment

Stone (1978) found that a two-level model with atmospheric-like

parameters was close to neutral stability. This lead him to the baroclinic

adjustment hypothesis. He suggested that if the mid-latitude flow were

baroclinically unstable, synoptic eddies would grow, transport heat north-

ward (and upward), and stabilize the flow. If the flow were stable, the

synoptic eddies would decay, and solar radiation would eventually make the

flow baroclinically unstable. As a result, the zonal flow should be near

baroclinic neutrality.

Baroclinic adjustment assumes that the eddies stabilize the zonal flow

by their fluxes. A poleward heat flux reduces the meridional temperature

gradient which stabilizes the flow. Baroclinic instability also forces an

upward heat flux which can alter the static stability, and again stabilize

the zonal flow (Gutowski, 1983). Lastly, westerly jets can also stabilize

the zonal flow. This last mechanism and the meridional heat fluxes were
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important in our numerical simulations.

Baroclinic adjustment held in the control run; the largest growth rate

-1
was only 1/125 day- . However, baroclinic adjustment did not hold in other

models (Vallis and Road, 1984; Haidvogel and Held, 1980). Is the control

run unusual, or is there some parameter range where baroclinic adjustment

holds? To investigate this question, we ran the model with different

parameters.

Range of Validity

The baroclinic adjustment hypothesis is, in some sense, a statement of

two conditions: a statistically steady-state exists, and the wave-wave

interactions can be ignored when compared with the wave-mean flow inter-

actions. (If wave-wave interactions were more important, linear stability

would then be meaningless.) With a steady zonal mean, and small wave-wave

interactions, waves behave linearly. Under these conditions, and non-

growing amplitudes, the linear growth rates must be small or negative.

Baroclinic adjustment implies the zonal flow is near neutral

stability, and baroclinic adjustment may fail if either the zonal flow were

unsteady, or if wave-wave interactions were important. While the first

condition is not strictly true in our simulations (the zonal mean

oscillates), the last condition appears to determine the validity of the

baroclinic adjustment hypothesis.

Simple Estimate of the Eddy Amplitudes

0 < y < Y (size of domain is Y)
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Q = (0e - ) / trad (Newtonian heating)

Y
= - a (y - ) = radiative equilibrium temperature field

e 2

trad = radiative damping time

Suppose the zonal flow is baroclinically neutral and uniform.

Y
i.e., e = - b (y - -)

2

b = critical meridional temperature gradient

Now suppose the heating is balanced by the eddy heat flux divergence.

a Y
Therefore, 4- <v' 6'> = -(a - b)(y - ) / t

ay 2 rad

where <..> is the zonal average

1
then <v''> = (a - b) y (Y - y) t2 rad

2
and the peak heat flux is <v'8'> = Y .(a - b) / 8tradmax rad

implying Ivi2 = O(Y 2(a - b) / 8 "t )rad

One expects baroclinic adjustment to fail when the wave-wave inter-

actions are sufficiently strong. Since the eddy amplitude crudely measures

these interactions, baroclinic adjustment should, by the above equation,

fail when the domain is too wide or when the forcing is too strong.

Wide Domain

The Earth's atmosphere must be considered narrow for the distance from

30 N to 60 N is only about three Rossby deformation radii. The numerical

model had a width of roughly 4700 km, so it was not unrealistic for a mid-

latitude beta-plane. To test the effects of the domain width, the domain

was made twice as wide.
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Wide Domain Case

10 = .335 (one-half of other runs)

= - 0.3 ( - 1) 0 < y < 2Y
e Y

Y = 71/ 1o

The growth rate of the synoptic mode (3k o ) went from 1/125 to 1/9.7

-1
days- . The new growth rate was much larger, so baroclinic adjustment did

not hold in the wide-domain run. Haidvogel and Held (1980), and Vallis and

Roads (1984) used widths of 10 and 14 Rossby radii respectively, and they

obtained similar results. Hence, baroclinic adjustment appears to fail

when the domain is too wide.

Strong Forcing

The previous, simple analysis suggested that strong radiative forcing

can prevent baroclinic adjustment. The strong-radiative-forcing case

supports this view. When the radiative-equilibrium temperature gradient

was increased by one-third, the largest growth rates went from 1/125 to

1/43 day- . The flow was not as close to neutrality, and the eddy ampli-

tudes were larger.

A more extreme response to radiative forcing was shown by the weak-

friction, and weak-friction/strong-forcing cases. The difference between

the two cases was that the strength of the solar forcing was doubled. The

weak-friction case had weak long waves, and a near neutral zonal flow

(largest growth rate was 1/132 day- 1 ). When the forcing was doubled, the

flow became strongly nonlinear, the long waves were stronger, and the

largest growth rate kwas 1/15 day-i
largest growth rate teas 1/15 day.
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Dissipation

At first glance, dissipation is not related to baroclinic adjustment.

It is, however, important. The weak-friction and the weak-friction/strong-

forcing cases test the effects of a weaker friction.

Weak Friction

do = .0125

trad =80

1
125

0 - 0.3 (y - 1)
e Y 2

Solar forcing = e / te rad

Weak friction/strong radiative forcing

do, tra d , v

S = -0.6 ( -)
e Y 2

Solar forcing = e / te rad

(one-half of control run)

(one-half of control run)

(same as control run)

(same as control run)

(one-half of control run)

(same as in weak-friction case)

(twice as strong as control run)

(same as control run)

Table 8: E-folding time:most unstable mode

k Cntl.

-14

-76

125

-13

-5

Weak-fr

-32

-179

132

-14

-6

Strong rad/weak fr.

-104

35

15

-11

-5
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In the weak friction case, the dissipation and solar forcing were

reduced by 50%. (The radiative-equilibrium temperature did not change.)

Even though the forcing was much weaker, the largest growth rate was

like the control run's. Here, the weaker forcing did not bring the flow

closer to neutral stability.

In the weak-friction/strong-forcing case, the dissipation was one-half

of the control run's value; however, the strength of the solar forcing

remained the same. The largest growth rate was 1/15 day- 1, so baroclinic

adjustment was a poor hypothesis in this case.

Discussion

We examined the baroclinic adjustment hypothesis since we assumed that

the synoptic-scale wave grew on a slow time scale. Baroclinic adjustment

is also interesting since it limits the range of climatic and atmospheric

variability.

Our simple analysis suggested that a wider channel or a stronger solar

forcing could make baroclinic adjustment a poor approximation. Our numer-

ical simulations support this conclusion. Our analysis, however, over-

looked the role of dissipation. In the weak-friction/strong-forcing case,

halving the dissipation, while keeping the solar forcing constant, changed

the baroclinic adjustment hypothesis from excellent to poor.

Another Eddy Amplitude Estimate:

0 < y < Y (size of domain is Y)

Q = (e - 6) / trad (Newtonian heating)

Y
e = -a (y - -)

e 2
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a = temperature gradient of the radiative equilibrium temperature

Suppose the zonal flow is baroclinically neutral, and uniform.

Y
e = -b (y - )

b = thermal shear for neutral stability

Now consider the neutral mode which is governed by linear dynamics.

It has a heat flux related to its inviscid growth rate.

Using (3.48) gives

<v'8'> = <-ikco. * 'f>

or <v'e'> = <k> <coi> 1)12

imag(w)but <coi> =
<k> <Ut>

Therefore, <v'8'> = imag(w) ' 2
<Ut>

Imag(w), the inviscid growth rate, is equal to 1/td by the baroclinic

adjustment hypothesis. (Growth rate is balanced by the dissipation in our

model.)

ae Y
Since Ut - - -b (y - ) = b

y y 2

and imag(w) = 1/td

Therefore, <v'6'> I1f2 / b td

Suppose the heating is balanced by the eddy heat flux divergence.

Therefore, a <v' 6'> -(a - b) (y - ) / t
ay 2 rad

or <v'e'> = (a - b) y (Y - y) / 2 -trad

but <v'6'> = 2 / b-td

Therefore, (I 2 = O(y2 . b(a - b)-t d / tra d)Theefrd rad
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When the above quantity is large, we expect that the wave-wave inter-

actions are strong, and baroclinic adjustment is hard to achieve. Hence,

weak dissipation (large td ) may ruin the baroclinic adjustment hypothesis.

In the weak-friction case, 'a' was unchanged, the dissipation and the

radiative-damping time scales were doubled, and 'b' is slightly smaller

(weaker friction). Since b > (a-b) in the control run, the weak-friction

case should have a slightly larger synoptic-eddy amplitude and a slightly

larger growth rate. These predictions were consistent with our simul-

ations. The eddy amplitudes were slightly stronger in the weak-friction

case than in the control run. The baroclinic eddy energy went from 0.00100

to 0.00120, and the barotropic eddy energy went from 0.000712 to 0.000735.

The growth rate was not smaller in the control run; however, the difference

in the growth rates (1/125 vs. 1/132 days - ) is not likely to be signif-

icant given a sampling period of only 50 model days.

Summary

In summary, we examined the baroclinic adjustment hypothesis because

it was used by our theory. It also has applications for understanding the

general circulation for it restricts the possible time-mean flows. Our

numerical simulations show that baroclinic adjustment was a good hypothesis

for many model runs. The zonal flow was stabilized by the poleward heat

flux and the formation of a westerly jet. However, we found that the

hypothesis broke down when the basin was too wide, the forcing was too

strong, or the friction was too weak.
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2G = Y b,(a -b).td / trad (5.11)

where Y = domain width

td = (effective) eddy dissipation time scale

trad = radiative damping time scale

a = radiative-equilibrium temperature gradient

b = temperature gradient for neutral stability

According to our simple analysis, baroclinic adjustment should be

worse when 'G' (5.11) is larger. The various cases agree with this

analysis. When the width was changed from 4700 km to 9400 km, baroclinic

adjustment failed. (This may explain why the models of Vallis and Road

(1984), and Haidvogel and Held (1980) did not show baroclinic adjustment.)

When 'a' was increased by one-third (strong-forcing case), baroclinic

adjustment was a poorer assumption. When t d and tra d were both halved, the

largest growth rate was only slightly changed.

These results have implications for numerical models for they suggest

that these models can be sensitive to the dissipation of the synoptic

eddies, a quantity dependent on the model's parameterizations. A strong

dissipation (small td ) may put the flow into a 'baroclinic adjustment

regime', whereas a weak dissipation may increase the eddy amplitudes and

make the flow highly nonlinear. In addition, the results indicate that the

flow is sensitive to the width of the beta-plane channel.

The applicability of baroclinic adjustment to the atmosphere was

initially examined by Stone (1978). He found that a two-level model with

atmopheric-like parameters was close to neutral stability. Lindzen et al.

(1980) and Gutowski (1985b) pointed out that inviscid neutrality can also

be achieved by changing the vertical profile. The degree to which

baroclinic adjustment holds in the atmosphere still needs further study.
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5.4 Eddy Energetics

In this thesis, we are concerned with the energetics of two classes of

waves: the synoptic-scale (k = 3k o ) and the long (k = ko, 2ko) waves.

(1) k = 3ko synoptic waves

(2) k = ko, 1 = 1 long-waves

(3) k = k , 1 21 of the

(4) k = 2ko, 1 = numerical

o o(5) k = 2k0 , 1 21 model

The energy cycle of the synoptic-scale waves had features like in the

atmosphere. The synoptic-scale waves gained most of their energy from the

zonal thermal wind by BCW-BTW-BCZ triads. In the control run, much of the

energy in the synoptic scales was lost to friction, with less lost to

radiative damping, conversion into zonal barotropic energy, and to other

wavenumbers.

The long waves gained most of their energy from the zonal thermal wind

like in winter observations (Saltzman, 1970). Our long waves lost most of

their energy to dissipation and usually to the zonal barotropic flow. The

wave-wave interactions generally increased the barotropic energy of the

long waves in agreement with theory.
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Parameterization versus Numerical Results

The synoptic-eddy parameterization determines how the synoptic eddies

should, on average, affect the long waves. We can use it to predict the

energetics of this interaction (Appendix D). These predicted energy fluxes

were compared with those determined by the numerical model which is the

main test of our parameterization.

For the long waves as a group, the synoptic-eddy parameterization

reasonably estimated the energy that the long waves gained from the 'other

waves' (figure 35). The 'other' waves removed baroclinic energy [9.5x10- 9

(actual) vs. 4.5x10 - 9 (est.)] and added barotropic energy [1.3x10 - 8

(actual) vs. 5.9x10- 9 (est.)] to the long waves. Here, our analysis gave

good estimates. The net effect of the 'other' waves was to add energy to

the long waves. By itself, this energy flux is destabilizing, but it is

much smaller than the conversion of ZBC into EBC and EBT.

The parameterization also gave a fair estimate for the strongest long

wave (figure 39). The vorticity fluxes added barotropic and baroclinic

energy, while the heat flux reduced the baroclinic energy of this long

wave. The 'other' waves reduced the net energy in this mode.

The energy fluxes for the weaker modes, on the other hand, were not

well predicted (figures 36-38). Generally, the weaker modes gained more

baroclinic energy than predicted; however, the energy in these weaker modes

was at least an order of magnitude smaller than the strongest long mode, so

they are unimportant.

The prediction of weak long waves is subject to many errors. For

example, a spatially modulated synoptic-scale wave has many Fourier modes,

including long modes. The signature of this spectral contamination is a
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Key for figures 35-54.

See figure 35 (left to right)

9.8e-8: long-wave EBC gain due to BCW-BCZ-BTW triads
9.5e-9: long-wave EBC loss due to BCW-BCW-BTW triads
[4.5e-9]: result from the synoptic-eddy parameterization

to be compared with 9.5e-9
2.5e-8: long-wave EBC loss due to BCW-BCW-BTZ triads
4.le-8: long-wave EBT gain due to BCW-BCZ-BTW triads
1.2e-8: long-wave EBT loss due to BTW-BTW-BTZ triads
1.3e-8: long-wave EBT loss due to BTW-BTW-BTW triads
[5.9e-9]: result from the synoptic-eddy parameterization

to be compared with 1.3e-8

Note: figures 35-54 only show the energetics of the long-wave
mode(s). Many energy fluxes involving the zonal and 'other
modes' are not shown.

Fig. 35-39. Long-wave energetics for the control run

Fig. 40-44.

Fig. 45-49.

Long-wave energetics for the weak-friction case

Long-wave energetics for the weak-friction/
strong-forcing case

Fig. 50-54. Long-wave energetics for the strong forcing case

Fig. 35, 40, 45, 50: Energetics for the long waves as a group

51: Energetics for

Fig. 37, 42, 47, 52: Energetics for

Fig. 38, 43, 48, 53: Energetics for

Fig. 39, 44, 49, 54: Energetics for

ko, lo long modes

kU, 210 long modes

2ko, lo long modes

2ko, 210 long modes
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Fig 55. Phase of the
barotropic component of the
3ko [lo, 21 0 modes

(i.e synoptic scale)
Solid: 1=1

o
Dashed: 1=21

0

TTIME NLB8

Fig. 56. Phase of the
barotropic component of
the k [lo, 21 1 modes

(i.e. long wave)
Solid: 1=1

Dashed: 1=21 o

TIME NLB8
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phase speed and frequency which are unlike those predicted by linear

theory. The correlation between the phase angles of the 3ko and ko modes

(figures 55 and 56) could indicate such spectral contamination. Spectral

contamination, however, can only produce a small 'error', but it may appear

since the weak modes had small amplitudes.

The flow is not nearly uniform in 'y' as we assumed. Therefore, the

normal modes (of the zonal-mean flow) are combinations of sin(n 1 oy) modes.

The energetics of the weakest modes are bound to differ from the strongest,

so we have another potential 'error'.

The third source of error comes from only considering one type of non-

linearity, the interaction between a slowly varying long wave and a

inviscidly unstable synoptic-scale wave. Other nonlinearites, regardless

of size, can be important for small-amplitude modes.

Other Cases

In the weak-friction case, the parameterization gave good estimates

for wave-wave interactions of the long waves as a group, and for the three

strongest long-wave modes (figures 40-44). The wave-wave energy fluxes

added barotropic and removed baroclinic energy from the long waves.

Generally, the net effect was to add a small amount of energy into the long

waves. The prediction for the weakest long mode, like in the control run,

had the most error.

In the weak-friction/strong-forcing case, the parameterization gave a

correct sign on how the 'other waves' affected the long waves as a group

(figures 45-49). The parameterization gave a reasonable estimate for the

strongest long-wave mode (figure 47). This accuracy was unexpected since
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baroclinic adjustment doesn't hold. In addition, the long waves were very

strong (table 9) which could imply that other nonlinear processes may now

be important.

The prediction for the strong-forcing case (figures 50-54) showed the

most error. The signs of the predicted energy fluxes were correct for the

long waves as a group and for the strongest mode. Like in the weak-

friction/strong-forcing case, the long waves were stronger than the

synoptic-scale modes (table 9).

Table 9: Ratio of Energy in the Long and Synoptic-scale Modes

Most unstable Growth Rate

Run Cntl. Weak-fr. Strong-forcing Weak-fr./strong-forcing

E ps/E sy 1.6x10 - 3 3.1x10 3  3.8 2.4
ps syn

max. growth 1/125 1/132 1/43 1/15

rate (days- 1 )

Eps = energy in the (k=ko , 2ko0 ; l= o , 21 ) modes

Esy n = energy in the (k=3k o ) modes

The errors in the predicted energy fluxes appear to be more related to

the E ps/Esyn than to the linear instability of the zonal flow. One may

suspect that when E /E is 0(1), interactions among the long waves are

now important. Our theory should begin breaking down for it only considers

a subset of all nonlinear interactions.
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Summary

In summary, the parameterization reasonably estimated how the 'other

waves' affected the energy of the strongest long-wave modes and the long

waves as a group. The vorticity flux of the synoptic-scale waves added,

while the heat fluxes reduced the energy in the transient long waves. The

net result was more barotropic and less baroclinic energy in the long

waves. Hence, our analysis and modeling results are consistent.

The modeling results showed that the parameteritation had limitations;

the long modes that were weak compared with others in that simulation were

poorly handled. Explanations include spectral contamination, eigenmodes

not of the form sin(ly), and nonlinear interactions among the long-wave

modes. In addition, when the long waves were stronger than the synoptic-

scale waves, the parameterization gave poor estimates as expected. Despite

these limitations, these results support our analysis and the idea that the

synoptic-scale waves may destabilize the long waves.
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5.5 Discussion: Planetary-Scale Waves

In review, we numerically and theoretically examined the interactions

between synoptic-scale and transient planetary-scale waves. Our results

differ from those for wave propagation through a barotropic, inhomogeneous

medium. We used a fundamentally different assumption -- the synoptic-scale

wave is inviscidly unstable, but neutrally stable when dissipation is

included. As a result, a 'local growth rate', rather than conservation of

wave action, determines the amplitude of the synoptic-scale wave.

Our analysis suggests that the synoptic-scale waves are spatially

modulated by the long wave which changes the 'local growth rate.' Regions

with larger than average 'local growth rates' show spatial growth down-

stream. The synoptic-scale wave, of course, has only one growth rate; the

'local growth rate' just measures the local instability properties.

The thermal-wind anomalies modulate the synoptic-scale wave in a

simple manner. Regions of larger thermal winds have positive 'local growth

rates', and show spatial growth downstream. At the most unstable wave-

length, the spatial growth (1/e-folding distance) is the 'local growth

rate' divided by the group velocity (relative to the thermal wind anomaly).

The zonal barotropic wind can also modulate the synoptic-scale waves.

It changes the local wavelength which will change the 'local growth rate'

for the growth rate is dependent on the wavelength. Like the asymmetries

in the thermal field, this effect is inversely proportional to the 'group

velocity' (real aw/ak) relative to the asymmetries in the large-scale flow.

The curvature of the zonal baroclinic and barotropic flows can also

modulate the synoptic-scale wave. The curvature, in some sense, acts like

an effective beta which will change the 'local growth rate'. However, this
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is a simplification, and the curvature effects are more complicated.

According to our theory, the heat flux of the synoptic eddies tends to

drain energy from the long wave, while the (relative) vorticity fluxes add

energy. According to atmospheric observations (Holopainen et al., 1982),

the heat flux dominates, which suggests that the synoptic eddies are

stabilizing. However, in our numerical model, neither flux is consistently

larger.

Under close examination, the synoptic-scale waves can destabilize a

long wave by changing long wave's structure. This allows the long wave to

extract more ZAPE than would be normally possible. Basically, the

spatially modulated synoptic-scale wave acts like a catalyst. Hence, we

have a possible explanation to the question behind this thesis, "Why do the

long waves in the GCM experiments grow faster than predicted by linear

theory?"

We developed a numerical model to help verify the theory. This model

identified conditions when the theory's assumptions were poor. For

example, the assumption of baroclinic adjustment broke down when the

channel width was too large, the radiative forcing was too strong, or when

the dissipation was too weak. We also found that the energy fluxes due to

the 'other waves' were only reasonably predicted for the long waves as a

group, and for the strongest modes.

We found that the energy fluxes were well predicted when the total

energy in the long waves was less than the energy in the synoptic scales.

Our theory probably failed because it only considered one type of nonlin-

earity. When the long waves were strong, other nonlinearites are expected
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to be stronger. This energetic restriction was satisfied when the long

waves grew faster than predicted by linear theory (e.g. the GCM simulation

by Gall et al., 1979b). In the atmosphere, however, the situation is more

unclear. The transient kinetic energy peaks at total wavenumber 8 (Boer

and Shepherd, 1983), but the stationary kinetic energy shows no decrease in

the lowest wavenumbers.

The numerical simulations have some implications for GCMs. For

instance, the zonal flow is sensitive to the dissipation time-scale of the

synoptic eddies and to the large-scale radiative forcing. Under some

conditions, this dissipation could make the difference between having or

not having baroclinic adjustment. Since this dissipation is highly para-

meterized, the parameterizations should be carefully examined.

Another implication is that the synoptic-eddy fluxes are sensitive to

the group velocity of the synoptic-scale waves. Since the group velocity

can be difficult to model well, GCMs should use numerical schemes that

model the group velocities accurately. Inaccurate group velocities can

drastically change the effect of synoptic eddies on the long waves.
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Chapter 6

Stationary Planetary-Scale Waves

So far, we have only considered the interactions between synoptic-

scale and transient planetary-scale waves. In this chapter, we examine the

effect of synoptic-scale waves on stationary long waves. While this

problem has no direct connection with the GCM experiments (e.g. Gall et

al., 1979b), it is interesting, for the standing waves contain much of the

observed spatial variability.

Opsteegh and Vernekar (1982), Nigam (1983), and Nigam et al. (1986)

have studied the effect of the synoptic eddies on the stationary long

waves. They solved for the stationary waves using linear models which

could optionally include an externally determined transient-eddy flux.

They found that these fluxes must be included to accurately model the

standing waves. Accurate modeling is necessary, even for short-term

weather prediction. If a GCM poorly models the standing waves, then the

errors will be considered a transient wave in an initial-value problem.

Our theory for stationary waves is linear and straightforward. When

the transient eddies and dissipation are ignored, the linear stationary

wave is given by (6.1).

For a single wave, the linear equation in a uniform zonal flow is

-- W = ik [A] W - F = 0 (6.1)

Where W = (C, 6)T is the stationary solution

F = (Y-forcing, 6-forcing)T is the forcing
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-P / K2 + U -Ut
[A] 2

-Ut (K2 - 2F) / (K2 + 2F) - / (K 2+2F) + U

The stationary solution is W = [A-1] F / ik

The transient-eddy fluxes can be modeled with a synoptic-eddy param-

eterization. With our parameterization, we can find the effect of the eddy

fluxes on the standing waves. The eddy parameterization just changes

matrix [A], giving a new equation for the stationary waves, [A']W' = F/ik.

We are most interested in when the parameterization strongly changes the

stationary wave; i.e., the sensitivity of W to perturbations in [A].

[Goulub and Van Loan (1983) discuss the general problem.]

Let [A'] = [A] + EC[G] << 1

[G] is the effect of the (eddy) parameterization

[A'] W' = F / ik implies ([A] + F [G]) W' = F / ik ( = [A] W )

Collecting the O(&) terms gives W' - W = - [A-]  [G] W

Thus IW' - WI / IWI < IIA-11 II GI + 0(E 2 )

Where IWI is the norm of the vector W

Iwl = I1I2  2

and where I IAII is the L-2 norm of the matrix EA]

IIAII = sup I[A] UI / IUI

where U is any non-zero vector

Thus 1W' - W1 / IWI < K(A) E JGl + 0(E 2 )  (6.2)TTI O
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Where K(A) = IIAIIlIIA - 1 1 = the condition number of matrix [A]

IIGIIand E I-(A is the strength of the parameterization

When the matrix A is diagonalizable, IIAll = leigenvaluejlImax

Then K(A) = leigenvalue.jmax / leigenvaluejlmin

Iw.jl
or simply K(A) max (6.3)

Wj Imin

Where w. is simply the frequency of the j-th free wave. (The frequencies

should be restricted to waves that are excited by the forcing.)

For a uniform zonal flow,

k 2 k 2 2 K 4 1/2w Uk - p- (K2 + F) +- [(pF) - UtK 4 (4F 2  )]

Note that the above ideas are not restricted to a uniform basic state.

They also hold for numerical models, where matrix A has finite dimension;

however, this complication adds little to our discussion.

When the condition number is large, the stationary wave is sensitive

to the parameterization (6.2). This only occurs when a free-wave fre-

quency is near zero. (The numerator of 6.3 is bounded.) Therefore, the

stationary wave is sensitive to small perturbations in [A] whenever the

system is near resonance. (Resonant, in this context, implies a free mode

with zero phase speed.)

Stationary waves are also sensitive to large deviations of [A]. Large

deviations will occur if either the amplitude of the synoptic eddies is

large or if the 'group velocity' of the synoptic eddies is close to zero.
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A small group velocity, however, needs an easterly wind because the most

unstable synoptic modes have an eastward group velocity. Hence, the latter

condition is unlikely to occur.

In conclusion, the stationary wave will be strongly altered by the

(parameterized) transient eddies when the magnitude of the forcing is not

small (E IIGII/11AII = 0(1)) or when a free mode's frequency is near zero.

The latter occurs when the forcing has the same wavenumber as a resonant

wave. Therefore, a small-magnitude eddy parameterization should only make

small changes to stationary waves in the non-resonant case.

The previous discussion suggested that a stationary wave should be

sensitive when waves with near zero phase speeds are forced. However, the

argument did not specify the parameterization; therefore, the stationary

wave should be sensitive to all factors including dissipation, asymmetries

in the flow, stationary nonlinearities, and temporal changes. Therefore,

linear theory should show large errors even with the eddy parameterization.

6.1 Numerical Results

We used a time-dependent numerical model to calculate the time-mean

states for two types of stationary forcings. The first was a diabatic

heating; the second was a specified vertical velocity at the surface. This

orographic-like forcing was used instead of the usual 'U-h + V.h ' becausex y

the model had a small surface wind which would make the forcing extremely

sensitive to the zonal state.

The linear solutions were calculated using the time-mean zonal state

determined by the numerical model. The linear solution takes into account

the dissipation, and the curvature of the zonal flow.
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Cases:

k=1 1=1

k=1 1=2

k=1 1=1

k=1 1=1

U4 = 0.0003 cos(kox)sin(loy)

)4 = 0.0003 cos(kox)sin(21oy)

(4 = 0.0003 cos(2kox)sin(loy)

0 4= 0.0003 cos(2k x)sin(21 y)

q = 0.05 cos(ko x)sin(loy)

q = 0.05 cos(kox)sin(21oy)

q = 0.05 cos(2kox)sin(loy)

q = 0.05 cos(2kox)sin(21oy)

Linear versus Time-mean Solutions

The time-mean solutions were compared with the linear solutions by

using a simple spatial correlation, and by finding variance unexplained by

the linear solution. For these calculations, the time-mean solutions were

restricted to the zonal wavenumber of the forcing. For example, if the

forcing was at k=k and 1=1o, the linear wave was compared with the time-

mean solution restricted to zonal wavenumber k . The time-mean field waso

so restricted because most of the other waves were not statistically

significant.
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Table 10: Correlation of the linear and time-mean waves
(20 degrees of freedom)

time-mean \lin time-mean lin

C- =2 2 1/2 + 2 2 1/2
2 [time-mean lin time-mean lin

k 1 forcing linear linear with param.
o o

1 1 vo .99 .99

1 1 q 1.00 1.00

1 2 o .97 .98

1 2 q .95 .96

2 1 U .91 .92

2 1 q .97 .98

2 2 L .92 .94

2 2 q .91 .95

The correlations between the time-mean and linear solutions were

strong, greater than 0.90. The synoptic-eddy parameterization improved the

correlations, but not to an important degree for they were already large.
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Table 11: % Unexplained Variance

unexplained_variance = 't time-mean - lin12 + 16timemea n  li n2n time-mean ln

total variance = I time-mean + time-mean2

% unexplained_variance = 100-unexplained variance / total variance

k 1 forcing

1 1

1 1 q

1 2 W

1 2 q

2 1 W

2 1 q

2 2 0

2 2 q

linear

3%

1

6

11

17

5

17

37%

linear with param.

2%

1

3

9

15

4

24

37%

The unexplained variance is the square of the difference of the time-

mean and linear solutions. The eddy parameterization improved the unex-

plained variance; however, the improvement was not large for the unex-

plained variance was quite low except in the 2k 21 cases, which are
o o

discussed in the next section.

Resonance Response

The cases with 2ko, 210 forcing were poorly predicted by linear

theory. Resonance is an explanation. Resonance is shown by strong

responses to '' or 'q' forcing, and the stronger responses differed more

from linear theory (table 12). The 2ko, 21o cases had the poorest accuracy

and the largest stationary-wave amplitudes.
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Table 12: Variance versus % Unexplained Variance

k 1 forcing Variance(lin. param.) % unexplained variance
o 0

1 1 L 3.0x10- 5  2%

1 2 0 2.3x10-5 3

2 1 0 1.0x10 15
-4I

2 2 W 1.1x10 24

1 1 q 2.5x10 1

1 2 q 4.3x10 4  9

2 1 q 5.3x10 4

-32 2 q 1.9x10 37%

Variance is of the linear solution with the eddy parameterization

Resonance complicates the theoretical explanation of stationary waves.

Some theories, for example Charney and DeVore (1979), assume that the main

effect of resonance is to produce large-amplitude stationary waves which,

in turn, produce important nonlinearities. This hypothesis was tested by

reducing the forcing by 80% in the 2ko, 21o, q case. This should a priori

reduce the stationary wave's amplitude by 80%, and the 'stationary'

nonlinear terms by 96%.

The correlations were not improved by the weaker forcing. They

remained roughly the same for the phase errors did not improve (table 13).

The high percentage of unexplained variance improved somewhat because the

amplitudes were not as badly over estimated. Overall, linear theory only

showed a minor improvement with the much weaker forcing.
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Table 13: Weak versus Strong, Near-Resonant Forcing

Correlation

% Unexplained Var.

Variance

T.-M. Var.

Phase Error of: T

forced mode 0

Regular Forcing
linear lin./param.

.91 .95

.37 .37

1.56 1.88 x

0.9

17

20

10-3

x10 - 3

+30

+20

Weak Forcing
linear lin./param.

.89 .95

.22 .25

1.34 2.39 xl

1.3 xl

18

22

The amplitude of the weakly forced solution was comparable to the

nonresonant solutions; therefore, the large errors cannot be attributed to

the amplitude of the forced wave. Factors other than the 'stationary'

nonlinear terms are the likely cause.

Unexpectedly, the zonal flow was sensitive to the forcing. The 80%

weaker forcing reduced the amplitude of the time-mean wave by 60% rather

than 80%. With the regular forcing, the large-amplitude stationary wave

altered the zonal flow and made the forced wave less resonant (figure 57).

0.14

i Fig. 57. Zonal-mean
0.12 thermal wind Ut for

three runs.
o.o Solid: strong diabatic

0.08 heating at 2ko, 21o
0.o8 .. ,"--, - Long dashes: weak forcing

20% of above
o.os I Short dashes: control run

no stationary forcing
0.04 /

0.02 ,'

0.00

0.0 0.5 1.0 I.S 2.0 2.5 3.0
Y RUN NL[7 VS 010 VS 88
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Phase Angle

Previously, we showed correlations between the linear and time-mean

solutions. Correlations, however, can hide systematic differences. The

phase angle is an example. In the 'orography' cases, the linear solution

without the parameterized eddies had troughs east of the time-mean

solution. The parameterized eddies moved the forced waves to the west, and

eliminated the eastward bias. (Positive angles in the table 14 implies the

linear solution is too far to the east)

Table 14: Phase Error of Forced Mode (in degrees)
Linear Solution (with param. eddies) vs. Time-Mean Solution

k 1 forcing Y 6
o o lin. (param.) lin. (param.)

1 1 o 30 00 +10 30 10 +10

1 2 ) 10 -90 +30 110 -30 +10

2 1 0 00 60 +10 00 -10 +10

2 2 o 50 -10 +20 100 30 +10

average value (bias) 30 - 1 o 60 00

Consider the equation for a stationary wave

W = ik.[A]'W - F = 0

The stationary solution for a normal-mode structure is

w

Where w is the complex frequency of the normal mode.

The phase of the complex number ( ) is
w

arctan(imag(w) / real(w)) = arctan(frequency/growth_rate)

Therefore, the phase of the troughs is -arctan(frequency/growth_rate)
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Previous calculations showed that, for the model's parameters, the eddy

parameterization altered the dispersion relationship by:

1. Making the frequency more negative.

2. Tending to make the growth rate larger.

If the growth rate remains negative, then points (1) and (2) increase the

positive argument of arctan(frequency/growth_rate). Thus, the wave should

be shifted westward by the eddies.

A systematic phase error was not apparent for waves forced by the

diabatic heating. This heating may force stronger 'internal' modes which

may have argument-voiding positive frequencies.

Discussion

Away from resonance (small free-wave frequency), we expect that

stationary waves are not sensitive to the synoptic eddies. This is not to

say that these eddies have no effect, but rather that small factors will

only produce small changes. Near resonance, however, theory suggests that

the stationary waves are sensitive to the synoptic eddies and other

neglected factors. Consequently, linear theory should do poorly for near-

resonant forcings.

The comparison of linear theory with the time-mean solutions showed

that linear theory well estimated the streamfunctions, at least for non-

resonant forcing. The eddy parameterization improved the linear theory but

the theory was generally insensitive to all parameterizations.

Linear theory poorly estimated the time-mean solution near resonance.

This expected result was not caused by the amplitude of the stationary wave
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being large, but by other neglected factors. Thus, near-resonant waves

cannot be accurately modeled by simply including the 'stationary' nonlinear

terms. The phase errors were roughly halved by the parameterized eddies

but the amplitude of the stationary waves was consistently over-predicted.

This may not be serious for a small 'effective friction' (eddy viscosity)

would reduce those amplitudes.

Other researchers have examined the effect of transient eddies on

stationary waves. They used eddy fluxes from observations (Opsteegh and

Vernekar, 1982), and from a GCM climatology (Nigam, 1983; Nigam et al,

1986). They found that the transient-eddy fluxes made the linear solutions

more realistic. They didn't decompose the solutions by wavenumber, so they

couldn't find a near-resonant sensitivity. Such sensitivity was noted by

Roads (1980) who compared the results from a GCM and a linear stationary

wave model.
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Chapter 7

Summary

We examined the interactions between synoptic- and planetary-scale

waves in a simple baroclinic model. Such interactions provide a mechanism

for the unexpected rapid growth of long waves in GCM experiments (e.g.

MacVean, 1985). As a preliminary study, we examined the largest order

interactions in a simple situation, in an attempt to gain a fundamental

understanding.

Our analysis was broken into three sections: how the planetary-scale

wave spatially modulated the synoptic-scale wave, how the fluxes of the

synoptic-scale waves varied on the planetary-scale, and lastly how those

fluxes altered the temporal evolution of a transient planetary-scale wave.

In the first part, the spatial modulation of the synoptic-scale wave

was studied analytically. The approach assumes that the waves had a simple

meridional structure, and it concentrates on describing the zonal struc-

ture. At this stage, the zonal and vertical structure of the planetary-

scale wave is arbitrary. Our analysis shows that the modulation of the

synoptic-scale wave is crucially dependent on whether or not the wave is

inviscidly neutral or unstable. The latter case is considered in the

belief that the zonal flow will equilibrate, by baroclinic adjustment, to a

state where the most unstable modes will have small real growth rates

(i.e., the flow is inviscidly unstable). One pleasing feature of our

analysis is that the synoptic-eddy modulation occurs at a low order, and

only the geometrical optics approximation is needed (Appendix A). This

suggests a certain robustness of the basic results.

We found the spatially modulated synoptic-scale wave could be
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described by a complex local wavenumber. The imaginary part determined the

amplitude variations, while the real part determined the local wavelength.

A major modulating factor was Ut'(x), variations of the planetary-scale

thermal wind. Regions of positive Ut' showed spatial growth downstream.

For the most unstable zonal wavenumber, the results had a particle inter-

pretation; the spatial growth downstream was equal to the 'local growth

rate' divided by its speed (group velocity).

The term U' also modulated the synoptic-scale waves. It produced

significant changes in the local wavelength and could produce an important

amplitude modulation. However, this modulation was sensitive to the

synoptic wavelength, and it disappeared for the most unstable wavelength.

For this reason, Ut' is probably more important on average. Results for a

sphere, on the other hand, show a strong U' effect (e.g., Frederiksen,

1980). Perhaps the U' (and V') changed the latitude of the wavetrain which

brought it into regions of differing local instability.

In the second part, we used the WKB solution to find the synoptic-eddy

fluxes. The heat flux peaked downstream of the largest spatial growth

(usually the strongest thermal winds) and peaked upstream of the largest

eddy amplitudes. With this structure, the heat flux removed baroclinic

energy from the planetary-scale mode. The divergence of the vorticity

fluxes, on the other hand, was in phase with the long wave, and tended to

add baroclinic and barotropic energy to the planetary-scales, consistent

with observations (Holopainen et al. 1982).

Using the WKB solution, we parameterized the eddy fluxes in terms of

the large-scale flow. The energy fluxes due to the synoptic-scale waves

were not the only stability criterion. The out-of-phase heat flux could

alter the structure of the long waves, and allow the long waves to convert
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more ZAPE into EAPE. Altering the long wave requires no energy when the

fluxes are 900 out of phase, so the energy fluxes gave an incomplete

description of the effect of synoptic eddies (i.e., the synoptic eddies

can also play a catalytic role). For the constants of the numerical model,

the parameterized eddies usually increased the growth rate of the long

wave. This result could explain why the long waves grew faster than

predicted by linear theory in the GCM experiments.

The numerical model supported our analysis. First, the model showed

that baroclinic adjustment can occur. In addition, the energetics of the

long-modes/synoptic interactions were comparable with predictions based on

our synoptic-eddy parameterization. The numerical model also showed some

conditions where baroclinic adjustment failed and where the parameteriz-

ation failed to describe the energy fluxes.

The interaction of the synoptic-scale waves and the stationary long

waves was studied by a hierarchy of models: linear, linear with para-

meterized eddies, and a time-dependent nonlinear model. Away from

resonance, the results were not sensitive to the transient eddies. Correl-

ations of the linear and time-mean solutions were above 0.90. The eddy

parameterization improved the results slightly.

When the forcing was near resonance, the linear solutions showed large

errors, as expected by theory. The parameterized eddies reduced the phase

errors. But near resonance, the linear solutions were sensitive to all

factors.
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Conclusions

The baroclinic adjustment hypothesis can be a good approximation

although it breaks down if the factor 'G' is too large (5.11).

'G' is large if the channel width is large, the radiative forcing

is strong, or if the friction is small. Whether baroclinic

adjustment applies to the atmosphere should be examined in more

detail.

The net effect of the synoptic eddies cannot be determined by the

energy fluxes due to the synoptic-scale eddies. These eddies can

play catalytic role, and help destabilize the long waves.

The non-resonant stationary waves were not sensitive to the

transient waves, and linear theory accurately described the

stationary waves. Near resonance, however, linear theory gave

poorer results.

All the previous results are dependent on having inviscidly

unstable synoptic-scale waves. The results for inviscidly stable

synoptic-scale waves would be much smaller and different.

Therefore, one must be careful in applying results from inviscidly

stable flows to inviscidly unstable flows. For example, applying

barotropic ray-tracing theory in the mid-latitudes is suspect, if

the wave is inviscidly unstable.
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Appendix A: WKB Invalidity

The geometrical-optics approximation of the WKB technique (Bender and

Orszag, 1979) was used to find the spatial modulation of the synoptic-scale

waves. Here, we show that the next higher order approximation, physical

optics, is not necessary. The validity of the WKB technique is harder to

determine without having specific numbers; however, conditions for definite

WKB breakdown are shown to be equivalent to a necessary condition for local

instability (Pierrehumbert, 1984).

One does not expect the WKB solution to breakdown for the most

unstable modes. The reasoning is outlined below.

1. For a definite WKB breakdown (T -> 0, see A.1, A.4, and A.5),

the instability must satisfy some constraints which are necessary

conditions for local instability. See Pierrehumbert (1984), and

the following section 'WKB Breakdown for Small T.'

2. The most unstable modes are global rather than local unless

they satisfy additional constraints. For reasonable flows, the

most unstable modes are global.

3. Since our analysis is restricted to the most unstable modes,

and local instabilities are associated with lower growth rates, we

do not expect the 'T -> 0' WKB breakdown to be important.

The WKB expansion is given by (A.1). We will now justify neglecting
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the term gl (geometrical-optics approximation).

exp( i'k(x).dx + g 1 (X) - i-w-t) (A.1)

The 0(1) equation is H(k) = Z k = 0 rom (3.51) (A.2)

Since there is separation of length scales (E << 1) and the basic-

state wave is weak (6 << 1), terms involvi gIU/dx, dUt/dx, dV/dx, and

dVt/dx are O(& S). Therefore, the terms can beYeglected to O(c).

The 0(E) equations involve the same terrds as the 0(1) equations

because terms like dU/dx can be neglected. Th@Pgfbre, the 0(E) equation is

given by (A.3).

jo Ja kJ-1 aX 1 + kj-2) = 0 (A.3)Xj:O Jaj ax g1 (X) + 2 j.(j-1) aj = A3

Note that a is 0( -6), so it can be ignored. o

t at 6J-1
Define T - ak - ja j a k (A.4)

Therefore, g(X) - log T T (A.5)

KB Breakdown for SmaWY T

The WKB approximation will breakdown when T is zero (A.6). But when T

is zero, the local group velocity is also zero andche wave has an extremum

in its growth rate. These are conditions for local instability, as shown

by Pierrehumbert (1984).

Appendix A: WKB Invalidity 158



Equation A.5 implies exp g1(X) = constant T- 1/ 2  (A.6)

'Showing the group velocity is zero'

H(w, k, X) = 0 is a sixth order polynomial for 'k' (A.2)

When T(w,k) = k H(w,k) = 0, then k must be a multiple root of H.

Proof:

H(k) = a.(rl - k) ... (r - k)

r i is the i-th root of H

Since H(k) = 0, k must be equal to r1, r2, ... or r6.

suppose T(rl) = 0

then k H(rl) = - a(r - r) (r - r)

but ik H(rl) = T = 0

Therefore, r1 is equal to r2, r3, ... or r6

Hence, k must be a multiple root when T = 0.

However, the group velocity, c , is given by real( ).

dw H HBut - /

aH=-T/ aw 0dw

Therefore, if T -> 0 (a definite WKB breakdown), one has the necessary

conditions for local instability (Pierrehumbert, 1984).

Errors from g1 (X)

Our WKB expansion suggests that the error in neglecting gl is e g(X )

However, e 1 X) is not the real error. For example, if g 1 (X) were
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constant, then the error just changes the amplitude of the solution which

is not determined by our WKB analysis. Therefore, changes in gl are the

important error.

From (A.5), exp g 1(X) = constant T

1 - 3 / 2
Therefore, variations of exp gl - constant dT T1 2

Where dT is the size of the variation of T

Therefore, the relative error = Ivariation of exp gl1 / lexp gl1

= dT / T

Since H = o kc = 0

then T-dk = .j, -k j daj using (A.4)

where da. is the perturbation of a. due to U', Ut', etc.

By the scaling, the large-scale flow has on 0(6) wave (i.e., U'/U = 0(6)).

Since da. depends on the large-scale wave, therefore daj = 0(6aj)

Similarly, dk = 0(b-k) = 0(8) (since k = 0(1))

and dT = O(S'T)

Therefore, the error from not using physical optics is 0(dT/T) = 0(6).

The imaginary part of k also changes the amplitude of the solution.

It alters the amplitude by eJki-dx Z 0(dk*X/x) - O(dk/E), or more simply

0(6/E). This is much larger than the change introduced by neglecting g 1.

Therefore, the geometrical-optics approximation can be justified since the

physical-optics approximation introduces a small change.
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Appendix B: Parameterization

Introduction

We have three reasons for trying to parameterize the synoptic-scale

(transient) eddies. First, the parameterization is used to find the growth

rate of long waves in the presence of synoptic-scale waves. Of less direct

relevance, transient-eddy parameterizations are used to save computer costs

in climate models. Last, the existence of a parameterization is theoret-

ically useful for it extends the range of linear theory when certain non-

linear processes behave in a linear manner.

The mixing-length theory is the basis for most eddy parameterizations.

It views the eddies as turbulent, random-like motions that move conserved

quantities in all directions. The net effect of these motions is to act

like a strong molecular diffusion. The strength of mixing depends on the

eddies' length and internal velocities, where large velocities and lengths

favor mixing over small, weak eddies.

For a conserved quantity A, mixing-length theory suggests:

<u'A'> = Kxx dA + KxY dA + Kxz dA
dx dy dz

<v'A'> = Kyx dA Kyy dA + Kyz dA
dx dy dz

zx y d zy dA zz dA<w'A'> = K + K zyd + K
dx dy dz

Kij is the eddy diffusion coefficient

Mixing-length theory was initially applied to the eddy fluxes of heat,

zonal momentum, and vorticity. Observed transient eddies, however, can

transport the latter two quantities upgradient. [Held (1975) gave a simple

explanation for the upgradient fluxes of zonal momentum.] This failure was

blamed on the non-conservation of zonal momentum and vorticity. On the
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other hand, potential temperature and potential vorticity are conserved,

and their fluxes tend to be downgradient in the troposphere, consistent

with the mixing-length hypothesis. As a result, more recent papers have

applied mixing-length theory to the potential vorticity and potential

temperature. (See the review by Shutts, 1983a.) One should remember that

these theories only apply to the troposphere since the potential-vorticity

flux can be upgradient in the stratosphere (Lau et al., 1981).

Originally, eddy parameterizations were applied to the zonal-mean

flow. They were used in simple models such as the energy-balance models

(North et al., 1981) and the statistical-dynamical models (Saltzman, 1978).

These models became an important tool for climate studies. More recently,

researchers [Shutts (1983a), White and Green (1982)] have tried using non-

zonal versions of these parameterizations in an attempt to include some

important spatial variability.

Green and White (1982) observed that their parameterized eddies, being

diffusive, reduced the baroclinic instability of the long waves. Shutts

(1983a) examined the effects of the parameterized eddies on the forced long

waves. The effects were not especially notable.

The weakness of most eddy parameterizations is the mixing length hypo-

thesis, which has not been shown to be correct. For example, quasi-

geostrophic theory suggests that waves growing on a baroclinically zonal

flow must have downgradient potential-temperature and potential-vorticity

fluxes (Pedlosky, 1979).

White and Green (1982) and later Shutts (1983a) questioned whether any

theoretical basis existed for a synoptic-eddy parameterization. They

argued that, if Stone's baroclinic adjustment hypothesis (1978) were

correct, parameterizing the heat flux only using the mean flow must be
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incorrect. Stone had hypothesized that synoptic-scale eddies dominate the

mid-latitude tropospheric flow, and maintain the zonal flow at near

baroclinic neutrality. Hence, the large-scale flow should be near neutral

stability regardless of the radiative forcing. Since the radiative forcing

is balanced principally by the eddy heat flux, parameterizing the eddy heat

flux only using the instability properties of the large-scale flow is

suspect. (The instability properties will define simple-structure flows.)

Observations of the mid-latitude troposphere are consistent with

baroclinic adjustment (Stone, 1978), while results from numerical models

are contradictory. For example, most of our simulations strongly support a

baroclinic adjustment modified by including friction and curvature of the

zonal flow. On the other hand, Vallis and Roads (1984) found little

evidence for a modified baroclinic adjustment. These conflicting results

are examined in chapter 5. It suffices to state that baroclinic adjustment

will hold for some parameters.

We will not examine the objections raised by White, and Green and

Shutts. The parameterization developed in this thesis is based on the

large-scale flow and an external parameter (synoptic-eddy amplitude); thus,

their arguments do not apply.

In summary, a good parameterization of the transient eddies would be

useful for theories of planetary-scale waves and climate modeling. Most

parameterizations are based on the mixing-length theory which suggests that

transient eddies mix conserved quantities like molecular diffusion.

Whether this theory applies to the large-scale atmospheric flow is unclear.

The transient eddies have a well-defined structure which may have fluxes

which are not strictly downgradient.
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Parameterization Details
Numerical Model's Modes

The fluxes determined by the numerical model are compared with those

determined by the parameterization. In particular, we are interested in

the eddy fluxes which affect the numerical model's large-scale modes which

are listed below. The other modes in the model have length scales which

are comparable with or smaller than the most unstable wavelength, and are

of less interest.

Larger scale modes in the numerical model:

sin(loy) exp(ikox) sin(loy) exp(2ikox)

sin(21oy) exp(ikox) sin(21oy) exp(2ikox)

Synoptic modes:
(Most unstable modes for uniform flow)

sin(loy) exp(3ikox) sin(21oy) exp(3ikox)

Meridional Structure

Our WKB analysis has to be extended before it can be used in paramet-

erizing the eddy fluxes. The following example shows a deficiency in the

analysis.

Consider a planetary-scale wave with the widest meridional

structure, sin(loy). The zonal winds from this basic-state wave

are opposite in the northern and southern halves of the channel.

Therefore, terms like Ut'(x) and U'(x) are zero (see below).
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Let e = C (x) sin(loY)

Let = Yo(x) sin(loy)
ps 0 0

By (3.44), Ut' for the sin(jloy) is

Ut' = - <ol cos(l * y) sin(jl o y) I sin(j'16 y) >

-<e i1 cos(l -y) 1 1 (I - cos(2j.l *y)) >

= 0

Similarly U', DU', and DUt' are all zero.

Since Ut', U', DU' and DUt' are zero, synoptic-scale waves should not

be spatially modulated.

The problem with the model equations is that the spatial modulation

only has a zonal dependence. Consequently, the equations cannot describe a

wave that also has.a 'y' modulation. For this reason, we will describe a

simple modification to include the effects of the sin(l y) long mode.

Synoptic-scale Wave: sin(loy)

This section considers the sin(loy) synoptic mode, and shows the

values of U', Ut', DU' and DUt'.

Using (3.43-3.46) gives

U1 (x) = < -~ 'p' sin(l y) I sin(loy) >
1 ay ps 0 0

Define T'ps = aj(x) sin(jl y) (B.1)

e' i = b .(x) sin(jl y) (B.2)

From (B.1), U1 '(x) = lo.a2(x) + smaller terms (B.3)
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1. The sin(21oy) long mode modulates the sin(loy) synoptic mode (B.1).

2. The sin(l y) synoptic modes have a sin(21 y) eddy flux.

By (1) and (2), the sin(21oy) long mode affects the sin(lo y) synoptic

mode and vice versa. These two modes, therefore, have a mutual inter-

action, a necessary condition for a feedback and strong interactions.

Some other important terms are:

Ut ' _1 *b (x)
1 o 2

DU - 3413 a2 (x)

DUt -41 3 b (x)
1 o 2

Synoptic Mode: sin(21oy)

The two other important modes are the sin(loy) long-wave mode and the

sin(21oy) synoptic mode. According to our analysis, the sin(21oy) synoptic

mode interacts with sin(41oy) long wave and not with the sin(loy) large-

scale mode. However in the numerical model, the sin(41oy) long wave has a

small meridional-length scale, so it is less important.

The second synoptic/planetary-scale interaction can be best understood

by an artificial construction. The sin(21oy) synoptic mode is unaffected

by inserting a wall in the center of the channel since that mode's merid-

ional velocity is zero in the middle. Now, insert a wall in the middle of

the channel, and then apply our analysis to each subdomain. The sin(2oy)

synoptic mode is now modulated by sin(loy) long wave.

The second synoptic/planetary-scale interaction is calculated as if a

barrier existed in the middle of the channel. This procedure is equivalent
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to assuming the synoptic mode is given by equation B.4. This mode takes

advantage of the opposite signs of U', Ut' etc. in the northern and

southern regions.

T = sin(21 y) e i<k>x + ik'dx - iwt 0 < Y -  (B.4)

= sin(21) e i<k>x - ik'dx - iwt Y

Equation B.4 is formally justified for the Galerkin approximation

gives considerable freedom for modal expansions. The modal expansions need

not be eigenvectors; they only have to satisfy the boundary conditions. A

poor expansion only gives a slow convergence. These modes (B.4), while

unconventional, do converge to the eigenvectors for small spatial modul-

ation (i.e., E -> 0, 8 -> 0). This suggests that the convergence may be

reasonable in this limit.

U ' =32 1 -a (x)
2 1571 o 1

Ut 32 1 *b (x)
2 151 o 1

DU - 321 a (x)
2 15 o 0 1

DUt ' = 2 1 3b (x)
2 157f o 1

The above values are for the southern half of the channel. The

values in the northern half have the opposite sign.

Zonal-Mean Flow

The long wave in our analysis was made stationary by a zonal

translation. The <U> relative to the surface will be called <U> . It and
s

<Ut> were found using (B.4) and (B.5). Generally, <Ut> and <U>s depend ons
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the meridional structure of the perturbation.

<U> a < I sin(mlo' y) I sin(m*1 0 y)> (B.5)
<Usm oy p S

<Ut>m <i- ps sin(ml o y) I sin(m'lo y)> (B.6)
a ay ps o o

<U>s m is the effective zonal-mean wind for the sin(m-1 y) synoptic mode

measured relative to the ground.

<Ut>m is effective thermal wind for the sin(m 1 oY) synoptic mode

The above equations can be rewritten.

<Ut> = 1 Ln m b (B.7)
<Ut o l bm0

where <0> = _ bm0 sin(m-10 y)

<U> = Z 1 Lnm (B.8)
s,n 1 m

where T = Zi am0 sin(m-lo y)

The expressions for <Ut> and <U> can be approximated by the first
m s,m

term in (B.7) and (B.8). The other terms are neglected since Ln m is small,

and the model's values of bm0 and am0 are small compared with b10 and a10

(see following table). With this approximation, the zonal-mean winds are

only a function of the large-scale fields, and given by (B.9-B.12).

m=1 m=2 m=3 m=4 m=5

am0: .14 .0077 -.0030 -.0037 .0018

bm0: .14 .0027 .011 -.0027 .0034

L1m: 8/3 0 -23/15 0 62/105

L2m: 32/15 0 14/9 0 -32/45

Time mean values of am and bm0 are from the control run:

<Ut> = 81 b for sin(l y) synoptic mode (B.9)
1 311o 10 o

A



<U> = 31 a (B.10)s, 3 i o 10

<Ut> =32 1 b for sin(21 y) synoptic mode (B.11)
2 157f o 10 0

<U> 32 1 a (B.12)s,2 15 o 10

In our theory, the planetary-scale wave was made stationary by a zonal

translation, so <U> is measured relative to the phase speed of that wave.

Fortunately, the exact value of the zonal wind is not critical; our

analysis suggests that the zonal wind affects the synoptic-scale wave by

changing its group velocity. An inexact zonal wind will change the

amplitudes of the synoptic-eddy fluxes but not the more important phases.

(See equations 3.74, 3.78, 3.80, and 3.82.) A simple estimate of the phase

speed of the planetary-scale waves is given below.

Let cn m = <U> 9- (K 2+) / K 2 2F)

where K
2 = (nk ) + (ml )2

o 0

c is an crude estimate of the phase speed of a transient planetary-scale

wave with the form sin(mloy) exp(inkox)

For stationary planetary-scale waves, cm = 0

Using the above estimates for the phase speed, <U> is given by

(B.13) and (B.14). Note that the parameterization uses a different zonal

wind for each meridional mode.

<U>1 = <U>sI - cn,2 for the sin(lo y) synoptic mode (B.13)

<U> 2 = <U>s, 2 - Cn,1 for the sin(21 y) synoptic mode (B.14)



Our eddy parameterization has some constants such as F and beta.

Since the parameterization will be compared with the results of the

numerical model, these values are identical with the numerical model's.

(See chapter 5.)

Synoptic-scale Wave

The eddy parameterization depends on the wavenumbers of the synoptic-

scale wave. Most of our theoretical analysis is based on the most unstable

zonal wavenumber. However, this wave does not exist in the numerical model

since the wavenumbers are quantized. So the parameterization uses the most

unstable wavenumbers that exist in the numerical model.

2
sin(loy) mode: k=3k, 1=1 o , K = 4.48

2
sin(21 y) mode: k=3k , 1=21 , K= 5.84

K2 =critical 2 1/2F = 4.91
critical

The synoptic-eddy amplitude of the sin(l y) and sin(21 y) modes is

undetermined by our WKB analysis. This amplitude can be determined by

either scale analysis (e.g. Green, 1970), numerical simulations, global

energetics, or even prognostic equations. In this thesis, the synoptic-

eddy amplitude is either a free parameter or determined by the numerical

simulations (see the following formulae).

Amplitude of sin(l y) synoptic-scale mode I ~f(k=3k , 1=1 o)

Amplitude of sin(21 y) synoptic-scale mode z I V(k=3ko,l=21o)I (1 + g)

1 7n1n. __46 . __ n_4_4 I -



W(k=3k ,l=31 ) + Y(k=3k ,l=51 o )
Where g = real

Y(k=3kol=21
o )

When the sin(21oy) synoptic mode is zonally modulated, it has the

opposite modulation in the northern and southern regions. As a result, its

meridional structure will have energy in many meridional modes. The term

'g' tries to include this extra energy by considering the other modes which

are in phase with sin(21oy) mode.

Summary

In summary, the numerical model has two large-scale meridional modes,

sin(loy) and sin(21oy). The sin(21oy) long-wave mode modulates the

sin(loy) synoptic mode, and the fluxes of that synoptic mode will directly

force the sin(21oy) long wave. This mutual interaction is necessary for a

feedback. As result, strong interactions can occur. The other long-wave

mode, sin(loy) has a coupling with the sin(21oy) synoptic mode which is

another source of strong interactions. These mutual interactions can

produce the feedback which is studied in this thesis.
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Appendix C: Energy Fluxes

This appendix defines the baroclinic energy, barotropic energy, and

various energy fluxes. When T and e are used, the baroclinic and

barotropic energies are more convenient than traditional kinetic and

available potential energies

Total Energy = -a - K2Ik112  + 1 (K2 + 2F) 19 112 (C.1)
K2 k 2 2 2

Kinetic Energy = Zk,12 2 1 K2 16 1 2 (C.2)
k=t 2 2 k3l

APE = k,t F 18k,112  (C.3)

Barotropic Energy = Z kt K2 ' k112  (C.4)

Barolinic Energy = (K2 + 2F) 189k1 12  (C.5)

Let ini(x,y,t) = <(y,t)> + '(x,y,t)

Let T(x,y,t) = <8(y,t)> + T'(x,y,t)

1 K 2 I< >12 = zonal barotropic energy (ZBT)

K2 IT k  2 = eddy barotropic energy (EBT)2  ,l

(K2 + 2F) <0 >2 = zonal baroclinic energy (ZBC)
2 o,

1 (K 2 + 2F) 18 1k,l 2 = eddy baroclinic energy (EBC)

Define A(x,y) = x JA(x,y)-dx-dy
0 0

The equation for the vertical mean stream function is

a V2 T - jetV, 72') - J(), 720) + Dtwhere D = dissipation
where D = dissipation
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The energy fluxes for the above equation are:

= gain of ZBT due to BTW-BTW-BTZ triads

= loss of EBT due to BTW-BTW-BTZ triads

<+> J(e', V2e') = gain of ZBT due to BCW-BCW-BTZ triads

T' [J(<e>, V2e,)

T' J(e', 2e,) =

+ J(6', 72<6>)] = gain of EBT due to BCW-BCZ-BTW triads

gain of EBT due to BCW-BCW-BTW triads

The equation for the thermal stream function is

" t 2 - 2F) e = - p - J(T, (2 - 2F) e) - J(8, 7 2 p) + Q

Q = heating and thermal dissipation

The energy fluxes for the above equation are:

<8> [J(T', (72 - 2F) 8') + J(e', 72t ')] =

gain of ZBC from BCW-BCZ-BTW triads

6' J(T', 972 ')

o' J(<I>, 721 ')

' [J(TI', (,2 -

= gain of EBC from BCW-BCW-BTW triads

= gain of EBC from BCW-BCW-BTZ triads

2F) <8>) + J(<>, V2 ')]

gain of EBC from BCW-BCZ-BTW triads
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Appendix D

Parameterization and Energy Fluxes

Energy fluxes were used to analyze the numerical model. These fluxes

were compared, in chapter 5, with predictions based the eddy parameteriz-

ation. This determined the conditions under which the theory does poorly.

The numerical model's energy fluxes was calculated by:

1. Periodically saving the state of the model.

2. Calculating the energy fluxes for each archived state.

3. Averaging over all archived states.

4. Repeating steps (2) and (3) except with with certain components of

the flow set to zero. Steps (1) through (4) allow one to calculate

the energetics for any triad or group of triads.

Example 1: Find the energy fluxes caused by wave mean-flow interactions

1. Calculate the energetics for the flow.

2. Set the zonal flow to zero.

3. Calculate the energetics for this wavy flow.

(Step 3 calculates the wave-wave interactions.)

4. Subtract the results of step (3) from step (1).

(In the thesis, a special program was used instead of steps 1-4.)

Example 2: Find the energy fluxes from the BCZ-BCW-BTW triad

1. Set the barotropic zonal flow to zero.

2. Calculate the energetics of the wave mean-flow interactions.

(See example 1.)
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Example 3: Find the flux involving the 3ko wave

1. Calculate the energetics.

2. Set the 3ko wave to zero.

3. Calculate the energetics with this 'new' flow.

4. Subtract the results of step (3) from step (1).

The synoptic-eddy parameterization was used to find an energy flux by:

(1) determining the amplitude of the synoptic eddies for each archived

state using the model's output (see Appendix B), (2) finding the eddy

fluxes using the eddy parameterization, (3) using these eddy fluxes to find

the energy fluxes, and (4) averaging over all archived states.
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Appendix E: The Jacobian

We evaluated the jacobian with the collocation or pseudo-spectral

method (Gottlieb and Orszag, 1977) because it is faster than the interac-

tion method (i.e. tensor multiplication). The collocation method takes

O(n log(n)) operations compared with O(n 5 / 2 ) operations for the interaction

method (n is the number of modes).

The spectral expansion is given by (E.1) and (E.2).

Let LYa = an 0 cos(nloy) + I_ anm sin(nloy) exp(imkox) (E.1)

Let 4b = En bn0 cos(nloy) + E,I bnm sin(nlo y) exp(imk x) (E.2)

Through the transformations: x -> x' / ko, y -> y' / lo

we can set k and 1 to one.
o o

Define a a cos(ny)

a = anm sin(ny) eimx

Tb = bno cos(ny)

imx
b =

L bnm sin(ny) e

Jnm' the spectral decomposition of Jacobian is given by:

J(real(Ta), real( b)) = Jn0 cos(ny) + Znm real(Jnm sin(ny) eim x )

1 2 3J can be divided into 3 parts: J = J + J + .nm

J(real(a), real(b)) - , real(J1m sin(ny) ei mx ) + n J0 cos(ny)

J( b) + J ' a =  real(J3 nm sin(ny) e i mx )
Ta' a a nm
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We evaluated the jacobian in three parts, J 1, 2 and J3, to prevent

numerical error. Such errors would occur if we used a discrete spectral

transform to convert from a {sin(ny)} to a {cos(ny)} representation.

Example: Suppose a field is in its sine representation,

f(y) -" n sn sin(ny)

but we want a cosine representation

f(y) ! Z- con cos(ny)

The best way to find c n is by

cn = <cos(ny) I ,Sn, sin(n'y)> (E.3)

Using two discrete spectral transformations gives different results.

{c' n = { sn {Sn n

where J is the discrete cosine transform

and -! is the discrete inverse sine transform

note that {c n } A {c' n }

{c n is not equal to {c' n because the basis functions {sin(ny)} and

{cos(ny)} are not orthogonal. Consequently, c'n depends on the number of

points used by the discrete spectral transformations. Since c is inde-
n

pendent of the number of points, {c n }  {C'n}.

To avoid this error, we transform between the sine and cosine repre-

sentations using (E.3), which is equivalent to matrix multiplication.

This method forces the jacobian to be evaluated in three parts.
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Part I, wave*wave -> wave

1
J is the interaction of Ta and Yb producing a wavy field, and it is

found by the collocation method. The derivatives of 'a, and Vb are easily

and accurately calculated in the spectral representation. They are then

projected onto a grid (16 x 9). J1 is evaluated on this grid, and the

values on the grid are then transformed back into spectral space.

Evaluating J1 takes O(n log(n)) operations where n is the number of

modes (25). If the fast Fourier transform were not used, J1 would take

O(n 2 ) operations.

Steps:

1. find A(x,y) - real[im anm sin(ny) e i mx ] by an inverse transform

2. find B(x,y) ~ realn bn cos(ny) e i mx ] by an inverse transform

3. find C(x,y) - real[n anm cos(ny) eimx ] by an inverse transform

4. find D(x,y) b real[im bnm sin(ny) e i mx ] by an inverse transform

5. evaluate E(x,y) = A(x,y)B(x,y) - C(x,y)D(x,y) on the grid points

where grid points are at x = 2m HY/ 16 m = 0,...,15

y = n / 8 n = 0,...,8

6. find Zyreal[J 1n m sin(ny) eim x ] = E(x,y) by a spectral transform

1
Finding J in the above equation requires a transformation fromnm

spatial to spectral domain using an sine transform in y.

Part II, wave*wave -> zonal

J2 is the zonally averaged interaction of two wavy fields.
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2J = < J(real(a ), real( )) >
1 *
real( a b {-im.p.sin(ny) cos(py) - im*n*cos(ny) sin(py)} )2 nm pm
1 a p= 2 real(im {[a nm sin(ny)][bpm sin(py)]} ) (E.4)

J2 is evaluated by the collocation method. The terms in the brackets

(E.4) are transformed onto grid space. These grid-point values are then

multiplied together and transformed back into spectral space using a cosine

transform. This result is multiplied by a matrix [L] which takes the y

derivative and converts that result from a sine to a cosine representation.

(The simpler method of multiplying In by n and taking an inverse cosine

transform introduces errors.)

Steps:

1. find F ) = a nm sin(ny) using an inverse sine transform

2. find G (Y) = - bnm sin(ny) using an inverse sine transform

3. evaluate H(y) = real (-im-F (y).Gm(Y))

on the grid points y = jl(/16 j = 0,...,16

4. find n Incos(ny) = [H(y)] using a cosine transform

5. evaluate J2  = r InO P np p

where L = <j cos(my) I sin(jy)>np

Part III, wavy*zonal -> wavy

J is the interaction of a wavy field and zonal field, producing a

wavy field. J 3 , like the other terms is found using the collocation

method.
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J3  Je'i JV ' V

J = {[n.an 0 cos(ny)][bpl sin(py)] - [n-bn 0 cos(ny)][apl sin(py)]} il-eilx

term: A B C D (E.5)

The terms in the four brackets (E.5) are transformed onto a set of y

points using either a inverse cosine (A, C) or inverse sine (B, D)

transform, giving equation E.6.

Steps:

1. find A(y) - n an0 cos(ny) using an inverse cosine transform

2. find B1(Y) P bpl sin(py) using an inverse sine transform

3. find C(y) 1 - bn0 cos(ny) using an inverse cosine transform

4. find D1(Y) p apl sin(py) using an inverse sine transform

5. evaluate E1 (y) = A(y)Bl(y) - C(y)D1 (y) (E.6)

on the y points y = j 7r/ 16 j = 0,...,16

6. find 1 F ml sin(my) = E1(y) using a sine transform (E.7)

E1(y) is transformed into spectral space using a sine transform,

producing matrix [F] (E.7). [F] is the sine representation of 3. [F] is

then converted into a cosine representation by multiplication with constant

matrix [G] (E.8).

7. find G . = < cos(my) I sin(jy) > (E.8)

8. the final result is J 3 ml = Gmj Fjl
ml m,j jl
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Appendix F: Multiple Time-Mean States

The model used in this thesis is a simple, forced dissipative system.

For the model parameters, the radiative-equilibrium state is baroclinically

unstable, and the model has no obvious stable equilibrium states. Two

time-mean states, however, do exist. The two states have a strong symmetry

property as shown in figure 30.

Define a transformation T: ToA(x,y) = -A(x, Y - y)

T has the properties:

1. T is a linear operator

2. J(ToA, ToB) = J( -A(x, Y - y), -B(x, Y - y))

= ToJ(A, B)

3. Toe= T [- 0.3 ( Y. - ) ]
e Y 2

e

The properties of operator T insure that if J) and 8 are nonlinear

solutions, then Tot and Toe are also solutions. The system must,

therefore, have multiple-time-mean states since if <t(y)> and <0(y)> form a

time-mean state, then <TOf> and <Toe> must also be one. Of course, the

time-mean states need not be distinct.

After long integrations, the numerical calculations show two distinct

time-mean states which are related by transformation T. These states are

probably stable (for the control run's parameters) because the zonal flow

remained close to the time-mean state.

The time-mean state is determined by the initial state; thus in this

forced-dissipative system, certain aspects of the initial state are never
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forgotten. The model may have more than two time-mean states, but the ease

with which they were found, suggests otherwise.

The symmetry properties implies that time-mean states must come in

pairs. However, the states may be indistinct (i.e., t = ToT, e = Te).

Perhaps entropy considerations are important. If the two time-mean states

were identical, some of the zonal modes would have no energy. Common

sense, however, suggests the nonlinear terms should put energy in all modes

(to increase the entropy of the system). Perhaps, if the variability is

small, the time-mean states become distinct.

The existence of two time-mean states does not alter our results or

conclusions. The symmetry property of the governing equations implies the

time-mean states, energetics and solutions are simply related.

In summary, the nonlinear model has two distinct time-mean states. The

symmetry property of the model implies time-mean states must come in pairs,

but doesn't suggest why the states are distinct. Fortunately, our conclu-

sions are unaffected by the two time-mean states.

Whether multiple time-mean states can exist in a more realistic model

is unanswered. Nevertheless, one can speculate that interannual variations

are different time-mean states where seasonal changes 'randomly' choose the

state. One can also speculate there are two time-mean states, one with the

ITCZ (intertropical convergence zone) in the Northern Hemisphere, and

another in the Southern Hemisphere.
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Appendix G: Linear instability calculation

The linear growth rate can be calculated for either the instability of

the flow represented by the numerical model, or the instability that exists

in the numerical model. Since the two are different, we will use the

latter which is more relevant.

The equations governing the normal modes are given by (G.1) and (G.2).

In these equations, the wave-wave interactions are neglected, and the

-iwt
instability grows like e-iwt

<..> is the basic state flow which is only a function of y

S-i72 ;' j(>, 2') - J(, v 2<>) (G.1)

- J(<e>, 72e') - J(e', 72<6>) + g'

-iw (2 - 2F)e' = - - J(<0>, (72 - 2F)O) (G.2)

- J(f, (2 - 2F) <0>) - J(<6>, V21,) j(e', 2<t>) + h'

g', h' are linear functions of f' and e' and include Ekman pumping, eddy

viscosity, and Newtonian cooling

The normal modes of the model have the following form.

5ikx
=' = a sin(nl y) e (G.3)Wi n 0

= a sin(nl y) e ikx (G.4)

where k = j-k j=1,...,50
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Equations G.1 and G.2 can be written as a matrix equation using (G.3)

and (G.4).

I0

-iw.a _ [D], aj (G.5)

Where ED] is a 10x10 matrix

Matrix ED] is a complicated function of the zonal basic state. It

can, however, be evaluated with the wave mean-flow version of the numerical

model. Basically, the model is initialized with the zonal basic state, and

one of the a.'s is set to one. The model finds the time-derivatives of am,

which are simply [D]m j . This procedure is repeated for all 10 a j's which

completely determines matrix ED].

The normal modes are the eigenvectors of matrix ED], and the growth

rates are the real part of the eigenvalues. These quantities were found

using a standard eigenvector finder EIGCFA (National Center for Atmospheric

Research Software library).

4 Qh



Appendix H

Detailed Calculations

The main body of the thesis only gives an overview on how (3.41) and

(3.42) become (3.51). This appendix contains the details. First, the

problem is simplified by assuming that the synoptic-scale wave has a simple

meridional structure (3.39 and 3.40).

Assume T'(x,y,t) = a(x,t),sin(ly) (H.1)

e'(x,y,t) = b(x,t).sin(ly) (H.2)

The above forms can be inserted into (3.37) and (3.38), and using the

Galerkin approximation gives:

a (axx- 12a) = - a - <sin(ly) I J(~Yo (axx - 12 a) sin(ly)) > (H.3)

- <sin(ly) I J( o , (bxx - 12b) sin(ly)) >

- <sin(ly) I J(a'sin(ly), 72 ) >

- <sin(ly) I J(bsin(ly), 7 2 eo) >

(bxx - 12b - 2Fb) = - bx - <sin(ly) I J(T , (b - 12b) sin(ly)) >
xx x o xx

- <sin(ly) I J(80 , (axx - 12a) sin(ly)) > (H.4)

+ 2F-<sin(ly) I J('o, b'sin(ly)) >

- 2F*<sin(ly) I J(e o , a-sin(ly)) >

- <sin(ly) I J(a.sin(ly), V2 o ) >

- <sin(ly) I J(b'sin(ly),7 2 1 ) >

where <a b> = 2 a-b-dy
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The planetary-scale flow varies on a long length scale, so zonal

derivatives of the planetary-scale flow are only 0(2) quantities. Hence,

the jacobians can be simplified by ignoring the x-derivatives of the

planetary-scale flow.

ex. <sin(ly)

define U(x)

then <sin(ly)

J(U , (ax - 1 2a) sin(ly)) >
0 xx

<sin(ly) I - (a 12 a)
ay o xx x

(a - 12 a) <sin(ly) Ixx x dy o
<sin(ly) ( - do' /dy.sin(ly)>

I J(F , (a - 1 a) sin(ly)) >=0 xx

sin(ly)> + smaller terms

sin(ly)>

2
U(x) (a - 1 a)

Similarily, Ut(x) DU(x) and DUt(x) are defined by:

Ut(x) = <sin(ly) I -6e lo/y sin(ly)>

DU(x) = <sin(ly) I - a3T0 ay3 sin(ly)>

DUt(x) = <sin(ly) I - a3 e l/ay 3 sin(ly)>

U(x) is effective (barotropic) zonal wind.

Ut(x) is the effective thermal zonal wind.

DU is the curvature of U

DUt is the curvature of Ut

From (H.3) and (H.4), we can get (3.41) and (3.42).

a - 2a) a + U(12a - a ) + Ut(12b - b )x
it xx x xx x xx x

+ DU'a + DUt-b
x x
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(b - 12b = -P b + U[(2F + 12) b -b ]x (H.6)St xx x xx x

- Ut[(2F -12) a + a ] + DU.b + DUtva

The above equations have only two independent variables, x and t. If

the synoptic-scale wave varies as exp(-iwt), then the above equations are

an ODE in x, with non-constant coefficients. The linear system is solved

using the WKB technique. Basically, we assume that a(x,t) has the form

given below.

a(x,t) = exp{i g (X)/E + i-g 1 (X) + iE.sg 2 (X) + .. - i-wo-t - i-E-wl-t - .. )

(H.7)

Since a(x,t) and b(x,t) have a normal mode structure, they must have

the same time dependence. In addition, if we assume that the heat flux

only has an X dependence, then the relative phases of a(x,t) and b(x,t) can

only vary on the long length scale. Thus, the WKB form of b(x,t) is given

by (H.8).

b(x,t) = (co(X) + E-c1 (X) + .. ) a(x,t) (H.8)

As a convenience, a local wavenumber is defined by:

k(X) - Eg o ( X )

Therefore a(x,t) = exp( i k(X)-dx + ... - iowo t -

aa
and aa % ik*a + smaller termsax

Inserting (H.7) and (H.8) into (H.5) and (H.6), ignoring terms of
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0(E), one gets two third-order polynomials in k.

-i w o*[(ik)2 - 12] = -ik eff - ikU [(ik) 2 - 12] - ik'co*Ut [(ik)2 - 12]

+ ikooo-DUt (H.9)

-i*w o , co [(ik) 2 - 12] = -ik co Peff + ikco.U [ 2F - (ik) 2 + 12]

- ik'Ut [2F + (ik) - 12] 1 + ik*DUt (H.10)

Where Peff = P - DU

Now the above equations can be rewritten as:

3

D dn (ik)n + e n co(ik)n = 0

Srv U( i k) n + gn.co(ik)n = 0
n

from H. 9

from H.10

where

d n = { -iwl 2 ,  eff+ 12U, iw, -U }

en = { 0, 12 Ut + DUt, 0, -Ut }

f ={n

(H.11)

(H.12)

(H.13)

(H.14)

(H.15)

(H.16)

0, (12 - 2F)Ut + DUt, 0, -Ut }

gn= { -(12 +2F) w, - eff+ (1 + 2F) U, iw, -U }

note that: e = e 2 = f =2 = 0

f3 = e3 d 3 
= g3 , d2 

= g 2

co can be eliminated from (H.11) and (H.12) by

Appendix H: 188



3 nn
co = - [ ~n 0 dn(ik)n] / 9[ I en (ik) I

= - [ fn(ik)n] / [  h- gn (ik)

The resulting equation is the order 1 WKB equation.

- dn (ik)n (ik)n] + fn (ik)n] [ e n (ik)]

= H(w,k) = an kn  (H.17)

where

a 6 = (i) 6 [f3e3 - d3 g 3 ] = -e 3
2 - d 3 2

= U2 _ Ut
2

a5 = (i) 5 f 3 e 2 + f 2 e 3 - d3g2 - d 2 g3 ]

= i [- 2d 3d 2

- 2Uw

a 4 = (i) 4 [f3el + f2e2 + fle3 - d 3gl - d2g 2 - dlg 3

= [f3(el + fl) - d 3 (g + d1) - d 2 g 2]

= - Ut [12Ut + DUt + (12 - 2F)Ut + DUt]

+ U [-0eff + 1 2 U - Peff + ( 1 2 + 2F)U ] - (iw) 2

- 2Ut [DUt + (1 - F) Ut] - 2U [Peff- (12 + F)U] + w2

w2 + 2U2(12 + F) - 2 PeffU + 2Ut2(F - 12) - 2Ut-DUt

a3 (i)3 [f 3e + f2el + fle 2 + foe3 - d3go - d2g1 - dlg 2 - dog3]

= (-i)[- d 3(go + d o ) - d2(g + dl

= - (iU)[-i(l2 + 2F)w - il2w]

- W[leff+ (12 + 2F)U - Peff+ 12U]

- 2iU[- i(l2 + F)w] - 2w[-Peff+ (12+F)U]

= 2effw - 4wU (12 + F)

a 2 = (i) 2 [ 2e0 + fle + foe 2 - d2 o - d2 lg - d g21
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= -[flel - d2 (g + do ) - dlel

= - [DUt + (12 - 2F)Ut](12Ut + DUt)

+ iw [- i(12 + 2F)w - il2w]

+ (-Peff + 12 U)[-Peff+ (12 + 2F)U]

= - 12(12 - 2F)Ut - DUt2 - 2(12 - F) Ut'DUt

+ 2w (1 + F) + eff 2 - 2(12 + F)PffU + 1 2(1 + 2F) U2

a = (i)[fleo + fe dleo - dg]

= (i)[-d le - doe I ]

- (-Peff + 12 U ) [- i(12 + 2F)w] - [-Peff + (12 + 2F)U] (-il2w)

2w [Peff(12 + F) - 12(12 + 2F)U ]

a = fe - dg = -dog

= - [- il2w] [- i(12 +2F)w]

= 212(12 + 2F)
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Appendix I: Detailed Calculations

This appendix contains the derivatations of the partial derivatives of H.

H H
au - (from 3.51, and keeping on the only averaged terms)

= 2Uk 6 _ 2wk 5 + 4U(12+F)k - 2pk - 4w(12+F)k 3

- 25(12+F)k2 + 212U(12+2F)k 2 - 2w12(12+2F)k

= 2Uk 4(K2+F) - 2wk3 (K2+F) + 2U(12+F)k - 2w(12+F)k3 - 2P(K2+F)k 2

- 2w12(12+2F)k + 212U(12+2F)k2

= 2k3(Uk-w)(K2+F) + 2(Uk-w)(1 +F)k 3 
- 2(K2+F)k 2

- 2w12(12+2F)k + 212U(12+2F)k 2

= -2k (w-Uk)(K 2 + 2F + 12) - 2P(K2+F)k 2

- 2w12(12+2F)k + 212U(12+2F)k2

Now w can be expanded using (3.52).

= -2k (i'imag(w) - 4 (K2+F)) (K2 + 2F + 1) - 2(K 2 + F) k2

- 2w12(12+2F)k + 212U(12+2F)k 2

-2k 3 . iimag(w) (K2 + 2F +12) + 2k 4k F (K2 + 2F +12

- 2P(K2+F)k 2 - 2w12(12+2F)k + 212U(12+2F)k 2

Expanding w by equation 3.52 gives:

= - 2ik 3 imag(w) (K2 + 2F + 12) - 2i-imag(w) 12(12+2F)k

+ 2k 4(K2+F)/K2 + 2k4 (K2+F) 12

- 2P(K2+F) k 2 - 2*real(w) 12(12+2F)-k + 212U(12+2F) k 2

- 2ik 3 imag(w) (K2 + 2F + 12) - 2i.imag(w) 12(12+2F)k

+ 2k 4 + 2k 4 F / K2 + 2 k4 (K2+F) 1 2  2(K2+F) k 2

- 2(real(w) - Uk)12(12+2F) k

- 2i.imag(w) [k2 (K2 + 2F + 12) + 12(12+2F)] k

+ 2k 4 + 2k 4 (K2+F)12 - 20K 2 k 2 - 2(real(w)-Uk) 12 (12+2F) k
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+ 2PFk2( k2/K 2 _ 1)

- 2i'imag(w) (K4 + 2FK 2 ) k - 2k2 12

+ 2k4 M (K2+F)12 - 2(real(w)-Uk)12 (12+2F)k - 2PFk 2 12 / K2

= - 2iimag(w) (K4 + 2FK 2 ) k + 2k2 [ -12M + k2(K2+F)1 2 ]
M

- 2(real(w)-Uk) 12 (12+2F)k - 2PFk2 12 / K2

= - 2i-imag(w) k M + 212 k2  [-M + k 2 (K2 +F)]

- 2(real(w) - Uk) 12(12+2F)k - 2P F k 2 12 / K2

Expanding in real(w)

=- 2i.imag(w),M-k + 212 k2 [ -M + k 2 (K2 +F)]

+ 2 a 1 2 k2 (K2+F) (12+2F) - 2PFk 2 12 /K 2

S- 2i imag(w) M k + 212 k2  [ -M + k2 (K2+F) + (K2+F)(1 2+2F)]

- 2P F k 2 12 / K2

- 2i-imag(w)'M'k + 212 k2 A [FK2 + 2F 2 ] - 2A F k 2 12 / K2

Since M = K2 (K2 + 2F)

= - 2i imag(w) M k + 212 k 2  (FK 2 + 2F 2 ) - 20 k2 1 2 (K2 +2F)

= - 2i.imag(w) M k + 212 k2 M[ FK2 + 2F2 - F(K2+2F)]

= - 2ibimag(w) M k

Therefore, we get (4.25), aU = -2iimag(w) M k

dH
Another term is alt

Using (3.51), and keeping only the zonally averaged terms, one gets:

U-tH = -2Ut k + 4Ut(F-12) k - 2Ut 12(12-2F) k2

= 2Utk 2 [-k 4 + 2(F-12)k 2 - 12(12-2F)]

= 2Utk 2 (-k4 + -212k 2 - 14 + 2FK2)

= 2Utk 2 (-K4 + 2FK2 )

= 2UtkK2 (2F - K2)

Therefore, we get (3.57), = 2Utk 2 K2 (2F - K2 )

Appendix I: Calculation of the partial derivatives of H 192



dH _ H
Since ff =  - DU, aDU - - a

DU - 2Uk - 2wk 3 - 23k 2 + 2(1 2+F)Uk - 2w(12 +F) k

= 2Uk (K 2+F) - 2wk(K +F) - 2Pk 2

- 2k(Uk-w)(K2+F) - 2Pk 2

k 2
but w = Uk - M (K +F) + i'imag(w)

= 2k [-i*imag(w) + pk(K 2+F)/M ](K 2 +F) - 2pk 2

= -2iimag(w).k (K2+F) + 2k2 (K +F)2/M - 2k 2

- -2i'imag(w)'k-(K2+F) + 2k p(K2+F)(K2+F) - M ] / M

= -2i-imag(w)k, (K2+F) + 2k2F2 / M

H 4 2 2Now _ -2Utk - 2(1 -F)Utk
aDUt

= -2Utk2(K -F)

8H
Now ak is, (retaining only the zonally averaged quantities):

aH= 6k 5 (U2 _ Ut2 ) - 10k 4 Uw

+ 4k 3 [w2 + 2U2 (1 2 +F) - 2PU + 2Ut2(F-1 2 ) ] + 3k212w - 4wU(12+F)]

+ 2k[-12(12-2F)Ut2 + 2w2(12+F) + 2 _- 2(12+F)pU + 12(12+2F)U 2

+ 2w p(12+F) - 12(12+2F)U]

Now, collect the imaginary terms.

imag( -) / 2imag(w) = - 5k U + 4k real(w) + 3k 2[ - 2U(12+F)]

+ 4k(1 2 +F) real(w) + ((12+F) - 12(12+2F)U

= U [-5k - 6k2 (12 +F) - 12 (12+2F)] + 4k real(w) (K2+F) + 2k2(
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+ p(K 2+F)

-U [4k2(K2+F) + K 2(K2+2F)] + 4k'real(w) (K2+F) + 2k2p + p(K2+F)

Since real(w) = Uk - (K 2+F), and M = K2 (K 2+2F)

= -U.M - 4 - k 2 (K2 +F) 2 + 2k2 + p(K 2 +F)

= -U-M - 4 k 2 (K 2 +F) 2 - M] - 2k 2  + (K 2 +F)

= -U'M - 4 k 2 F - 2k2 P + (K2+F)

Therefore, we get (3.60),

aH 2 2 2p + 2imag = 2imag(w) - U-M - 4 k2 F 2 - 2k + (K+F)]

aH
Now to find real .

ak*

real(dH/ak) = 6k 5 (U2 - Ut 2 ) - 10k 4 U real(w)

+ 4k 3[real(w2 ) + 2U2(12+F) - 2PU + 2Ut2(F-12)]

+ 6k2 real(w)[P - 2U( 12+F)]

+ 2k[- 12(12-2F)Ut2 + 2 real(w2)(12+F) + p2 - 2(12+F),U + 12(12+2F)U 2

+ 2 real(w)[((i2+F) - 12(12+2F)U]

Defining w = Uk + N, and collecting terms U2 k5, U2 k3 gives,

real(aH/ak) = O.k 5 U2 + 0k 3 U2 - 6k 5 Ut2 - 10k4U real(N)

+ 4k3 [real(2UkN + N2 ) - 2PU + 2Ut2(F-12)]

+ 6k 2 real(Uk + N)p - 12k 2 real(N)U(12+F)

+ 2k-12(1 2-2F)Ut2 + 2*real(2UkN + N2)(12+F) + 2 - 2(12+F)pU

+ 12 (12+2F)U 2 + 2,real(Uk + N)[P(1 2+F) - 12 (12+2F)UJ

Collecting terms of P3U, and k 12(12+2F) U2

-2k(K2+F) P U + 0'k12 (12+2F) U2 - 6k 5 Ut2 - 10k4U real(N)

+ 4k [real(2UkN + N2 ) + 2Ut2(F-12)l

+ 6k 2 real(N)p - 12k 2 real(N)U(12+F)
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+ 2k[-12(12-2F)Ut 2 + 2 real(2UkN + N2)(12+F) + p2]

+ 2 real(N)[( 12+F) - 12(12+2F)U]

Collect terms of U real(N),

= - 2M U real(N) - 2k(K 2+F) fPU - 6k 5 Ut 2

+ 4k3 [real(N 2 ) + 2Ut2(F-12 ) ] + 6k2 real(N)p

+ 2k-12(1 2-2F)Ut2 + 2 real(N2)(12+F) + p2]

+ 2 real(N)P(12+F)

k 2
But real(N) = -9 M (K 2+F); therefore, the first two terms sum to zero.

- 6k5Ut2 + 4k3 [real(N 2) + 2Ut2 (F-12 )] + 6k2 real(N)

+ 2k[-12(12 -2F)Ut 2 + 2.real(N2)(12+F) + 2] + 2 real(N)p (12+F)

Since N= - 1k (K2 +F) + i*imag(w); therefore,

= - 6k5 2 + 4k3 [ p2k2 (K2+F)2 /M2  imag(w)2 + 2Ut2 (F-12 )]

- 6k 3 p2 (K2+F)/M - 2k,1 2 (12-2F)Ut 2

+ 4k [ p 2k2 (K2+F)2/M2 - imag(w)2 ] (12+F)

+ 2k3 2 - 2p 2 (K +F)(12+F)

Collecting terms of imag(w)2

= -4k (K2+F) imag(w)2 - 6k 5 Ut 2

+ 4k3[ 2k2 (K2 +F)2 /M2 + 2Ut2 (F-12 )] - 6k 3 82 (K 2 +F)/M

- 2k 12(12-2F)Ut 2 + 4k 3 A2 (K2+F)2 (12+F) / M2

+ 2k - 22 M (K 2+F)(12+F)

= -4k-(K2+F) imag(w)
2

- 6k 5 Ut 2 + 8k 3 ut 2 (F-1 2 ) - 2k Ut 2 12 (12-2F)

+ 4k 5 2 (K2+F)2/M2 _ 6k 3 p2 (K2+F)/M + 4k 3 2 (K2+F)2 (12+F) / M2

+ 2k _ 2 2 (K 2+F) (1 2+F)

= -4k (K2+F) imag(w)
2

+ 2k Ut2 [- 3k + 4k 2 (F-1 2 ) - 12(12-2F) ]

+ 2k p2 [ 2k 4 (K2+F)2/M 2 - 3k 2 (K2+F)/M



+ 2k2 (K2+F)2 (12+F) / M2 + 1 - (K2+F)(12+F)/M ]

= -4k (K2+F) imag(w)2

+ 2k Ut 2 [ (2k2 + 2K2)F - 3k - 4k 2 1 - 1 ]

+ 2k p2 [ 2k 4 (K2+F)2/M 2 - 3k 2 (K2+F)/M

+ 2k2 (K2+F) 2 (12+F) / M2 + 1 - (K2+F)(12+F)/M ]

= -4k (K2+F) imag(w)2

+ 2k Ut2 [ 2k2(F - K 2) - K2 ( K 2 - 2F) ]

+ 2 [2 2k4 (K+F) /M - 3k 2 (K +F)

+ 2k2 (K2+F)2 (12+F) / M + M - (K2+F)(12+F) ]

= -4k (K2+F) imag(w)2 + 2k Ut2 [ 2k2(F - K2) - K2 ( K2  2F) I
k 2 4 2 2 2 2+ 2 M [ 2k4 (K2+F) /M - 2k2 (K+F)

+ 2k 2 (K2+F) 2 (12+F) / M + M - (K2+F)(K2+F) ]

= -4k (K2+F) imag(w)2 + 2k Ut 2 [ 2k2(F - K2 ) - K2(K 2 -2F) I

+ 2 k2 [ 2k (K2+F)2/M - 2k2 (K2+F) + 2k2 (K2+F)2 (12+F) / M- F2

= -4k (K2+F) imag(w)2 + 2k Ut 2 [ 2k2(F - K2 ) - K2(K 2 - 2F) ] - 2 F

+ 4k 3 p2 (K2+F) [ k 2 (K2+F) - M + (K2+F) (12+F)] / M2

= -4k (K2+F) imag(w)2 + 2k Ut2 [ 2k2(F - K2 ) - K2(K 2 - 2F)]

k 
2 F2

+ 4k3 p2 (K2+F) [ F2 + (k2 - 2K2 + K2 + 12) F

+ k 2 K2  K 4 + K2 12 / M2

= -4k (K2+F) imag(w)2 + 2k Ut2 [ 2k2(F - K2) - K2(K2 - 2F)]

- 2 M F + 4k 2 (K 2+F) F / M

dH 2
Therefore, real(k) = -4k (K +F) imag(w)2

+ 2k Ut2 [ 2k2(F - K2 ) 
- K(K2 - 2F)]

k2 222 2
k 2 k (K +F) - 1]SM P m C

A - - -- A -- .- 'r . f4- I - I - - : - -Aj i- - - -- jL -P -- 1 --1 - I
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