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ABSTRACT� 

The magentostatic problem in the pre~ence of di~tributed
 

ccurrent can be formulated in terms of a scalar boundary ~ue 

problem in which solutions of Laplace's equation are found that 

conf~rm to prescribed single and double layer distributions at the 

copper'~air and the copper-·iron interfaces It is shown that the 

prescribed discontinuitie~ are not unique and may be modified to 

yield a variety of solutions to the potent~ problem. The~e 

alternative formulations have no effect on the magnetic fields 

but 0 permit in some cases a simplification of the potentlal 

problem, Application is made to the case of a scaling spiral 

sector FFAG guide field. 
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I. MAGNETOSTATIC PROBLEM 

The magnetic field within a current carrying region may 

be expressed as 1 

( 1 ) 

where L 
~ 

is the operator 

(2) 

The function q is chosen by considerations of convenience in any 

particular problem. Since cylindrical coordinates will be of interest -in the example selected, .q is chosen so that "V q = k, the unit 

vector along the cylinder axis. Thus Eq. (l) becomes 

( 3) 

where 

\7~U - - ~1Tcr. 
(4) 

It is seen that 

(5) 

may be taken as the magnetostatic potential since, in the absence 

of the·current source, 

(6) 

the magnetic field is the negative gradient of the scalar W. 

In many problems sufficient flexibility in the expression for the 

current density is obtained even though~ does not contain the 

longitudinal coordinate z. Thus Eq. (4) may be replaced by 

-2= 



MURA-568� 

(7)"\l 
~ W= O. 

Equation (7), subject to prescribed potential and gradient 

discontinuities at the boundary interfaces, yields the desired 
1

solution of the magnetostatic problem. Since the gradient of W 

must be supplemented with terms depending on the source densities, 

0- and ,- , in order to obtain the magnetic field, it is possible 

to formulate alternative potential problems by removing prescribed 

functions from W to form a new potential Vo Suppose C is a given 

function in the region of the current sources and is zero outside. 

Let 

u =W +-C (8)J 

where U ha s no direct relation to the function used in Eq. (4). 

Equation (3) becomes 

and Eqo (6) remains unaltered. Now, however, instead of Eq. (7) the 

potential lJ satisfies 

(10) 

where the inhomogeous term is known. The function C can be chosen 

to alter the prescription of the required discontinuities at the 

copper~air and copper~iron interfaces. 

II. SCALING MAGNETOSTATIC PROBLEM 

In the scaling case where the potential W in the copper is 

given by 

(11) 

-3~ 
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and the potential in the air is given by 

(12) 

( 13) 

a similar equition holding for~ . 

An examination of the boundary conditions and potential 

discontinuities2 reveals that it may be convenient to remove 

of the potential discontinuities. Three cases 

are of interest. First~ it may be desirable to remove the potentials 

on the iron-copper surfaces. In this case 

(~,-t~:-71,)[ ~ (~, -§ +~"') -(~>-l()(§I-1)J 
(14)c(~~) =� 

(§ -G~ -1 )[~ (~''''~ - k~) - (~..-lin, +~)J
 
I I) (,. (, 

where 

1<+1 ~ 

'" .L;T So 
n~ =";;".i.. o e 'AI" 'lql J (15) 

and 

The new potentials p , in the copper is related to the previous 

potential P through 

p(~~) == f(~ 71) + c(~'t) • (17) 

-4= 
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If it is desired to remove the potential discontinuity at the copper-

air surface the function cg'fl) in Eqo (17) may be taken as 

£13 [ ~ (~,-~ +k~) + (~-~;j(~ I-~~ f. ... ~. < ~ < ~, 
(~I-~O)(It,.-Il,) (18) 

or p alternativelyp 

(19)
c(~~) = 

The case of Eqo (18) gives a linear variation of the potential across 

the current slot at '1. = 12.,\ and that of Eqo (19) gives, a linear 

variation on the surface, § = ~o In every case the differential 

equation for the new potentia~ ~ is 

0 

(20) 

where the inhomogeneous term is calculated from the various pre­

scribed functions of Eqso (14), (18), and (19)0 

Since Eqo (19) leads to the simplest choice for the inhomogeneous 

term in Eqo (20), this case is treated in detailo The boundary 

condition2 ,3 for the new potential become 

A: (>- ) -..D. n~ - n 
':t' so'i( - 3 n~ -n (21)

j 

(22) 

-5=� 
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(23) 

(24) 

..n. (~ ?t,) - ~(~ '1,) = 0 ) 
(25) 

and 

(~,_~~.>._/{,) (~, -f) h. f.<~ <. ~, 
(26 ) 

(~'-~~).""1z,) (~,T~)	 f ... -), <.~<-~. J 

where the ~ subscript designates a derivative with respect to ~ • 

Equation (20) becomes 

m..f =� (27) 

III. RELAXATION SOLUTION 

In order to adapt the potential problem represented by Eqs. 

(21-27)� to the numerical processes of the FOROCYL-GOLLYCONDER 

4computing program the variables (f l1) employed r. '19 Clre 

first replaced by (xy) where 

(28) 

-6­
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(29) 

where 

(30) 

(31 ) 

If a typical point in the (x,y) mesh is designated by (00), then 

a second order Taylor expansion p is 

where hand 1 are the x and y dimensions of a unit cell in the mesh. 

To form an algorism for solving Eq. (29), each point (ij) is given 

the weight No .• Multiplying Eq. (32) by Nij and summing over i and j
1J 

from -1 to 1 gives 

Z Nlj Pi.'; = Poo 2~J + hIx ~ i.Ni.i +.i 1IJ 21Nij 
( 33) 

+f hj.~)(X ~ i~jji.J + h.& ~)(!1 ~ liNij +-l..t1
lA:f1j '£ JlJlu • 

In order to eliminate the derivative terms in Eq. (33), the 

coefficients are made proportional to the corresponding coefficients 

in Eq. (29). Thus 
·7­
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h<} iJi.. = Jf7T(k+l)o( • (34 ) 
~ LJ ?II' .l1 /

o 

(35 ) 

(36 ) 

h 0 <: ..... T "" 7TO< ( 37)h ~ LJ.l'J iJ = - '1JIJ1 Y~ 
o 

and 

±.t"2Y'Nii =(I + if~~o( • (38) 

Substituting Eqs. (34-38) into Eq. (33) and using Eq. (29) results 

in the 8=point algorism 

(39 ) 

where 

!5 ="2 N ,j - ~~k+/)~o< • (40) 
• 

The solution of Eqs. (34-38) for the weights No. and 0< is not 
. \ 1J 

3unique. A solution differing from Laslett's choice that possesses 

some desirable features without appreciable change in accuracy is 

rX = ±J.,~ and 

(41) 

(42) 

N = .L(1 + '+rr" 21~) _ ~(:J.k+I)~ (43) 
01 ~ ~ J 1"0 r .J 

-8~ 



I\T - - "TrY" u - N - -N --N 
J.'1" - "?Jr1J. J - _1-/ - . }-I ­ :..tl,

D ' 

From these relations it follows that 

(44) 

(45) 

and 

(46) 

where 

(47) 

(48) 

In Eq. 

and 

(48) the notation
4 

W = I,. - I, - I". -I3 

H ­ J",t - J , 

-9­

) 

(49) 

( 50) 

(51) 

(52) 



is used, The algorism in Eq, (47)9 the boundary conditions in 

Eqs, (21~25); together with the usual boundary conditions 3 forJ]L 

serve to obtain a solution to the magnetostatic problem except 

that; on row y = Yl' current values 3 are needed to account for the 

discontinuity in the normal derivative of the potential as required 

by Eq, (26), 

The standard algorism of Eq. (39) requires a correction on 

the row Y = Yl since the values of ~ extrapolated into the copper 

region differ from the corresponding values of p If the diff­

erence between the extrapolated~ and p is designated by 

(53) 

the va.lues of 6.. at the points (-ilL (OiL and (11) are 

A
01 

= l (boll + 4..,,) =.l 4:1 +;.,e'" 4 j J -' (54 ) 

and 

1.(/\ -A)::: hflb.,u). W" -II »"J • 
(55) 

The correction 0 current value required is 

(56) 

where 

( 57) 

From Eq (45) it is to be noted that Nll + N_ll is zero. Equations 

(26), (20); and (49-52) may be used to obtain 
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n~ (I - I ) I ..cl..2­
I� .[C k-rl)(r -I,) + J.:h?JtJ-t''1WI-IWH a<. 

b.. :::: 
01 

~L J (r -··r);-1.. .0.3 . .,f.,'-~__ •[Ck.t1)(I4+-I ) -~] f"Y- I L..I "" r (58) 
. ~ .,'l" WH [/J. J.. ?-.j'� .....7th tV' 3 'IWH ~ t-.,e J� --'4""''' I 

and 

for r I L... T L. I;l..� 

I (A A)­
J...� "--1/ (59) _ fl.~. 

'l-V'H� • 
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