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Some tunneling phenomena are described, in the semiclassical approximation, by unstable com-
plex trajectories. We develop a systematic procedure to stabilize the trajectories and to calculate
the tunneling probability, including both the suppression exponent and prefactor. We find that
the instability of tunneling solutions modifies the power–law dependence of the prefactor on ~ as
compared to the case of stable solutions.

Tunneling in systems with many degrees of freedom
has been a subject of continuous theoretical research for
the last decades [1]. The interest is heated up by the
recent experimental observations [2–4] of non–trivial dy-
namical properties of multidimensional tunneling. In the
semiclassical framework tunneling is described as motion
of the system along a complex trajectory – solution to
the classical equations of motion analytically continued
to the complex values of coordinates and/or time [5, 6].
Given the complex trajectory, one calculates the tunnel-
ing probability at small values of the Planck constant ~,

P = Ae−F/~ , (1)

where F and A are the suppression exponent and pref-
actor, respectively.

Recently a new, intrinsically multidimensional, mech-
anism of tunneling has been discovered [7, 8]. It differs
qualitatively from the well-studied case of direct tunnel-
ing, where complex trajectories connect the in- and out-
regions of the phase space. The new mechanism gener-
ically occurs in the situation when the total energy of
the system exceeds the height of the potential barrier
separating the in- and out- states but, still, the process
remains exponentially suppressed (dynamical tunneling).
The complex trajectories in the new mechanism end up
on a real unstable periodic orbit lying on the bound-
ary between the in- and out- regions. We call this or-
bit “sphaleron”; its instability implies that the tunnel-
ing trajectories are also unstable. The above behavior
of complex trajectories leads to the physical picture of
tunneling as a two-step process [7, 9]: formation of the
sphaleron and its decay into the out-region. The latter
step is not described by the tunneling trajectory; on the
other hand, it does not involve exponential suppression,
as the decay of the sphaleron proceeds classically. This
tunneling mechanism is generic and has been found in
several quantum mechanical [10, 11] and field theoreti-
cal [9] models. It is natural to call the new mechanism
“sphaleron–driven” tunneling [12].

Tunneling via unstable semiclassical solutions raises a
number of issues. First, search for unstable trajectories
is problematic from the numerical point of view. Second,

even if one finds the tunneling trajectory which tends to
the sphaleron as t→ +∞, a problem remains to describe
semiclassically the subsequent decay of the sphaleron or-
bit. Yet another issue is the calculation of the prefactor
A. In the case of direct tunneling this calculation involves
the analysis of linear perturbations around the tunnel-
ing trajectory. This procedure is not applicable in the
sphaleron–driven case, when the perturbations destroy
the tunneling solution completely.

In this Letter we systematically develop a general
method to solve the above problems. The idea is to in-
troduce a constraint into the path integral for the tunnel-
ing amplitude. This modifies the equations of motion in
such a way that tunneling trajectories are pushed away
from the sphaleron. The modification is governed by a
regularization parameter ǫ. At ǫ > 0 the semiclassical so-
lutions interpolate between the in– and out–regions and
are stable. They describe the whole two-stage process
of sphaleron-driven tunneling. Integration over the con-
straint corresponds to taking the limit ǫ→ +0. The orig-
inal unstable trajectory is recovered from the regularized
solutions in this limit. We find expressions for the sup-
pression exponent and prefactor of the sphaleron-driven
tunneling probability in a closed form. Our method is
based on the ideas of [7].

Our analysis reveals, among other things, one universal
feature: the prefactor A in the probability of tunneling
via unstable trajectories gets suppressed by an additional
factor ~

1/2 as compared to the case of direct tunneling.
This, in particular, implies non-trivial properties of the
transition between the direct and sphaleron–driven tun-
neling regimes.

Remarkably, the method of ǫ-regularization can be
used to deform real solutions corresponding to purely
classical motion into trajectories describing tunneling
[7, 10]. This makes the method efficient for finding and
classifying complex solutions in the case of chaotic tun-
neling [10]. We stress, however, that the phenomenon of
sphaleron–driven tunneling is unrelated to chaos and was
observed both in chaotic and regular systems.

While our approach is completely general, for concret-
ness, we illustrate it using a two–dimensional model with
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the Hamiltonian

H = (p2
x + p2

y + ω2y2)/2 + exp[−(x+ y)2/2] . (2)

The model describes the motion of a particle in a po-
tential valley extended along the x-axis with quadratic
confining potential in the y-direction. The valley is in-
tersected at an angle by the potential barrier which in-
troduces non-linear coupling between the degrees of free-
dom. The process we are interested in is a penetration
through the barrier of the particle which comes from the
left in a fixed initial quantum state |E,Ey〉. The latter
is characterized by the total energy E and the energy of
oscillations in the y-direction, Ey = ~ω(n+ 1/2), where
n is the occupation number of y–oscillator. Note that we
keep Ey fixed in the semiclassical limit ~ → 0, so that n
grows to infinity. It is shown in [7] that, for given Ey,
transmission through the barrier is a tunneling process
for total energies E < Eb(Ey), while at E > Eb(Ey) the
transmission proceeds classically. The values of Eb are
considerably higher than the height of the potential bar-
rier, Eb(Ey) > Vmax = 1. The mechanism of transmis-
sion changes from direct tunneling to sphaleron–driven
tunneling when the total energy exceeds a certain criti-
cal value Ec(Ey), where Vmax < Ec(Ey) < Eb(Ey).

We start by reviewing the derivation of the formula
(1) in the ordinary regime of direct tunneling. One con-
siders the amplitude of transition from the state |E,Ey〉
at the initial time moment t = ti to the state |xf 〉 with
definite coordinates beyond the barrier at the final mo-
ment t = tf . Using the propagator in the coordinate
representation, one writes,

A =

∫

dxi〈xf |e−iH∆t/~|xi〉〈xi|E,Ey〉 , (3)

where ∆t ≡ tf − ti. The propagator is given by the
semiclassical Van Vleck formula,

〈xf |e−iH∆t/~|xi〉 =
eiScl(xi,xf )/~

2πi~

[

det
∂2Scl

∂xi∂xf

]1/2

, (4)

where Scl(xi,xf ) is the action evaluated on the classical
solution going from xi at t = ti to xf at t = tf . It will
be important for us that (4) can be derived [13] from the
path integral

〈xf | e−iH∆t/~|xi〉 =

∫

x(tf )=xf

x(ti)=xi

[dx(t)] eiS[x(t)]/~ . (5)

We take the wave function of the initial state in the form
〈xi|E,Ey〉 = ψ(xi)Ψ(yi), where ψ(xi) is the plane wave
with the unit flux normalization, and Ψ(yi) is the semi-
classical expression for the oscillator eigenfunction. Eval-
uating the integral (3) in the saddle–point approximation
one obtains,

A =

√

ω

2πD1
ei(Scl+B)/~+iπ/4 , (6)

where

B = ẋixi +

∫ yi

√
2Ey/ω

dy′
√

2Ey − ω2y′2 ,

D1 = ẋiẏi det
∂2(Scl +B)

∂x2
i

[

det
∂2Scl

∂xi∂xf

]−1

.

All the quantities in (6) are evaluated on the saddle tra-
jectory satisfying the initial conditions

ẋ2
i = 2(E − Ey) , ẏ2

i + ω2y2
i = 2Ey , (7)

where ẋi ≡ ẋ(ti). In deriving (6) we assumed that the
saddle configuration is unique; this is indeed the case for
the model (2).

The amplitude (6) is to be inserted into the formula
for the tunneling probability,

P = lim
∆t→∞

1

∆t

∫

xf >0

dxf |A|2 =

∫

dyf ẋf |A|2 , (8)

where in the second equality we cancelled the diver-
gence of the integral originating from the infinite region
xf → +∞ by writing 1

∆t

∫

dxf = ẋf . Note that this op-
eration is legitimate only if the boundary condition

xf → +∞ as tf → +∞ . (9)

is satisfied. One substitutes (6) into (8) and evaluates
the saddle-point integral over yf . One arrives at the ex-
pression (1) with

F = 2 Im(Scl +B) , A = ~
1/2 ωẋf

√

2π|D1|2D2

, (10)

where D2 = 2 Im ∂2Scl

∂y2
f

. The saddle–point equation de-

termines the remaining boundary condition for the tun-
neling trajectory,

Im ẏf = Im yf = 0 . (11)

Note that reality of the total energy together with (9),
(11) imply that ẋf is also real.

One solves numerically the classical equations of mo-
tion with the boundary conditions (7), (9), (11) and dis-
covers [7] that tunneling solutions [14] satisfying all the
conditions exist only at E < Ec(Ey). Still, one can find
solutions at Ec < E < Eb by imposing, instead of (9),
the reality condition Im ẋf = Imxf = 0. But the re-
sulting trajectories never come out from the interaction
region: they end up oscillating on top of the potential
barrier. These solutions at t→ +∞ become precisely the
sphalerons we referred to above. The formula (10) for the
prefactor is not applicable in this case: the quantities D1,
D2 entering into it describe linear response of the tun-
neling solutions to small perturbations of the boundary
conditions and are ill-defined due to the instability of the
solutions.
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To deal with this situation, we make the following
steps. First, we introduce a functional Tint[x(t)] defined
on classical paths. The choice for Tint[x(t)] is restricted
by three requirements: (a) it must be real and positive–
definite on real paths, (b) it must be finite on paths end-
ing up in the out–region, (c) it must diverge on paths
which stay forever in the interaction region. Overall,
the functional Tint[x(t)] should roughly measure the time
spent by the particle in the interaction region. For the
model (2) the simplest choice is Tint[x(t)] =

∫

dt f(x(t)),
where the function f(x) > 0 vanishes at x→ ±∞.

Second, we restrict the path integral (5) to paths stay-
ing fixed time in the interaction region, Tint[x(t)] = τ .
This eliminates unstable trajectories from the domain of
integration. The full propagator is then recovered by in-
tegrating over τ . This program is realized by inserting
the unity

1=

∫

dτ δ(Tint[x(t)] − τ)=

∫

dτ

∫

−i∞

+i∞

idǫ

2π~
eǫ(τ−Tint[x])/~

into (5) and changing the order of integration. We obtain,

〈xf |e−iH∆t/~|xi〉

=

∫

dτ

∫

−i∞

+i∞

idǫ

2π~
eǫτ/~

∫

x(tf )=xf

x(ti)=xi

[dx] ei(S[x]+iǫTint[x])/~ .

(12)

One observes that the integral over [dx] in (12) is the
same as in (5) up to the substitution

S 7→ Sǫ = S + iǫTint . (13)

Therefore, one can follow the steps leading from (5) to
(6) with the result

A =

∫

dτ

∫

−i∞

+i∞

idǫ

2π~
eǫτ/~

√

ω

2πD1,ǫ
ei(Scl

ǫ +Bǫ)/~+iπ/4 .

Importantly, the semiclassical trajectory xǫ(t) here is a
solution to the equations of motion obtained from the
modified action Sǫ. By construction, it spends a finite
time interval in the interaction region, and thus is stable.
The integral over ǫ is saturated by the saddle–point ǫ(τ)
which is implicitly defined by the condition Tint[xǫ] = τ .
The latter follows from the relation d(Scl

ǫ + Bǫ)/dǫ =
iTint[xǫ]. Note that the saddle-point value ǫ(τ) is not
necessarily purely imaginary; one should be careful to
pick the one with Re ǫ(τ) ≥ 0 in order to ensure the
convergence of the path integral in (12).

One proceeds by substituting the expressions for the
amplitude and its complex conjugate into the tunneling
probability and performing integration over the final co-
ordinates. This leaves the integral over two interaction
times, τ and τ ′, coming from the amplitude and the com-
plex conjugate amplitude. It is convenient to change the
integration variables to τ+ = (τ + τ ′)/2, τ− = τ − τ ′.

The integral over τ− is, again, saturated by the saddle
point; one uses the formula d(Scl

ǫ + Bǫ − iǫτ)/dτ = −iǫ
in deriving the saddle-point condition. One obtains

P =

∫

dτ+
ωẋǫ,f

√

−dǫ/dτ+
π
√

2|D1,ǫ|2D2,ǫ

e−2(Im(Scl
ǫ +Bǫ)−ǫτ+)/~, (14)

where the integral is performed over the real axis, and the
function ǫ(τ+) is defined by the folowing implicit relation

Tint[xǫ] + Tint[x−ǫ] = 2τ+ . (15)

Note that the solution to (15) is generically real for real
τ+: the equations of motion following from Sǫ lead to
x−ǫ∗ = x∗

ǫ , which for real ǫ implies that the l.h.s of (15)
is, indeed, real.

So far, we did not refer to the particularities of the
sphaleron–driven tunneling. The step where they be-
come important is integration over τ+. For both direct
and sphaleron-driven tunneling, the integral (14) is dom-
inated by the point ǫ(τ+) = 0 which corresponds to the
original unregularized trajectory. In the standard case
of direct tunneling the unregularized trajectory spends
a finite time interval τ+ in the interaction region; one
obtains the expressions (10) for the suppression expo-
nent and prefactor by the saddle–point integration over
τ+. In the sphaleron–driven case the interaction time
corresponding to ǫ = 0 is infinite. Thus, the integral
is saturated by the end–point of the integration inter-
val, τ+ → +∞. The tunneling probability in this case is
determined by the behavior of the integrand in (14) at
τ+ → +∞, that is, ǫ → +0. Performing the integration,
one obtains the formula (1) with

F = lim
ǫ→+0

Fǫ , A =~
1/2 lim

ǫ→+0

Aǫ

ǫ
√

−4π d Re Tint[xǫ]
dǫ

, (16)

where Fǫ and Aǫ are given by (10) evaluated on the ǫ-
regularized solution xǫ. [A subtle point is that Fǫ =
2(Im(Scl

ǫ + Bǫ) − ǫτ+) = 2 Im(S[xǫ] + Bǫ) is to be com-
puted using the original action evaluated on the regu-

larized solution.] Note an additional factor ~
1/2 in the

prefactor compared to the case of direct tunneling.
Let us summarize our results. We have derived the

following prescription for the calculation of the tunnel-
ing probability in the sphaleron–driven case. First, one
replaces the action of the system with the modified action
Sǫ, (13), where ǫ > 0. Second, one finds the tunneling
solution xǫ of the modified equations of motion. This so-
lution interpolates between the in– and out–regions and
is stable. One evaluates its suppression exponent Fǫ and
prefactor Aǫ using the ordinary “direct tunneling” for-
mulae. Third, one determines the suppression exponent
and prefactor by taking the limit ǫ → +0 according to
(16). Note that our prescription does not make use of
any particular properties of the illustrative model (2);
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it is applicable in a large class of models exhibiting the
phenomenon of sphaleron–driven tunneling.

We checked the method of ǫ–regularization by applying
it to the model (2) and comparing the semiclassical re-
sults with the exact suppression exponent and prefactor
extracted from the numerical solution to the Schrödinger
equation. The latter quantities were obtained by fitting
the dependence of the exact tunneling probability on ~

with the formula

~ logP(~) ≈ −F +
γ

2
~ log ~ + ~ log Ã , (17)

where Ã is independent of ~. For completeness, we also
performed the comparison in the regime of direct tunnel-
ing. We set γ = 1 for the direct tunneling and γ = 2
in the sphaleron–driven case. Figure 1 shows the de-
pendences [15] F (E) and Ã(E) at fixed Ey = 0.05. The
semiclassical and exact quantum–mechanical calculations
are in good agreement.

Note that the quality of the fit (17) becomes worse as
one approaches the transition point Ec between the two
tunneling regimes. This is a manifestation of the break-
down of the semiclassical approximation in the vicinity
of this point. It is caused by the change in the depen-
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FIG. 1: Comparison between the semiclassical (lines) and ex-
act (points) results for the suppression exponent and prefactor
in the cases of (a) direct and (b) sphaleron–driven tunneling.
The comparison is performed in the model (2) with ω = 0.5,
Ey = 0.05. The error bars represent the uncertainty of the fit
(17).

dence of the prefactor on ~. Indeed, Ã(E) diverges as
E → Ec + 0, see Fig. 1b, which contradicts the con-
tinuity of the exact tunneling probability. However, the
size of the vicinity where the semiclassical approximation
breaks down vanishes in the limit ~ → 0.
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