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RESEARCH OBJECTIVES

This group is interested in a variety of problems in statistical communication theory.
Our current research is concerned primarily with: measurement of correlation func-

tions, location of noise sources in space by correlation methods, statistical behavior of

coupled oscillators, nonlinear feedback systems, stochastic approximation methods in

the analysis of nonlinear systems, measurement of the kernels of a nonlinear system, a

problem in radio astronomy, and factors that influence the recording and reproduction
of sound.

1. The measurement of the first-order and second-order correlation functions by
means of orthogonal functions is being studied. Of primary concern are the measure-

ment errors resulting from the truncation of the orthogonal set and from the use of

finite time of integration.

2. Noise sources in space can be located by means of higher-order correlation

functions. A study is being made of the errors, caused by finite observation time, in

locating sources by this method.

3. Many physical processes may be phenomenologically described in terms of a

large number of interacting oscillators. A study of these processes is producing some

interesting results.

4. The design of a control system can be considered as a filtering problem with

constraints imposed by fixed elements. By combining the functional power series and

the differential equation methods of system characterization a formal solution to the

problem can be found. Research is being conducted to determine the restrictions on the

desired filtering operation and fixed elements that are necessary to achieve a practical

system configuration.

5. Stochastic approximation methods have been considered for proving the conver-

gence of certain iterative methods of adjusting the parameters of a system. The adjust-

ment seeks to minimize the mean of some convex weighting function of the error. An

investigation is being made of the types of systems and signals to which the methods are

applicable.

6. A nonlinear system can be characterized by a set of kernels of all orders. The

measurement of these kernels is a major problem in the theory of nonlinear systems.

A method of measurement that depends upon crosscorrelation functions has been devel-

oped. Research on this problem is concerned primarily with the development of tech-

niques that involve tape recording and digital computation, and the application of the

method to various problems.

7. A project has been initiated that will have as its goal the measurement of the

galactic deuterium-to-hydrogen abundance ratio. The approach to this problem will be

based upon digital correlation techniques. The advantage of this method lies in the high

degree of accuracy that can be obtained.

8. We are also studying the factors that influence the accurate recording and repro-

duction of sound. In this study the tools of statistical communication theory are applied

to spectral analysis under different methods of recording, as well as to the computation

and measurement of diffraction effects of the human head under various incident sound

fields. In addition to the spectral studies, the transient behavior of the various links in
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the reproduction process will be investigated. Associated with this project a filter of
the Wiener-Lee type having controllable amplitude with a fixed phase over part of the
audio spectrum will be constructed as a tool for studying the effects of magnitude and
phase perturbations on sound signals.

Y. W. Lee

A. MEASUREMENT OF THE KERNELS OF A NONLINEAR SYSTEM BY

CROSSCORRELATION

In the Wiener theory of nonlinear systems (1) the input x(t) of a system A, as shown

in Fig. XIII-1, is a white gaussian process. The output y(t) of the system is represented

by the orthogonal expansion

0o

y(t) = Z Gn[hn, x(t)] (1)
n= 1

in which {hn} is a set of kernels of the nonlinear system and {Gn} is a complete set of

orthogonal functionals. The orthogonal property of the functionals is expressed by the

fact that the time average Gn[h , x(t)] Gm[h m , x(t)] = 0 for m * n. A nonlinear system

A

x(t) y(t)

Fig. XIII-1. A nonlinear system with a white gaussian input.

is characterized by the set of kernels {hn}. The first-order kernel h 1 (T 1 ), where T 1 is

the time, is the linear kernel or the unit impulse response of a linear system. The

second-order kernel, or the quadratic kernel, is h(T l , T 2 ) . And the nth-order kernel

is hn(T1' .... T n). The determination of the kernels is a major problem in the Wiener

theory. Wiener expands the kernels in terms of a set of orthogonal functions such as

the Laguerre functions. Thus if {2fm(T)} is the set of Laguerre functions, then

00hl(Tl ) = Z Cmm m (Tm=0

m1=0 m2=0 mlm2 1 (Z)

00 00

h n ( T 1 Z ..T ) c ...M ("1)"' (Tn)
m =0 m =0 I n 1 n1 n
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The determination of the coefficients of the Laguerre expansions, which leads to the

determination of the G-functionals, is accomplished by a system of measurements. For

reference, we list the first three terms of the G-functionals:

00
G 1 [hl, x(t)] = h 1 ( 1 ) x(t-7 1 ) dT1

GZ[h 2 , x(t)] = hZ(T l , TZ) x(t-TI) x(t-TZ) dTldT2 - K hZ(T 2 , TZ ) dT
o -oo -O

(3)

G 3 [h 3 , x(t)] = h 3 (T 1, T2 , 3 ) x(t- ) x(t- 2 ) xt- x(- x(-T 3 ) dTdTdT3

- 3K h 3 (T 1 , T 2 , T 2 ) x(t-T 1 ) dTrldT

tthhThe leading term of the n -degree functional Gn is a homogeneous functional of the

n degree, and the other terms of G are each a homogeneous functional of degree

lower than n. The n th-degree homogeneous functional is

-c ... hn(T1' ' ' n) x(t-T 1 ) ... x(t-Tn) dT I.. dTn (4)

The functional Gn is constructed to be orthogonal to all functionals of degrees lower than

n for a white gaussian input. The power density spectrum of this input is xx(w) = K/21T

watts per radian per second so that the autocorrelation of the input is XX(T) = Ku(T),

where u(T) is the unit impulse function.

We wish to introduce a method of determining the kernels of a nonlinear system that

depends upon crosscorrelation techniques and avoids orthogonal expansions such as those

of Eq. 2. This method is an extension of the crosscorrelation method that has been

applied to linear systems (2).

1. Multidimensional-Delay White Gaussian Processes

First, we introduce a set of functionals that are formed by passing a white gaussian

noise through a system of delay circuits as shown in Fig. XIII-2. In Fig. XIII-Z(a) we

have a delay circuit B with an adjustable delay time of ar (seconds). The input x(t) is

a white gaussian process whose power density spectrum is K/2rw watts per radian per

second. The output Yl(t) of the delay circuit is

yl(t) = x(t-r) (5)

which can be written in the form of Eq. 4 as
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y 1 (t) = f U(T-) x(t-T) dT

The integral in Eq. 6 is a functional of the first degree. Let us call Yl(t) a one-
dimensional-delay white gaussian process.

In a similar manner we form a white gaussian process with a two-dimensional delay
as shown in Fig. 2(b). Applying x(t) to the delay circuits B1 and B 2 whose adjustable
delay times are al and if2 and multiplying the outputs of B l and B 2 to form the output
y2 (t) of the system, we have

yZ(t) = x(t-l-) x(t-T 2 ) = f_' _ U(T 1-- 1) u(T 2 -0 2 ) x(t--T) x(t-T 2 ) dT 1 dT2

This expression is a homogeneous functional of the second degree.

y 2 (t) as a two-dimensional-delay white gaussian process.

B

x(t) ADJUSTABLE y (t)
DELAY

(a)

Fig. XIII-2.

We shall refer to

B
IADJUSTABLE

DELAY

xY2(t 0"1 Y2 
(
t )

B 
2

ADJUSTABLE
DELAY

(b)

(b)

Delay circuits: (a) one-dimensional-delay circuit, (b) two-
dimensional-delay circuit, (c) three-dimensional-delay circuit.

In Fig. XIII-Z(c) we have x(t) applied to three delay circuits B l, B 2 , and B 3 whose
adjustable delay times are 1 ,' 2', and -3', and the outputs of the circuits are multiplied

so that the product, which is the output of the whole system, is
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y 3 (t) = x(t-ol-) x(t-r 2 ) x(t-0 3 )

= u( U( 1 -- 1 ) u(T 2 - 2 ) u(T 3 - 3 ) x(t-T 1 ) x(t--2) x(t-T 3 ) dT IdT 2 dT 3  (8)
-oo -00 -0

This is a three-dimensional-delay white gaussian process, and a homogeneous functional

of the third degree. Obviously the n-dimensional-delay white gaussian process is

00 00

Yn(t) = (x- 1 ) ... (x-C-n) = ... : u(T 1 -c 1 ) ... u(Tn-(T n) x(t-T 1 )... x(t-Tn) dT 1 . . . dT

(9)

The use of these functionals in the measurement of isolated kernels has been dis-

cussed by George (3). However, in the general case where a nonlinear system has more

than one kernel he resorted to a Taylor series expansion. The method we present here

does not depend upon expansions of the kernels in any form.

2. Determination of the First-Order Kernel

Now, consider that the nonlinear system A in Fig. XIII-3 is to be characterized;

that is, the set of kernels {hn} of A are to be determined. By applying x(t) to A and

A

UNKNOWN y(t)
NONLINEAR
SYSTEM

x (t) y(t)y (t) y(t)y(t)

ADJUSTABLE
DELAY y ()

ONE - DIMENSIONAL -
DELAY CIRCUIT

Fig. XIII-3. Measurement of the first-order kernel of a nonlinear system.

the delay circuit B of Fig. XIII-2(a), as indicated, then multiplying their outputs y(t)

and Yl(t), and finally averaging the product, we have

y(t) yl(t) = Gn[hn , x(t)] x(t-cr) (10)
n= 1

Since x(t-r) is a functional of the first degree, the functionals G n , for n > 1, are orthog-

onal to x(t-a-). Hence with G 1 as given in Eq. 3, we have
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y(t) Yl(t) = h 1 (T 1 ) x(t-T 1 ) dT1 x(t-c) = h 1(T 1 ) x(t-T 1 ) x(t--) dT1
-oo -oo

= h 1 (T 1 ) Ku(O'-T 1 ) dT 1 = Khl(O)oo0
(11)

Therefore, by applying a white gaussian process to the unknown nonlinear system A and

to the one-dimensional-delay circuit B, and then crosscorrelating their outputs for var-

ious values of the delay time o-, we obtain the first-order kernel of the nonlinear system:

1
h 1() K 1y(t) Y1(t) (12)

3. Determination of the Second-Order Kernel

To measure the second-order kernel, we connect the system of Fig. XIII-2(b) to

the unknown nonlinear system A in the manner shown in Fig. XIII-4. The average

y(t)y 2(t)

ADJUSTABLE

DELAY

B
2

-Y2(t)
ADJUSTABLE

DELAY

TWO - DIMENSIONAL -

DELAY CIRCUIT

of the product of the outputs

delay circuit is

Fig. XIII-4. Measurement of the second-
order kernel of a nonlinear
system.

of the unknown nonlinear system and the two-dimensional-

y(t) Yz(t) = G , Gn[h ,
n= 1

x(t)]} x(t-" l ) x(t-rz)

We note that the G n for n > 2 are orthogonal to x(t-rl) x(t-O 2 ), which is a homogeneous

functional of the second degree. Furthermore, for n = 1, we have

Gl[hl,x(t)] x(t-a 1) x(t- 2 ) h(r 1 ) x(t-T1 ) dTl x(t-l 1 ) x(t-o 2 )

00
= 00

-oo
h(T 1) x(t-T 1 ) x(t-rl) x(t-r 2 ) dT 1 = 0 (14)
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(See Sec. XIII-C for the average of the product of gaussian variables.) Hence with G 2

as given in Eq. 3, Eq. 13 reduces to

y(t) x(t-c 1 ) x(t- 2 ) = Gz[h 2 , x(t)] x(t-l- 1 ) x(t-cr.)

S h 2z(T 1 , 2) x(t-T 1 ) x(t-T 2 ) dTldT2 - K h(T 2 , T2 ) dT x(t-0 1 ) x(t-o-2)
-o -oo -oo

= ff h2 (T1,2) x(t-T 1) x(t-T 2 ) x(t-- 1l) x(t-r 2 ) dTldT 2 - K u( 1 ) h2 (T ,T 2 ) dT2

S h 2 (T 1 , T2 ) K 2 [u(T -T 2 )U(- 1-)+u(T -- 1 )u(T 2 - )+u(T--2)u(T 2 - 1)] dT 1dT 2
K ( -- -j_

- K u(- 1 2 ) h 2 ( 2 , T) dT2- 00

K2 u(al 2cZ) h 2(T 1,T1) dT 1 + hZ(0-1, 2 ) + h 2 ( 2 ,o1 ) - u(al1- c 2 ) Ih (T,T) dT2

= 2K h 2 ('- 1 , 0.2) (15)

Note that the kernels in Eq. I are symmetrical in the variables T 1, ... Tn, so that for

the second-order kernel we have h 2 (T1' T2 ) = h(TZ, T I1 ). The result in Eq. 15 means

that if we apply x(t) to the unknown nonlinear system and to the two-dimensional-delay

circuit and then crosscorrelate their outputs for various values of the delay times al
and -2,' we shall have the second-order kernel of the unknown nonlinear system given by

h2 a' 2 y(t) yz(t) (16)
2K

4. Determination of the Third-Order Kernel

In a manner similar to the measurement of the first-order and second-order kernels

we measure the third-order kernel of a nonlinear system as indicated in Fig. XIII-5.

The crosscorrelation of the output of the unknown nonlinear system and the output of the

three-dimensional-delay circuit as a function of the delay times o-l' .2, and a-3 is

y(t) Y3 (t) =I 1 Gn[hn, x(t)]} x (t- G 1) x(t- 2 ) x(t- 0
3 ) (17)

In= 1
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y(t) y 3 (t)

Y3
(t)

THREE-DIMENSIONAL -

DELAY CIRCUIT

Fig. XIII-5. Measurement of the third-order kernel of a nonlinear system.

Since x(t-ol) x(t-a 2 ) x(t-o03 ) is a homogeneous functional of the third degree,

orthogonal to Gn for n > 3. When n = 3, we have, with G3 as given in Eq. 3

h 3 (T1 , T 2 , T 3 ) x(t-T 1 ) x(t-T 2 ) x(t-T 3 ) dT ldT2dT33 31 3 3

- 3K 00 h 3 (T 1 , TZ , T2 ) x(t-T 1 ) dT1 dT2 x(t-- 1 ) x(t-a- ) x(t-0 3 )

000 

00

00 0 -00

h 3 (T, T ,2 ' 3 ) x(t-T) x(t-72) x(t-T 3 ) x(t-r 1 ) x(t-r 2 ) x(t-- 3 ) dT 1 dT 2dT 3

h 3 (T 1 , T2', T2 ) x(t-TT1 ) x(t-c 1 ) x(t-o-2) x(t-cr3 ) dTldT2 (18)

The triple integral of Eq. 18 can be shown to be equal to

K3 6h 3 (. 1' ' a,3) + 3u(C2 - 3 )
Sh 3 (T1 T1' Q1 ) dT 1 + 3u(a- 1 -uZ )

h 3 (T 3 , T3', 3 ) dT3

+ 3u(- I 1) : h 3 (T 2 T2 , T2) dT 2

124
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(19)

G3[h3, x(t)] x(t-1) x(t-0r2 ) x(t-o 3 )

00 
00 

o00

0 - 0 -0
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and the last term of Eq. 18 can be shown to be equal to

-3K 3 ( 1- -Z) h 3 (TT 1' 3O) dT 1 + u(r3 ---1 ) h 3 (T1 ,T1' 2) dTl+ u(G-2 -- 3 ) h 3 (TT 1  ) dT

- 0 (200 0)

(20)

Hence Eq. 18 reduces to

G 3 [h 3 ,' x(t)] x(t--r1 ) x(t-O-2 ) x(t--r3 ) = 6K h3 ( 1
' c2' 3 )

To complete the evaluation of Eq. 17 we need to consider

three-dimensional-delay white gaussian process with G 1 and

involving G 1 is

Gl[hl', x(t)] x(t- l) x(t-o 2 ) x(t-- 3 ) = h (T 1 ) x(t-T 1) x(t-- 1 )

(21)

the crosscorrelation of the

G 2 . The crosscorrelation

x(t-o-2 ) x(t-o-3 ) dT1

= K 2 f h 1(T 1 )[U(T 1-o 1 )u(( 2 --T 3 )+U(T 1 -cr 2 )u(o 1 -- 3)+u(T 1 3 )u(r 1-0-2 )] dT1

= KZ[u(o 2 - 3 )h 1 (- )+U(- l -3)hl (- 2 )+u( 1- - 2 )h (-3)]

and the crosscorrelation involving G 2 is

(22)

G 2 [h 2 , x(t)] x(t-" 1) x(t-o-2 ) x(t-- 3 )

=J J hz(T 1 , T2 ) x(t-T 1 ) x(t-) x(t-G1 ) x(t-- 2 ) x(t-o-3 ) dT 1 dT 2

- K 0 hZ(T Z , T2 ) x(t-rl) x(t-o2) x( 3t-3) dT 2 = 0 (23)

since the mean of the product of an odd number of x's is zero.

Therefore our final result for Eq. 17 is

y(t) x(t-c- 1 ) x(t-c- ) x(t-o-3 )

= 6K 3 h 3 ( 1
' 2' -3 ) + KZ[u(-2--3)hl(l 1)+u(- 1--3)h (c2 )+u(ol- ~)h 1 ( 3 )] (24)

The first term on the right-hand side of this equation is the third-order kernel of the

nonlinear system that we wish to determine. However, the second term on the same

side of the equation gives rise to impulses when -l = U2 -, = -3 , and a-2 = 03. But when

' I *-2' aI * 3' and o- Z *3' the term has zero value. Although theoretically the
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y(t)yn(t)

DELAY

B2

ADJUSTABLE

DELAY

2 Y (t)

Bn

ADJUSTABLE

DELAY

L____--------------

n-DIMENSIONAL - DELAY CIRCUIT

th
Fig. XIII-6. Measurement of the n -order kernel of a nonlinear system.

method does not yield the values of the third-order kernel at al = 2-' G_ = G3' and

0 = 03' we should have no difficulty in the practical application of the method because

we can come as close as we please to these points. Thus if we feed a white gaussian

process to the unknown nonlinear system and to the three-dimensional-delay circuit and

crosscorrelate their outputs for various values of the delays 0-1' T2, and -3' we can

express the third-order kernel of the nonlinear system in terms of the crosscor-

relation as

h3(-' Z' 3) 1= y(t) Y3(t) for -1 2' Z2 3' - 3 1 1 (25)
6K

5. Determination of the n th-Order Kernel
th

To measure the n -order kernel in the manner shown in Fig. XIII-6 we have the

crosscorrelation of the output of the unknown nonlinear system and the output of the

n-dimensional- delay circuit given by

y(t) Yn(t) = i Gm[hm, x(t)l (t--) x(t-0-Z) ... x(t--n) (26)
m=

For m > n the crosscorrelation is zero, and for m = n, we have

y(t) Yn(t) = G [hn' x(t)] x(t-fl).x(t-r 2 ) . . . x(t-n) (27)
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To evaluate this crosscorrelation, let us write the nth-degree functional with

x(t-u 1 ) x(t-r 2 ) ... x(t-crn) as the leading term, in an orthogonal set {(H[k , x(t)]}, as

Hn[k n x(t)] = .. kn( 1' . Tn) x(t-T 1 ) ... x(t-T) dT ... dTn + F (28)

where F is a sum of homogeneous functionals of degrees lower than n. It is clear from

Eqs. 7 and 8 that kn(T1'.' Tn) in Eq. 28 is

kn(Ti ... T n) = u(T I-- 1 ) ... u(Tn--n) (29)

In terms of Eq. 28 the crosscorrelation of Eq. 27 is

y(t) Yn(t) = Gn[hn , x(t)]{Hn[k n , x(t)]-F} (30)

Since G is orthogonal to all functionals of degrees lower than n,

G [hn, x(t)] F = 0 (31)

Hence

y(t) Yn(t) = Gn[hn' x(t)] Hn[k n , x(t)] (32)

Formulas for the mean value of the product of functionals that are members of sets of

orthogonal functionals are known (ref. 1, p. 41). In the present instance we can show

that

G [h n , x(t)] Hn[kn , x(t)] = n! Kn f h T nT) k (T n) dT 1 . .. dTn

Sn! Kn h (T' T. n) u(TI-0 1 ) . urn-G-) dT. ... dT = n! Knh n(a.  n

(33)

Note that kn is given by Eq. 29.

Combining Eqs. 31 and 33 in accordance with Eq. 30, which is the same as Eq. 27,

we obtain

Gn[hn , x(t)] x(t- 1-) ... x(t- n ) = n! Knh( ' ' n) (34)

Our detailed work on h l, h Z, and h 3 is in agreement with this general result. (See

Eqs. 11, 15, and 21.)

We now return to Eq. 26 to consider the situation in which m < n. It is known that

if m is even, then all of the terms in Gm are functionals of even degrees; and if m is
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odd, then all of the terms in G m are functionals of odd degrees. When n is even and m

is even, the highest degree functional in Gm involved in Eq. 26, for the case m < n, is

of the degree n - 2. This condition means that the average

x(t-T 1 ) ... x(t-Tn-2 ) x(t- 1) .. . x(t-n) for n > 2 (35)

has to be taken in association with the highest degree functional in G m . Since the mean

of the product of gaussian variables can be reduced to a sum of products of the means

of the products of pairs of the variables taken in all distinct ways (see Sec. XIII-C), and

since in Eq. 35 there are two more cr's than T's, the result is that Eq. 35 is an impulse

whenever two or more a-'s are equal and is zero otherwise. This fact is illustrated

by Eq. 22 in the determination of h 3 . Similarly, the average of the product of the

n-dimensional-delay process and the other terms in G m for m < n - 2 is an impulse

whenever two or more a-'s are equal and is zero otherwise. In other words, for n even

and greater than 2, we have

x(t-o 1 )

x(t-T 1 ) x(t-T 2 ) x(t-- 1l ) •

x(t--nr)

0 if no two a's are equal
.x(t-crn)

an impulse if two or more a's are equal

x(t--n)

(36)

Furthermore, when n in x(t-- 1 ) . . . x(t-- n) is even and m in Gm is odd the crosscor-

relation in Eq. 26 is zero because the mean of the product of an odd number of x's is
zero.

When n in x(t--l) ... x(t-O-n) is odd and m in G m is also odd, an argument similar
to that just given will lead to the conclusion that for n odd and greater than 2

x(t-T ) x(t- 1 )

x(t-T 1 ) x(t-T 2) x(t-T 3 ) x(t-- 1 )

x(t-T 1 ) ... x(t-Tn- 2 ) x(t-- 1 )

... x(t--n)

... x(t-an)

... x(t- n)

0 if no two a's are equal

an impulse if two or more a's are equal

(37)

This completes the discussion of Eq. 26 for m > n, m = n, and m < n. Combining the

results that Eq. 26 is zero for m > n, that it is given by Eq. 34 for m = n, and that it

has the properties of Eqs. 36 and 37 for m < n we obtain the result that
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1
hn( n) n! K y(t) (t) except when, for n > 2, two or more a's are equal

n!Kn fl

(38)

For the actual measurement of the kernels we can form the orthogonal functionals

Hn[kn , x(t)] as given by Eqs. 28 and Z9. By the use of these functionals we can deter-

mine the kernels h (-l ..... G-n) for all values of the a's, without the restrictions stated

in Eq. 38, by the method described in this report. We have not done so because without

the additional complexity of forming the functionals Hn[k n , x(t)] we can come as close

as we please to the set of points at which impulses occur.

6. Discussion

In comparison with the Wiener method of measurement of the kernels, the

present method has the advantage of great simplicity. Digital computation and tape

recording are particularly helpful in the application of the method. As we see from

the theory of the method the only necessary data for the characterization of a non-

linear system - that is, the determination of its kernels of all orders - are the

record of the white gaussian process that is fed into the nonlinear system and the

corresponding output of the system. The record can be in the form of a twin-track

recording on magnetic tape.

In the Wiener method of measurement the basis is the orthogonal expansion of

the kernels and the representation of the orthogonal sets of functions by a system

of linear networks and a system of nonlinear no-memory networks. Since in prac-

tical application the number of terms in an expansion must be finite, the Wiener

method involves an error that is attributable to the truncation of the expansion.

We know, however, that the error in the representation of a function by a finite

orthogonal set of functions is the minimum integral square error. On the other

hand, the method discussed in this report does not depend upon a series expansion

of the kernels in any form. Hence another advantage of the method is that it

involves no approximation error. In both methods, as we are aware, there is,

among other errors, an error that is the result of using a finite time in taking

the necessary average values.

We also note that the present method is a point-by-point method, whereas the

Wiener method is, as pointed out before, a minimum-integral-square-error approx-

imation method over the entire range of time. The determination of a set of coef-

ficients determines the approximation over the entire range of time. We see that

under certain circumstances these methods may complement each other. For

instance, the Wiener method may indicate quickly the parts of the kernel curve

that need greater details. These details may be more effectively obtained by the
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present method. Again, in expanding the kernels by the Wiener method, we may

wish to know whether the approximation is sufficiently good. A comparison of the

approximation with the measurement by the present method should be a good check.

Y. W. Lee, M. Schetzen

References

1. N. Wiener, Nonlinear Problems in Random Theory (Technology Press, M. I. T.,
and John Wiley and Sons, Inc., New York, 1958), pp. 28-38, 88-100.

2. Y. W. Lee, Statistical Theory of Communication (John Wiley and Sons, Inc;,
New York, 1960), pp. 342-348.

3. D. A. George, Continuous Nonlinear Systems, Technical Report 355, Research
Laboratory of Electronics, M. I. T., July 24, 1959, pp. 74-75.

B. AN ITERATIVE PROCEDURE FOR SYSTEM OPTIMIZATION

[This report concludes the discussion of the filter optimization procedure that was
introduced in Quarterly Progress Report No. 59, pages 98-105.]

We now consider condition iii. Condition iii(b) is always satisfied because the

sequences v(m) and d(m) are uniformly bounded. In considering condition iii(a) it was

assumed in the previous discussion that the term

Fn (X ) = E{11 E{Y nl , x1 -E{Y 1x111 1X} (10)

approached zero at least as fast as a /c . This assumption is unrelated to the physical

situation and is unduely presumptive in that it results in an estimate of the rate of con-

vergence which is as rapid as that obtained when independent data are used for suc-

ceeding iterations. For this reason, we now impose the following restriction on the

memory units of the filter:

-at
hi(t)< H.e (11)

where a > a > 0, Hi < K < oo, and i = 0, 1, ... , j, and hypothesize a condition on the

sequences v(m) and d(m). Let gl and g 2 be two continuous functions:

g =  g 1 [s 1 (t ),..., sl(tn) .... sj (t ) ... , sj (tn), d(tl),..., d(tn)]

g 2 = g 2 [sl(tn+T 1) ... Sl (tn+Tm) . d(tn+T1 ) .... d(t +Tm)]

where tj > t ; Tj > Ti > 0, with j > i; gl < GI < oo; and 1g < G < oo. We then

make the following assumption concerning the rate at which the terms of the

sequences v(m) and d(m) become independent:
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Sglg 2-g 1 2 < KG 1 G e (12)

for all T 1 > T ; TO < oo; K < o0; and P > 0.

We shall now derive an estimate of Fn(X1 ) based only on the hypothesis expressed in

inequality 12. To avoid notational difficulty, the discussion will be carried out in terms

of the one-dimensional case shown in Fig. XIII-7; the methods used and results obtained

carry over to the original k-dimensional case. The parameter x is now restricted to

lie in a closed bounded interval X and the sequences v(m) and d(m) again assumed uni-

formly bounded. We will need to make the simplifying assumption that x, q(m), and d(m)

are quantized. This is no practical restriction, since the iterative procedure is most

likely to be carried out on a computer.

m (m (m)f [s(m)] q(m) e(m)

h~t) f X

Fig. XIII- 7. One-dimensional case of the filter
of Fig. XI-5, Quarterly Progress
Report No. 59, p. 100.

We first establish a simple moment theorem. Let x be a bounded random variable

taking on the discrete values x i , i = 0, 1, ..... , N, with associated probabilities p(xi). Let

Y be a bounded random variable. We wish to bound the quantity

E{J E{YJ x} -E{Y} }
Let

f(x i ) = E{Y xi} - E{Y}

It is possible to find a polynomial

N
P(xi) = an(xi )n

n= 0

with the property that P(xi) = f(xi), i = 0, 1,

bounded in terms of the maximum value of

N N N
f2 = p(x) f2(x) i) f(xi) P(xi)

i= 0 i=0 n= 0

The assumption

Ixny-x YI = Ixnfl- KABE

where n= 0, 1, ... , N, i = 0, 1, ... , N, and

A= sup Ixn

... N. The coefficients a n can be uniformly

Y and the quantization of x. Now

N
an (xi)n = anxnf

n=0

(13)

B = sup IfI
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thus implies

f2 < K1E

since the a n are uniformly bounded in magnitude independently of p(xi). Thus by the

Schwartz inequality,

fI = E{IE{YIx}-E{Y}J}< (K 1/2 '1/ (14)

Inequality 13 still implies inequality 14 when x, instead of being a scalar, is a fixed

m-tuple.

Now we consider Fn(xl). To clarify the expression for F n , we shall denote by en
the data used to carry out the n iteration (whether en is a four-tuple, an eight-tuple,

etc. is dependent upon how many samples are used for an iteration). Furthermore, let

e x
S n and 5 n

denote averaging 5 over en and xn , respectively. Then

Fn(x1) = Yn(e n) dP(en )) (e n) dP(enixn(i) - Yn(en'xn) dP(en) dP(xn)

(where xn = Xn(Xl) is a family of random variables indexed by the parameter x1 ), hence,

using the moment theorem, we can show that

Fn(X 1 ) (K 1)/4 En/4 for all x E X

if

n n e n
Y (en ' Xn) Xn -Y (x , n K /2E1/Z (15)

for m = 0, 1 ... , N and all xl E X. But

e xm-e xm K E (16)nn nn 2n

for q = 0, 1, ..... , M and for all xl E X (Xn=xn(xl)) again implies, by the moment theorem,

S xmdP(x nen) - xmdP(xn) dP(en) < Ki2E/2 a/2ll X EXnE n  for all x I E X

Now let B = sup lxl and A = sup IYI. Then, multiplying the integrand given above by
XE X

IY ,n multiplying the right-hand side of the inequality by A, and using the relation
Ifal fla , we obtain inequality 15, with K 1 = AK 2 . Thus inequality 16 implies
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F(Xl) < (AKZ)1/4 E/4 for all xl E X

and we now need only estimate the moments in inequality 16. It should be noted that in

inequality 16 e q is used symbolically. That is, e might represent two samples of d(m),
n n

da and d b , and two samples of v(m), va and vb.

ucts d
p dr
aNowb

Now

Then e q is used to indicate all the prod-
n

s t
Va Vb , where p + r + s + t = q.

n-I a.
xn J -Y(e , e x)

n =1 cj j j-

hence

eqxm_-eq xm
n n nn

n-1 n-1 J

j=1 m 1 
1

j =1 j =1 c

n-i

j 1=1

J1

j 1
jZ=I J 1m

a.
m qy . Y. e Y ... Y.

cjm n 1 m n im

a.

C.

a.

c.
im

n-1 J2
+

n-1

jm=1

jm-1

j 1=1

= m terms

j "
2

j 3=1

jz

SIJm=1

a.
31

c.il

j -1 a.

Sc.
Jm-1 = J1

n-1 aj

j= 1 j

n-1
+ Z

j= 1

n- a

j=1 j

a.
im

C.
im

a.
Sim

n J j n j j

q m-2 qm-2
S e Y.xJ. x. -eq Yjxj Xj-1j 3-

qy -q in-qe Y.xm-1-e Y .x 1
n j j- n -

Now, since

x = x (ej, ej_ 1' ... e 1, x 1 ) Y = Yj(e , ej-1, ... , el, xl
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we have, from assumption 12, for all xl E X,

n- a. e n- a.
n-1 n - P s(n-j

- e Y.xPx r -e Y.xPx r -< AB m - 1 e K C .- s
j=1 L n jn J j j- nmax j= 1

where p + r = m - 1, and s is the number of sample intervals allowed to elapse between

the end of one iteration and the beginning of the next. Now, assuming that a./c. is mono-

tonic, we have

n-1 a (n-j) -s(n-1) a n/ -s(n-t) an/Z n -s(n-t)
- e (n e l s(n - ) e dt + e tdt

j= 1 j C1 1 n/2 Jn/2

al e-ps(n-1) Ps(n/1) an/Z 1 Ps(n/2)s (e- s (n/ e )-e +I [e-PS ]
c1 Ps Cn/2 Ps

The first term in brackets approaches zero at least as rapidly as e - Ps(n/2), and the

second term in brackets is bounded by 1. Thus for all n greater than some N o , No < 00,

we have

m mm- 1 an/2
eqx -eqx < mABmI e Kn n n n n max PScmax Ps Cn/2

for all xl E X, and hence

1/4

1/4 an/1
Fn(x) < [K 1 ]1/4 l/4 / (18)Lc/2 j

where K1 is dependent only on A, B, enl ma x , and the quantization of xn and en. State-

ment 1 thus remains valid if assumption iii(a) is replaced by hypothesis 12 and we

require

S< 00co (19)
(where aj/2cj/2 is suitably interpolated for n odd). Now, if we set a = An-a and

c n = Cn Y, then

an/ 2a-y an= 2a-Yn-(a-y)

Cn/2 cn

and statements 2 and 3 may be recast to read:
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STATEMENT 2': Restrictions (a-e), assumption 12, and the choice a = 1, y = 1/13

imply

EI x - I 2XI = O(n- 2/ 13 ) for all x E X-n-l

STATEMENT 3': With the additional restriction that W(e) have a continuous third

derivative, the choice a = 1, -y = 1/21a implies

E x - 2ixl = O(n -4 / 2 1) for allxl E X

The proofs of statements 2' and 3' follow exactly as do those of statements 2 and 3. We

cannot, as in statements 2 and 3, state that the choices of a and y are optimum; rather

they are the choices of a and y for which the estimates used guarantee the most rapid

convergence.

REMARK 1: Note that restrictions (d) and (e) prohibit the use of the weighting func-

tion W(e) = lel. We might remark that for practical purposes we could approximate I e

arbitrarily closely by a function that satisfies restrictions (d) and (e). This answer is

not entirely satisfactory, however. Restriction (d) is not troublesome. Indeed, any

physical device that might be constructed (such as a rectifier) to obtain an approximation

to W(e) = lel would almost certainly not behave as lel near the origin, but would possess

continuous first and second derivatives. Therefore, when we set W(e) = jel, we shall

assume that restriction (d) is still satisfied.

Restriction (e), however, is more troublesome. Although it would be easy to con-

struct a device that behaves as l eI for large Ie , it would be difficult to build a device

to approximate ]e which is strictly convex.

We note that, other than assumption 12, we have not placed any restrictions on the

signal d(m) except for uniform boundedness. We now add an additional restriction that

permits the use of W(e) = el . Although the function W(e) = le is not strictly convex,

it is still convex. That is,

W[aa+(1-a)b] - aW(a) + (1-a) W(b) 0 < a - 1 (20)

Now if S (a) = -S (b), then for any W(e) satisfying inequality 20 there exists an E > 0

with the property that for min [I a I, I b] > E > 0

W[aa+(1-a)b] < aW(a) + (1-a) W(b) - aE a-bI 0 - a -< 1/2 (21)

Hence, if we replace assumption (e) by the milder condition (inequality 20), and

assumption (c) by the stronger condition that there exist a D > 0 with the property

that for all xE X
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P xif i(m) - d(m =-S k

n . Oifi(m) - d(m) I

[ k k
if(m ) - d(m) f(m) - d(m) > > Dx-

• ) i -- i--
(22)

then we again obtain Eq. 7 and assumption (ii) is still satisfied.

The condition expressed by Eq. 22 is quite intractable; it would be extremely diffi-

cult in a practical situation to ascertain whether or not it is satisfied. Nevertheless,

the condition is reasonable enough for carrying out the procedure with W(e) = e with

a fair amount of confidence that the procedure would converge.

REMARK 2: The discussion, thus far, has been in terms of discrete time-parameter

sources. The adaptation of the method to continuous signals and systems is quite

straightforward. We select some length of time T to be equivalent to one data sample.

Then, assuming that the nt h stage of the iterative procedure starts at time t = T, we

make the 2k observations:

= i W Ld(t) - xi i(t) dt
TTi7+

2 1 T+2T t) k
+T W (t) -T+T i=l

xif.i(t) dt
1-i

y2k 1 ;T+2kT

n T +(2k-
T+(2k-1

T W d(t) -
)T L

x +e e-n n-i

x -c ne

X x

x -c n ek

T<t<T+T

T + T <t <T + 2T

T + (2k-1) T <t < T + 2kT

and proceed exactly as in section 2. One iteration is thus performed in 2kT seconds.

In the continuous case,
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M(x) = limr Z 0 W[d(t)-qx(t)] dt
T-o K oo 00

N p(m+l)T

= lim m W[d(t)-qx(t)] dt
N-oo m=-N ,mT

where qx(t) is the output of the filter with the parameter set at x. The derivations of

the preceding discussion can thus be easily adapted to the continuous case.

[Note added in proof: See addenda in Sec. XIII-F for improved estimates of the rates

of convergence given in statements 2' and 3'.]
D. J. Sakrison

C. AVERAGE OF THE PRODUCT OF GAUSSIAN VARIABLES

The results given in this report are used extensively by Wiener (1) and by others.

Since we have been unable to locate a detailed proof of these results, a proof is pre-

sented here for reference purposes.

The average of the product of N gaussian random variables is of basic importance

in the statistical theory of nonlinear systems. If E is a gaussian random variable, then

1 p (x- )
P (x) exp - 2 (1)

We may normalize a by letting

(-Z
- (2)

Then

S(y) = 1 exp y (3)

2
We call r1 a normalized random variable because ~ = 0 and r2 = 1. The result that we

shall prove is that if r 1, '2' '... rl2N+1 (N=1, 2,...) are normalized gaussian random

variables, then

n1 2 ' 2N i j (4)

and

S12 ' Z... 2N+ = 0 (5)

in which the notation Z IN means the sum of all completely distinct ways of par-
(2N)!

titioning l' z .. . iZN into pairs. The number of ways isN! 2 N  For example,

for N = 2,
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I12 3 4 2= 1iZ314 + 1il 3 r112 4 + 141T 3  (6

The number of terms in this expression is

(2N) ! 4!(ZN)! 3 (7

(N)! 2 N 2! 22

To prove this result, we begin by considering P (YI' 2 .... yN) which is the joint

probability density function of the N random variables, -n, l12 ... 'TN. The charac-

teristic function of the joint probability density function is

M (al, a 2 .. aN)= exp j(a 1l 1 +a2 2 +. .+aNN)

= dyl dy 2 ... dyNP (yl 'YZ'.. ., YN) exp (j

The characteristic function can be expanded in a Taylor series:

k =02 k =0
N

k 1 k2
C k l a a 2
Ckk .. k N  21

1k2.. N

Cklk
. .. kN

1
kl!k2!'... kN!1 2 N

k
a 1

k
al 1
1

ak2k
42k2"'"

3a2

k N

N

(10)

However, from Eq. 8, we have

M (a 1 , a 2 ,' S., aN)al=a ... =aN=0

k 1 k 2  kN .k
:1l 1 2 " 'N 3

(11)
so that

M (a1 ,a2 ,. , aNM 1 I' N'' )
00oo

kl= 0

00

k2=0

00 k 1 k 2  k N
1kN= N

kN=O

k k
(ja 1 ) (ja2)

kk k
1W kV

We note that the term for which k 1 = k 2 = ... = k N = 1 is1 2 N
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M (al,a
2 ...

a i i

00
,a N ) =

k 01

in which

kN
... 

aN

k
a8

k 1
al1

k2
a 2

aa 2
2

kN
a N
kN

8aN
N

k
N

--. 3

.. (jaN)

.kN!S N'

(12)
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1 1T2 ... IN(jal)(ja 2 )... (jaN) = 111 2 ... T ) N(ala2 ... a N ) (13)

This term contains the average that we want. Also, it is the only term in the expansion

of Eq. 12 that contains this average. We shall now obtain another expansion of the char-

acteristic function for the special case for which il' Ti2' . .. ) 'N are normalized gaussian

random variables. We shall then obtain the desired result by equating the terms in the

new expansion containing the product (ala 2 ... aN) with the term of Eq. 13.

If l' 2' . . . Y N are normalized gaussian random variables, their characteristic

function can be shown (2) to be

M (al a2 , .. aN)= exp -1 I
i= 1

Now, by the expansion

x oo p
ex=

p=0 P

we can expand Eq. 14 as

N
j a i aj=1l

M (a 1 a 2 ... aN)
I p

p= 0 ()

N N

i=1 j=1 i jai

The first few terms of Eq. 16 are

M (al'a2 ... aN) =
N

1

N

Z k 'k akak
k 2=1 1 k 2 1 22

12 N N

k =1 k 1
1 2

N

k =13

N

4 Tk k Tk k ak a ak a
k I llk2 3 k4 1 2 k3 4

4

(17)

According to our previous discussion, we want only those terms that contain the prod-

uct a l a 2 . .. a N. We first note that the terms of the expansion, Eq. 16, contain only

products of an even number of a's. Thus, if Eqs. 16 and 12 are to be equal, we require

that the coefficient of the term of Eq. 13 shall be zero if N is odd. We thus have shown

that

n 1 TI2 ... 2M+1 =0 M = 0,1,2 . ..

This is Eq. 5. We now restrict our attention to the case for which N is even. Let

N = 2M. We then note that the only terms of Eq. 16 that contain products of the
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form aklak2 ... ak2 M are those for which P = M. Those terms are

M 2M 2M 2M
M i  

k k k k akk ...akM  (19)
k =1 k 1 k2 =1 12 2M-1 2M 12 2M

This sum contains many terms that we do not want. We want only those terms for which

k 1 * k 2 * ... * k 2 M, since this is the form of the term of Eq. 13. By eliminating all other

terms from Eq. 19, we are left with the terms we desire, which may be written as

-M! (LM (a la2 . . aM) k Z.k. ..a k k (Ml0)1 2 2M-1 2M

in which the sum is over all terms for which k 1 * k 2 *. .. M k2M. This sum contains many

terms that have the same value. We can thus simplify Eq. 20 by summing together all

such terms. To do this, we first note that k. k.k.. There are 2M terms of the
1j j i

sum in Eq. 20 that are identical in this manner, since each term is the product of

M pairs. We also note that interchanging the order of the products of a term does not

affect its value. This is so because

k IT k k 3'k 4k 3k 4k I'k (21)
1k k2 k3 k4 k3 k4 1kk2  (21)

Since each term is the product of M pairs, there are M! permutations of this type. Thus

there are M! terms of the sum of Eq. 20 that are identical in this manner. By summing

all of these identical terms of Eq. 20, we can then write it in the form

(-1)M ala2...aM) n k. (22)
1 J

in which the notation k k means Tlk Tk zTk lk4 ... k M-k M , and the sum is over
1 J 1 2 3 4 2M-1 2M

all completely distinct ways of forming the product. By equating Eqs. 22 and 13 we

obtain

1 lZ .. 2 ZM -I j (23)

This is Eq. 4, and our proof is complete.

By substituting Eq. 2 into Eq. 4, we obtain

.. N n = h(24)
B1 2 2N i 1 .

By multiplying both sides of this equation by the product a- 1 2 a ZN, we obtain
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( 1 -Y 1 )( 2 -a 2 ) ... (a2N-2N)= i i (ai-ji)(aj-%) (25)

Similarly, by substituting Eq. 2 into Eq. 5, we obtain

( 1 -)( 2  ) ... (a2N+1- 2N+1)= 0 (26)

To illustrate this last equation, consider the case for which N = 1. Then

(a 1  )( 2 - 2 )( 3- 3 ) = 0 (27)

By expanding the product, we thus obtain

a1a2 a3 = a1a2a 3 + a2a 1a3 + 312- 2a1a2 3  (28)

Note that we have not restricted the set of gaussian random variables, {i'}, to be from

the same ensemble. However, if they are from the same ensemble, we can write

i = x(t i) Then, for the special case = 0, we have, from Eq. 25,

x(t 1 ) x(t 2 ) . . x(tZN) = ~ H x(t i ) x(tj) (29)

Thus, for a stationary ensemble, we have the result that

xxxx(T T 2 , T 3 ) = x(t) x(t+T1 ) x(t+T2 ) x(t+T3 )

= xx(T 1 xx (T 3 --T2) + XX(T 2 ) xx(T 3 -TI) + XX(T 3 ) 4xx(T 2 -T 1 ) (30)

in which xx(T) is the autocorrelation function of x(t). M. Schetzen
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D. A METHOD FOR LOCATING SIGNAL SOURCES BY MEANS OF HIGHER-

ORDER CORRELATION FUNCTIONS

The resolution of an antenna array is a basic problem of radio astronomy and of

target location systems such as radar and sonar. The resolution of a receiving antenna

may be taken as some fraction of its receiving beamwidth. Usually, by reciprocity, the

receiving beamwidth is taken to be equal to that of the array when it is used as a
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Fig. XIII-8. The geometry used for
locating a noise source
by an array of three
antennas.

of higher-order correlation functions.

guity in locating a target when using

transmitting antenna (1). The physical limi-

tations of the receiving antenna with regard

to its beamwidth and bandwidth may then be

determined (2). However, if the signals

received by each element of the array are

not processed linearly, then the assumption

of reciprocity is no longer valid. The phys-

ical limitations of the array when used as a

receiving antenna may then differ from those

when it is used as a transmitting antenna.

In this report, we shall present a method of

locating noise sources in space by the use

We shall then obtain expressions for the ambi-

this method. Some applications will then be

presented.

A method for the location of a noise source in a plane by the use of second-order

correlation functions has been discussed by Hayase (3). By this method, the noise

source is located by crosscorrelating the signals received by three antennas as shown

in Fig. XIII-8. If fl(t) is the signal received from the noise source by antenna no. 1,

the signal received by antenna no. 2 is

f 2(t) = fl(t-T 1 )

and the signal received by antenna no. 3 is

f 3 (t) = f 2 (t-T 2 )

in which

d
T = cos1 c 12

(1)

(2)

23
T 2 = cos 0 2 3

.th jthwhere dij is the distance between the i and jth antennas and c is the velocity of the

signal. The second-order crosscorrelation of the three received signals is then

123 T2 ) = fl(t) f(t+T 1 ) f 3 (t+T+T 2 ) = fl(t) fl(t-T+T 1 ) fl(t-T 1 -T 2 +T +T 2 ) (4)

Since a second-order autocorrelation function has its maximum value at the origin, we

note that 4 1 2 3 (T 1 , T2 ) has its maximum value at T 1 = T 1 and T 2 = T 2 (ref. 4). Thus, by

locating the peak of p 1 2 3 (T 1 , T 2 ), the angles 012 and 023 can be determined from Eq. 3.
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The exact location of the noise source is then given by the intersection of the direction

lines as shown in Fig. XIII-8.

A limitation of this procedure is the difficulty of locating the peak of 1 2 3 (T 1 T 2 ).

The usual procedure for determining the second-order correlation function is to delay

each of the time functions by means of delay lines, multiply the delayed time functions,

and then average the product. In this manner, the correlation function is determined

point-by-point in the T 1 -T 2 plane. This is a time-consuming procedure and if the peak

is to be accurately located, the points in the T 1 -T 2 plane must be taken close together.

However, to locate the position of the peak, we are really interested in the shape of the

correlation function and not in its value at any one point in the T 1 -T 2 plane. A method

of determining the second-order correlation function which accomplishes this aim has

been presented (5). By this method, the second-order correlation function is deter-

mined, with a minimum integral-square error, as the second-order impulse response

of a network as shown in Fig. XIII-9. For this network, the impulse responses, hn (t),

form a complete orthonormal set. That is,

f00 1 if i = j
h(t) h.(t) dt = (5)

.0 10if i j

The amplifier gains, A i , are adjusted to be equal to certain averages of the signals

received by the three antennas. Then, for a given delay, 6, between the two impulses,

the response of the network is the second-order correlation function along a line in the

T I-T2 plane. If the averages are made over a finite time, the determination of the

amplifier gains will be in error, which will cause an error in locating the peak of the

correlation function. To determine how this latter error is related to the integration

time, we consider an ensemble of measurements. In each measurement, the amplifier

gains are determined by averaging for a time, T. Each amplifier gain can then be con-

sidered as a random variable. If we now write the experimentally determined gains,

A. , as

A. = A. + B. (6)

in which A.i is the expectation of A i , then the circuit of Fig. XIII-9 can be considered as

two networks in parallel: one with the gains A i , and the other with the gains B i . This

is schematically depicted in Fig. XIII-10. Since Ai is the desired gain, the second-order

impulse response of the circuit with the gains A i is the desired correlation function. In

this manner, we can consider the total second-order impulse response as being the

desired response corrupted by noise; the noise being the response of the network with

the random gains, B.. Now, the error in locating the peak of the desired response along

any line in the T 1 -T 2 plane is proportional to the amplitude of the noise. Thus the mean-

square error in locating the peak is proportional to the mean-square value of the noise.
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Fig. XIII-9. A network whose response, fo(t, 6), is the

second-order correlation function.

Fig. XIII-10. Pertaining to the calculation of the error in locating the
peak of a second-order correlation function.

From Parseval's theorem, the expectation of the square of the noise integrated over the
oo

whole T-T 2 plane is B .. However, it can be shown (6) that B is inversely propor-
i= 1 1

tional to the time of integration, T. Thus the experimental location of the peak of the

correlation function in the T 1-T 2 plane may be said to lie within a circle of confusion

whose radius, R 2 , is inversely proportional to T (ref. 7). We shall define the ambiguity

in locating a noise source as the area of this circle of confusion. The ambiguity in

locating a noise source with an antenna array of three elements by the use of second-

order correlation functions is thus inversely proportional to T 2

By using more elements in the array, the ambiguity can be reduced. For example,

consider the case in which there are four elements in the antenna array as shown in
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SOURCE Fig. XIII-11. Then a third-order correla-

A4 9 -- ,- tion function can be determined from the

r -f four received signals as the third-order
L834 //

A34 . impulse response of a network (5). As in

'2s
3 /, our previous example, the angles ,12, 023'

and 034 can be determined by locating the

peak of the correlation function in the three-
Fig. XIII-11. The geometry used for

locating a noise source dimensional T -T 2-T 3 space. If the averages
by an array of four made to determine the amplifier gains of the
antennas. network are over a finite time, T, then by

the same method used in our previous

example, the experimental location of the peak of the correlation function lies within a

sphere of confusion whose radius, R 3 , is inversely proportional to T. The ambiguity

in locating a noise source with an array of four elements by the use of third-order cor-

relation functions is thus inversely proportional to T 3 . It is now clear that if the antenna

array consists of N elements, then an (N-l) order correlation function can be deter-

mined from the N received signals as the (N-l) order impulse response of a network (5).

For a finite time of observation, T, the location of the peak of the correlation function

lies within an (N-1) dimensional sphere of confusion whose radius, RNl , is inversely

proportional to T. The ambiguity in locating a noise source with an array of N elements

is thus inversely proportional to T N - 1 For example, with a seven-element antenna

array, the ambiguity in the location of a noise source can be reduced by a factor of two

with only a ten per cent increase in the time of observation.

In order to attach physical interpretation to our definition of ambiguity, we must first

briefly discuss the structure of the T-space. It should first be noted that the mapping of

noise source positions to the T-space is not a one-one and onto mapping. An example of

an array in which the mapping is not one-one is shown in Fig. XIII- 12. In this example,

the noise source above the array and the one symmetrically below it each has its peak

at the same point in the T-space. Since such degeneracies arise from the symmetry

properties of the array, the mapping can be made one-one by arranging the antennas

of the array asymmetrically, but it will

NOISE not be onto mapping. That is, every
SOURCE

SSRCE point in the T-space will not correspond

o o o o o o o o to a noise source position. This is seen
A I  A2  A 3  A 4  A5  A 6  A7  A8

NOISE by noting from our previous discussion
SSOURCE

S2 that each of the N coordinates of a point

in the T-space is uniquely determined
Fig. XIII-12. An example of an array for by one of the N direction lines from the

which the mapping is not
one-one. antenna array. If the point corresponds
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to a noise source position, then the corresponding direction lines intersect at

a point which is the position of the noise source. If the angle of only one of

the direction lines is changed, then the N direction lines no longer intersect at

a point but at N points. In the N-dimensional T-space, this corresponds to moving

parallel to one of the coordinate axes. From such considerations, it is seen

that the locus of points in the T-space that correspond to noise source positions

is a hypersurface. The exact shape of this hypersurface is a function of the

relative positions of the array's antennas and can be determined by the simul-

taneous solution of the N equations for the N direction lines of the array. We

now observe that an experimentally determined point in the T-space may not lie

on this hypersurface. The center of the sphere of confusion in which it does

lie, however, does correspond to the actual noise source position. Thus the

hypersurface passes through the center of the sphere of confusion and the point

of the hypersurface at the center of the sphere corresponds to the actual noise

source position.

Before a measurement is made, we assume that all points on the hypersurface

are equally likely. Consequently, after a measurement is made and an experi-

mental point is obtained in the T-space off the hypersurface, the target position

that one should choose is that point on the hypersurface which is closest to the

experimental point. Thus the optimum choice of a target position is made by

dropping a line from the experimental point perpendicular to the hypersurface. If the

experimental point has the coordinates (T 1 , T 2 ... TN), and if we let (T'1, T ... TN) be
the coordinates of any point on the hypersurface, then by dropping a perpendicular to the

N N
hypersurface, we have chosen that point in space for which Z (Ti-T )2 = (ATi)2

i=l i=l
is a minimum.

We now wish to determine the probability, P, that the location in real space, to which

this chosen point on the hypersurface corresponds, is within a given region about the

true target position. We shall obtain an approximate expression for this probability. If

the angle, a, subtended by the region as seen from the antenna array is small, then from

Eq. 3, the corresponding change in T 1, for example, is

AT1 1 2 sin 012 sin a 2 sin 0 1 2 a (7)

Thus the change along any coordinate, Ti, can be approximated by a linear function of a.

The implication in the N-dimensional T-space is that the corresponding region of the

hypersurface can be approximated by a hyperplane. For simplicity, let this region of

interest on the hypersurface be a circle of radius EN . The desired probability, P, is

then the ratio of the partial volume of the sphere of confusion above and below the
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2EN
HYPERSURFACE

Fig. XIII-13. Pertaining to the calculation of the
probability, P.

RN

hyperplane of the circle to the total volume of the sphere. This partial volume is depicted

by the shaded region of Fig. XIII-13. With the approximation that EN is small as com-

pared with R N, the ratio is given by

P= N-1
KNR N

(8)

zN/2
KN -

in which Q(3) is the area of the spherical cap of the partial volume. The equation for

its area is (ref. 8)

(N-1) r (N-i)/2RN-1N .N-2
(P) = sin xdx (9)

F[(N+1)/2] 0

in which

E E
-1 N N

= sin R (10)
RN RN

Thus

7r(N-1)/2 RN-1 N-

F[(N+1)/] RN

Substituting this last equation in Eq. 8, we find that the desired probability, P, is

2 [(N/2)+I] N N -

v r[(N+1)/2] RN(1

We have shown that RN is inversely proportional to T, the time of observation. Thus

we observe from Eq. 12 that for a given array of N + 1 elements, the probability that

the noise source is located within a given region about the true noise source position is

proportional to T N - 1 . Since R N is a function of the crosscorrelation function of the

N + 1 received signals, both RN and EN are not only functions of the number of elements
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in the array, but also of their relative positions in the array. These functions must be

determined if we want to know the change in the probability, P, caused by a change in

the array. From Eq. 12, we thus note that the optimum array is that one for which

(EN/RN) is a maximum.

The method of noise source location that we have just described is directly applicable

to the design of receiving antenna arrays for use in radio astronomy. For target location

systems such as radar and sonar, the target is not always an active source of noise.

For such cases, the target may be made a passive source by illuminating it with some

external noise source. For such cases, the Nth-order correlation function of the noise

wave used for illumination can be tailored so that only a few terms of the orthonormal

set, hn(t), of Fig. XIII-9 are required. In this manner, the additional error that results

from truncation of the orthonormal set can be eliminated. A disadvantage of this method

is that if several targets are present, they are no longer independent noise sources. As

a result, false peaks will occur in the N-dimensional T-space. However, the location

of these false peaks will be a function of the relative positions of the targets with respect

to the illuminating noise source. To illustrate this, consider the simple case of two

noise sources and an array of only two antennas. Let the signal received by the first

antenna be

f 1(t) = N 1 (t) + N 2 (t) (13)

in which N 1 (t) is the signal received from the first target and N 2 (t) is the signal received

from the second target. The signal received by the second antenna will then be

f 2 (t) = N 1 (t-T 1 ) + N 2 (t-T 2 ) (14)

and the crosscorrelation of the two received signals is

fl(t) f 2 (t+T) = [N 1 (t)+NZ(t)][N 1 (t-T 1+T)+N(t-T+T)]

= N 1 (t) NI(t-T+T) + NZ(t) NZ(t-T 2 +T) + N 1 (t) NZ(t-T?+T) + N2 (t) N 1 (t-T 1 +T)

(15)

The first term is the autocorrelation of the signal received from the first noise source

and has a peak at T = T1. Similarly, the second term has a peak at T = T 2 . These are

the two desired peaks. If the sources were independent, the third and fourth terms

would be constants and the crosscorrelation of the received signals would contain only

the two desired peaks. However, if the two targets are passive noise sources, then

N 2 (t) = N 1 (t-T 3 ) (16)

in which T 3 is determined by the relative positions of the two targets with respect to
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the illuminating noise source. For this case, the third and fourth terms become

Nl(t) N 2 (t-T 2 +T) = N 1 (t) N 1 (t-T 3-T 2+T)

and (17)

N 2 (t) N1(t-T 1 +T) = N 2 (t) N 2 (t+T 3 -T 1+T)

Thus two false peaks at T = T 2 + T 3 and T = T 1 - T 3 arise from the crosscorre-

lation between the two targets. We should now observe that the maximum value

of T 1 or T 2 that can occur is d/c, in which d is the distance between the two

antennas and c is the velocity of the signal. Thus, for example, if T 3 is suf-

ficiently large so that T72+T31 and IT --T31 are each greater than d/c, we know

that they are false peaks, and there is no ambiguity. If this is not the case,

then false peaks occur within the acceptable range of T. There are two possible

methods of eliminating this ambiguity. First, since only the false peaks are a

function of the position of the illuminating noise source, we can make a meas-

urement for each of two different positions of the illuminator; the false peaks

can then be determined by comparing the two measurements. The second method

is to increase the number of antennas in the array. As this is done, not only

can we increase the distance between targets in the N-dimensional T-space, but

we also are imposing more constraints on the false peaks so that they can lie

in the hypersurface corresponding to possible target positions. Thus, it should

be possible to form an array by arranging a sufficient number of elements for

which the false peaks that arise from dependent targets are separated from the

hypersurface by distances greater than the radius of a sphere of confusion. This

second method has an additional advantage. There is a second source of false

peaks. They arise if the autocorrelation function of a noise source is not a mono-

tonically decreasing function, but contains periodic components. By use of the

second method it also should be possible to cause the location of such additional

false peaks to be off the hypersurface.

It is interesting to note that this method of noise source location can be reversed to

yield a method for navigation. Suppose that we want to locate the position of a receiver

relative to several transmitting stations whose locations are known. If the signals trans-

mitted by the several stations are coherent, then the receiver's position can be deter-

mined by crosscorrelating the several signals in the manner we have described and

locating the peak of the correlation function.

M. Schetzen

(References and footnotes on following page)
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E. OPTIMUM COMPENSATION FOR NONLINEAR CONTROL SYSTEMS. II.

In Quarterly Progress Report No. 59, page 120, an algorithm was demonstrated

which led from a solution of the associated optimum filter problem to the solution of the

control problem. Before developing a similar procedure for the feedback compensator
kernels, an example will be given in order to demonstrate the technique. This example

is reasonably simple so that the technique will not be obscured by too much detail.

EXAMPLE 1. Series Compensation. Consider a system whose fixed elements are

described by

y + ay + by = Cx + dx 3  
(18)

The desired operation of the over-all system is represented by a linear kernel K 1 . The

system is of the form shown in Fig. XI-14, Quarterly Progress Report No. 59, page 118.

We can write the linear term by inspection and then use the algorithm to find the

higher-order kernels:

(S +aS+b) K 1 (S) = CC 1 (S 1 )[1-K 1 (S)] (19)

This yields
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1 (S +aS+b) K 1 (S)
C1 (S) = K1(S

1 C 1 - K (S)

The next nonzero equation is for C 3:
1

(a) Q3 = 0, since K for n 1

(b) 1 1 1 1(b) P 3 = P(1) + P3(2) + P (3)
3 3 3 3

1
For P3(1):

C 1 - 0

K
3

since K 3 = 0

(c) P 3  P 3 (3) -

Q3 3 3

Therefore,

1 1(3 ) =
3 = P3 CC 3 (S1 , S2, S3 )

1
For P3(2):

Fr

C 2  - 0

K1 K2

since C 2 = 0

3

I [1-K l (S i ) ]i= 1

3
-d=

i= l

3
0 = CC 3 (S 1 ,'2, S 3 ) E1 [1-K 1 (Si)]

i= 1

3

+di
i= 1

and we obtain

d
C 3(S1 , S2' S 3 ) = - C 1 (S 1 ) C 1 (S2 ) C 1 (S 3 )

Similarly, for C 5

5
0 = +CC 5 (S1 ,S 2 ,S 3,S 4,S 5) I.-

i= 1
[1-K 1 (Si)] + 3dC 1 (S 1 ) C 1 (S 2 ) C 3 (S 3 ,S 4 ,S 5 )

(24)
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1For P1(3):
3

(21)

(22)

(23)

5

i= 1
[1-K 1 (Si)]

C 1 (Si)[1-K1(Si)]
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which yields

3d d2 5C 5( S S 5 C 1(S1 ) C1 (S) C 3(S 3, S S 5)= +3 C 2  C(Si)

For C 7:

7
0 = +CC 7 (S 1 ,S 2 ,S 3,.. .S 7 ) f [l-Kl(Si)] + 3dC1 (S 1 ) C 1 (S 2 ) C 5 (S 3 ,S 4 ,S 5 ,S 6 ,S 7 )

i= 1

and we obtain

3 7
C 7 (S 1 ' S2' S3 ... .S 7 ) = 3  i C 1 (Si)

C i=1

(25)

(26)

(27)

In this case, we can see the form of the succeeding kernels. They consist of C 1 fol-
lowed by a nonlinear no-memory element. The compensator could be synthesized as
in Fig. XIII-14. But for x < 3d the no-memory terms form a convergent power

Fig. XIII-14. Series compensation - derived form.

Fig. XIII-15. Series compensation - synthesis form.
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series so that the system takes the form of Fig. XIII-15.

We see that the compensator kernels consist of the combination of a linear system

and a nonlinear no-memory system. Consideration of other examples shows that for a

large class of problems the optimum compensators are made up of combinations of three

types of elements: linear filters, nonlinear no-memory devices, and the original filter

kernels. The significance of this division is that it moves the filter-approximation prob-

lem outside the feedback loop.

(b) Algorithm for Determining Feedback Compensator Kernels

When C = 1, the system assumes the form shown in Fig. XI-14b in Quarterly

Progress Report No. 59, p. 118. The problem is to determine a series of kernels for Cb

so that a desired filtering operation can be performed.

The equations describing the operation of the system are

C(t) = C 1 (t-T) y(T) dT + C 2 (t-T 1 , t-T 2 ) Y(T 1 ) y(TZ) dT 1 dT. + ... (28)

Pl( x', x", ... x (r)) = PZ(y, y, y, . . y(s)) (29)

y(t) K(t-T) r(T) dT + KZ(t--T1 , t-T 2 ) r(T 1 ) r(T 2 ) dT 1dT 2 + ... (30)

x(t) = r(t) - C(t) (31)

Using the same approach as in the series compensator case, we can write an equation

of the form

s s-1 1 pr + pr-1 + 1 (3
m m m m m m

1
for each m = 1, 2, .... Once again, the unknown kernel appears only in Pm. There-

fore, each C is determined successively.m
The method for determining Pn and Qm will now be outlined. The techniques are

the same as in the series case, but a complete discussion is included in order to main-

tain continuity.

2. 2 Construction of Pn ; Contribution of an n th-order nonlinearity of the input
m

th
to an m -order feedback compensator kernel

As in the series case, Pn consists of a sum of m-n+1 terms, Pn (i). The structure
m m

of the component terms Pn (i) is identical with the series compensation terms, but the
m

actual functions are different. The construction of Pn (i) involves three steps. First,
m
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form all partitions of m objects into n cells. For example, the partitions for m = 6

and n = 3 are:

(I) I 11 Ill (II) r 1 l lll (III) iI II In

P123 P114 P 2 2 2

Second, consider all combinations of n compensator kernels C., where E j = i. Thus,

for i = 4 and n = 3, the only set of kernels is C 1,y 1, C 2 . For i = 5 and n = 3, the two

possible sets are C 1 , Cz , C 2 and C 1, C 1, C 3 . Now, compare the various sets of kernels

with the partitions from step 1 for compatibility. The number of objects in any cell of

a partition represents the number of variables associated with that cell. The index on

a compensator kernel Cj represents the minimum number of variables necessary in its

argument. Looking at partition I and the set of kernels C 1 , C 1, C 2 , we see that two

compatible relations are:

S 1 l i- II III
(Ia) and (Ib)

C 1  1 C C 1 C, C 11 1 2  1 2 1

which could correspond to C 1 (S 1) C 1 (S 2 +S 3 ) C 2 (S 4 ,S 5 +S 6 ) for Ia and to

C 1 (S 1) C 2 (S 2 , S 3 ) C 1 (S4+S 5 +S 6 ) for Ib. An incorrect combination would be

I--i II Il

C2 C 1 C 1

because there is only one variable in the first cell, and the argument of C 2 requires at

least two variables. If we look at the original expression, we see that each compensa-

tor -kernel Cj has associated with it j filter kernels KP. In the third step we look at the

ways in which the filter kernels K can combine with the compensator kernels Cj with

the restrictions that E p = m and that the total number of kernels K = i. Looking at

partition Ia, we see that the only possible arrangements are:

(Ia) C 1 C 1  C 2  or C 1 C 1  C2

K 1 K 2 K 1K 2  K 1 K 2 K 2 K 1

Since CZ(S 1 , S?) may always be written in symmetrical form, the arrangements are
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identical except for ordering. Thus, except for a numerical and characteristic coeffi-

cient, we can write the term that the partition represents.

[1-C 1 (S 1 )K(S 1 )][C 1 (S2+S 3 )K 2 (S 2 , S 3 )][C 2 (S 4 , S 5 +S 6 )K 1 (S 4 )K 2 (S 5 , S 6 ) ]

To complete P 6 (4), we repeat the same process for the remainder of p 1 2 3 and for

the other major partitions P 11 4 and p 2 2 2 . The procedure and results can be summarized

in tabular form.

P 6 (4):

P 12 3 -

C1 C1 C 2

K1 K2 K 1 K 2 - [1-C 1 (S1 )K 1 (S 1 )][C 1 (S 2 +S3)K 2 (S 2 , S 3 )]

C 1  C C1  x [C 2 (S 4 , S 5 +S 6 )KI(S 4 )K (S 5 , S6)]

K1 KIK1 K 3  - [1-C1(S1)KI(S1)][C(SS, S3)KI(S2)KI(S3) ]

x [C1(S4+S 5+S6 )K3 (S4, S5' S6) ]

P 1 1 4 -

C 1 C1 C 2

K 1 K 1 K K - [1-C 1 (S 1 )K 1 (S 1 )][1-C 1 (S 2 )K 1 (S 2)]

x [C 2 (s 3 +S 4 , S 5 +S 6 )K 2 (S 3 , S 4 )K 2 (S 5 , S 6 )]

K 1 I K 1 KIK - [1-C 1 (SI)KI(S 1)][1-C 1 (S)KI(S2)]

x [C 2 (S 3 , S4 +S 5 +S 6 )KI(S3 )K 3 (S 4 , S5 , S6)]

P 2 2 2 -

C 1 C 1  C 2

K 2 K 2 K 1K 1 - [C 1(S 1+S)K(S 1 ,S 2 )][C 1( 3 + 4 )K(S3+S4)K (S3,S4)][C2 (S 5,S 6)K(S 5)K 1(S5)K(S 6)]

As in the series compensation case, three quantities remain to be specified:

the sign of each p, the numerical coefficient of each p, and the characteristic

coefficient associated with each p. The value of these quantities is exactly the same
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as in the series case.

Construction of Qm' Contribution of an nth-order nonlinearity of the output
thto an m -order feedback compensator kernel

The basic equation for an n th-order term is

t n

[y(t)]n= Kl(t-T) r(T) dT + K 2 (t-Tl't-T 2 ) r(T 1 ) r(T 2 ) dTldT2 +

(33)

This is exactly the same basic equation as in the series compensator case. Therefore,

n n
Q (series) = Q (feedback) (34)m m

3. Summary

A general method for finding the optimum compensator for a control system has

been shown. The range of input signal magnitudes for which the functional power

series expansion is rapidly convergent will determine the practicality of the solution

in a specific problem. Means of determining this radius of convergence will be

shown in Quarterly Progress Report No. 61.
H. L. Van Trees, Jr.

F. ADDENDA TO SECTION XIII-B

After the completion of Section XIII-B of this report it was found possible to simplify

the derivations of that section so that it is necessary to apply only once the moment

theorem used there. This results in improved estimates of the rates of convergence

given in statements 2' and 3'. Equation 19 may be weakened to read:

-1/2

-j < 00

and statements 2' and 3' may be revised to read:

STATEMENT 2": Restrictions (a-c), assumption 12, and the choice a = 1, y = 1/7

imply

E{IIx -Ojl Zxl} 0(n- 2 /7)
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STATEMENT 3": With the additional restriction that W(e) shall possess a continuous

third derivative, the choice a = 1, y = 1/11 implies

E Xn- xl} = 0(n-4 / 11 )

Assumption 12 may also be weakened in the sense that the decay expressed in Eq. 12

need not be exponential but may fall off as slowly as 1/T 1

D. J. Sakrison
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