
XVII. CIRCUIT THEORY

Prof. S. J. Mason Prof. R. D. Thornton B. L. Diamond
Prof. H. J. Zimmermann J. T. Andreika R. Huibonhoa
Prof. C. L. Searle W. C. Schwab

A. PHASE INVARIANTS

The circuit significance of the conjunctive, or inert, transformation was discussed in

Quarterly Progress Report No. 56 (page 198). It was shown that imbedding an arbitrary

network, with admittance [Y], in an inert network (that is, a network that conserves

complex power) transforms the admittance by the conjunctive transformation.

[Y1] = [T]x[Y][T]

(1)

[T]X = conjugate transpose of [T]

The purpose of this report is to show some interesting invariant properties of this trans-

formation.

If Y is the admittance of a one-port network, then Eq. 1 may be written Y 1 = I T 2 Y.

It is thus apparent that the magnitude of Y1 can be varied at will by varying the magnitude

of T, but the phase angle of Y1 must equal the phase angle of Y. Since the phase angle

is the only invariant for a one-port network, we are encouraged to look for a generalized

phase invariant for an n-port network.

Since the eigenvalues of [Y] have many interesting properties, we are led to wonder

whether the phase angles of these eigenvalues are ever invariant under a conjunctive

transformation. The answer is that they are invariant if [Y][Y]X = [Y]X[y]. A matrix

that commutes with its conjugate transpose is called "normal"; this class includes as

important special cases matrices that are Hermitian, skew-Hermitian, symmetric,

skew-symmetric, and/or unitary. The proof that the phase angles of the eigenvalues of

a normal matrix are conjunctively invariant is straightforward.

PROOF 1. If [U] is unitary, then [U]x = [U] - 1 . By a classical theorem, a [U] can

always be found to satisfy the relation [U]x[Y] [U] = [D], where [D] contains the eigen-

values of [Y] on the diagonal and zeros elsewhere (1). By dividing the i row and col-
.th

umn by the square root of the magnitude of the 1 eigenvalue, we can conjunctively

transform Y into a diagonal matrix with the it h diagonal element having unit magnitude
.th

and the same phase angle as the i eigenvalue.

As a practical example of this transformation, we can consider a 2 X 2 symmetric

matrix.
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Let [Y] = [Y1 ] 
= [T]x[Y][T]

x wz

If [T] = ;x 1; with x, y chosen to satisfy relations
xx 2w z  Iz y

ax + b(l+xy) + cy = 0

aXx + bx(1+xy) + cxy = 0

and

w I-2 = ax 12+b(x+xx)+c

z 1-2 = la+b(y+yX)+c yYl2

0 1/2

then [Y ; A, B = eigenvalues of [Y] = a  c 2 + b

0 IB

Since most nonsymmetric admittance matrices are not normal, we need to find a

more general phase invariant. One approach is by analogy with the procedure for finding

the phase angle of a scalar. If y is a scalar, we can write

y = exp(a+jp); yx = exp(a-jp); yx, I = exp(-a+jp)

1 x,-l
Thus 2 In (yy X') = P ± nr, with n an integer. Except for the ambiguity of nTr, we can2j X-x,-determine P3 from yyx,. We might expect that the eigenvalues of [Y][Y]x,-1 are invari-

ant and could be interpreted as exp(2jpi), where the Pi are the generalized phase invari-

ants. The proof that the eigenvalues of [Y] [Yx, -1 are invariant is relatively simple.

PROOF 2. If [Y 1] = [T]X[Yo][T]

then [Y1][Y1]X-I = [T]X[Y [Yo] x,-1 [T]x,-1

Hence ev[Y][Y x, -1 )= ev([Yo] [Yox ' -l )
x, -l

For the scalar phase relation, yy always has unit magnitude so that P is a real

number. In the matrix relation, however, 3 may also occur in conjugate pairs. A proof

that p must be real or occur in conjugate pairs follows.
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PROOF 3. (ev[Y]Y]X' -l)x, -1 = ev([Y][Y]x'- x, -1 = ev[Y]X'-l[Y] = ev[Y][Y] x ' -1

Hence, if e = eviY][YY]x -, then there must be a Pk that satisfies the

relation

x = (ejpx = ek = evk[YY] x ' -

and thus p must be real or occur in conjugate pairs.

One possible interpretation for a complex phase invariant can be deduced from an

example. Let

[Y] = jejp; [y]x,-1 0 jeJ (2)

-e- a  0 -ea 0

a

[Y][Yy]x-1 e 0 ej2; zIn (ev[Y] [Y])x = 13 ± ja ± n- 2 a

The network described by [Y] in Eq. 2 has the property that if it is terminated by

equal source and load impedances with phase angles 3, then the voltage gain will be ea
-a

in one direction and e in the other. Thus the imaginary part of the phase invariants is

related to the gain of nonreciprocal networks.

The conjugate-pair phase invariants, P3 ± ja, for a two-port network can be calculated

as follows:

If [Y] = ; ev[Y][Y]X' -1 = (cosh 2a ± sinh Za) ej2p

where

Ib 2 + Ic12 - (adx+axd) Re (ad-bc)
cosh 2a = ; cos 2P =  (3)

2 ad-bc Jlad-bc

If cosh Za in Eq. 3 is less than unity, then the phase invariants are both real. Defining

these real invariants as P1 and P2 we find that

(adx+axd)- _b 2 
- c12 Re (ad-bc)

cos ( 2 ad)= bc cos (1+2) ad-bc
2 lad-bc I ad-bc

The eigenvalues of [Y][Y]X -1 alone do not represent a complete set of invariants,

and other methods must be used to determine completely a canonic form for Y. The prob-

lem of developing a complete and simple canonic form has not been fully solved.

R. D. Thornton
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