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A. ESTIMATING FILTERS FOR LINEAR TIME-VARIANT CHANNELS

In other work (1, 2) it has been shown that channel estimating filters play an impor-

tant role in optimum receivers for linear time-variant channels. In this report we dis-

cuss these filters in greater detail, chiefly to supplement later discussions of receivers.

The relation between minimum variance and maximum likelihood estimates is shown,

even in the case of a "singular" channel. Some observations on the general estimation

problem are also made.

1. Definition of the Problem

The situation that we shall consider is diagrammed in Fig. XIV-1. A known signal,

x(t), of limited duration is transmitted through a random linear time-variant channel, A,

of finite memory. The result is a waveform,

z(t), which is further corrupted by additive

x'(t) A z(kt) y(t noise, say n(t), before it is available to the
TRANSMITTED n RECEIVED

SIGNAL n(t) SIGNAL receiver. Let y(t) denote the final received
CHANNEL

ADDITIVE signal - that is, y(t) = n(t) +- z(t) - and let T
NOISE

denote the duration of y(t).

Fig. XIV-1. The channel. Our problem is: Given y(t), and the know-

ledge of the statistical parameters of y(t) and

n(t), we wish to derive estimates of z(t) on a minimum-variance and maximum-likelihood

basis. For the minimum variance estimate we need only assume knowledge of the auto-

correlation functions of y(t) and n(t); for the maximum likelihood estimate we have to

assume that y(t) and n(t) are Gaussian. If we make these assumptions, we shall find that
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the maximum likelihood estimate coincides with the minimum variance estimate, which
is a well known result.

We assume that the additive noise is gaussian (but not necessarily white), that the
random channel is such that its output z(t), for the given input x(t), is Gaussian, and
that the mean and variance parameters of these distributions are known a priori. (The
distributions themselves need not be stationary.) No further assumption is made about
the structure of the channel. Scatter-multipath channels are often of this type. Our
model takes account of Rayleigh fading and Rice fading (fading when a specular component
is also present), with arbitrary rates of variation.

Two additional assumptions are made in order to simplify the presentation; namely,
z(t) and n(t) have zero mean, and z(t) and n(t) are independent.

We shall use a discrete model for the channel and signals, as explained in refer-
ence 2. Thus for the channel model of Fig. XIV-1 we have

y= Ax+n= z+n (1)

where y, x, n are column matrices that represent y(t), x(t), n(t); and A similarly repre-
sents the channel.

Furthermore, since the channel and noise are statistically independent, the probabi-
lity density function of the (Gaussian) random variable y is given by

p(ylx) 1 1 exp - yt[j ]-ly
(2w)N/ 2  1/yyl/Z

where N is the number of elements in the y-matrix, and ( = 4 + n is the covari-yy zz nn
ance matrix of y. We shall assume that ,nn is nonsingular - an assumption that will

guarantee that D is also nonsingular.
YY

2. Derivation of the Estimating Filters

We have described elsewhere (2) how the minimum variance estimate of z is to be
obtained and merely quote the result here. This estimate does not require the assump-
tion of Gaussian statistics for the noise. The other estimate that we discuss has been
called the maximum likelihood estimate by Youla and Price (1). This is not the conven-
tional designation in the statistical literature, and a more appropriate name might be
"Bayes' estimate," as Davenport and Root have suggested. In this report, we shall
retain the designation "maximum likelihood estimate."

a. Minimum variance estimate (2, 3)

The formula is

ze =Hy= D + nn 2-1
e zz zz nn
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b. Maximum likelihood estimate

The maximum likelihood estimate of z is obtained by finding the _2 that maximizes

the conditional probability, p(z y), of z, given y. To solve for this 2 is, in general, quite

difficult, but for Gaussian statistics the calculation is readily made. Therefore, here,

in contrast to the practice for the minimum variance estimate, we shall specifically

assume that y, z, and n are Gaussian. We have, then, y = z + n, where y, z, n are all

Gaussian with zero mean and covariance matrices ~yy, zz' nn respectively. Further-

more, Bayes' rule gives

p(y z) p(z)
p(z y) = = k - p(y z) p(z)

p(y)

because p(y) is a constant. Now, we have

p(_y) = pn(_y) = 1 exp ()Tnn(y-z) (3)
(2rr)N/2 (nn I / 2  2 -

and

1 1 1 -1-1
p(z) exp zT z, assuming that - exists. (4)

)N/Z2 T-zz zz
zz

Therefore

p(zly) = k' exp 2 (y-zT (y-z)+Z _ z

To obtain the maximum-likelihood estimate of z, we set

ap(z y)
az

This gives

a -1
8z (-T -nn - -zz =

or

-- Y- l + 2 -l
- T-nn+ -T zz =0

Therefore

S - 1 + - 1 = - 1
-T-nn -zz - -nn

or
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' -1 +-1 I - 1 
y

-nn -zz) -nny

(I+D D 1 = I Y = -1( -1- -nn- zz -zz -zz -nn

= Hy (5)

-1where H = (zz +nn )- zz -nn
This expression for the maximum likelihood estimating filter, H, is the same as that

for the filter derived on a minimum average mean-square-error basis. This equivalence
is a characteristic of Gaussian processes and has been proved several times (4). We
might also point out that for Gaussian statistics, our estimate of z is optimum for more
general criteria; for instance, for any function L(z-z e) that fulfills the requirements-e
L(O) = 0, L(-E) = L(E), L(E 2 ) >,L(E 1 ) >0, for 2 1E >0. (See ref. 5.) We may point

out that in the proof above we have assumed that zz is nonsingular, but no such restric-zz
tion is necessary for the minimum variance estimate. As we might expect, therefore,
this condition can be removed (cf. sec. 4).

3. Particular Cases

We shall examine the filter H in greater detail and study the effects of making addi-
tional assumptions about the channel H. The only term in the formula for H which is

z
( k 
" (t)

Oo(t) a,(t) a (t) Fig. XIV-2. Simple delay-line channel.
(k)( t )

affected thereby is D zz. We shall calculate the precise manner in which the channel and

the signal combine in this term. This will be done for four cases. (The delay-line
model for the channel is shown in Fig. XIV-2.)

Case 1. Channel consists of a single path. In this case, a typical input-output rela-
tion might be

00

z0  a00 
x 0

z 1  a 0 1  x1 + (6)

z 2  0 a 2 xz

To compute zz we shall use the following device. We can rewrite Eq. 6 aszz
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z x

z 2

0 00

Xl a01 = Xa, for example.

x2 a02

Then # = zzT , where zzT is the direct, or Kronecker, product of z and zT ,-zz

bar stands for an ensemble average over the random channel, A. Thus

and the

S= XaaTX = X A X
Thiszz TprocedT ure yieAAlds T

This procedure yields

x
0

zz =

0

2

0 ao00

x 1 a 01a00

x 2 aa02a00

2 2
a00 x0

a01a00 xx 0

a0 2 a00 x2x 0

aoo0 0 ao0 1  a00a02  x

0201

a02a0 1 a02

a00a
0 1 x0x1

2 2
a01 x1 l

a02a0 1 x2xI

a00 a02 x0x2

a0 1a0 2 x1 x2

2 2
a0 2 x2

This equation can be directly verified by computation.

Case 2. Channel consists of a single time-invariant path.

case 2 if we assume that a00 = a 0 1 = a 0 2 = ao' say.

Case 1 should reduce to

This assumption would give

2x
0

X1X0

x0x I

2
x1

x 2 x 0  x 2 x 1

0 1

X 0 X 2

2
x

2

2
a 0

2
a0a0

= XAAXT

2
a 0  x 0

2
a 0

a2 C
00
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This equation, too, can be directly verified. Notice, however, that in this case 1 can
-ZZ

be written

0 x0x2

2
zz = a0 x I  (11)

x2X2

-1and therefore (zz is of rank 1i. Thus, plainly, !P does not exist - which means that we-zz -zz
cannot write the probability density function, Eq. 4, for z, in this case. This is an

example of a "singular normal distribution" (6). The reason for this peculiar behavior
of -Dzz is that although we have three sample values, z o , z 1 , z2 , they do not constitute

a three-dimensional random process. In fact, the randomness of z results from the

random channel A, and for this we have only one random value, a . Therefore theo
three-dimensional distribution of z may be regarded as being concentrated along a par-

ticular straight line in three-dimensional space.

For the same reason, ¢-AA as shown is clearly singular. In general, it is difficult

to recognize when, in fact, -zz and - AA are singular. Thus, depending on the elements

of a, the -zz and -AA of Eqs. 8 and 9 might also be singular. Furthermore, perhaps
if we used a different spacing for our discrete approximation we might now get a singular

matrix. To talk about the rank of the matrix, as Cramer (6) does, is not much help to

us because in our formulation the rank will depend on the size of the matrix. Fortunately,

however, the situation is not so gloomy. Singular cases are rare, as shown by a theo-

rem of Good (7). For a stationary channel, he shows that if the absolutely continuous

portion of the integrated spectrum is not identically zero, the corresponding covariance

matrices of any order (due to differences in sampling intervals) are always nonsingular.

Thus singular channels correspond physically to pure frequency translating (Doppler)

channels. The random time-invariant channel, as studied by Turin (8), for example,

is a singular channel, and we shall usually discuss only this case.

However, whether or not Dzz is singular, we can always write it in the form

-zz AAXT (12)

where - AA is nonsingular, and the X are matrices that depend only on x(t) and are not

necessarily square. For example, in the time-invariant case we can write

x 0 [a 0 ]

z = x1  = X'a 0  (13)

x 22
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# = X' ' X'
-zz - -AA-T

where A'A = [a] and is nonsingular.[2 -1
However, recall that in deriving the maximum likelihood filter, we used T z. Thus

-zz

the proof given in section 2b is not valid in this case and will have to be modified. (Cf.

discussion in sec. 4 and at the end of sec. 3.) We shall find the form of Eq. 12 in which

we use a nonsingular 15AA useful for this purpose.

Case 3. General time-invariant channel. For simplicity, we shall consider only

low-order matrices and vectors, but the relation that we shall derive is general, and

the method of obtaining it in higher-order cases is the same as in the simple example

considered.

Thus we might have

z 0 a0 0  0 x0

zO -  a 1  a00 xo

z2 a 22 all

z3  0 a22

which may be rewritten

z 0 0 0 0 a00

22z 0 0 xa0 0  a0 0a11  a00a2 2

=AA a00all 11 1122 (15)

2
a00a22 al la22  a22

This matrix is nonsingular unless either al = aoo or a2 2 = aoo, or both. The most

interesting case is the nonsingular one, and therefore we shall assume this situation.

Case 4. General time-variant nonsingular channel. We shall again study a simple

example:
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z01 a 00 0 x
z: = l a01 x
which may be rewrittenal

which may be rewritten

0 0 0 a 0 0

x 1  x0  0 a01

0 0 x1 a11

= Xa, for example.

Then D zz = XAA--T'

2
a00 a00a01

2
a0001 a01

-00

10

a00all a00al2

a01all a01al2

2
alla00 alla01 all allal2

a12a00 a12a01 allal2 a12

S. . , for example.

Here, -00 is the covariance matrix for the values a 0 0 , a 0 1 , . . . , assumed by the

top a (t). Notice that in all of these four cases the arrangements of the sample values

of the a vector could be arbitrary; this would have led to different forms for the X and

-AA matrices. The forms that we have given appear to be the most convenient ones.

However, some of the other arrangements are also of interest. We shall merely give

one such illustration for case 4. Thus Eq. 16 could also be written

0 0 0 a00

x0 x 0 all

0 0 xl a0 1

a 1 2

= Xa, for example,

192
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and now

2
a00 a00all a00a01 a00a12

2
alla00 all alla01 alla12

-AA 2
a 0 1 a 0 0  a0 1all a0 1  a0 1al2

2
a12a00 alZa11 a12a01 a12

Thus in these four cases we have obtained a more explicit formula for zz-zz

zz = XAAXT (17)

-where the X and the AA are to be appropriately chosen for the case under considera-

tion. However, we have found that in case 2, the matrix zz is singular. (Also notice
-zz

that the -AA for case 3 cannot be obtained from that of case 4 by making suitable

a-values equal. This is for the same reasons as for case 2.)
-1

In our derivation of the maximum likelihood estimator we used the quantity -1 . This
-zz

is invalid for case 2. But the derivation of the minimum variance estimator did not

involve Dzz and it gives an identical result. Moreover, the final formula for the estima--zz
-1

tor does not involve 1 . Therefore we would expect that the formula for H is correct
-zz

in all cases, but the derivation for the maximum likelihood criterion should be modified.

This will be done in section 5. For the present, by using Eq. 17 we can write

-1
H = XAAXT ( nn+XAAXT) X (18)

4. Rederivation of Maximum Likelihood Estimating Filter

We can write, for all cases, y = Ax + n = Xa + n = z + n, with the X and a suitably

defined. In this proof, as opposed to the one in section 3, we shall first try for a maxi-

mum likelihood estimate of a and use this to get the estimate for z. Therefore we con-

sider

p(y Xa) p(a X) p(X)
p(ay) = = k p(ylXa) p(Xla) p(a)

p(y)

Now

p(ylXa ) = pn(y-)Xa) exp -2 (y -Xa)- (y-Xa)
S(ZTn/Z I I 1/ Z nn

-nn
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where p(X) = constant; p(alX) = p(a) because the channel and the transmitted signal are

assumed to be independent; and

p(a) = 1 1 exp TAA (19)

(Zr)n/2 IAA1/ Z

and this is defined because DAA is chosen to be nonsingular. This is the crux of the

proof.

p(aly) = k' . exp - 2 (y--XaXa)+aT AA

where k' is a constant; that is, it is independent of a. For a maximum likelihood esti-

mate of a, we set

ap(a y)

aa - 0

that is,

a T(y--Xa) T A(y-Xa)+aT AAa} 0

or

-2(y-Xa) D X + 2a -O
T nn -T AA 0

which yields

z = Xa = x AA T nn T nnY (ZO)

This equation gives the estimate of z on a maximum likelihood basis. (We have shown

a different expression for this estimate in sec. 4a.)

Thus on a minimum-variance basis we have

-11z = Hy = D ( +1 )I = X XT (D +X AAXT)-e -- z-zz nn AAT -nn AAT

Therefore we should have the identity

H = X AAXTnn+XAAXT -1 = X +X X X (1)AA T( A+XAAT - A -T -nn (21)

This can be verified purely on a matrix basis.

The proof is not too difficult, and we shall leave it as an interesting exercise for the

reader. Notice, however, that except in case 1, the matrix X is not square. Another
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method of proof is to make a formal series expansion - the Neumann series - of the

terms ( nn+X AAXT )-1 and (- +X xlX on each side of Eq. 21, and verify the

identity term by term. We remark that the direct matrix proof of Eq. 21 enables us to

prove in another way the equivalence of minimum variance and maximum likelihood

estimators.

5. Solution of the Equations for the Estimating Filter

The equations that we have obtained for the estimating filter H - for example,

H= 'i -1
- zz -zz -nn

H X( XT- -1 -1

are discrete analogs of the Wiener-Hopf equation. This equation is, in general, difficult

to solve, and explicit answers for the continuous case have only been found in a few

special cases by a variety of methods that are used by Kac and Siegert, Zadeh and Miller,

Slepian, Youla, Price, Middleton, and others. We have found solutions in some cases

on a discrete basis. It is important to stress, however, that the significance of the

preceding formulas is chiefly that they give us functional forms for ideal receivers for

general channels. An explicit solution of the equations for H would, no doubt, be valu-

able, but the solution is only valid under the strict assumptions of our model. Actual

situations differ inevitably from the model and here the functional forms of the receivers

for our model serve us better by helping to make extensions and extrapolations to real

situations. In this connection, approximate solutions for H are useful and one method

of obtaining them is by the use of Neumann's series. We shall illustrate this by con-

sidering

1-
H (I N+NI)- 1 (I+z

-zzzz o- N -zzN-
o

1-ZZ I -zz zz1 # - . (22)
N -zz N 2 N -zz

o o N o

This infinite geometric series, or Neumann series, converges for sufficiently large

N . (A more detailed discussion of the convergence properties can be found in books
o

on integral equations.) In many cases an approximate representation of H by zz/N

is useful and instructive.
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6. Concluding Remarks

We have given a discussion of estimates for random channels, directed particularly
toward aiding future discussions of optimum receivers. We shall now add a few remarks
on the estimation problem.

We have deduced several forms of estimates for the quantity z(t). Since we know
the transmitted signal x(t), we can calculate what the channel A actually was by
"de-convolution." Equation 25 gives us this channel estimate. However, our objective
might be to make measurements on a general (time-variant) channel to enable us to syn-
thesize a model that will (with suitable delays) respond to inputs in the same fashion as
the original channel would respond. For time-variant channels, it appears that even in
the absence of noise, there are situations in which it is impossible to determine the
actual time-variant channel by input-output measurements only (9). Some methods have
been discussed in reference 9 for making such determinations when they are possible.
R. G. Gallagher (10) has used some of these ideas in measurements on time-variant
telephone lines.

A general study of channel estimation was recently made by Levin (11). Since he
also gives an extensive bibliography, we shall not discuss this problem further, except
for a special case studied by Turin (8).

For the noisy channel case, Turin was the first to show that crosscorrelation was
the best measurement technique for a time-invariant channel. This follows also from-1 2
our Eq. 20, when we assume a single time-invariant path. In this case, A-1 = 1/ aZ

-1 AA
say, nn = 1/N , and X is a column vector; and XTX = ZE, where E is the energy in
the transmitted signal x(t). Therefore

-1 ( 1 E N1 X1 Ta = H'Xnn - + X

and XT_ y is a crosscorrelation. Our matrix approach to this problem also reveals
the possibility of generalizing this result to more complicated situations - with
many time-invariant paths, time-variant channels, and so forth.

We note that this work applies directly to the problems of estimating and detecting
random and gaussian signals in gaussian noise. This kind of situation is encoun-
tered in radio astronomy.

A few remarks should be made about notation and analysis. The matrix
approach is much more convenient for obtaining general block-diagram solutions
for the estimators and receivers than the integral-equation method. To derive
the equations for a general channel as we have just done, using integral equa-
tions only, is rather complicated. However, when it comes to solving the matrix
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equations in particular cases, it is convenient to pass (formally) to the limit

and obtain our results in continuous form. The advantage is that much work

has been done on (linear) integral equations, while matrix equations have not

been as extensively investigated. In addition to the matrix method as we have

used it, and the integral-equation method, as used, for example, by Price (1),

we can use Grenander's method of observable coordinates (12, 13). This method

is probably the most rigorous, but the least intuitive or physical, of the three

methods. It is useful in detection theory because it points out clearly the occur-

rence and existence of "singular" cases, when perfect detection is possible (12).

T. Kailath
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B. EXTRACTION OF INFORMATION FROM A PAIR OF PERIODICALLY

VARYING RANDOM WAVEFORMS"

This research was completed and was presented to the Department of Electrical
Engineering, M. I. T., in partial fulfillment of the requirements for the degrees of
Bachelor of Science and Master of Science.

I. G. Stiglitz

C. OPTIMUM DIVERSITY COMBINERS

Recent work on optimum multipath receivers (1, 2) has led to a simple solution of the
following general problem in diversity combination:

A signal x(t) is transmitted through a set of random linear time-variant channels
A l , A 2 , ... , A r , and is further corrupted by additive noises n l , n 2 , ... , nr (as shown

in Fig. XIV-3) before being available to the receiver as signals yl(t), y2 (t) ..... r(t)

x(t) AVAILABLE TO
PROBABILITY Fig. XIV-3. The diversity channel.
COMPUTING
RECEIVER

The receiver then has to compute the a posteriori probability p(x(t)lyl(t), Y2 (t) ' y(t)).
The noises n i are assumed to have Gaussian statistics that are known to the receiver.

The noises need not be mutually independent, but they are assumed to be independent of
the statistics of the channels, A..1

For the channels Ai we can assume that (a) the statistics are Gaussian and known or
(b) the statistics are arbitrary, but the first- and second-order statistics (the means
and the covariances) are known. For case (b), we have obtained a solution that is valid
only for weak (or threshold) signals.

The solution depends on the following result which we derived in reference 2. (It can
also be simply deduced by using some of the results of Sec. XIV-A.) For a single

This work was supported in part by the Office of Naval Research under
Contract Nonr-1841(57).
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channel, A 1, we can write in matrix notation (ref. 2 and Eqs. 7, 13, 14, 16 of Sec. XIV-A):

Y = Xal + n 1 = Xalr + Xal + n 1  
(1)

where y and n are column vectors comprised of sample values of the received

Yl(t) and nl(t) waveforms, a 1 is a column vector whose elements depend on the

values of the channel impulse response al(t, T), and X is a matrix - not usually

one-dimensional - with elements dependent on the signal x(t). We write alr and

ia to denote the random and the mean components of a 1 . Then, for the covariances
-1 1
we have

S = X lXt + 1 (2)
-ylY1 -- alal -nln 1

where

y y a I (_a -51)(aI-d 1 )t n = n n t  (3)
yl 1  1t' ala 1  1 1 ' nn 1  It

in which the subscript t denotes the transposition of the matrix.

Now, assuming Gaussian statistics, the receiver that essentially calculates p(xly)

(certain "bias" terms are omitted here) has to compute the quantity

-1 -1 -1
n t -Y -X 1 t nlX-p alalI + Xt nlnlX-al a l XIt
nt 11 n +a-n -1

-1 (y-Xl) (4)

-n 1  1 -

This is true, provided that P exists; no assumptions as to the nonsingularity of X
-nln 1

or a are required. In certain cases - for example, nonselective slow fading -
-ala 1

a a, as defined, is singular (2, 3). With a slight modification of the definitions of X
aa 1

and a, we can define the covariance so that --AA is always nonsingular (2, 3). Then we

can write

A = Z(X y + (yy1 -X_ 1)t 1 0 -1n1 ___A 2al t n 1n 1 - -Xalt -n 1 n 1 I(alai + Xt n 1  1-XEd
-nln1 -  1 -nlnl~l -ala 1  ln x ) 1

(5)

Physical interpretations of the action of this receiver - for example, an estimator-

correlator feature - are discussed in references 1 and 2.

To adapt this solution to the general diversity problem we write the set of equations

(cf. Fig. XIV-3):
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(XIV. PROCESSING AND TRANSMISSION OF INFORMATION)

1 = Xal + n1
2 = Xa 2 + n2

r Xa + nr-- r -r

as a single matrix equation

y = Xa + n (7)

where y, a, n are (super) column vectors composed of the separate column vectors Y'

' ... ' r' al' a2 ..... a, nl' n2' ... r. Thus, for example, yt lt2t rt
The covariances are defined for y, a, n as in Eq. 3,

S= _Yt = X aaXt + lnn (8)

Now the optimum probability computer is of the same form as Eq. 4 or Eq. 5, except

that the subscript 1 is dropped.

If we do not assume Gaussian statistics for the A i., we have the approximate solution

for weak signals:

-1 -1A = 2(Xa)t y + (y-X)t ~ nnXaaXtnn(yXa) (9)

This solution is often a useful approximation even in the case of Gaussian statistics.

We have left the solution in discrete form, but the continuous analogs, obtained for-

mally by letting the sampling grid become infinitely dense, are easily deduced.

Thus almost in one fell swoop, the solution of the diversity problem for correlated

gaussian noises and arbitrary (gaussian) multipath channels in each diversity branch,

is obtained. It is readily seen that the combination rules of Kahn (4), Brennan (5),
Law (6), Pierce (7), and others are included in the formulation given above. More

details, and explicit solutions for some cases, will be described later.
T. Kailath
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