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A. ELECTRON EMISSION AND CESIUM PLASMA

1. THERMIONIC ENERGY CONVERTERS

Thermionic diodes containing cesium vapor ionized by contact with the heated sur-

face of the diode are of increasing interest as their potentialities become established.

Many calculations demand a knowledge of the vapor pressure of the cesium or of its

mean-free path or both. To satisfy this demand as well as is possible with our present

limited knowledge of the actual characteristics of cesium, the following equations have

been worked out:

8 -1/2 -89L0/TCs
p = 2.45X10 Cs e mm

8 -1/2 -3870/TC
p = 2. 45 X 10 TCs X 0 s mm

X = 1.38 X 1013 T 1/2 103670/TC m
c g

X = 1.38 X 1011 T1/ X 103670/T cm
c g

where p is the pressure in millimeters; TCs is the cesium condensation temperature

in OK; T is the average temperature of cesium gas in oK; and X is the mean-free

path.

The numerical results represented by these equations have been incorporated in

a nomographic chart (Fig. I-1) prepared by J. H. Hufford, Class of '63, M.I.T. The

columns at the right give a one-to-one correspondence between pressure and cesium

temperature. This is the pressure in equilibrium with liquid cesium at the temperature

specified. If the temperature of the gas in some part of the diode is different from the

temperature of the cesium reservoir, the mean-free path will be slightly greater

if the temperature in the diode is greater than the cesium temperature. The chart also

serves to show how much change takes place in the mean-free path, and of course it can

be used to estimate the mean-free path in the immediate neighborhood of the cesium sur-

face by setting a straightedge, or alignment thread, at the cesium temperature point on

the T scale. It is hoped that this chart will be found useful for quick estimations of
g

the pressure-temperature mean-free-path relations.

W. B. Nottingham
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Fig. I-1. Temperature-pressure mean-free-path relations for cesium.
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B. PHYSICAL ELECTRONICS IN THE SOLID STATE

1. CHARACTERISTICS OF SEMICONDUCTOR JUNCTIONS

In Quarterly Progress Report No. 57, measurements were reported on two type

1N670 diffused silicon diodes. The analysis of these data is essentially complete.

In Fig. I-2 is shown a semilogarithmic plot of the forward part of the characteristic

of one of the diodes at several temperatures from 20 0 C to 140'C. The slight bend in

the characteristic was previously mentioned in connection with other diodes that were

studied (1). In order to understand the reason for this bend, measurements were made

of the ac forward conductance of the diodes as a function of applied voltage. The results

(Fig. 1-3) show that the conductance at higher forward voltages is about what would be

expected from the measured dc conductance, calculated as dI/dV. This is represented
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Fig. I-2. Forward characteristic of diode 1N670-1.

by the solid line in the upper end of the curve. At smaller applied voltages the conduc-

tance is always larger than would be expected from the dc characteristic. This is the

behavior expected from a surface channel viewed as a lossy transmission line.

On the basis of this evidence that a surface channel existed and was responsible for
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Fig. 1-3. Forward ac conductance (diode 1N670-1).

part of the forward current, we made an analysis of the forward characteristic, using

the theory of Cutler and Bath (2). This analysis shows that the part of the current from

the channel should be

c c 0p( T)T- VT

where VT = q/kT. By assuming another current component, I , given by

I = Iu [exp(V/nVT)-1 ]

a three-point fit was made to the forward characteristic. Reconstruction of the entire

forward characteristic after the determination of Ic , I , and n produced an excellent
o oS-3 0

fit to the entire forward characteristic below 10 ampere. Furthermore, comparison

of the constants determined here with the measured low-voltage dc conductance, go

through the relation Ic = 2VTg c shows excellent agreement. This relation follows from

consideration of the channel as a transmission line. Here gc is the conductance of the

channel alone. This is calculated from the observed conductance by subtracting from go
a reasonable (but small) estimate of the conductance of I .u

In Fig. I-4 is shown a plot of Iu , I , I' and the reverse current at three different
u cO O O

I I I j I I
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voltages. We see the general trend of agreement between I c and I' . In addition, the
o o

temperature variation of the reverse current is similar - a fact that shows that it, too,

arises from a surface channel. The other current component, Iu , displays a completely

different temperature behavior. This component is thought to be a combination of

diffusion and space-charge recombination currents.
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Fig. I-4. Temperature dependence of current components.

The diode on which data have been presented here shows behavior that is completely

consistent with conventional channel behavior. Another diode, quite similar in construc-

tion, shows incomplete agreement with the channel picture. In contrast with diode

1N670-1, which showed a reverse current that always increased with time after appli-

cation of a reverse bias, this diode (1N670-2) shows a reverse current that decreases

with time. This observation indicates that the density of slow surface states must be

changing, probably as the result of migration of ions along the surface of the diode. A

rough calculation shows that the mobilities required for this behavior are in the range

of 10 - 3 to 10 - 4 cm 2/volt-sec, which suggests the presence of a surface film of water.

This is unlikely, however, because diodes that have been freshly evacuated also show the
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downward creep of current with time.

More complete results of this study are presented in a Ph.D. thesis, Department
of Physics, M.I.T. (1960).

J. F. Campbell, Jr.
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