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Abstract

The extrapolation of track parameters and their associated covariances to destination surfaces
of different types is a very frequent process in the event reconstruction of high energy physics
experiments. This is amongst other reasons due to the fact that most track and vertex fitting
techniques are based on the first and second momentum of the underlying probability density
distribution. The correct stochastic or deterministic treatment of interactions with the traversed
detector material is hereby crucial for high quality track reconstruction throughout the entire
momentum range of final state particles that are produced in high energy physics collision exper-
iments. This document presents the main concepts, the algorithms and the implementation of
the newly developed, powerful ATLAS track extrapolation engine. It also emphasises on valida-
tion procedures, timing measurements and the integration into the ATLAS offline reconstruction
software.
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1 Introduction

The transport of track parameters (i.e. the representation of a track with respect to a given surface)
and their associated covariances is a very frequent process in track reconstruction. Most progressive
fitting techniques such as the Kalman filter formalism [1] rely on the prediction of the gathered track
information on the successive measurement surface (a simplified illustration of a track extrapolation
in a typical Kalman filter step can be seen in Fig. 1). In global fitting techniques, on the other hand,
the prediction of the track depending on the initial parameters (i.e. the fitted parameters) enters
the global χ2 function to be minimized. For both, global and sequential track fitting algorithms,
the correct treatment of effects caused by the interaction of the particle with traversed detector
material is essential; in the least squares fit the uncertainties due to material interactions regulate
the contribution of the fitted scattering angle to the global χ2 function. In most sequential fitting
techniques the uncertainties of the momentum direction and magnitude caused by interactions with
the detector material are directly applied as deterministic energy loss and additional contributions to
the covariance matrix during the extrapolation process.
Track extrapolation is furthermore necessary in vertex fitting, where the expression of the track with
respect to the estimated vertex position has to be evaluated iteratively towards convergence. Moreover,
in pattern recognition the seeded prediction of a track may be used for trajectory building and hit
finding. Finally, the track parameters representation on a destination surface is needed for combined
reconstruction to enhance the matching of tracking information and calorimeter clusters on the one
hand, and the combination of tracks and track segments from different tracking devices on the other
hand.

Measurement

Predicted track parameters

track

Material LayerModule 1

Module 2

Figure 1: Simplified illustration of a typical extrapolation process within a Kalman filter step. The track
representation on the detector module 1 is propagated onto the next measurement surface, which results
in the track prediction on module 2. The traversing of the material layer between the two modules causes
an increase of the track direction uncertainties and thus — by correlation — an increased uncertainty of
the predicted track parameters. In the Kalman filter formalism, the weighted mean between prediction and
associated measurement build the updated measurement which builds the start point for the next filter step;
this leads to the illustrated non-continuous track model.

The ATLAS experiment puts stringent requirements to the track reconstruction software: for the track
parameter propagation, in particular, the highly inhomogeneous magnetic field setup — a solenoidal
field with a central magnitude of 2 Tesla in the Inner Detector (ID) and a toroidal magnetic field with
a peak strength higher than 4 Tesla in the Muon Spectrometer (MS) — and the complex material
distribution of the sub-detectors must be dealt with correctly to achieve a satisfactory tracking reso-
lution. Additionally, the expected high track occupancy in the Inner Detector and the resulting high
number of track candidates impose combinatorial and timing constraints for track finding and fitting
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algorithms. Since the CPU time consumption of the track reconstruction chain has to be minimised
to fit with the computing budget of the experiment, the algorithmic solution of a powerful but fast
track extrapolation engine is a challenging task.
During the redesign of the ATLAS offline reconstruction software that has been invoked by the Final
Report of the Reconstruction Task Force (RTF) [2], a new extrapolation package has been designed and
developed. First big scale tests of the new extrapolation engine have been performed during event
reconstruction of the ATLAS Combined Test Beam 2004 (CTB2004), the first commissioning runs
using cosmic rays since 2005 and the reconstruction of Monte Carlo simulated data. The extrapolation
package is fully integrated in the object oriented C++ based ATLAS software framework ATHENA [3]
and has been developed respecting ATLAS coding standards [4]. A description of the main components
of the ATHENA framework, the Service, the Algorithm and the AlgTool interfaces, can be found in
[5]. This document is based on the ATLAS software release 13.0.10, while extensions that have been
applied after this release are indicated within the context.

1.1 Design Principles and Document Structure

The transportation of a track representation to a destination surface can be divided into three con-
ceptionally different tasks that have been independently realised as single components of the ATLAS
extrapolation package. For convenience, they will also build the guideline of this document:

• the propagation process describes the mathematical transport of the track parameters and
associated covariances to the target surface. The propagation module is defined through a
dedicated IPropagator interface, that is implemented through various different propagation
AlgTool classes. A more detailed description of the propagation process can be found in Sec. 2.

• the navigation relates the trajectory to the various entities of the reconstruction geometry. This
is necessary to find the appropriate material description, to ensure the access to the (configured)
magnetic field map, or even to find the detector volume that contains the destination surface.
A dedicated INavigator interface defines these navigation methods, see Sec. 3.

• the integration of material effects according to the traversed detector material that is pro-
vided by the navigation marks the third column of the extrapolation package. It is enhanced
through various different AlgTool classes and further described in Sec. 4.

The complete process including all three tasks will in the following be referred to as track extrapolation.
It is concentrated in a single AlgTool implementation, the Extrapolator; a schematic illustration of
the three column structure that is incorporated by the extrapolation engine — represented through
the various interface definitions — can be seen in Fig. 2. A further description of the user interface and
the successive steering of propagation, navigation and material effects integration will be described
in Sec. 5. Section 6 will give performance numbers in both timing and accuracy for typical track
reconstruction applications. The Appendix explains used conventions and typesetting formats, and
gives an exhaustive list of formulas used within the various track propagation techniques.

1.2 Component Pattern and Data Factory Design

The TrkExtrapolation repository follows a strict component pattern design, i.e. abstract interface classes
are concentrated in dedicated interface packages, while concrete implementations of algorithmic code
and data classes are separated in different component and installed libraries, respectively. This allows
dynamic loading of libraries at job execution level, and is thus the key to the high flexibility. The
single components of the track extrapolation package are, in general, realised as factories, i.e. the
performed operations lead to newly created objects. In C++ terms this is done by returning pointers
to objects that are dynamically created using the new operator, while the return of a pointer with
value 0 indicates that the operation could not be performed. The ATLAS tracking data model, briefly
presented in the following section, does not foresee invalid objects, such as e.g. a representation of a
failed extrapolation process.
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Figure 2: The ATLAS extrapolation engine illustrated as a task diagram. The various modules of prop-
agation, navigation and material effects integration are identified through dedicated interfaces. The main
concrete implementations are also shown in this diagram, brighter colored boxes framed by a dashed line
represent hereby the exchanged modules for the use of the extrapolation engine in the fast track simulation
application.

1.3 Tracking Event Data Model and TrackingGeometry

The extrapolation package is based on the common tracking event data model (EDM) and the ATLAS
reconstruction geometry. In particular, the main EDM classes extending the TrackParameters base
class and the geometry classes Surface, TrackingGeometry, TrackingVolume and Layer are essential
ingredients of the track extrapolation process. The full description of these classes would go far beyond
the scope of this document the interested reader is, however, encouraged to read further in [6] and [7],
respectively, for an exhaustive description of these modules.

Track Parameterisation A track can be parameterised with respect to a surface in many different
ways. If a particle propagates through magnetic field, however, a minimal set of five parameters
is necessary to provide a complete and unambiguous parameterisation with respect to any given
detector surface. In the following, such a representation of the trajectory will be referred to as
TrackParameters. In ATLAS, dedicated TrackParameters objects exist for every defined surface
type and provide the following track parameterisation1

x = (l1, l2, φ, θ, q/p)T (1)

when l1 and l2 denote the local coordinates on the given surface (and thus depend on the surface type),
φ and θ are the azimuth and polar angle, respectively, and q/p is the inverse momentum multiplied
by the charge q. For the widely used perigee representation that is often used to express the track
with respect to the nominal beam axis the local parameters l1 and l2 correspond to the transverse and
longitudinal impact parameter d0 and z0, respectively. Figure 3 shows an illustration of the perigee
representation using ATLAS conventions.

1Many experiments in the past used a — for many analysis aspects — more handy parameterisation of a helix with
a curvature-optimised momentum representation q/pT and the polar direction represented as cot θ. Since for ATLAS a
general representation had to be chosen that is valid throughout the detector and thus within different magnetic field
setups, a helical representation that is bound to one magnetic frame is not optimal, as the transverse momentum does
not remain a constant of motion.
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Figure 3: The perigee representation ex-
pressed in the ATLAS track parameterisation.
The local expression of the point of closest ap-
proach is given by the signed transverse im-
pact parameter d0 and the longitudinal im-
pact parameter z0. The momentum direction
is expressed in global coordinates using the az-
imuthal angle φ that is defined in the projected
x − y plane and the polar angle θ, which is
measured with respect to the global z axis.

Neutral Parameters Recently, the ATLAS tracking EDM has been extended to deploy a dedicated
schema for neutral particle representations [8]. The fifth parameter of the representation as given in
Eq. (1) is hereby modified to represent 1/q, omitting the charge definition. Charged and neutral trajec-
tory representations are realised through the same templated class objects to avoid code duplication,
while keeping the type diversity to prevent misinterpretations to happen during the reconstruction
flow. The extrapolation package and propagation tools have been adapted to cope with both charged
and neutral types, but the ATLAS Track class remains restricted to charged trajectories2. Neutral
parameters are only transported along a straight line to the provided target surface. Material effects
are not taken into account and thus the navigation process is not necessary in this context. This doc-
uments concentrates therefore on the extrapolation process of charged track representations and will
only briefly mention the particularities for neutral parameterisation in the various different modules.

2 Propagation

The mathematical propagation of track parameters to a destination surface is — when omitting
energy loss and multiple scattering effects — determined by the starting parameters and the traversed
magnetic field. A homogenous magnetic field setup (no field or constant field value and direction)
allows to use an underlying parametric track model for the propagation. Many propagation processes
can then be solved purely analytically to find the intersection of the track with the destination surface
and even for the transported covariances. However, the highly inhomogeneous magnetic field of the
ATLAS detector setup requires tracking of particles by numerical methods. Figure 4 shows the
magnetic field of the ATLAS detector in an r − z projection for both, the Inner Detector in detail,
and the Muon Spectrometer.
The variety of the different propagation techniques is enhanced by different implementations of a
common abstract AlgTool interface, the IPropagator. The interface for propagator AlgTool classes
is kept very simple; it reflects the pure principle of the task: an input TrackParameters object, a
destination surface, magnetic field properties and a boolean for the surface bound handling is passed
through the method signature, while on the other hand the propagated parameters are returned as
the method value. Returning a pointer to a new object puts the responsibility of memory cleanup
onto the client algorithm, but complies fully with the factory pattern design described in Sec. 1.2.
The following main interface methods are defined for the IPropagator interface:

• The propagate() method shall be used in cases when the track parameters to be transported
are likely to carry a covariance matrix and the client algorithm relies on the transported error
description as well. If the input parameters do not have associated errors, only the parameters
are transported to the destination surface.

• To save CPU time, the propagateParameters() that only performs the transport of the pa-
2This is because neutral particles are not subject of tracking in the classical terms of track finding and track fitting.
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Figure 4: The realistic magnetic field in the r − z plane for the entire ATLAS detector. The upper plot
shows the magnetic field strength in the r − z plane at an azimuthal angle of φ = π/8 which lies within one
Muon System toroid structure. The plots at the bottom focusses on the magnetic field of the Inner Detector
as described by the ATLAS-CSC-01-02-00 layout. The first plot at the bottom shows the φ-dependency of
the magnetic field at different radii in steps of 100 millimeter at z = 0: the homogeneity of the field in the
ID is broken in radial and azimuthal direction even in the very central part of the solenoid. The second plot
shows the magnitude of the magnetic field shown within a quarter of the Inner Detector.

rameters and omits the transport of the associated covariances can be chosen. This is optimised
for situations where the transported error represented at the destination surface is not needed.

• The globalPositions() method is designed to fill a list with 3D points along the track in
intervals of a given step length and confined within a given volume. It is mainly performed
during the road building process of the pattern recognition stage.

• The validationAction() enables to call event- or track-based validation directives from outside
(e.g. such as parameter resetting or the filling of validation information into appropriate output
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containers). This interface method is not particular to the IPropagator interface. In fact, most
of the used AlgTool classes in the TrkExtrapolation realm implement a method of this type and
purpose.

Four different propagators have been implemented and are located in different packages of the ATLAS
software repository, the StraightLinePropagator and HelixPropagator incorporate a straight line
and respectively helical track model, whereas the RungeKuttaPropagator and STEP Propagator are
based on the numerical Runge-Kutta-Nystrøm [9] integration technique to evaluate the field integral.

2.1 Intersection with Surfaces and Direction Instructions

The intersection of a track with a surface can be expressed in both global and local coordinates. In
terms of track parameters propagation also the direction of the track at the destination surface is
needed for a complete track parameterisation: the two local coordinates of the surface intersection
and the momentum of the track at the destination surface build the five parameters of the propagated
TrackParameters expression. The local intersection point — together with the surface constraint —
establish the global representation of the trajectory intersection with the target surface; a detailed
discussion of the TrackParameters object and the used local frame definitions can be found in [6].
The propagation can be performed with a direction instruction, steered by an enumeration object;
propagations alongMomentum, oppositeMomentum and anyDirection can be performed. The direction
does not only determine the intersection solution to be chosen — in case that multiple solutions exist —
but also handles the material effects integration during the extrapolation process. For planar surfaces,
i.e. the PlaneSurface and DiscSurface in the ATLAS reconstruction geometry model, there is, in
general, one unique solution3 for the intersection. The intersection with a straight line (in the ATLAS
reconstruction geometry described by either the StraightLineSurface or the PerigeeSurface) is
defined as the transverse closest approach to the line. The local expression of this point of closest
approach is done by a signed transverse impact parameter and the longitudinal impact parameter with
respect to the line frame. For surfaces of type CylinderSurface typically one or two intersections exist
for a given start parameter set. If the propagation direction excludes one of the solutions, obviously
the other solution is taken, if both intersections are compatible with the provided directive (or the
directive has been chosen to be anyDirection), the closer intersection is taken by convention.

2.1.1 The Measurement Frame

The transport of the covariance matrix to a given surface requires the definition of the so-called
measurement frame, i.e. the coordinate system attached to the destination surface in which the error on
the local parameters is properly defined. For planar surfaces this definition is trivial: the measurement
frame is hereby identical with the local surface frame, a cartesian frame for the PlaneSurface and a
polar frame for the DiscSurface. For cylindrical surfaces, the measurement frame is defined — by
convention — as the tangential plane to the intersection point with the cylinder. Since in ATLAS no
measurement is given on a cylindrical surface (these are mostly needed for the navigation through the
volumes of the reconstruction geometry), this choice saves unnecessary conversions from cartesian to
cylindrical coordinates (and vice versa).
For track expressions with respect to a line (Perigee or AtaStraightLine definitions) the measure-
ment frame can only be constructed once the point of closest approach is found: it is characterised
by the transverse drift direction dD as the first local axis and the line direction dL as the second,
perpendicular axis. Figure 5 shows an illustration of the measurement frame for a closest approach
to a straight line.

2.2 Analytical Track Models: StraightLinePropagator and HelixPropagator

Propagations along a straight line can be solved analytically for all surface types. This transport
type is applied for particles of zero charge or in absence of a magnetic field. Furthermore, they may

3In the ATLAS experiment, the geometrical dimensions of the destination surfaces are in general small compared to
the curvature of the track due to the bending of the magnetic field. Hence, multiple intersections with planar surfaces
are very rare.
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Figure 5: The measurement frame for the closest approach of a track to a nominal line surface. The error
on the local coordinates is given in a two-dimensional cartesian system, defined through the drift direction dD

and the line direction dL, respectively.

be used for crude estimates, in particular in the non-bending plane. The StraightLinePropagator,
located in the TrkExSlPropagator package, provides this functionality. It has been extensively used
during the reconstruction of events taken during the ATLAS CTB2004 and data taken from the first
commissioning runs using cosmic rays, where several periods of data taking without magnetic field
have taken place.
The HelixPropagator is suitable for propagations of parameters in a homogeneous magnetic field,
a very rare or even non existing situation in the ATLAS reconstruction. However, for the CTB2004
Monte Carlo simulation has been done assuming a constant magnetic field and for the new Fast ATLAS
Track Simulation (FATRAS) [10], the constant magnetic field together with the HelixPropagator
may be a sufficient simplification for various applications. When using a helical track model the
analytical solution for track intersections with many surfaces can only be performed if the surfaces
are aligned with the guiding center of the helix. Assuming perfect alignment of the ATLAS detector,
many surfaces fulfill this requirement. For arbitrarily oriented surfaces, a numerical method to solve
the equation has to be used, which is solved through a standard Newton-Rhapson approach. Due to
its rare usage in the reconstruction this method has been, however, poorly validated and clearly lacks
both accuracy and stability for production usage.
The formulas used for the calculations of the surface intersections for both the StraightLinePropagator
and the HelixPropagator can be found in the Appendix, Sec. A.3 and Sec. A.4.

2.2.1 Analytical Error Propagation along the curvilinear Frame

Since both, the straight line and the helical propagation incorporate an underlying analytical track
model, the transport of the covariance matrix can be performed analytically as well. This is done
using the so-called curvilinear frame that can be defined at every point of the track and has been
widely used in the past in high energy physics experiments [11]. The intersection solution with a target
surface is, in general, a non-linear function of the starting parameters and it is thus not obvious how to
propagate the associated error. A solution to this is to linearise the problem by taking the first order
of a Taylor series expansion for the error propagation. The derivatives of the transported parameters
with respect to the start parameters build hereby the Jacobian matrix that yield the transformation of
the covariance matrix. Within the curvilinear frame, the transport Jacobian matrix Jµ,ν becomes an
analytical expression with the single parameter s, which denotes the propagation length along the line
or helix. Given a global point m and the momentum p (defined at m), the right handed curvilinear
frame ui = (eu , ev , et ) is defined by

et =
p
|p|
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eu =
ez × et
|ez × et |

ev = et × eu , (2)

where ez denotes the global z axis4. Figure 6 shows the curvilinear frame construction for a measure-
ment along a straight line.

measurement plane

curvilinear u-v plane

global x-y plane

p

eu

ev

Figure 6: The curvilinear frame U = (eu , ev , et ) for a measurement along a straight line. The normalised
momentum vector et = p

|p| builds the z direction of the curvilinear frame. Its vector product with the nominal
global z axis creates the second base of the frame, which lies in the global x− y plane. Finally, the third base
vector is chosen in such a way that a right handed coordinate system is well defined.

Let Cli denote the covariance matrix of the initial parameters in the local coordinates of the starting
frame, and Jli,ci the Jacobian matrix describing the parameter transformation from the initial local
frame li to the initial curvilinear frame ci. The initial covariance matrix expressed in the curvilinear
frame Cci of the starting parameters can then be written as

Cci = Jci,li ·Cli · Jli,ci, (3)

with Jci,li = JTli,ci being the transposed Jacobian of the local-to-curvilinear transformation.
The transport Jacobian matrix Jci,cf between the curvilinear frame at start point i and destination
point f (i.e. track intersection with the target surface) becomes only dependent on the rotations of the
initial and final curvilinear frames with respect to the global frame and the propagation length s. The
calculation of this Jacobian such as the coefficients for local to curvilinear frame transformations (and
vice versa) can be found in the Appendix, Sec. A.5, of this document. The transported covariance
matrix at the destination surface after back transformation to the local frame using an appropriate
Jacobian Jcf,lf is then given by

Clf = Jlf,cf · (Jcf,ci ·Cci · Jci,cf ) · Jcf,lf , (4)

with Jcf,ci ·Cci · Jci,cf describing the transport along the track and within the curvilinear frame.

Neutral Track Representations The adaption of the StraightLinePropagator to neutral param-
eters was only challenging from a technical point of view, where the same mathematical steps have
to be performed on different input classes that share only a high level common base class. This is

4In principle, any unique global reference axis can be chosen instead of ez . The choice of the global z axis in this
scope is not arbitrary though, but reflects the detector geometry. It guarantees numerical stability since track directions
along ez are not expected.
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solved by templating the private propagation methods to the different surfaces by the actual charged
or neutral parameters type. The HelixPropagator simply uses the StraightLinePropagator for any
parameters transport of neutral parameters or in case of a no-field environment. The transport of the
neutral parameters classes is fully supported with ATLAS release 13.1.0.

2.3 Numerical propagation: the RungeKuttaPropagator and STEP Propagator

Most of the track parameter propagations to be performed in the ATLAS event reconstruction are
within a highly inhomogeneous magnetic field where a global track model can not be used for solv-
ing the transport equations. Hence, a fast numerical solution for calculating the intersection of the
trajectory with the destination surface is needed. In ATLAS this is realised by two implementa-
tions of the IPropagator interface, the RungeKuttaPropagator and STEP Propagator. Both rely on
a fourth order Runge-Kutta-Nystrøm formalism with an integrated adaptive step estimation. The
main difference between the two realisations is that the STEP Propagator includes energy loss in the
equation of motion and applies corrections to the covariance matrices continuously during the param-
eter transport along the track. It is designed for the description of a particle that traverses a dense
block of material, while the RungeKuttaPropagator complies with the classical model of point-like
material update on detector layers that is carried out by dedicated AlgTool classes in the ATLAS
track extrapolation engine. Both IPropagator implementations perform the propagation in global
coordinates and use common Jacobian matrices for the transformations between the global frame
and local surface-attached coordinate systems5. The equation of motion of a charged particle with
momentum p and mass m through a magnetic field B(r) can be expressed in many different ways that
mostly differ through the parameterisation and choice of the free parameter. For collider experiments
a helix-based parameterisation along the arc length s is a good choice since it is not restricting nor
favoring any specific particle direction6. The equation of motion of a particle with charge q, defined
by the Lorentz force, can then — when omitting multiple scattering and energy loss effects — be
written as the second order differential equation

d2r
ds2

=
q

p

[
dr
ds
×B(r)

]
, (5)

and, when including an energy loss function g(p, r), as

d2r
ds2

=
q

p

[
dr
ds
×B(r)

]
+ g(p, r)

dr
ds
. (6)

Equation (5) and Eq. (6) are the fundamental transport equation used by the RungeKuttaPropagator
and STEP Propagator, respectively. The calculations are in both cases performed using the Runge-
Kutta-Nystrøm method, which is well suited to solve second order differential equations. The basic
principle of the Runge-Kutta method can be found in may textbooks [9], an exhaustive review of
the used Runge-Kutta-Nystrøm method and the description of error matrix transport (carried out by
the Bugge-Myrheim method) for both propagators of the ATLAS track reconstruction is in addition
presented in [12].
Both the RungeKuttaPropagator and the STEP Propagator stop the numerical iteration when the
distance to the surface drops below a certain cut value. For the last step starting at the position rf−1,
a simple Taylor expansion to second order is used:

rfinal = rf−1 + h
dr
ds
|rf−1 +

1
2
h2 d

2r
ds2
|rf−1

, (7)

with h denoting the distance to the destination surface at the approach point f − 1.

Straight and Helical Track Model The RungeKuttaPropagator and STEP Propagator are clearly
the most flexible propagation techniques in the ATLAS track reconstruction software. It is inert to the
Runge-Kutta formalism that in case of a homogenous magnetic field setup, the propagation is carried

5The common data classes are located in the shared TrkExUtils package.
6In fix target experiments, however, a different choice representing the main particle direction may be taken.
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out in one single step, complying a helical model for constant field or a straight line propagation when
no magnetic field is present, respectively. This eases the support of neutral track parameters that is
completely integrated with ATLAS software release 13.1.0.

3 Navigation

The navigation builds the binding link between propagation and material effects integration in the
realisation of the ATLAS track extrapolation engine. During a single extrapolation process, the
navigation gathers the information about the traversed material from the reconstruction geometry,
the so-called TrackingGeometry. The internal connectivity of the TrackingGeometry is hereby used
to save CPU time expensive global search operations.
Based on the morphology of the ATLAS reconstruction geometry, three different navigation streams
can be followed throughout the extrapolation process: navigation within a full static and connective
setup, navigation within a dynamic setup and navigation within a detached or unordered setup. The
concepts and realisation of the different navigation strategies will be described in the following sections.

Initialisation of the Navigation The first step of the navigation procedure is to determine the starting
and destination volume for the track extrapolation. This is done following a three-step procedure that
optimises the time spent in the search of the start and end configuration:

• recall: in many fitting applications it is necessary to extrapolate from one measurement surface
to the successive one along a track. The destination configuration of the previous step is hereby
often identical to the start configuration of the next extrapolation process. The Extrapolator
AlgTool remembers therefore the end configuration of the extrapolation process in dedicated
private member variables and compares as a first step the starting parameters with the solution
of the previous extrapolation call.

• association: the ATLAS TrackingGeometry provides associations between the objects in the
different levels of the geometry hierarchy, i.e. Surface objects often point to embedding Layer
objects that in turn may point to enclosing volumes. This hierarchy model can not be es-
tablished for all detector structures, but is realised e.g. for a big part of the Inner Detector
TrackingGeometry.

• global search: the global search is the most CPU time intensive navigation step, since it
involves the stepping down in the object hierarchy tree of the TrackingGeometry. However, it
is a backup system for the recall and association attempts and is the only possibility to find the
associated start and destination configuration for arbitrary surfaces that are not a priori known
to the TrackingGeometry.

3.1 Navigation between Volumes

The underlying TrackingGeometry, characterised at first means by a fully connective set of so called
TrackingVolume objects, is the key to the navigation process. The TrackingVolume class, which is
in principle a container of confining boundary surfaces, combines the access to the magnetic field with
the information about the traversed material (represented as Layer objects or through a dense volume
description). The boundary surfaces that build the confinement of the volume extend the common
ATLAS Surface class and can therefore be coherently used with the propagation AlgTool. Since they
incorporate information about the attached volumes, the intersection with the boundary surface leads
automatically to the next TrackingVolume that is crossed by the trajectory. This process is repeated
until the destination volume is reached.
The Navigator AlgTool, a concrete implementation of the abstract INavigator base class, is called
by the Extrapolator to perform the search for the next TrackingVolume. It therefore uses the
provided propagator to intersect the appropriate boundary surface of the current TrackingVolume
and find information about the attached volumes. Each TrackingVolume is for this purpose capable
of providing an ordered list of boundary surfaces to be intersected, starting from the best guess that
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projection of the normal vector onto track direction

inter linking of layers

binning

track

cylindrical layers

disc layer with
φ binning

sensor module

Figure 7: Illustration of the main navigation actions in the static geometry setup: volumes that are via the
boundary surface mechanism attached to the currently traversed volume are found by the projection of the
track with the according normal vector, layers within a given TrackingVolume are inter-linked by pointers and
symmetric structures such as sub-surfaces on a Layer structure are found by binning methods.

originates from a straight line approximation of the starting parameters in the non bending plane.
The provided list of boundary surfaces to be be intersected is processed until the right exit point
of the surface is found, for performance reasons only the track parameters and never the associated
covariance matrix is transported onto the boundary surface. Performance statistics of the navigation
are discussed in further detail in Sec. 6.1.1. Figure 7 summarises the different navigation steps for a
full static setup in a sample illustration.

3.2 Navigation between Layers within a TrackingVolume

A TrackingVolume can contain a static, dynamic or unordered set of Layer objects that are suitable
for a point-like material update description. Inside a TrackingVolume, the navigation has to find the
contained layers that are intersected by the trajectory to account for their material budget and apply
material effects corrections at the correct point along the trajectory. The intersection with the layer
is also needed to be able to use refined local material maps on a single layer.

3.2.1 Static Layer Setup

A static layer setup is realised when the entire description of the material within a TrackingVolume is
available at the initialisation of the reconstruction geometry and can be ordered uniquely with a given
reference direction. The entire default ATLAS ID and calorimeter geometry is described by a static
layer setup. Layer objects in a static setup are inter-linked by C++ pointers and the navigation from
one to the other can be simply done by a nextLayer() call, which only requires the track direction
in the method signature.
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3.2.2 Dynamic Layer Setup

In many configurations the material seen by a track depends very strongly on the track trajectory or
a static setup is simply not possible due to the complex geometry structure. In such cases or if the
material description is gathered from an outside source (e.g. a material map or material database),
dynamically created layers along the trajectory can be taken. A dedicated IDynamicLayerCreator
interface has been created for this purpose. The IDynamicLayerCreator mechanism is also used for
global fitting techniques, where the material layers along an entire track have to be known and enter as
a whole collection into the global χ2 function. While the IDynamicLayerCreator is defined to provide
a material description and still leaves the calculation of the resulting effects on the parameters to the
client algorithm, the extrapolation package has been recently expanded with an additional, even more
user-open dynamic schema that is designed to provide material effects for the track directly in terms
of an energy loss to be applied and a parameter that determines the scattering correction. This
second way, realised through the IMaterialEffectsOnTrackProvider interface, is mainly targeted
at allowing custom integrations of material effects, such as energy measurements provided by the
calorimeter.

3.2.3 Unordered layer setup

The TrackingVolume also enhances more complex layer structures that can not be easily ordered
along reference directions. In this case the navigation has to follow a trial and error principle. Hence,
the numbers of unordered layers contained by one TrackingVolume have to be kept low.

3.2.4 Sub-surfaces on Layers

Layer objects can contain ordered sub-sets of surfaces that represent active detector elements. The
search for detector elements completes the full predictive navigation provided by the TrkExtrapolation
engine and is useful for track predictions and holes-on-track search: the Surface class points back to
an associated sensitive detector element and since the track trajectory is very precisely known after
the track fit a list of geometrically intersected modules can be provided by following the layer and sub-
surface navigation (see also Fig. 7). The comparison of the list of surfaces (and thus detector elements)
stored on the track with the ones that are geometrically intersected by the given trajectory can be
used as a hole definition for tracking. Additionally, the full access to intersected sensitive modules
led to the development of the new FATRAS simulation. In both applications, the holes search and
the fast track simulation, the local parameters of the trajectory intersection with the layer surface are
hereby used for a fast look-up in the binned arrays that hold the sensitive detector surfaces.

3.3 Detached Volumes

The ATLAS reconstruction geometry also describes entities that can not be conveniently integrated
into the model of a fully connective TrackingVolume set. This is mainly the case for complex structures
such as the toroid magnet system in the Muon Spectrometer. A DetachedTrackingVolume class
which fulfills many requirements of a standard TrackingVolume, but is not connected to neighboring
volumes via the boundary surface schema, has therefore been created such that they can be contained
by a higher level TrackingVolume. As a direct consequence, detached volumes require a more CPU
time expensive search in the navigation stream. The entry point into a DetachedTrackingVolume
has to be found first by propagations to the associated boundary surfaces. If a TrackingVolume
contains more than one detached sub-volume, the sequence of traversing one after the other has to be
evaluated first. The DetachedTrackingVolume itself contains a complete static setup, such that the
fast navigation schema that relies on pre-ordering and boundary surface sharing can be used internally,
once a detached object has been entered by the navigation stream.

3.4 Navigation Breaks

The navigation can break in very rare cases mainly due to the reason that provided start and desti-
nation information is not compatible, i.e. the trajectory defined by the starting parameters does not
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intersect the destination surface at all or at least not in the volume that contains the destination
surface. The following sources of navigation breaks have been identified and are recorded in case the
AlgTool is configured to run in a dedicated validation mode:

• distance increase: the geometrical distance to the destination surface is checked progressively
during the full navigation chain and a navigation break is triggered if this distance increases
rapidly at one step, while small fluctuations are allowed. This usually happens if — given a
set of starting parameters — it is geometrically impossible to intersect the provided destination
surface.

• oscillation: the navigation is caught in an oscillation loop, which mostly indicates a geometry
setup problem or a curling particle trajectory due to low momentum.

• loop: the navigation is caught in a straight loop, i.e. the next assigned volume is identical with
the current volume; this indicates usually a geometry setup problem or a wrong propagation
solution (i.e. wrong sided cylinder intersection in all recorded cases).

• no next volume: the navigation hits the end of the described TrackingGeometry; in general,
this is also due to incompatible input parameters.

Once a navigation break is triggered, the extrapolation is reset and carried out again without naviga-
tion and hence without material effects integration. This behavior can be switched off for validation
reasons, such that navigation breaks can be triggered and investigated, see Sec. 6.1.1.

4 Material Effects Integration

A particle that traverses material is subject to both energy loss and directional scattering. While
for all stable particles (that are subject of track reconstruction in high energy physics experiments)
multiple coulomb scattering is the by far dominant contribution to the directional deflection and thus
no distinction between the different particles has to be done, energy loss has to be treated differently
for electrons than for all other particles that are in the following also referred to as heavy particles.
This is, because electrons lose a substantial part of their energy due to bremsstrahlung, while for heavy
particles ionisation loss remains the dominant effect. As a consequence, a particle definition has to be
present in the extrapolation realm to distinguish between the different energy loss mechanism. This
is steered by a dedicated enumeration type: the so-called ParticleHypothesis7.
Since multiple scattering is a stochastic process with a zero mean deflection it is, in general, not
regarded during the transport of the track parameters, but applied as Gaussian or multi-Gaussian
process noise addition to the track covariances. Section 4.1.3 will show in the following that the
assumption of a Gaussian-distributed multiple scattering noise is valid to a large extent. It will also
cover the integration of multiple scattering into the track extrapolation software structure.
Energy loss effects, on the other hand, introduce changes to both the trajectory of the particle and
the track uncertainties: the loss of momentum clearly changes the particle trajectory in presence of
magnetic field, but since energy loss is a stochastic process it can not be corrected for in a purely
deterministic way. In practice, energy loss is taken into account by a deterministic mean (or most
probable) value and a relatively small variance to this value. Again, the variance is applied as Gaussian
process noise addition to comply with the linear least squares methods predominately used in track
fitting. Nevertheless, the Gaussian model is far from optimal for electron energy loss description:
Section 4.1.4 will concentrate on both the energy loss treatment for heavy particles and electrons and
will discuss the validity range of the given applications.
Since both processes, multiple scattering and energy loss, rely evidently on a correct description of the
traversed detector material, providing this material distribution within the reconstruction geometry is
an a priori requirement, fulfilled by the ATLAS TrackingGeometry. The navigation, as described in

7The name hypothesis is chosen deliberately in this context. In most track fitting applications, the particle identi-
fication is not done yet, since it relies on additional information from calorimetry, combined reconstruction or specific
interaction signatures with the detector material.
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Sec. 3 is responsible for finding and forwarding the appropriate material information to the extrapola-
tion and material integration algorithms. A generic updater AlgTool, the MaterialEffectsUpdator
performs the actual correction of the TrackParameters objects.

Point-like and continuous Material Effects Integration The ATLAS extrapolation package en-
hances two different methods for the integration of material effects during tracking the particle through
the reconstruction geometry. A classical point-like material update mechanism is the main material
interaction philosophy, carried out through a dedicated AlgTool, the MaterialEffectsUpdator. It
requires a purely Layer-based (and thus Surface-based) description of the ATLAS detector through
a simplified reconstruction geometry. The transport of the track parameters and their associated
covariances is hereby fully decoupled from the actual correction of the track representation due to in-
teraction with the detector material. An example for the Surface-based modeling of the pixel barrel
detector can be seen in Fig. 8.
A second, modern model of continuous material effects integration that embeds the correction as
additional terms into the equation of motion can be chosen alternatively, see Sec. 2.3. The con-
tinuos material effects integration relies on a Volume-based description of the detector through the
TrackingGeometry. This requires, in general, a more detailed description close to the realistic detec-
tor setup or is limited to large structures that can be modeled as one homogeneous block of material8.
In ATLAS, the continuous integration of material effects is mainly planned to be used for the track
extrapolation through the calorimeter and for traversing the large inert material structures in the
Muon Spectrometer.

4.1 The MaterialEffectsUpdator AlgTool

Although both, multiple scattering and energy loss depend on the particle momentum p, they can
be treated as two independent (stochastic) processes, since — in general — the energy loss ∆ is
small compared to the momentum p of the particle. It can therefore be assumed that p is constant
during the multiple scattering process, which disentangles the energy loss from the multiple scattering
integration. In the realisation of the ATLAS extrapolation package, this relation is respected by
two dedicated AlgTool implementations that perform the tasks of energy loss respectively multiple
scattering calculations separately. The Extrapolator, however, only refers to a single AlgTool, the
MaterialEffectsUpdator that uses the other AlgTool instances.

4.1.1 Pre-, post- and full update

The material effects integration in the ATLAS extrapolation engine enhances the concept of pre-, post-
and full update directives, to account for an optimal spatial position of the material distribution. This
is necessary since the reconstruction geometry is a simplified version of the real detector geometry and
consists of only several idealised layers that carry a projected material distribution. For the ATLAS
silicon detector, for example, the layers of the reconstruction geometry correspond to the actually
build barrel cylinders and endcap discs. The largest contribution to the material budget per layer
in the silicon detector is the sensor material itself and, furthermore, most of the additional support
and cooling structures are located on the back-side of the detector sensor. Deflections and energy
loss caused by traversing these modules contribute in a Kalman forward filter consequently only on
the successive measurement module — and are applied therefore as post-update with respect to the
measurement update on the given surface; however, they have to be taken into account before the
measurement update in the smoothing or backward filtering process (pre-update). The Transition
Radiation Tracker (TRT) in the ID, on the other hand, can be regarded to have an almost continuous
material distribution and is in the reconstruction geometry represented by condensed layers. This
description is anyhow only valid in a global picture and the pre/post update mechanism is superfluous:
a full update is applied when crossing a layer of such a type or any other layer that is not associated
to sensitive (tracking) detector elements. Figure 8 shows the necessary simplifications for the pixel

8It is of little sense to describe detector parts with a discrete material distribution such as the silicon detector
through such a model. The material taken into account would hereby be only valid for traversing the entire volume and
is therefore not suitable for track reconstruction, where correct knowledge of the spatial information of the material is
essential for a satisfactory description of both multiple scattering and energy loss effects.
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barrel reconstruction geometry and the consequences for the material integration in an extrapolation
process.
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Figure 8: The ATLAS pixel barrel detector as
an example for the simplifications done in the
reconstruction geometry and their effect on the
material integration of the extrapolation pack-
age. A photograph of one fully deployed barrel
cylinder can be seen in (a), while (b) shows an
illustration of the chip and sensor parts which
are mounted on staves that include a thermal
management tile and a cooling system. In the
reconstruction geometry — as illustrated in (c)
— the barrels are modeled as cylinder layers
and only the detector surfaces are known to
full detail. The design of the ATLAS pixel bar-
rel requires that when crossing the layer from
the interaction point region, the material of one
barrel layer has almost no influence on the mea-
surement of the current, but of the successive
layer. In the ATLAS extrapolation package this
is taken care of with the post-, pre- and full-
update mechanism. Material descriptions exist
hereby on both levels, an overall map for the
entire cylinder layer and a detailed description
of the average material per module. The lat-
ter is realised through the reference material
schema of the ATLAS reconstruction geome-
try. The reference material map for the pixel
module in comparison to the simulation mate-
rial can be seen in (d).

4.1.2 Correction for the Incident Angle and for Track Bending

The structure of the ATLAS reconstruction geometry and in particular the projective mapping of
the simulation material onto the simplified frame of cylinder and disc layers requires two additional
corrections to the material distribution that depend on the trajectory properties of the particle and
can therefore be only accounted for while performing the actual extrapolation:

• Correction for the incident angle: the amount of material seen by a particle when traversing
a layer-like structure depends on the relative incident angle of the track with the layer. In the
ATLAS reconstruction geometry, particular emphasis has been put on creating a description
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that is not only valid for particles originating from the nominal interaction point (or center of
the coordinate system). That is why — when creating the material maps from the simulation
geometry — the material projection of the material seen by a particle coming from the nominal
interaction region is recalculated to the fixed frame of cylinders and discs. During the track
extrapolation process, the angle of the trajectory with the crossed layer is calculated and the
relative correction to the track length in the material applied: n and t denote in the following
the normal vector of the layer and the momentum direction of the trajectory at the intersection
point, respectively — both vectors at unit length. The actual crossed path length s through any
arbitrarily positioned and oriented layer of thickness d can then be generically expressed as

s =
d

n · t
. (8)

• Bending correction: in a dense volume (e.g. the TRT or calorimeter volumes) that is described
through condensed layers in the TrackingGeometry a second effect has to be accounted for.
Since the mapping of the material distribution is done following a straight line projection, the
material budget seen by strongly bent tracks is in general underestimated. This effect can be
simply cancelled by introducing a correction factor that is dependent on the transverse particle
momentum pT . ∆R denotes in the following the traversed radial distance in the detector, and
Bz the longitudinal component of the magnetic field. The bending radius r of a track can then
be written as r = pT

0.3·Bz
. The angle α then describes the opening angle of a transverse track

segment and can be expressed as α = 2 arcsin(∆R
2·r ). Performing some simple manipulations, the

correction factor cb introduced due to bending can be expressed as9

cb =
s

∆R
=

pT
0.15 ·Bz

· arcsin
0.15 ·Bz∆R

pT
≈ 1 +

(∆R)2 ·B2
T

266.7 · p2
T

, (9)

when the magnetic field is given in Tesla and the momentum is expressed in GeV . Equation
(9) shows the dependency of correction the factor to be 1 + 1/p2

T , which approaches rapidly
towards 1 for transverse momenta bigger than 1 GeV while remaining an about 5% effect at a
transverse momentum of 500 MeV, which marks the transverse momentum threshold of many
ATLAS reconstruction applications. Figure 9 illustrates the relevant track information that is
necessary to calculate the bending correction and shows the correction factor cb as a function of
the transverse momentum pT .
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Figure 9: The correction to the material seen by a track crossing condensed layers due to track
bending in the magnetic field in an schematic illustration to the left and to the right the dependency
of the correction factor on the transverse momentum for a concrete example of traversing a sample
distance of 1 m which corresponds roughly to the Inner Detector dimension.

Both the incident angle and the bending correction are matter of the reconstruction geometry, but have
to be applied within the material integration during the track extrapolation process. The extrapolation

9It is assumed in this formalism that the track enters a volume along a radial direction, which is certainly not true
for strongly bent tracks that originate from the nominal interaction point. The resulting correction to ∆R is, however,
already taken into account through the incident angle correction when traversing a layer.
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engine, however, has been designed to stick to a generic detector model such that no information about
the underlying detector specifications can be accessed, while still keeping the maximum performance
level. This requirement has been met by defining the corrections as actions known to the Layer and
TrackingVolume that are able to return a pathCorrection() or bendingCorrection(), respectively,
depending on the actual input parameters of the track.

4.1.3 Multiple Scattering: the MultipleScatteringUpdator AlgTool

A particle that traverses detector material undergoes successive small angle deflections, caused by
multiple (Coulomb) scattering. Given the central limit theorem it can be assumed that the sum of
these small variations is Gaussian distributed and symmetrically centered around zero. However, large
angle single scattering processes disturb the purely Gaussian probability density function (PDF) and
add large non-Gaussian tails. As a rule of thumb, the assumption of the Gaussian character of the
underlying PDF is valid to about 98%, being limited to the core region of the distribution.
The integration of multiple scattering effects is handled by a dedicated AlgTool, the so-called Multiple-
ScatteringUpdator. The calculation is done using the well known Highland formula [13], which is an
empirical adoption of Molière’s solution of the transport equation starting from the classical Ruther-
ford cross section of a single scattering process [14].
Highland expanded the original expression given by Molière for the root mean square σprojms of the
projected scattering angle θproj with an empirical logarithmic correction term to adopt for the slightly
underestimated screening of the nucleus Coulomb potential in materials with lower Z. Furthermore,
he transformed — for convenience — the result into a function of the pathlength t in terms of the
radiation length X0 which leads to the well-known expression10

σprojms =
13.6 MeV

βcp
Z
√
t/X0 [1 + 0.038 ln (t/X0 )], (10)

when Z and p describe the charge and momentum of the incident particle, respectively.

Projection Correction and lateral Displacement In the ATLAS track parameterisation the momen-
tum direction is expressed through the globally defined polar angle θ and the azimuthal angle φ, see
Eq. 1. Since θ already represents a projected angle with respect to the z axis, σprojms can be directly
applied to the corresponding covariance term, while for the azimuthal angle a correction term of 1

sin θ
has to be applied to the root mean square to account for the out of plane projection.
Another aspect of multiple scattering is that, in general, there exists a correlation between the actual
deflection in space θspace and the local coordinates after the scattering process. The local displacement
due to scattering is hereby depending on the two projected scattering angles and the thickness of the
traversed material. In a Layer-based description of the reconstruction geometry, the layer thickness
is, however, only a model parameter and has little to do with the actual thickness traversed during
the multiple scattering process (in the following referred to as scattering thickness). In addition, the
Layer-based description intrinsically assumes that the material free regions in the according detector
volumes are big in comparison to a typical scattering thickness, and the local error on the successive
measurement surface is therefore mainly dominated by the directional uncertainties in φ and θ. The
displacement on the scattering surface caused by the multiple scattering process is therefore omitted
in this application. For the continuous integration of material effects, on the other hand, the actual
path length s corresponds to the scattering thickness and it is included in the treatment of multiple
scattering [12].
Molière’s theory of multiple scattering is — when being applied in the small angle assumption —
not restricted to a specific particle type nor spin. It is based on the assumption that the deflection
of the scattered particle does not change the magnitude of the particle’s momentum, or, in other
words, it is a pure elastic single scattering theory. Rossi and Greisen [15], however, showed that for
electrons that traverse a significant amount of material this assumption is not valid anymore since the
electron momentum changes substantially due to radiation loss, which is described in more detail in
Sec. 4.1.4. This leads to a modification of the momentum dependency from 1/p2 to 1/(pipf ), when

10The multiple scattering process itself has little to do with the radiation length X0 other that both show the same
dependency on the atomic number Z and the molecular weight A of the material.
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Figure 10: The projected scattering angle distribution θproj (left) of a muon with 5 GeV that traverses a
silicon detector with a thickness t that corresponds to 1% of radiation length X0 . The distribution (illustrated
at standard measure) has been created by Monte Carlo simulation of 25000 muon events using the Geant4
simulation toolkit. It shows the Gaussian distribution originating from the Highland formula (dashed) and the
a Monte Carlo Gaussian Mixture model (solid). The shaded area represents a 98% core fraction of the Geant4
distribution. The illustration (right) shows the definitions of the space angle θspace and one projected angle
θproj for an example multiple scattering process.

pi and pf denote the initial and final momentum of the multiple scattering process, respectively, and
a constant loss assumption is applied11. Electron track reconstruction is, on the other hand, mainly
determined by the highly non-Gaussian character of the energy loss distribution due to bremsstrahlung
that shadows the multiple scattering effects. Identified electron tracks are therefore best fitted with
dedicated track fitting techniques. The momentum dependency of the multiple scattering process
plays hereby a negligible role.
The integration of such a modified multiple scattering theory for electrons would require the knowledge
of the momentum transfer and is not compatible with disentanglement of multiple scattering and
energy loss effects. A simplified version of the Rossi-Greisen results, using the 1/p2 dependency but
sticking to the parameters obtained for electrons can be chosen though for electron multiple scattering
in the ATLAS extrapolation package.

Gaussian Mixture Model The Gaussian PDF of stochastic multiple scattering is disturbed by single
large angle scattering processes that add significant tails to the distribution of the projected scattering
angle. For track reconstruction this effect is negligible since it is small in comparison to loss of accu-
racy introduced by the necessary simplification of the detector geometry12. The ATLAS extrapolation
engine that has been initially developed for track reconstruction is also used as the trajectory cre-
ation module in the FATRAS simulation and incorporates therefore an additional model for multiple
scattering, capable of reproducing parts of the tail distribution. A mixture of two Gaussians with
zero mean value, one for the core contribution, one for the tail approximation is used to describe the
projected scattering angle distribution

f(θms) = (1− ε) · g0(θms;σcore) + ε · g0(θms;σtail), (11)

where

g0(x;σ) = g(x;µ = 0, σ) =
1

σ
√

2π
exp(− x2

2σ2
). (12)

11More sophisticated models can also be considered where the energy loss function enters directly to the multiple
scattering calculation and an integration of the energy loss distribution has to be performed during the scattering
process.

12It is of second priority to account for a few percent tail effect in the description of the scattering process, when the
material distribution is locally not known to such an accuracy.
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The model parameters ε, σcore and σtail are hereby depending on the traversed material thickness in
terms of the radiation length X0 and are taken from [16]. Recently [17] even more precise models of
the multiple scattering descriptions have been developed that expand the double Gaussian mixture
model with a non-Gaussian tail descriptiond. The current ATLAS extrapolation engine has stuck
to the Gaussian mixture since it shows satisfactory agreement with the full Geant4 simulation while
being lightweight and convenient. A future inclusion of more sophisticated models will however be
easily possible by yet another implementation of the IMaterialEffectsUpdator interface13.
Figure 10 shows both the Highland formula application and the Gaussian mixture model as imple-
mented in the MaterialEffectsUpdator in comparison with data from a Monte Carlo simulation
using the well known and validated Geant4 [18] simulation toolkit. It also illustrates the main defini-
tions used in the calculation of the projected scattering angle.

4.1.4 Energy Loss: the EnergyLossUpdator AlgTool

Energy loss of particles traversing detector material occurs due to electromagnetic effects - mainly
ionisation (in the order of α2), bremsstrahlung (order of α3), direct pair production (order of α4)
and photonuclear interactions; α denotes the fine-structure constant with α ' 1/137. The PDF ρ(∆)
(often referred to as straggling function) of the energy loss ∆ is highly non-Gaussian, but for the use
in most track fitting applications an approximation to a Gaussian distribution has to be done.
For heavy particles with masses above 100 MeV peripheric collisions with the detector material — also
called ionisation loss — dominate the overall energy loss process. The probability for hard collisions
with the nuclei of the detector material is suppressed by the factor 1

m2 and can therefore be neglected
for heavy particles. The electron mass, however, is about 200 times smaller than the mass of the next
heavier stable particle and hence interactions with the strong electromagnetic field of the nuclei that
cause bremsstrahlung have to be considered. Above a certain energy threshold, bremsstrahlung starts
to dominate the energy loss distribution for electrons.
The ATLAS EnergyLossUpdator AlgTool performs the energy loss calculation during the track ex-
trapolation process, which depends on the provided ParticleHypothesis, the material properties
and the kinematic parameters of the particle. The applied corrections are described in the following
paragraphs.

Energy Loss of heavy Particles The energy loss ∆ of heavy particles in the energy range of final
state particles originating from high energy collision experiments is dominated almost entirely by
ionisation loss. Although this is a stochastic process that follows a PDF ρ(∆), it is justified to treat
it as a deterministic mean or averaged energy loss and a relatively small variance. This is, because ∆
is usually small in comparison to the particle momentum.
The mean energy loss of a heavy particle per unit length x due to ionisation loss is described by the
well known Bethe-Bloch formula [19]

dE

dx
= α22πNaλ2

e

Zme

Aβ2

[
ln

2meβ
2γ2E′m

I2(Z)
− 2β2 + 1/4

E′2m
E2
− δ
]
, (13)

where

Na = 6.023 · 1023, Avogadro’s number
Z, A atomic number and weight of the traversed medium

m, me rest masses of the particle and the electron
β = p/E, where p is the particle momentum
γ = E/m
λe = 3.8616 · 10−11 cm is the Compton wavelength of the electron

I(Z) the mean ionisation potential of the medium,
E′m the maximum energy transferable to the electrons of the medium with

E′m = 2me
p2

m2
e +m2 + 2me

√
p2 +m2

δ density correction.
13It is worth mentioning that this is one of the biggest benefits of the component software model that has been

deployed in the ATLAS track reconstruction.
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A parameterisation for the density correction δ and calculated values for various materials can be
found in [20].
The Bethe-Bloch formula shows that the mean value of the energy loss depends on the ratio of the
particle mass to the particle momentum. The ionisation loss plays therefore often an important role in
particle identification, whereas for track reconstruction in the momentum range of interest it is of minor
importance. Figure 11 illustrates the defined validity range of the pure ionisation loss assumption given
by the Bethe-Bloch formula and shows a comparison of the mean energy loss calculation done within
the EnergyLossUpdator to values found in literature for various different materials [21].
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Figure 11: The upper plot shows the mean energy loss per unit length of a muon in copper and is based
on [22]. The grey area shows the momentum range where the Bethe-Bloch formula is valid to satisfactory
accuracy. The second plot shows a comparison of the mean energy loss of muons in silicon, liquid argon
and iron with data taken from [21] and calculated using the EnergyLossUpdator. Good agreement can be
observed up a particle momentum of about 150 GeV , where radiative effects start to dominate the energy
loss distribution. Radiative Effects are not yet implemented in the standard ATLAS EnergyLossUpdator.

Landau Distribution and most probable Energy Loss The Bethe-Bloch formula only describes the
expected mean energy loss of charged particles due to ionisation. In reality, ionisation loss is a
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stochastic process that leads to asymmetric fluctuations around a most probable value (MPV). Landau
[23] described this distribution14 and showed that the most probable energy loss L∆p can be expressed
as

L∆p = ξ

[
ln

2mc2β2γ2

I
+ ln

ξ

I
+ 0.2− β2 − δ

]
, (14)

with ξ = ZNa
k
β2 t, when t denotes the thicknesss of the traversed material. It can be shown that in

the asymptotic behavior of γ >> 1 (i.e. β ≈ 1 ) the density correction δ can be modeled as

δ ≈ 4.447− ln γ2, (15)

which simplifies Eq. (14) to

L∆p = ξ

[
ln

2mc2γ2

I
+ ln

ξ

I
− 0.8 + 4.447

]
. (16)

Equation (16) is used in the standard EnergyLossUpdator AlgTool for the calculation of the most
probable energy loss of heavy particles. Figure 12 illustrates the energy loss distribution for a heavy
particle in a silicon layer and includes possible Gaussian approximations that are enhanced by the
ATLAS EnergyLossUpdator.
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Figure 12: The energy loss distribution at standard measure for single muons with 5 GeV traversing 4.68
mm (i.e. 5% X0 ) of Silicon. The distribution has been created with the Geant4 toolkit and fitted with
a landau distribution. Different possible Gaussian approximations around the theoretical mean (µL, dashed
curves) or respectively most probable value (MPVL, solid curves) that can be chosen for modeling the landau
distribution are shown. The shaded areas illustrate additional 10% of entries starting from 50% (non-filled
area).

Energy Loss of Electrons Electrons lose a substantial part of their energy due to bremsstrahlung,
but inonisation loss still remains a contribution to the total effect. The ATLAS extrapolation package
is capable of correcting for both, mean ionisation loss and bremsstrahlung even if the ionisation loss
can be neglected in many cases. The description of the ionisation loss is slightly modified in the form
factors in comparison with the heavy particle case. Energy loss by bremsstrahlung is well described
by the theory of Bethe and Heitler [24]. Following a standard notation where z denotes the ratio of
the final energy Ef to the initial energy Ei and denoting the amount of material traversed by the
particle in terms of radiation length X0 as t, the PDF of z is given by

ρ(z) =
[− ln z]c−1

Γ(c)
, (17)

14Nowadays only known as Landau distribution.
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where c = t/ ln 2 and z is evidently restricted to z ∈ (0, 1).
The average mean (radiative) energy loss per unit length is then given as15

(dE/dx)rad = −Ei/X0 (18)

From Eq. (18) one can learn that the expectation value for z is < z >= e−t and the variance can
be approximated by var < z >= e−t ln 3/ ln 2 − e−2t, which propagates a noise addition of σ2

q/p to the
covariance matrix of the ATLAS track parameter q/p as

σ2
q/p =

1
< z >2 p2

· var < z >, (19)

when this kind of update is applied.
The standard track parameterisation used in the ATLAS tracking EDM is defined such that the
uncertainties of the track are implicitly assumed to be Gaussian distributed, and it can be shown
that the application of the average energy loss described by the Bethe-Heitler formula (including the
Gaussian noise addition to the track uncertainties) introduces a strong bias towards too low momentum
reconstruction [25]. Figure 13 shows a comparison of the energy loss distributions of a heavy particle
(µ) to an electron when traversing the same detector layer.
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Figure 13: Comparison of muon energy loss to electron energy loss in a silicon layer of 10% X0 thickness.
The particles have been generated using Geant4 and where propagated with a initial momentum of 2 GeV . The
muon energy loss distribution follows hereby the Landau distribution, while the electron energy loss distribution
is disturbed by the long tail due to radiation loss. This results in a theoretical mean value up to 10 times
bigger than for pure ionisation loss.

4.2 Summary of the Material Effects Integration

The ATLAS extrapolation engine enhances different material update mechanisms that have been
described within this section. Some of the described options are dedicated to the fast track simulation
FATRAS. Table 1 gives — for the convenience of the reader — a summary of the implemented
techniques and indicates the configuration flags to be chosen for the various applications. The property
flags refer to the MultipleScatteringUpdator and EnergyLossUpdator, respectively.
The width of the Gaussian approximations to the energy loss functions can be adjusted by specifying
one additional property of EnergyLossUpdator.

15Note that Eq. (18) led to the definition of X0 through X0
−1 ≈ 4αr2eZ(Z + 1)N · Ei(ln 183Z−1/3 + 1/18), when

N = ρNa/A is the number of atoms per unit area and re the classical radius of the electron.
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Table 1: Possible material effects mechanisms that are accessible through the ATLAS extrapolation package,
the description is given for multiple scattering (MS) and energy loss effects.

Mechanism Equation Particle Property flag
MS, single Gaussian Eq. (10) all default
MS, double Gaussian Eq. (11) all GaussianMixtureModel=true

mean ionisation loss Eq. (13) all default
most probable ionisation loss Eq. (16) all bool in method signature
mean radiation loss Eq. (18) e+/− UseBetheBlochForElectrons=false

5 Extrapolation

Propagation, navigation and material effects integration are steered by one AlgTool, the Extrapolator.
It establishes the simple user front-end and exists in a two-folded way: as a fully configured AlgTool
whose entire setup is done at job configuration via python setup, or as a strategy pattern interface
where the executing propagation AlgTool is part of the method signature.
The following four different extrapolation methods can be performed either in the fully configured or
component pattern setup:

• extrapolate(...) this is the main extrapolation interface; a starting track representation,
a destination surface, a particle hypothesis that determines the type of material interactions,
a propagation direction and a boundary directive for the destination surface can be provided.
The extrapolate(...) interface exists in a two-folded signature: starting from a single track
representation, given by the TrackParameters class, or from an entire Track object. In the latter
case, the closest position on the given trajectory is chosen as a starting point of the extrapolation
process. This guarantees an optimal accuracy depending on the given track information16.

• extrapolateDirectly(...) this is the direct forward call to the propagation AlgTool, it allows
to do a simple propagation without navigation and material effects through the IExtrapolator
interface.

• extrapolateStepwise(...) the method signature is identical to the main extrapolate(...)
method, but the interface method differs by the return type. A step-wise navigation to the
destination surface is performed, stepping down to sub-surface level on intersected layers as
described in further detail in Sec. 3.2.4. The extrapolateStepwise(...) returns the track
representations on all crossed active detector surfaces in a std::vector. The last element of
the vector is the track extrapolation at the destination surface. This method builds the core of
the a posteriori holes-on-track search.

• extrapolateBlindly(...) this method is identical with the step-wise extrapolation, but does
not require a provided destination surface. It stops with the last boundary surface of the known
TrackingGeometry and is used for trajectory creation within FATRAS.

Recently, the extrapolation package has been extended to support neutral track parameterisations
and the new track particle base class. This is aimed at extending the current use of the extrapolation
package (that is mainly restricted to track reconstruction) and providing the powerful extrapolation
methods to hight level event reconstruction algorithms and physics analysis applications.

5.1 Internal Extrapolation Flow

Encapsulated from the user interface, every extrapolation process is performed as a sequence of actions
that are realised as private method of the Extrapolator AlgTool. The first step is the initialisation

16In the ATLAS computing model, the track representation loses the hit information when being transformed from
the Event Summary Data (ESD) the the Analysis Object Data (AOD). Consequently, many operations performed on
ESD level lead to higher accuracy compared to the similar operation on AOD data.
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of the the navigation, performed by the initializeNavigation() method: the starting volume and
associated layer to the starting parameters are determined as well as the according destination volume.
From this point on, the entire extrapolation flow is driven automatically through the volumes that
are crossed by the trajectory: the extrapolation is carried out to the boundary of the current volume,
until the destination volume is reached. The mechanism of the BoundarySurface objects together
with the Navigator AlgTool are described in Sec. 3, Fig. 14 shows an UML sequence diagram of a
sample extrapolation process.

a: propagate(boundSurface : Surface& )

2: extrapolateInsideVolume()

ex : IExtrapolator

k: preUpdate()

0: extrapolate(sf : Surface&)

j: propagate(sf : Surface&)

meu : IMaterialEffectsUpdator

ua : UserAlgorithm

prop : IPropagatornav : INavigator

A: associatedLayer()

g*: nextLayer()

B: postUpdate()

D*: propagate(layerSurface : Surface&)

C*: nextLayer()

E*: update()

h*: propagate(layerSurface : Surface&)

1*: extrapolateToVolumeBoundary()

F: nextVolume()

i*: update()

Figure 14: Simplified UML sequence diagram of an extrapolation process; for convenience, the method
signatures are mostly omitted and the process is only illustrated for a fully static setup. The only method
signatures indicated in the diagram are the different surface types that occur: the destination surface sf,
various surfaces that represent material layers layerSurface and several boundary surfaces labelled as bound-
Surface. Since all surface types extend the same surface base class they can be used with the underlying
propagation AlgTool. The initial extrapolate() call to the destination surface sf invokes repetitive private
extrapolateToBoundary() calls until the destination volume is found and the extrapolateInsideVolume()

succeeds. Inside the volume a sequential extrapolation from one Layer class to the next is done.

Volume driven Extrapolation Methods The ATLAS TrackingGeometry is put together from vol-
umes of different internal structure; each type triggers a different navigation strategy in the extrapo-
lation process. The most commonly used setup is a fully static description of the detector using layers
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that are pre-ordered with a given reference direction. The track parameters are hereby propagated
from layer to layer and updated according to the material description of the intersected layer. An
adjustable and volume dependent maximum number of failed attempts to intersect the successive layer
triggers the search for the next volume through intersecting the appropriate boundary surface of the
volume. Other parts of the detector may refer to an external material description (e.g. a database,
parameterisation) or, when regarding the traverse of the calorimeter, the integration of an actual en-
ergy loss measurement could be taken instead of a parametric description through the reconstruction
geometry. A dynamic approach has been developed for these cases that allows to create layers for a
point-like material integration once the path through a volume is roughly known. It is realised by
a dedicated AlgTool, the IDynamicLayerCreator that can be registered to a volume of the recon-
struction geometry and implemented in various different ways. Currently, a wrapper for the material
description used in the Muonboy reconstruction algorithm [26] that is restricted to the MS exists in a
prototype setup.
Additionally, volumes in the reconstruction geometry can be modeled as dense material which allows
the usage of the STEP Propagator, see Sec. 2.3. Moreover, detached structures exist in the recon-
struction geometry that need specific navigation. All these cases are determined by the structure of
the current volume to be crossed.

6 Performance Tests

Track extrapolation processes are very frequently performed by many different modules of the event
reconstruction. These client algorithms are immediately affected by the performance and reliability of
the track extrapolation engine. Thus, dedicated focus has been drawn on (partly automated) validation
and error triggering mechanisms during the design phase of the TrkExtrapolation realm. One major part
of the overall track extrapolation quality is the correct description of the underlying detector material
by the reconstruction geometry, which is not in particular subject of the extrapolation process itself
and will not be covered in this section. A detailed consideration and reflection of this topic can be
found in [7].
Both the reliability and the accuracy (or quality) of the track parameter extrapolation have to be
investigated. Whereas the first part is somewhat trivial since it simply includes consistency checks
and the monitoring of a high number of extrapolation processes, the second task appears to be less
trivial as it first occurs. The quality of the extrapolation solution is determined by the correct
handling of material interactions and the precision of the mathematical transport of both parameters
and covariances through the magnetic field. Latter can be done by comparing the calculated transport
Jacobian matrices with numerically evaluated ones, which will be shown in Sec. 6.2. The numerical
estimation of the transport Jacobian relies on the correct propagation of the track representation,
which can not easily be validated, since the true solution of the intersection is not known. One is
thus restricted to compare different modules and propagation techniques amongst each other and to
perform self-consistency checks with forward-backward extrapolations.

6.1 Stand-alone Extrapolation Tests

The resulting track parameters resolution is evidently the ultimate validation of the the track extrap-
olation. However, it accumulates all different aspects of track reconstruction and thus complicates
the monitoring of single effects. It is sometimes useful to factorise the various parts of the track
reconstruction into smaller modules that can be investigated in a controlled environment. The AT-
LAS extrapolation package offers dedicated algorithms to monitor special aspects of the extrapolation
process. Most of the Algorithm classes designed to perform sample extrapolations are located in the
TrkExAlgs package of the Tracking repository.

6.1.1 Self-consistency and Navigation Performance

A stable and reliable navigation process through the TrackingGeometry is necessary to assure the
correct material integration during the transport of the track parameters. While in the track re-
construction the Extrapolator is configured to switch to a direct extrapolation without navigation
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in case that a navigation break has been triggered (see Sec. 3.4), a dedicated Algorithm exists for
validation purpose that stops the navigation process in such a case and records the specifications
of the input parameters and the break condition. This algorithm also allows the monitoring of the
boundary surface mechanism, since it records the necessary switches to the second or third boundary
hypothesis when exiting a TrackingVolume of the reconstruction geometry. It can be shown that the
navigation is reliable at highest level, starting from compatible input parameters (i.e. after testing
that a geometrical intersection of the trajectory with the given destination surface exists) only one in
about 40000 test extrapolations fails due to a navigation break17. The extrapolation tests have been
carried out incorporating full material effects integration in a momentum range between 500 MeV
and 150 GeV . For each randomly generated destination surface within the Inner Detector volume,
the transport of the track parameters has been performed before the parameters on the destination
surface have been back extrapolated to the starting position. Energy loss is applied in the forward
direction, while the deposed energy is again added to the q

p parameter during backward extrapolation.
By this, the self-consistency of the material effects integration can be checked accordingly. Figure 15
shows absolute or relative errors for track parameters after the extrapolation to the destination surface
and back extrapolation to the initial starting frame. One other aspect can be monitored during theses
tests: if the Navigator AlgTool is configured to run in validation mode, it records the performance
of the entry, respectively exit surface estimation of the various volumes. It can hereby be shown that
within typical extrapolation processes, the straight line approximation that is used to estimate the
hit volume surface is to more than 99.8 % correct.

6.2 Validation of the Covariance Propagation

The correct transport of the track parameters errors is essential for a good tracking resolution, in par-
ticular when the extrapolation is used with progressive fitting techniques that rely on the transported
covariances18. The validation of the covariance transport through the propagator implementations
is therefore inevitable. A dedicated validation algorithm has been established that is capable of
comparing the transport Jacobian matrix as calculated by the IPropagator implementations with
numerically evaluated ones. The numerical derivatives are hereby calculated by using the method of
Ridders [27] that is based on a symmetric derivative

f ′(x) ≈ f(x+ h)− f(x− h)
2h

, (20)

and aims to calculate f ′(x) in the limit h→ 0. Evidently, Eq. (20) can not be evaluated for this limit,
some approaching procedure to the limit value has therefore to be taken. The basic idea of Ridders
method is to decrease the parameter h successively and to evaluate the derivative for each case. The
limit value is then calculated by a polynomial extrapolation towards h = 0. Figure 16 shows the
relative residuals of the Jacobian matrix entries

rjk =

(
Jcalcif − Jnumif

Jnumif

)
jk

(21)

between the numerically evaluated and the provided Jacobian matrices, but is probably not very
intuitive for representing the quality of the covariance transport, since it does not reflect the different
relevance of the various coefficients. Naturally, some components of the covariance matrix play a
more important role than others in the track fit, since some track parameters pairs are stronger
correlated then others (this is mainly determined by the detector and magnetic field setup). The
pure comparison of all Jacobian coefficients, however, does not distinguish between relevant and non-
relevant components. A second, more striking way of showing the quality of the covariance transport

17In a typical reconstruction job this number is evidently larger, since the compatibility test can not be a priori
done. During the track reconstruction the assignment of a hit to a given trajectory is, in general, based on a cruder
assumption that is given through the pattern recognition.

18In least squares fitters, a crude prediction of the covariance matrix is, in general, sufficient, since it is mainly used
to evaluate the compatibility of the hit with the given track hypothesis but does not enter the fit per se. However, the
transport Jacobian matrix that relates the fitted parameters with the track parameters on the various measurement
surfaces is indeed needed for the least squares fit.
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Figure 15: The absolute respectively relative error of about for sample extrapolations within the Inner De-
tector including full navigation and material effects integration. About 40000 extrapolations for the interaction
region (smeared start parameters) to randomly distributed planar surfaces in the Inner Detector and back to
the start surface are performed. The two upper plots show the absolute difference of the local coordinates of
the start parameters with the back propagated ones. The latter plots show the relative error on the initial φ
respectively q

p
values, the start parameters have been generated equally distributed over the entire azimuthal

range and in the momentum interval between 500 MeV and 150 GeV .

is to check the parameter pull distributions

f(xi) =
(xrec − xtrue)i

σi
(22)

for the five parameters after the track fit. Unfortunately — when using full detector simulation — the
pull distributions are mainly dominated by the quality of the material description used in the track
fit and the error estimation based on clusterisation. The pure parameter transport is thus, in general,
shadowed by these more significant effects. The fast track simulation FATRAS, however, allows to
create tracks with fully controlled input in both material description and hit errors. Figure 17 shows
the pull distributions of the track parameters after refitting of 50000 single tracks simulated without
material effects and purely gaussian cluster errors in the ID barrel (|η| < 2.5) using FATRAS .



29

-log(               )
Jnum-Jcalc

RungeKuttaPropagator

STEP_Propagator

StraightLinePropagator

HelixPropagator

no magnetic field

homogeneous magnetic field

realistic magnetic field

if if

Jnum
if

-log(               )
Jnum-Jcalc

if if

Jnum
if

-log(               )
Jnum-Jcalc

if if

Jnum
if

0 2 4 6 8 10 12 14 16

10

210

310

410

0 2 4 6 8 10 12 14 16

10

210

310

410

0 2 4 6 8 10 12 14 16 18 20

1

10

210

310

410

Figure 16: Relative errors of
the entries in the transport Jaco-
bian matrices for different magnetic
field setups and the various propa-
gation techniques. Fifty thousand
test propagations have been per-
formed within a test volume of sim-
ilar size as the ATLAS Inner Detec-
tor. The calculated Jacobian ma-
trices as provided by the propaga-
tor instances are hereby compared
to numerically evaluated ones that
have been calculated using the ro-
bust Ridders algorithm. In case
of homogenous magnetic field, the
surfaces have been restricted to
be aligned with the magnetic field,
such that the missing tuning of the
HelixPropagator does not affect
the numerical calculation.

6.3 Timing Performance

Since the extrapolation of track parameters is a very frequent process in the event reconstruction,
it is of particular interest to be keep the CPU time contribution at minimal cost. The highest
relative frequency of extrapolation calls in the event reconstruction is within the track fit, where
every hit causes — depending on the fitting technique — usually at least two extrapolation steps.
The optimisation of the timing performance of the track extrapolation package can therefore be best
evaluated in the minimisation of the contribution to the track fitting applications.
In the standard ID event reconstruction of 10 tt̄ events using the New Tracking (NEWT) [29] re-
construction chain, the Extrapolator is called about 80 000 times, predominately in the track fit;
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Figure 17: Perigee parameter pull distribu-
tions of 50000 tracks that have been simulated
and refitted without material interactions and as-
suming Gaussian distributed cluster errors. All
five track parameters are shown, as an example
the pull distribution of transverse impact param-
eter d0 is fitted with a Gaussian curve. The
RungeKuttaPropagator has been used for these
test.

the Propagator AlgTool is called additionally ten times more often in the pattern recognition. Ta-
ble 2 presents an overview of the number of method calls and relative timing contributions of the
extrapolation package per event.
The contribution of the extrapolation process to the track fit is obviously dependent on the used
implementation of the ATLAS ITrackFitter interface. For the standard ATLAS Kalman filter, the
extrapolation accounts to about two thirds of the overall time spent in track fitting during the entire
event reconstruction. This number, however, includes the large number of track fits in the ambiguity
solving process where many track candidates describe fake tracks and hence the navigation between
the given measurement surfaces is not always straight-forward. It can be shown that for the refit of
already found and resolved tracks the contribution of the extrapolation drops below 40 %. When using
the global χ2 implementation of the standard ATLAS track fitter interface, the relative contribution
to the track fit is in general higher, since for each measurement the extrapolation is at least done three
times to calculate the track derivatives numerically stable on the measurement surface. Recently, the
propagator interface has been expanded to provide the used transport Jacobian to the client algorithms
and thus the number of performed extrapolations in the least squares fit could be reduced to a single
one per track. Additionally, this led to an increased stability of the track fit.

Table 2: Relative timing contribution to the event reconstruction measured for 10 tt̄ events in the Inner
Detector New Tracking reconstruction for the extrapolation components in the pattern recognition and track
fitting process. The number marked with (F) are contained in the caller contribution.

Method Calls Caller Time/Evt [%]
RungeKuttaPropagator::propagate() 789 238 pattern recognition 8.39
Extrapolator::extrapolate() 53 714 track/vertex fitting 2.77
Extrapolator::extrapolateStepwise() 26 549 holes-on-track search 1.56
RungeKuttaPropagator::propagate() 118 189 Extrapolator 1.63F

Internal timing statistics Two main contributions to the total time spent during a extrapolation
process exist: the transport of the track parameters (and in particular their errors), such as the
navigation that is responsible for finding the next volume to traverse. The modification of track
parameters due to material effects is a negligible factor in the overall timing of the extrapolation
engine. In the current realisation of the ATLAS Extrapolator AlgTool both steps are performed
with the underlying propagation engine. The relative time contribution of the navigation (including
the transport of the navigation parameters to the boundary surface) to the time spent while traversing
a volume is about 25 %, but since the fast straight line test performed by the boundary surface
mechanism fails only in less than 0.1 % this number can be clearly reduced in a future evolution of
the extrapolation engine. Figure 18 shows a caller-diagram of the main extrapolation method in a
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static volume setup.

Figure 18: Simplified caller diagram for 500
sample extrapolations within the Inner Detec-
tor volume. The graph shows the contribution
of navigation and actual extrapolation to the
total time spend in the extrapolation to a vol-
ume boundary. In the current realisation of the
ATLAS extrapolation package, the navigation
is also performed using the underlying prop-
agation engine. Encouraging results of stand
alone navigation tests — see Sec. 6.1.1 — in-
dicate however that a satisfactory performance
can be also achieved by the simple straight
line assumption of the boundary surface mech-
anism. It can be seen that when using the
default RungeKuttaPropagator about 75% of
the extrapolation time is spent in the propaga-
tion of track parameters and their errors, while
the main contribution to the Runge-Kutta inte-
gration is the multiple lookup of the magnetic
field value.

7 Conclusion and Outlook

During the last three years a powerful and well performing new extrapolation package has been devel-
oped in full coherence to the new ATLAS reconstruction geometry and integrated in the new modular
software structure of the ATLAS track reconstruction. It serves as a central part of many applications
in the event reconstruction including pattern recognition, track and vertex fitting and combined re-
construction. Several different propagation techniques have been integrated and the modular design
facilitates future adaption and extension.
The new extrapolation engine extends the pure functionality needed for track and vertex fitting with
a predictive navigation that can be used — together with the underlying tracking geometry — for
holes-on-track search or for the fast track simulation FATRAS.
Large scale event reconstruction using the new extrapolation package has been carried out using Monto
Carlo simulated data and taken data from the CTB 2004 and the commissioning runs using cosmic
rays [28].

7.1 Outlook

An improvement in terms of a lower CPU time consumption of the extrapolation process can be
achieved by simplifying the navigation process to directly use a straight line approximation for most
of the cases, while including a fallback solution to full propagation if the straight line case fails
to determine the correct exit surface, as shown in Sec. 6.3. An alternative approach could be to
evaluate the usage of the recently integrated less complex IIntersector implementations, that exist
as prototype versions in the ATLAS software release 13.1.0.
Recently, the propagation interface has been expanded to provide the transport Jacobian matrices to
the client algorithms. This is in particular important for global track fitting techniques, but has not
been fully propagated through the extrapolation interface. A future adaption foresees the access to
the full transport information (including the noise terms due to material effects integration) through
a modified IExtrapolator interface.
The ATLAS extrapolation engine has become a widely used tool for many different applications and is
currently being used with various different geometry setups and navigation philosophies. This resulted
in a rather extensive interface that concentrates these various different tasks. Current work is ongoing
to split these different tasks that can be associated to with the different geometry setups of static,
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dynamic and detached volumes structures in the extrapolation process into separate AlgTool classes
that comply with the same interface definition.

A Appendix

A.1 Conventions and Typesetting

The following type setting conventions are followed throughout this document: Software packages
within the ATLAS offline software repository [30] are written in Sans-sarif face, C++ or python class
names are written in Courier face. Namespace definitions as used in the software repository are
omitted in this document for readability. An exhaustive list of software packages and their location
within the ATLAS software repository can be found in Tab. 3.

Table 3: Software leaf packages to be found in the Tracking/TrkExtrapolation CVS repository that are
described or referred to within this document.

Leaf package Brief description
TrkExAlgs test and validation algorithms
TrkExExample test steering package
TrkExSlPropagator propagation AlgTool with a straight track model
TrkExHelixPropagator propagation AlgTool with a helical track model
TrkExSTEP Propagator propagation AlgTool with material interactions
TrkExRungeKuttaPropagator propagation AlgTool for inhomogeneous magnetic field
TrkExInterfaces concentration of interfaces
TrkExDynamicLayerCreator AlgTool to provide layer information to global fitters
TrkExTools extrapolation AlgTool
TrkExUtils shared utility classes

Typesetting of mathematical Formulas and geometrical Conventions Three different types of
three-dimensional frames are used within this document or are referred to by the TrkDetDescr con-
tainer:

• a coordinate system corresponding to the description of the magnetic field and the detector
geometry, referred to as global frame.

• a cartesian frame moving along the track, the so-called curvilinear frame; the tangential momen-
tum vector of the track builds the z-axis of this frame, x-axis and y-axis are then constructed
with an additional global constraint.

• three-dimensional cartesian frames, different from the global frame, mainly attached to surfaces
and volumes.

The standard cartesian set ei of unit vectors describing the tracking frame are indicated as

E = (ex , ey , ez ). (23)

The standard base of the cartesian curvilinear frame is, for convenience, indicated as

U = (eu , ev , et ). (24)

Finally, the standard base hi of a three-dimensional cartesian frame different different from the track-
ing frame is noticed as

H = (hx ,hy ,hz ). (25)
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In conjunction with a Surface object, this frame is sometimes referred to as helper frame, since it
builds the carrier of the two-dimensional intrinsic surface frame (also called local frame).
A three-dimensional vector in either of the two frames is indicated by bold. Its expression with respect
to the different frames is done using the standard base sets:

a = aexex + aeyey + aezez = aeueu + aevev + aetet = ahxhx + ahyhy + ahzhz . (26)

A.2 Extrapolation to Distorted Surfaces

In reality, many surfaces in the ATLAS detector that are modeled in event simulation and reconstruc-
tion as ideal geometrical objects will be deformed or distorted with respect to their mathematical
description. Detector straws or wires in drift tube detectors (such as the TRT in the ID or the Moni-
tored Drift Tubes (MDT) in the MS) will be deformed due to gravitational wire sagging; planar surface
may be bent due to gravitation for extensive objects or simply due to mounting tension. Some of
these effects will be dealt with at the stage of hit calibration when a parametric or projective approach
is of satisfactory accuracy, but in particular for large objects, such as the long MDT tube wires, the
geometrical distortion has to be taken into account during the extrapolation process. The ATLAS
TrackingGeometry provides hereby a dedicated DistortedSurface base class; concrete surface types
extend this base class and the appropriate surface class from the TrkSurfaces repository. The extrapo-
lation process to a distorted surface is then realised by a two step propagation to the final destination
surface. Since the DistortedSurface types extend the common surface class it can be naturally used
with the propagator to find an intersection with the nominal or non-distorted surface. In the following,
a corrected surface in position and rotation of same type is created dynamically depending on the
intersection solution of the first propagation. The final propagation is then performed to the corrected
and more realistic surface position. Figure 19 shows an illustration of an example propagation to a
wire surface with gravitational sagging correction (SaggedLineSurface).

d0
~z0

~
s

d0

z0

hx

hy

hz

nominal StraightLineSurface

recalculated StraightLineSurface

sagging description

track

Figure 19: Illustration of a propagation to a wire surface with gravitational sagging correction: a first propa-
gation to the nominal StraightLineSurface is performed which yields to the local coordinates d̃0 and z̃0. De-
pending on the longitudinal position on the line and the line orientation, the corrected StraightLineSurface

is created and the final propagation performed.
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A.3 Intersection formulas for straight line propagation

The following sections summarise the formulas used for the calculation of trajectory intersections with
destination surfaces of different types in the StraightLinePropagator.

A.3.1 Line-Line Approach

The problem of finding the closest approach between two lines in three-dimensional space — one
line describing the particle trajectory, the other one a straw measurement or the z axis for a perigee
representation, respectively — can be easily solved when both lines are given in parametric form

la(s) = ma + s · da,

lb(t) = mb + t · db. (27)

The vector between any two points on the two lines can then be expressed by

k(s, t) = lb(t)− la(s) = mab + t · db − s · da, (28)

where mab = mb − ma. The vector k(s0, t0) denotes the vector between the two closest points
la,0 = la(s0) and lb,0 = lb(t0) and is perpendicular to both, da and db.
This defines a system of two linear equations:

k(s0, t0) · da = mab · da + t0 · da · db − s0 = 0 (29)

k(s0, t0) · db = mab · db + t0 − s0 · da · db = 0 (30)

Solving (29) and (30) for s0 and t0 yields

s0 =
(mab · da)− (mab · db)(da · db)

1− (da · db)2
, (31)

and, respectively,

t0 = − (mab · db)− (mab · da)(da · db)
1− (da · db)2

. (32)

A.3.2 Line-Plane Intersection

An arbitrary plane is defined as the set of points x that comply with

n(x− p) = 0, (33)

where n = (nx, ny, nz) describes the normal vector of the plane and p a freely chosen reference point
that lies within the plane. Given a line with l(u) = m + u · d, the solution for the intersection can be
found by inserting this into Eq. (33) and solving for u. This results in

u =
n(p−m)

n · d
. (34)

A.3.3 Line-Cylinder Intersection

The calculation of the intersection of a line with an arbitrarily oriented cylinder is shown here after
transforming the line into the cartesian frame of the cylinder, i.e. the coordinate system where the
symmetry axis of the cylinder builds the z-axis; In this frame the cylinder is centered around the
origin and can be projected to a circle in the x− y plane.
Let p1 = (p1x, p1y, p1z) and p2 = (p2x, p2y, p2z) be two points of the line in the cylinder frame. The
solution can then be found in the projective x−y plane where the lines can be described as y = kx+d,
with

k =
p2y − p1y

p2x − p1x
, (35)
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and respectively

d =
p2xp1y − p1xp2y

p2x − p1x
. (36)

It intersects the corresponding circle x2 + y2 = R2, which can then be found by a simple quadratic
equation and reinsertion into the line equation.

A.4 Intersection Formulas for helical Propagation

All calculations performed to find the intersection of the helix with a given Surface object are per-
formed in the so-called helix frame in which the helix progresses along the z axis and has an initial
starting position of h0 = (R, 0, 0). The helix parameterisation in this frame is done in the azimuthal
angle φ and can be expressed as

h(φ) =

 R · cosφ
R · sinφ

ô ·R · φ cot θ

 , (37)

when ô = ±1 defining the orientation of the helix. The solution for the intersections with different
surface types are found by determining the parameter φi at the intersection point. The momentum
vector at the intersection is then expressed as

p(φi ) = p · h′(φi )
||h′(φi )||

, (38)

when h′(φ) = ∂h(φ)
∂φ .

In general, more than one solution exists for the intersection of a helix with different surfaces. In the
ATLAS track reconstruction, however, the helix radius given by the momentum range of particles that
are subject of track reconstruction is big in comparison to the detector component to be intersected,
thus the solution is in most cases unambiguous.

A.4.1 Helix-Plane Intersection

The intersection of a helix with an plane that is expressed in the helix frame can be found by inserting
the helix parameterisation given in Eq. (37) into to the normal vector form of a plane given by Eq. (33).
After some manipulations, the intersection solution is given by the root of the function

f(φ) = nx cosφ+ ny sinφ+ ô · nz · φ cot θ − δ
R

= a1 cosφ+ a2 sinφ+ a3 · φ+ a4 = 0
, (39)

when δ = n · p. Equation (39) is characterised by a linear part in φ overlaid by an oscillating part
with the coefficients a1 and a2. Two special cases exist for which the intersection can be calculated
analytically: for surfaces parallel to the x− y plane of the helix frame nx = ny = 0 and the solution
is given by the linear equation in φ. On the other hand, if the the normal vector of the plane is
perpendicular to the z axis of the helix frame, the problem can be solved in the x−y coordinate plane
and reduces to the same case as described in Sec. A.3.3. In the general case, however, the solution
can not be found analytically it has to be calculated numerically using an iterative approach. In
the implementation of the ATLAS HelixPropagator a standard Newton-Rhapson method is used for
finding the root of Eq. (39). First a starting point for the iterative procedure is found by solving the
linear part, which yields

φ0 = −a4

a3
. (40)

The solution of the azimuthal angle φi at the intersection point is then found by iterating

φi = φi−1 −
f(φi−1)
f ′(φi−1)

(41)

when f ′(φ) = ∂f(φ)
∂φ . The iteration is stopped once the function value f(φ) drops below a certain

numerical cut value.
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A.4.2 Helix-Cylinder Intersection

The intersection of a helix with a cylinder is trivial in the case when the symmetry axis of the cylinder
is parallel to the helix guiding center (z axis in the helix frame). It reduces to finding the intersection
of two circles in the projected x − y plane and can be solved accordingly. This is the most common
case for the HelixPropagator since the solenoidal magnetic field in the ATLAS Inner Detector points
along the global z axis (and one could assume it to be constant in an defined inner volume) and most
cylinders that represent layers or volume boundaries are aligned in the same way.
For completeness, the HelixPropagator does also include the calculation with arbitrarily oriented
cylinders, which is similar to the intersection of a helix with a plane solved in an iterative Newton-
Rhapson approach. In the helix frame, the set of point x that define a cylinder surface of radius r are
given by satisfying the equation

|[x− c]× lz|2 = r2, (42)

when c denotes the center position and lz the symmetry axis of the cylinder. Inserting the helix
parameterisation h(φ) given in Eq. (37) and defining d = c× lz follows

[h(φ)× lz]2 − 2 · (γ(φ)× lz) · d + d2 − r2 = 0. (43)

Solving Eq. (43) in components yields

f(φ) = a0 + a1 · φ+ a2 · φ2

+a3 cosφ+ a4 sinφ+ a5 sin(2φ)
+a6φ cosφ+ a7φ sinφ
+a8 cos2 φ+ a9 sin2 φ = 0

(44)

The solution for this equation is again performed in an iterative way using the solution of the quadratic
equation in the coefficients a0, a1 and a2 as seed for the iterative solution of the entire expression.

A.4.3 Helix-Line Approach

The calculation of the closest approach of a helix to a line that is parallel to the z axis is trivial,
since it is positioned on the plane that is defined through the two parallel lines. For calculating the
closest approach of a helix to an arbitrary straight line it is convenient to transform the line into the
helix frame representation. The line parameterisation as given in Eq. (27) and the helix expression —
Eq. (37) — are used in this frame, respectively. The two points of closest approach lc = l(tc) on the
line, and respectively hc = h(φc) on the helix are then represented by a parameter set (tc, φc).
The vector joining these two points j = (hc − lc) is orthogonal to both, the line direction and the
track direction at hc which is expressed through

j · d = 0
j · ∂hc

∂φ = 0 (45)

Solving the first equation for tc and inserting the solution into latter, yields, after doing some manip-
ulation,

f(φ) = a0 + a1φ
+a2 · sin(φ) + a3 · cos(φ) + a4 · sin(2φ) + a5 · cos(2φ)
+a6 · φ · sin(φ) + a7 · φ · cos(φ) = 0

(46)

The solution is then carried out in the same way as for finding the intersection of a line with a cylinder.

A.5 Analytic Transport of the Covariance Matrix using the curvilinear Frame

The analytic transport of the covariance matrix along the the curvilinear frame is shown for a helical
track model and follows the path laid out in [11], but is adapted for the ATLAS track parameterisation.
Since the straight line propagation is just one specific type of a helix propagation it can be evidently
applied to this case as well. The initial problem of transporting a local covariance matrix Cli from an
initial surface to a target surface is hereby split into the transformations carried out between the local
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and curvilinear frame on the starting surface, the transport of the covariance along the curvilinear
track frame and the final transformation between the curvilinear frame at the destination surface and
its attached measurement frame, see Eq. (4). The curvilinear frame is hereby defined as given in
Eq. (2).
A helical trajectory of a particle with charge q and momentum magnitude p in a constant magnetic
field B can be parameterised as the global position m(ψ) and direction t(ψ) in a three dimensional
space

m(ψ) = m0 +
γ

Q
(ψ − sinψ)h +

sinψ
Q

t0 +
α

Q
(1− cosψ)n0

t(ψ) =
∂m(ψ)
∂s

=
∂m(ψ)
∂ψ

· ∂ψ
∂s

= γ(1− cosψ)h + cosψ · t0 + α sinψ · n0 (47)

when ψ = Q · s denotes the momentum scaled run parameter s, Q = −|B| qp , and the initial vectors
at s = 0 are written as m0 and t0, respectively. The vector h describes the direction of the magnetic
field, n = h×t

α the normalised trihedron vector, α evidently the length of h × t and γ the projection
of h onto t.
We now investigate the influence of small variations on the start parameters m0, t0 and 1

p0
on the

transported parameters m, t. The variations are applied through a displacement by dm0 that is
restricted to the curvilinear u − v plane, a deflection dt0 to the direction and a modification of the
curvature given by δ(q/p0). The variations result not only in modified target parameters but also in
a variation of propagation length s to comply with the orthogonality relation

dm · t = 0. (48)

The total differentials dm and dt that incorporate the resulting variations on the the target surface
with respect to modified starting parameters are build as

dm =
∂m
∂m0

dm0
(a) +

∂m
∂t0

dt0
(b) +

∂m
∂(1/p0)

δ(1/p0)(c) +
∂m
∂s

δs(d) (49)

and, respectively,

dt =
∂t
∂t0

dt0
(e) +

∂t
∂(1/p0)

δ(1/p0)(f) +
∂t
∂s
δs(g). (50)

Figure 20 shows the fundamental relations between the applied variations and their effects on the
target surface.

Curvilinear to Curvilinear Transformations In the following, the transport of the covariance matrix
between to curvilinear frames is shown to illustrate the principle of the further calculations.
We can, by inserting the partial derivatives of Eq. (47) identify the components of Eq. (49) and
Eq. (50) as

∂m
∂m0

dm0 = dm0 (51a)

∂m
∂t0

dt0 =
ψ − sinψ

Q
h(h · dt0) +

sinψ
Q

dt0 +
1− cosψ

Q
(h× dt0) (51b)

∂m
∂(1/p0)

δ(1/p0) = p[s · t + m0 −m] · δ(1/p0) (51c)

∂m
∂s

δs = t · δs (51d)

∂t
∂t0

dt0 = (1− cosψ)h(h · dt0) + cosψ + sinψ(h× dt0) (51e)

∂t
∂(1/p0)

δ(1/p0) = α ·Q · s · p · n · δ(1/p0) (51f)
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dm0

dt0

dsdsds

(a) (b) (c)

original trajectory

trajectory after
applying variations

dm1 dm1 dm1

dt1 dt1

Figure 20: The initial variations on the track state and the directly resulting variations at the target position
of the extrapolation process. The illustration decouples the possible start parameter variations: (a) illustrates
the effect of an initial variation dm0 at the starting position, while (b) shows the effect of a slightly modified
momentum direction; (c) displays the changed trajectory for a modified curvature while keeping the same
initial direction.

∂t
∂s
δs = α ·Q · n · δs (51g)

We used that γ = h ·t = h ·t0 remains constant along s and so does α. Let us in addition mention that
Eq. (51f) follows directly from Eq. (51c) and that Eq. (51g) represents the centripetal acceleration
caused by the Lorentz force.
We search for transport jacobian matrix for the errors on the initial curvilinear parameters ci =
(ui, vi, φi , θi , 1/pi)T and the final curvilinear parameters cf = (uf , vf , φf , θ, 1/pf )T . In other words,
we look for the coefficients Cif that transform a variation of the initial parameter parameter set ci
to the final parameters set cf . As an example we will specify these components for the variations on
δuf :

δuf =
∂uf
∂ui

δui +
∂uf
∂vi

δvi +
∂uf
∂φi

δφi +
∂uf
∂θi

δθi +
∂uf

∂(1/p0)
δ(1/p0). (52)

The track parameters q/p as defined through the ATALS tracking EDM is hereby replaced by the 1/p
since the variations on the signed momentum representation is restricted to change the momentum
magnitude only, while leaving the charge parameter untouched. In any curvilinear frame, the total
differentials dm and dt can be expressed with respect to the curvilinear coordinates and are then
given by19

dm = eu δu+ ev δv (53)

dt =
∂t
∂φ
δφ+

∂t
∂θ
δθ = sin θeu δφ− ev δθ (54)

Equation (54) can be shown when differentiating t with respect to φ and θ and using the fact that
the curvilinear frame is constructed by using the global z axis.
Without losing generality, we will in the following use Eqs. (47) to (51) assuming that the initial frame
is given at s = 0, i.e. mi = m0 and denote ψif = ψf − ψi ≡ ψ and sif ≡ s for convenience.

19Note that the orthogonality relation as required by Eq. (48) is hereby met by restricting the total differential to a
variation in eu and ev , respectively.
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After inserting Eqs. (53) and (54) into Eq. (49) and using the partial derivatives found in Eq. (51)
we gain an expression that correlates the variations on the local coordinates in the final curvilinear
frame with the variations of the start parameters

efu · δuf + efv · δvf = eiu · δui
+ eiv · δvi
+ sin θi

Q

[
(ψ − sinψ)(h · eiu )h + sinψeiu + (1− cosψ)(h× eiu )

]
· δφi

− 1
Q

[
ψ − sinψ)(h · eiv )h + + sinψeiv + (1− cosψ)(h× eiv )

]
· δθi

+ p · [s · tf + mi −mf ] · δ(1/pi)
+ t · δs.

(55)

This equation is multiplied by efu to isolate the terms given in Eq. (52), since it cancels the contribu-
tions in the orthogonal component tf ≡ eft . This yields

δuf = eiu · efu δui
+ eiv · efu δvi
+ sin θi

Q

[
(ψ − sinψ)(h · eiu )(h · efu ) + sinψ(eiu · efu ) + (1− cosψ)(h× eiu )

]
· δφi

− 1
Q

[
ψ − sinψ)(h · eiv )(h · efu ) + + sinψ(eiv · efu ) + (1− cosψ)(h× eiv )efu

]
· δθi

+ p ·
[
(mi · efu )− (mf · efu )

]
· δ(1/pi).

(56)

By comparing the coefficients of Eq. (56) with those defined in Eq. (52), the first row of the Jacobian
matrix is found and since Eq. (55) is on the left hand side symmetrical in eu and ev , a similar
equation for δvf can be obtained. For evaluating the covariance entries that regulate the transport of
the directional uncertainties we take Eq. (50) and insert again both, the partial derivatives as given in
Eq. (51) and the expression of the total differential in the curvilinear frame coordinates. This yields
the expression

sin θf efu δφf − efv δθf =
+ sin θi

[
(1− cosψ)(h · eiu )h + cosψeiu + sinψ(h× eiu )

]
δφi

−
[
(1− cosψ)(h · eiv )h + cosψeiv + sinψ(h× eiv )

]
δθi

+ α ·Q · p · sδ(1/pi)
+ α ·Q · n · δs

(57)

We first try to eliminate the explicit variation on the propagation length δs from Eq. (57) before
we can proceed identically as for the local coordinates. Taking Eq. (49) and multiply dmf with the
perpendicular direction tf gives an expression for δs as

δs = −dmi · tf −
[
∂mf

∂ti
dti

]
· tf −

[
∂mf

∂(1/pi)
· tf

]
· δ(1/pi), (58)

which we insert in Eq. (57). When multiplying Eq. (58) again with efu and efv and and isolating the
components, the third and fourth row — describing the propagation of the directional uncertainties
— of the transport Jacobian is determined. The missing terms of the Jacobian matrix can be found
without additional calculations; they are

∂(1/pf )
∂(1/pi)

= 1 (59)

and, respectively,
∂(1/pf )

∂(ui, vi, φi , θi )
= 0 (60)

and correspond to momentum conservation and an interaction-free transport.
The fully deployed Jacobian matrix describing the transport from one curvilinear frame to another
can be found in Fig. 21.
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Curvilinear to Local Transformations and vice versa For a full transport of the covariance matrix
between to arbitrary track representations it is also necessary to determine the Jacobian matrices
that transform the local parameter expressions x = (l1, l2, φ, θ, q/p)T to the curvilinear parameters
c = (u, v, φ, θ, 1/p) and the reverse way. In ATLAS, all track representations can be expressed on
a planar surface, and including an additional transformation, even in a two-dimensional cartesian
coordinate system, which thus remains the only case to be investigated in this scope (this is guaranteed
through the measurement frame mechanism, see [6]).
We use the definition of a lateral variation in the curvilinear frame — Eq. (53) — and express it
through a variation in the local coordinates and along the momentum

dm = eu δu+ ev δv = e1δl1 + e2δl2 + t · δs, (61)

and redo the same for the variation on the momentum

dt = sin θeu δφ− ev δθ = sin θeu δφ− ev δθ +
∂t
∂s
δs. (62)

It is worth mentioning that although the directional expression is identical in both local and curvilinear
frame, the angular parameters φ, θ have to be first treated independently since we want to investigate
both sides individually.
Multiplying Eq. (61) with the orthogonal vector t (which eliminates components in eu and ev ) and
solving for δs establishes an expression of the necessary20 variation in the propagation length caused
by a local variation on the starting surface

δs = −(t · e1)δl1 − (t · e2)δl2, (63)

while the multiplication with eu and ev , respectively, yields the expression of the variations in δu
and δv

δu = (eu · e1)δl1 + (eu · e2)δl2

δv = (ev · e1)δl1 + (ev · e2)δl2. (64)

The coefficients of the Jacobian matrix that relate the local surface parameters with the curvilinear
parameters u and v can be directly gained from Eq. (64). In a second step, Eq. (62), is multiplied by
eu and ev and Eq. (63) is inserted to eliminate δs. This yields the additional components that relate
the angular variables with the local surface parameters.
The reverse transformation from the (transported) curvilinear frame to the local frame of the target
surface can be found in a similar way, starting from Eq. (61). We clearly want to evaluate the variations
hereby in the target frame, i.e. we demand that dm is orthogonal to e3 in this case, which builds the
normal vector of the target surface. Under this assumption, the multiplication of Eq. (61) with e3

yields
δs =

eu · e3

t · e3
δu+

ev · e3

t · e3
δv. (65)

Introducing Eq. (65) to Eq. (61) now enhances the same procedure to find the components for the
inverse Jacobian matrix. The fully deployed matrices can be found in the code documentation of the
TrkExUtils CVS package [30].
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