RESULTS FROM HARP
 AND THEIR IMPLICATIONSFOR NEUTRINOPHYSICS

BORISA.POPOV
D zhelepov Laboratory of N uclear P roblem S, JIN R , Joliot-C urie 6, 141980, D ubna (on behalf of the HARP C ollaboration)

Abstract

Recent results from the HARP experim ent on the m easurem ents of the double-di erential production cross-section of pions in proton interactions w ith beryllium, carbon and tantalum targets are presented. These results are relevant for a detailed understanding of neutrino ux in accelerator neutrino experim ents M in $\operatorname{B} O O N E / S C B O O N E$, for a better prediction of atm ospheric neutrino uxes as well as for an optim ization of a future neutrino factory design.

1 The H ARP experim ent

The HARP experim ent ${ }^{1 / 2}$ at the CERN PS was designed to m ake m easurem ents of hadron yields from a large range of nuclear targets and for incident particle mom enta from $1.5 \mathrm{GeV} / \mathrm{c}$ to $15 \mathrm{GeV} / \mathrm{c}$. Them ain m otivations are the m easurem ent of pion yields for a quantitative design of the proton driver of a future neutrino factory, a substantial im provem ent in the calculation of the atm ospheric neutrino ux and the m easurem ent of particle yields as input for the ux calculation of accelerator neutrino experim ents, such as K 2 K 3:4, M in ib ooN E^{5} and SciB ooN E^{6}.

TheHARP experim entm akes use of a large acceptance spectrom eter consisting of a forw ard and large angle detection system. A detailed description of the experim ental apparatus can be found in R ef. ${ }^{2}$. The forw ard spectrom eter \| based on large area drift chambers ${ }^{7}$ and a dipole m agnet com plem ented by a set of detectors for particle identi cation ($\mathrm{P} \mathbb{D}$): a tim e-ofight walif (T O FW) , a large C herenkov detector (C H E) and an electrom agnetic calorim eter | covers polar angles up to 250 m rad which is wellm atched to the angular range of interest for the m easurem ent of hadron production to calculate the properties of conventional neutrino beam s . The large angle spectrom eter | based on a Time Projection Chamber (TPC) located inside a solenoidalm agnet I has a large acceptance in the m om entum and angular range for the pions relevant to the production of the m uons in a neutrino factory. It covers the large m a jority of the pions accepted in the focusing system of a typical design. T he neutrino beam of a neutrino factory originates from the decay of m uons which are in tum the decay products of pions.

2 R esults obtained w ith the H ARP forw ard spectrom eter
The rstHARP physics publicatiorl $\sqrt{9}$ reported m easurem ents of the ${ }^{+}$production cross-section from an alum inum target at $12.9 \mathrm{GeV} / \mathrm{c}$ proton m om entum. T his corresponds to the energies of the KEK PS and the target m aterial used by the $K 2 K$ experim ent. The results obtained in Ref. 9 were subsequently applied to the nal neutrino oscillation analysis of $K 2 K 4$, allow ing a signi cant reduction of the dom inant system atic error associated w ith the calculation of the so-called far-to-near ratio (see ${ }^{9}$ and ${ }^{4}$ for a detailed discussion) and thus an increased K 2K sensitivity to the oscillation signal.

A detailed description of established experim ental techniques for the data analysis in the HARP forw ard spectrom eter can be found in Ref.9;10. O ur next goal is to contribute to the understanding of the M in B ooN E and SciB ooN E neutrino uxes. They are both produced by the B ooster N eutrino B eam at Ferm ilab which originates from protons accelerated to $8.9 \mathrm{GeV} / \mathrm{c}$ by the booster before being collided against a beryllium target. A s w as the case for the K 2 K beam, a fundam ental input for the calculation of the resulting ux is the m easurem ent of the

+ cross-sections from a thin 5\% nuclear interaction length (I) beryllium target at $8.9 \mathrm{GeV} / \mathrm{c}$ proton m om entum, which is presented here and in the forthcom ing H ARP publication 11 .
W ith respect to our rst published physics pape $\frac{9}{9}$, a num ber of im provem ents to the analysis techniques and detector sim ulation have been m ade. The most im portant im provem ents introduced in this analysis com pared w ith the one presented in R ef. 9 are:

A n increase of the track reconstruction e ciency which is now constant over a m uch larger kinem atic range and a better m om entum resolution com ing from im provem ents in the tracking algorithm ;

Better understanding of the m om entum scale and resolution of the detector, based on data, which was then used to tune the sim ulation. This results in sm aller system atic errons associated w ith the unsm earing corrections determ ined from M onte C arlo;

N ew particle identi cation hit selection algorithm sboth in the TOFW and in the CHE resulting in m uch reduced background and negligible e ciency losses;

Signi cant increases in M onte C arlo production have also reduced uncertainties from M onte C arlo statistics and allow ed studies which have reduced certain system atics.

It is im portant to point out that an analysis incorporating these im provem ents yields results for the alum inum data fully consistent w ith those published in Ref .9 .

The absolutely norm alized double-di erential cross-section for the process p+Be! ${ }^{+}+X$ can be expressed in bins of pion kinem atic variables in the laboratory fram e, (p ;), as

$$
\begin{equation*}
\frac{d^{2}}{d p d}(p ; \quad)=\frac{A}{N_{A}} t \frac{1}{p} \frac{1}{N_{p o t}} N^{+}(p ;) ; \tag{1}
\end{equation*}
$$

where:
$\frac{d^{2}+}{d p d}$ is the cross-section in $\mathrm{cm}^{2}=(\mathrm{GeV} / \mathrm{c})=\operatorname{srad}$ for each $(\mathrm{p} ;)$ bin covered in the analysis. $\frac{\mathrm{A}}{\mathrm{N}_{\mathrm{A}}}$ is the reciprocal of the num ber density of target nuclei for $\mathrm{Be}\left(1: 2349 \quad 1 \theta^{3}\right.$ per cm $\left.{ }^{3}\right)$.
t is the thickness of the beryllium target along the beam direction. The thickness is m easured to be 2.046 cm w ith a m axim um variation of 0.002 cm .
p and are the bin sizes in m om entum and solid angle, respective登.

[^0]Table 1: Total num ber of events in the $8.9 \mathrm{GeV} / \mathrm{c}$ beryllium 5\% I target and em pty target data sets, and the num ber of protons on target as calculated from the prescaled trigger count.

D ata Set	$8.9 \mathrm{G} \mathrm{eV} \mathrm{/c} \mathrm{Be} \mathrm{5} \mathrm{\%}$	I
protons on target	$13,074,880$	$\mathrm{G} \mathrm{eV} / \mathrm{c} \mathrm{Em}$ pty T arget
total events processed	$4,682,911$	$1,990,400$
events w ith accepted beam proton	$2,277,657$	413,095
beam proton events w ith FTP trigger	$1,518,683$	200,310
total good tracks in ducial volum e	95,897	91,690

$N_{\text {pot }}$ is the num ber of protons on target after event selection cuts.
N^{+}(p ;) is the yield of positive pions in bins of true m om entum and angle in the laboratory fram e.

Eq. 1 can be generalized to give the inclusive cross-section for a particle of type

$$
\begin{equation*}
\frac{d^{2}}{d p d}(p ;)=\frac{A}{N_{A}} t \frac{1}{p} \frac{1}{N_{p o t}} \quad M_{p}^{1} p^{000} N^{0}\left(p^{0} ;{ }^{0}\right) ; \tag{2}
\end{equation*}
$$

where reconstructed quantities arem arked with a prim e and $M{ }_{p}{ }^{1} p_{0} 00$ is the inverse of a m atrix which fully describes the m igrations betw een bins of true and reconstructed quantities, nam ely: lab fram emom entum , p, lab fram e angle, , and particle type, .

There is a background associated w ith beam protons interacting in m aterials other than the nuclear target (parts of the detector, air, etc.). T hese events are subtracted by using data collected w ithout the nuclear target in place where one has been careful to norm alize the sets to the sam e num ber of protons on target. This procedure is referred to as the 'em pty target subtraction':

$$
\begin{equation*}
\left.\left.\mathrm{N}^{0}\left(\mathrm{p}^{0} ;^{0}\right)!\quad \mathbb{N}_{\text {target }}{ }^{0} \mathrm{p}^{0} ;^{0}\right) \quad \mathrm{~N}_{\text {em pty }}^{0}\left(\mathrm{p}^{0} ;{ }^{0}\right)\right]: \tag{3}
\end{equation*}
$$

The event selection is perform ed in the follow ing way: a good event is required to have a single, well reconstructed and identi ed beam particle im pinging on the nuclear target. A dow nstream trigger in the forward trigger plane (FTP) is also required to record the event, necessitating an additional set of unbiased, pre-scaled triggers for absolute norm alization of the cross-section. T hese pre-scale triggers ($1 / 64$ for the $8.9 \mathrm{GeV} / \mathrm{c}$ Be data set) are sub ject to exactly the sam e selection criteria for a 'good' beam particle as the event triggers allow ing the e ciencies of the selection to cancel, thus adding no additional system atic uncertainty to the absolute norm alization of the result. Secondary track selection criteria have been optim ized to ensure the quality of them om entum reconstruction aswellas a clean tim e-of- ight m easurem ent while m aintaining high reconstruction and particle identi cation e ciencies. The results of the event and track selection in the beryllium thin target data set are show n in T able 1 .

The doubledi erential inelastic cross-section for the production of positive pions from collisions of $8.9 \mathrm{GeV} / \mathrm{c}$ protons w ith beryllium have been m easured in the kinem atic range from $0: 75 \mathrm{GeV} / \mathrm{c} \mathrm{p} \quad 6: 5 \mathrm{GeV} / \mathrm{c}$ and 0:030 rad $0: 210 \mathrm{rad}$, subdivided into 13 m om entum and 6 angular bins. System atic errors have been estim ated. A full (13 6 $)^{2}=6048$ elem ent covariance m atrix has been generated to describe the correlation am ong bins. The data are presented graphically as a function ofm om entum in 30 m rad bins in F ig. [1. To characterize the uncertainties on this m easurem ent $w e$ show the diagonal elem ents of the covariance m atrix plotted on the data points in Fig. 1 . A typical total uncertainty of 9.8% on the double-di erential cross-section values and a 4.9\% uncertainty on the total integrated cross-section are obtained.

Figure 1: H A R P m easurem ents of the double-di erential production cross-section of positive pions, $\mathrm{d}^{2} \quad{ }^{+}=\mathrm{dpd}$, from $8.9 \mathrm{GeV} / \mathrm{c}$ protons on 5\% I beryllium target as a function of pion m om entum, p , in bins of pion angle,, in the laboratory fram e. The error bars show n include statistical errors and all (diagonal) system atic errors. T he dotted histogram s show the Sanford W ang param etrization that best ts the HARP data.

Table 2: Sanford W ang param eters and errors obtained by tting the dataset. The errors refer to the 68.27% con dence level for seven param eters ($\left.{ }^{2}=8: 18\right)$.

P aram eter	C_{1}		C_{2}		C_{3}		$\mathrm{C}_{4}=\mathrm{C}_{5}$				C_{6}		C_{7}		C_{8}	
V a lue	(82:2	19:8)	16:47	1:62)	(90:6	20:3)	(7:44	2:30)	10	2	(5:09	0:49)	(0:187	0:053)	(42:8	13:6)

Sanford and W ang ${ }^{12}$ have developed an em pirical param etrization for describing the production cross-sections of m esons in proton-nucleus interactions. This param etrization has the functional form :
where X denotes any system of other particles in the nal state, Beam is the proton beam m om entum in $\mathrm{GeV} / \mathrm{c}, \mathrm{p}$ and are the ${ }^{+} \mathrm{m}$ om entum and angle in units of $\mathrm{GeV} / \mathrm{c}$ and radians, respectively, $d^{2}=(d p d)$ is expressed in units of $m b /(G e V / c s r), d \quad 2 d(c o s)$, and the param eters $\mathrm{C}_{1} ;::: ; \mathrm{c}_{8}$ are obtained from ts to m eson production data.

The ${ }^{+}$production data reported here have been tted to this em pirical form ula (Eq, 4). In the ${ }^{2} \mathrm{~m}$ in im ization, the fullerror m atrix w as used. Thebest- t values of the Sanford w ang param eters are reported in Table 2, together w ith their errors.
T he M iniBooNE neutrino beam is produced from the decay of and $K m$ esons which are produced in collisions of $8.9 \mathrm{GeV} / \mathrm{c}$ protons from the Ferm ilab Booster on a 71 cm beryllium target. The neutrino ux prediction is generated using a M onte Carlo sim ulation. In this sim ulation the prim ary m eson production rates are taken from $a \quad t$ of existing data w ith a Sanford $-W$ ang em pirical param etrization in the relevant region. T he results presented here, being for protons at exactly the booster beam energy, are then a critical addition to these global
ts. The kinem atic region of the m easurem ents presented here contains 80.8% of the pions contributing to the neutrino ux in the M in iB ooN E detector.

A sim ilar analysis has been perform ed using the HARP forw ard spectrom eter for the m easurem ent of the double-di erential production cross-section of in the collision of $12 \mathrm{GeV} / \mathrm{c}$

protons w ith a thin 5\% I canbon target. T he results are shown in F ig. 2. T hese m easurem ents are im portant for a precise calculation of the atm ospheric neutrino ux and for a prediction of the developm ent of extended air show ers.

3 R esults obtained w ith the HARP large-angle spectrom eter
F irst results on the m easurem ents of the double-di erential cross-section for the production of charged pions in proton\{tantalum collisions em itted at large angles from the incom ing beam direction have been obtained recently 13 . The pions were produced by proton beam s in a m om entum range from $3 \mathrm{GeV} / \mathrm{c}$ to $12 \mathrm{GeV} / \mathrm{chitting}$ a tantalum targetw ith a thickness of 5\% I. T he angular and m om entum range covered by the experim ent ($100 \mathrm{M} \mathrm{eV} / \mathrm{c} \quad \mathrm{p}<800 \mathrm{M} \mathrm{eV} / \mathrm{c}$ and $0: 35 \mathrm{rad}<2: 15 \mathrm{rad})$ is of particular in portance for the design of a neutrino factory. Track recognition, m om entum determ ination and particle identi cation were allperform ed based on the m easurem ents m ade w ith the TPC. Results for the double-di erential cross-sections df $=d p d$ at four incident proton beam m om enta ($3 \mathrm{GeV} / \mathrm{c}, 5 \mathrm{GeV} / \mathrm{c}, 8 \mathrm{GeV} / \mathrm{c}$ and $12 \mathrm{GeV} / \mathrm{c}$) are show n in F ig. B $^{\text {3 }}$.

Sim ilar analyses are being perform ed for the $\mathrm{Be}, \mathrm{C}, \mathrm{Cu}, \mathrm{Sn}$ and Pb targets using the sam e detector, which willallow a study of A -dependence of the pion yields with a reduced system atic uncertainty to be perform ed.

4 Conclusions

M easurem ents of the double-di erentialproduction cross-section of positive pions in the collision of $8.9 \mathrm{G} \mathrm{eV} / \mathrm{c}$ protons w ith a beryllium target have been presented. T he data have been reported in bins of pion m om entum and angle in the kinem atic range from $0: 75 \mathrm{GeV} / \mathrm{c} \quad \mathrm{p} \quad 6: 5 \mathrm{GeV} / \mathrm{c}$ and 0:030 rad 0:210 rad. A system atic error analysis has been perform ed yielding an average point-to-point error of 9.8% (statistical+ system atic) and an overall norm alization error of 2%. The data have been tted to the em piricalparam eterization of Sanford and W ang and the resulting param eters provided. T hese production data have direct relevance for the prediction of a ux for M in iBooNE and SciBooNE experim ents.

Prelim inary results for the m easurem ent of the double-di erential production cross-section of in the collision of $12 \mathrm{GeV} / \mathrm{c}$ protons w ith a carbon target have been presented.

Figure 3: D ouble-di erential cross-sections for ${ }^{+}$(left) and (right) production in p\{Ta interactions as a function of m om entum displayed in di erent angular bins (show n in m rad in the panels). The results are given for all incident beam m om enta (led triangles: $3 \mathrm{GeV} / \mathrm{c}$; open triangles: $5 \mathrm{GeV} / \mathrm{c}$; led rectangles: $8 \mathrm{GeV} / \mathrm{c}$; open circles: $12 \mathrm{GeV} / \mathrm{c}$). The error bars take into account the correlations of the system atic uncertainties.
F irst results on the production of pions at large angles w ith respect to the beam direction for protons of $3 \mathrm{GeV} / \mathrm{c}, 5 \mathrm{GeV} / \mathrm{c}, 8 \mathrm{GeV} / \mathrm{c}$ and $12 \mathrm{GeV} / \mathrm{c}$ im pinging on a thin tantalum target have been described. These data can be used to m ake predictions for the uxes of pions to enable an optim ized design of a future neutrino factory.
A cknow ledgm ents
It is a pleasure to thank the organizers for the nancial support which allow ed m e to participate in the conference and to present these results on behalf of the HARP C ollaboration.
R eferences

1. M .G.Catanesi et al. [HARP Collaboration], \Proposal to study hadron production for the neutrino factory and for the atm ospheric neutrino ux", CERN -SPSC /99-35 (1999).
2. M .G.Catanesiet al [HARP Collaboration], Nucl. Instrum . M ethods A 571,527 (2007).
3. M H.Ahn et al [K 2K C ollaboration], Phys. Rev. Lett. 90,041801 (2003).
4. M . H.Ahn et al [K 2K C ollaboration], Phys. Rev. D 74, 072003 (2006).
5. A. A . A guilar-A revalo et al [T he M iniB ooN E C ollaboration], arX iv:0704.1500 hep-ex]. E.Church et al [BooNE C ollaboration], FERM ㅍAB PROPO SA L-0898, (1997).
6. A. A. A guilar-A revalo et al [SciB ooN E C ollaboration], $\backslash \mathrm{Bringing}$ the SciB ar detector to the B ooster neutrino beam " , FERM IIAB PROPO SA L-0954, (2006), hep-ex/0601022].
7. M . A nfreville et al, N ucl. Instrum . M ethods A 481, 339 (2002).
8. M . Baldo-C eolin et al, Nucl . Instrum . M ethods A 532,548 (2004).
9. M . G. Catanesiet al [HARP C ollaboration], Nucl Phys. B 732, 1 (2006).
10. M .G.Catanesiet al [HARP C ollaboration], Nucl Instrum . M ethods A 572, 899 (2007).
11. M .G .C atanesietal [HARP C ollaboration], \M easurem ent of the production cross-section of positive pions in the collision of $8.9 \mathrm{GeV} / \mathrm{c}$ protons on beryllium ", hep-ex/0702024].
12. J.R. Sanford and C .L.W ang,"Em piricalform ulas for particle production in p-Becollisions between 10 and $35 \mathrm{BeV} / \mathrm{c} ", \mathrm{BNL}, \mathrm{AGS}$ intemal report, (1967) (unpublished).
13. M.G.C atanesiet al. [HARP C ollaboration], \M easurem ent of the production of charged pions by protons on a tantalum target", (in preparation).

[^0]: ${ }^{a} \mathrm{p}=\mathrm{p}_{\mathrm{m} \text { ax }} \mathrm{p}_{\mathrm{m} \text { in }} ; \quad=2(\cos (\mathrm{~m}$ in $) \cos (\mathrm{max}))$

