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Abstract. In this paper we study numerical problems arising in solving the single mode
gyrotron equation. Using the method of finite differences analytical and numerical solutions
are obtained. Quasistationary solutions and corresponding eigenvalues and eigenfunctions of
this problem are investigated.
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1. Introduction

Gyrotrons are microwave sources whose operation is based on the stimulated cy-
clotron radiation of electrons oscillating in a static magnetic field. Single mode non-
stationary gyrotron oscillations can be described by the following system of partial
differential equations [2]:















∂p

∂x
+ i

(

∆ + |p|2 − 1
)

p = if(t, x) ,

∂2f

∂x2
− i

∂f

∂t
+ δf =

I

2π

∫ 2π

0

p dθ0.

(1.1)

Here i =
√
−1, x ∈ [0, L] is the normalized axial coordinate, t is the normalized

time, ∆ is the frequency mismatch, δ describes variation of the critical frequencies,
∆ and δ are real numbers, p = p(t, x, θ0) is the dimensionless complex transverse
momentum of the electron, f = f(t, x) is the high-frequency field in resonator, I
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is the dimensionless current, θ0 is the parameter. The system of equations has to be
supplemented by the standard initial condition

p(t, 0, θ0) = exp(iθ0), 0 ≤ θ0 < 2π, f(0, x) = f0(x) ,

and by the boundary condition for the field at the entrance to the interaction space
f(t, 0) = 0, and at the exit to the interaction space

∂f(t, L)

∂x
= −iγf(t, L),

where γ is a positive parameter, f0(x) is given complex function. An efficient nu-
merical method for solving this reduced system of equations was presented in [1].
However, it was discovered that the results of the computations depend in a nontrivial
manner on the chosen spatial and temporal step-lengths. So, main difficulties arises
in numerical solving of Schrödingers type equation with special boundary condi-
tions. The aim of this paper is to study in detail numerical problems for the second
equation of (1.1).

2. Solution of the differential problem

We begin with the homogeneous Schrödinger type partial differential equation (I =
0)

∂2f

∂x2
− i

∂f

∂t
+ δf = 0, (2.1)

where x ∈ (0, L), t > 0 – is time, δ = const1. Boundary conditions can be written
as

f(t, 0) = 0,
∂f(t, L)

∂x
= −iγf(t, L). (2.2)

We represent the quasi-stationary solution of the problem (2.1) and (2.2) in the form

f(t, x) = g(x) exp(iαt), (2.3)

where α is a complex number α = α1 + iα2 (α2 is a temporal damping factor:
if α2 > 0, the solution (2.3) decreases, if α2 < 0, the solution increases, and for
α2 = 0 the solution is oscillating in time). We now consider nontrivial solutions (2.3)
of the differential problem by computing allowed values of the parameter α, as well
as the corresponding discrete problem. Substituting the solution (2.3) into equation
(2.1) and boundary conditions (2.2), we obtain the Sturm-Liouville problem for the
ordinary differential equation

{

g′′(x) + λ2g(x) = 0,

g(0) = 0, g′(L) = −iγg(L),
(2.4)

1 Using the substitution g(t, x) = f(t, x) exp(iδt) for function g we would obtain the
boundary value problem (2.1) and (2.2) with δ = 0. We don’t use mentioned substitution
because function f and parameter δ have the physical interpretation
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where λ2 = α + δ is complex value. The solution of problem (2.4) is

g(x) = C̃1 sin(λx),

where C̃1 is an arbitrary constant. From boundary conditions we obtain a transcen-
dental complex equation for calculating the eigenvalue λ:

λ cos(λL) + iγ sin(λL) = 0

or
z cos z = −iγ̃ sin z, (2.5)

where z = z1 + iz2 = λL and γ̃ = γL. It is obvious that z = 0 is a root of the
equation. Moreover, if z is the root of (2.5), then also −z is the root of this equation.
Therefore we can confine ourselves to consider only z1 > 0. Separating real and
imaginary parts in equation (2.5), we obtain a system of two real transcendental
equations

{

z1 cos z1 cosh z2 + z2 sin z1 sinh z2 = γ̃ cos z1 sinh z2,

z2 cos z1 cosh z2 − z1 sin z1 sinh z2 = −γ̃ sin z1 cosh z2.
(2.6)

Multiplying the first equation of system (2.6) by sin z1 cosh z2 and the second equa-
tion by cos z1 sinh z2 and summing, we exclude the parameter γ̃ and obtain the rela-
tion

z1 sin(2z1) + z2 sinh(2z2) = 0 .

It follows that the nontrivial roots of the last equation satisfy the inequality

sin(2z1) < 0 or tan(z1) < 0 .

Dividing the second equation of the system (2.6) by cos z1 cosh z2, we obtain

z2 − z1 tan z1 tanh z2 = −γ̃ tan z1.

It can be seen that if z1 > 0, then also z2 > 0. Let us number the roots of (2.5) z(k),
k = 1, 2, . . ., whose real parts z

(k)
1 are positive, by increasing their real parts and

take into account that (k − 1)π < z
(k)
1 < kπ, 0 < z

(k)
2 < γ̃ + 1. Since λ =

√
α + δ

or z2 = L2(α + δ), we have

α1 =
z2
1 − z2

2

L2
− δ, α2 =

2z1z2

L2
.

It is seen that the parameter δ affects only the values of α1 and α2 > 0. The results
of computations performed by means of ”MAPLE” for L = 15, γ = 2, and δ = 0

are summarized in Tab. 1 for the first eight eigenvalues and numerical values of α
(k)
1

and α
(k)
2 , k = 1, 8. Fig. 1 shows the first fifty eigenvalues λk . It can be seen that

α
(k)
2 > 0 and that all solutions

f (k)(t, x) = sin

(
√

α
(k)
1 + δ + iα

(k)
2 x

)

exp((−α
(k)
2 + iα

(k)
1 )t)
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Table 1. The roots of equation (2.6) and values of α(k).

k z
(k)
1 z

(k)
2 α

(k)
1 α

(k)
2

1 3,1381 0,10498 0,0437 0,00293
2 6,2758 0,21232 0,1748 0,01184
3 9,4128 0,32466 0,3933 0,02716
4 12,5484 0,44547 0,6989 0,04969
5 15,6814 0,57970 1,0914 0,08080
6 18,8092 0,73539 1,5700 0,12295
7 21,9251 0,92732 2,1327 0,18073
8 25,0054 1,18594 2,7727 0,26360

Continue_eigenvalues lambda

0.02

0.04

0.06

0.08

0.1

Im(lambda)

2 4 6 8 10

Re(lambda)

Figure 1. Eigenvalues of the continuous problem λk, k = 1, 59.

monotonically decrease in time, i.e.,

f (k)(x, t) → 0, t → +∞, k = 1, 2, . . . ,

(here C̃1 = 1). Taking the square root in expression, we obtain two complex num-
bers in the form ±(a(k) + ib(k)), where a(k) > 0 and b(k) > 0, if α

(k)
1 + δ > 0 and

α
(k)
2 > 0. Since the functions f (k)(t, x) contain an arbitrary constant C̃1, the com-

plex number with the minus sign does not give us any new result and can be ignored.
Separating real and imaginary parts we obtain

|f (k)(t, x)| = exp(−α
(k)
2 t)

√

sinh2(b(k)x) + sin2(a(k)x).

Let us note that the complex eigenfunctions gk(x) = sin(λkx) (λk =
√

α(k) + δ

and α(k) = α
(k)
1 + iα

(k)
2 ) are orthogonal, i.e.,

〈gk, gk〉 =

∫ L

0

gk(x)gn(x) dx = 0, k 6= n.

Correspondingly
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‖gk‖2 = 〈gk, gk〉 =

∫ L

0

g2
k(x) dx =

1

2

(

L +
iγ

λ2
k − γ2

)

.

Each continuous function f̃(x), x ∈ (0, L) with boundary conditions (2.4) can be
expanded in the series of the orthonormalized eigenfunctions g̃k(x) = gk(x)/‖gk‖

f̃(x) =

∞
∑

k=1

ckg̃k(x) ,

where the expansion coefficients can be found in the form ck = 〈f̃ , g̃k〉. Calculating
by means of ”MAPLE”, we obtain that the oscillation frequency of the functions
increases and their absolute values rapidly decrease with increasing k.

3. Solution of the discrete problem

In the finite differences method we use a uniform homogeneous spatial and temporal
grids:

ωh = {xj : xj = jh, j = 1, N − 1, Nh = L }, ωτ = { tn : tn = nτ, n ≥ 1 }

(corresponding step-lengths are h and τ ). We substitute the continuous function
f = f(t, x) in these grids by the discrete grid function y = y(t, x), t ∈ ωτ , x ∈ ωh

with values y(tn, xj) ≡ yn
j . The corresponding derivatives of the function we ap-

proximate by finite–differences

∂2f(tn, xj)

∂x2
≈ Λyn

j ≡
yn

j+1 − 2yn
j + yn

j−1

h2
, (3.1)

∂f(tn, xj)

∂t
≈

yn+1
j − yn

j

τ
,

∂f(tn, L)

∂x
≈ yn

N − yn
N−1

h
. (3.2)

Difference (3.2) approximates the first derivative only to the first order of accuracy,
i.e., O(h). To obtain the second order approximation, we must use the expression

∂f(tn, L)

∂x
≈ 1.5yn

N − 2yn
N−1 + 0.5yn

N−2

h
. (3.3)

Substituting differences (3.1), (3.2) into the problem (2.1) – (2.2), we obtain a two-
layer finite-difference scheme with weight σ ∈ [0, 1]



















i
yn+1

j − yn
j

τ
= σ(Λyn+1

j + δyn+1
j ) + (1 − σ)(Λyn

j + δyn
j ), j = 1, N − 1 ,

yn+1
0 = 0,

yn+1
N − yn+1

N−1

h
= −iγyn+1

N .

(3.4)
Difference equations (3.4) approximate the initial differential equation (2.1) to the
second order both in space and time, if σ = 1/2, and to the first order in time, if
σ 6= 1/2. Boundary conditions (2.2) are approximated only to the first order. To
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obtain the second order, one has to use expression (3.3). Seeking to find the discrete
quasi-stationary solution by analogy to (2.3) we take

yn
j = gj exp(iαnτ) (gj = g(xj), tn = nτ),

then we obtain that the discrete function gj 6≡ 0 satisfies the three-point finite-
difference scheme

{

Λgj + µ2gj = 0, j = 1, N − 1 ,

g0 = 0, gN = CgN−1,
(3.5)

which approximates the continuous problem (2.4). Here

C = (1 + iγh)−1, µ2 = α̃ + δ, α̃ =
(1 − exp(iατ))i

(σ exp(iατ) + 1 − σ)τ
(3.6)

are complex constants (α̃ → α, if τ → 0). Now the solution of (3.5) can be written
as gj = C̃1 sin(qxj), where C̃1 is arbitrary constant, 1 − µ2h2/2 = cos(qh) and
xj = jh. It follows from boundary conditions (3.5) that the complex parameter q
has to be determined from the complex transcendental equation

sin(qL) = C sin(q(L − h)), (3.7)

where the parameter q has complex values

qk = ak + ibk, k = 1, N − 1. (3.8)

If γ = ∞ (boundary conditions of the first kind), then C = 0 and equation sin(qL) =
0 is valid, if qk = kπ

L
(real numbers). Then we get also real eigenvalues [4]

µ2
k =

4

h2
sin2 kπh

2L
, k = 1, N − 1 .

Therefore
α̃k = 2h−2(1 − cos(qkh)) − δ = Ak + iBk, (3.9)

where
Ak = 2h−2(1 − cos(akh) cosh(bkh)) − δ,

Bk = 2h−2 sin(akh) sinh(bkh), k = 1, N − 1.
(3.10)

Since C = C1 + iC2, C1 = (1 + (γh)2)−1, and C2 = −γh(1 + (γh)2)−1, we
separate in equation (3.7) real and imaginary parts and obtain the system of two real
transcendental equations

{

sin(akL) cosh(bkL) = C1 sin(akl1) cosh(bkl1) − C2 cos(akl1) sinh(bkl1),

cos(akL) sinh(bkL) = C1 cos(akl1) sinh(bkl1) + C2 sin(akl1) cosh(bkl1),
(3.11)

where l1 = L−h. If h → 0, then akL → z1, bkL → z2 and we obtain the system of
equations (2.6). After calculation of α̃k, we obtain from (3.6) the approximate values

αk =
1

iτ
ln

(

1 − τα̃k

i + στα̃k

)

, k = 1, N − 1. (3.12)
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It can be seen from (3.12) that the temporal step-length τ and the parameter of the
scheme σ, i.e., the temporal approximation, do not affect the values of α̃k, their
changes have to be taken into account only in the expression (3.12). Approximating
boundary conditions (2.4) by the second order expression (3.3), instead of equation
(3.7) we obtain the complex transcendental equation

sin(qL) = C∗(2 sin(ql1) − 0, 5 sin(ql2)),

where l2 = L−2h, C∗ = (1, 5+ iγh)−1. The results of computations with L = 15,
γ = 2, δ = 0, τ = h = 0, 1, and σ = 1 are presented in Tab. 2, where ak and bk are
solutions of (3.11) and

π(k − 1)

L
< ak <

πk

L
, 0 < bk < 1 .

The values Ak and Bk were obtained from (3.9) and (3.10) k = 1, 8. The results
do not change much (five digits remain the same) by changing the temporal step-
length τ in interval (0, 01, 0, 1). More accurate results can be obtained with σ = 0.5.
Comparing the solutions of the continuous and discrete problems, we see that only
for the first two eigenvalues three or four digits remain the same, while for other
eigenvalues the accuracy rapidly deteriorates. Using the second order approximation
even for the eighth eigenvalue two digits are correct, if σ = 1/2. Considering only
the spatial discretization (the variable x is discretized xj = jh and the variable t is
continuous), we obtain (by means of the method of lines) the boundary problem for

Table 2. The discrete values qkL, α̃k.

k akL bkL Ak Bk

1 3,1380 0,1050 0,0437 0,0029
2 6,2745 0,2115 0,1748 0,0118
3 9,4095 0,3240 0,3929 0,0271
4 12,5400 0,4440 0,6976 0,0494
5 15,6630 0,5745 1,0879 0,0798
6 18,7725 0,7215 1,5618 0,1201
7 21,8535 0,8925 2,1154 0,1728
8 24,8805 1,0875 2,7396 0,2393

the system of complex ordinary differential equations










i
dyj

dt
= Λyj + δyj , j = 1, N − 1 ,

y0 = 0,
yN − yN−1

h
= −iγyN ,

where yj = yj(t) are continuous functions of time, j = 0, N . Seeking the quasi-
stationary solution of this system in the form

yj(t) = gj exp(iαt)
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we obtain the system similar to (3.5) where µ2 = α + δ. This means that the quan-
tities Ak + iBk in expression (3.10) are approximate eigenvalues αk, k = 1, N − 1,
obtained by means of the method of lines (see Tab. 2). Using in the boundary condi-
tions the second order approximation, we obtain an analogous problem, which, just
as the grid method, gives more accurate results. In oder to increase the accuracy of
discrete equation (3.5) we will use the Taylor expansion

Λg(xi) = g′′(xi) +
h2

12
g(4)(xi) + . . . +

2h2m−2

(2m)!
g(2m)(xi) + O(h2m),

where m = 1, 2, . . .. From equation (2.4) it follows that

Λg(xi) =
2g(xi)

h2
µ̃2

m ,

where

µ̃2
m =

(

− (λh)2

2!
+

(λh)4

4!
+ . . . + (−1)m (λh)2m

2m!
+ O(h2m)

)

.

Similarly from boundary conditions (3.5) we obtain

g(xN−1) = g(xN ) − hg′(xN ) + . . . +
(−1)lhl

l!
g(l)(xN ) + O(hl+1), l ≥ 0 ,

and from the boundary condition of the problem (2.4) g(xN−1) = Ckg(xN ), where

Ck = 1 − (hλ)2

2!
+ . . . + (−1)k (hλ)2k−2

(2k − 2)!

+
iγ

λ

(

hλ − (hλ)3

3!
+ . . . + (−1)k (hλ)2k−1

(2k − 1)!

)

+ O(h2k), k ≥ 1 .

It can be seen that the discrete problem (the errors are proportional to O(h2m) and
O(h2k) m, k = 1, 2, . . .) is given in the form

{

Λgi + µ̃2
mgi = 0, i = 1, N − 1 ,

g0 = 0, gN = C−1
k gN−1.

It can be seen that in the limit case (m → ∞, k → ∞) µ̃2
m → 2

h2 (1 − cos(hλ))
and Ck → cos(hλ) + iγλ−1 sin(hλ) or we obtain the transcendental equation (2.5).
Eigenfunctions of the discrete problem (3.5)

g
(k)
j ≡ g(k)(xj) = sin(qkxj), xj = jh, j = 0, N, k = 1, N − 1

are orthogonal with respect to the scalar product 〈g(k), g(n)〉 ≡ h
∑N

j=1 g
(k)
j g

(n)
j ,

i.e., 〈g(k), g(n)〉 = 0, if k 6= n. This follows from the Green formula [4]. Evaluat-
ing ‖g(k)‖2 = 〈g(k)g(k)〉, we obtain orthonormalized system g̃(k) = g(k)/‖g(k)‖,
for which 〈g̃(k), g̃(n)〉 = δk,n (the Kronecker symbol). Considering the second or-
der approximation for the boundary condition (3.3), we cannot obtain a system of
orthogonal eigenfunctions. Evaluating ‖g(k)‖2, we obtain
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‖g(k)‖2 =
1

2

(

L − h sin(qkL) cos(qk(L − h))

sin(qkh)

)

.

If h → 0, then qk → λk and ‖g(k)‖2 → ‖gk‖2. If boundary conditions (3.4) are

given as yn+1
N = 0 (γ = ∞), then qk =

kπ

L
and ‖g(k)‖2 =

L

2
[4]. Each grid

function f̃(x), x ∈ ωh with boundary conditions (3.5) can be expanded as a finite
sum

f̃(x) =

N
∑

k=1

ckg̃(k)(x)

of orthonormalized eigenfunctions g̃(k)(x) = g(k)(x)/‖g(k)‖, x ∈ ωh, where the
expansion coefficients can be found with the help of the expressions ck = 〈f̃ , g̃(k)〉.
The solution of the boundary problem

{

Λg = −f̃(x), x ∈ ωh ,

g(0) = 0, g(L) = Cg(L − h)

is g(x) =
∑N

k=1 ckg̃(k)(x)/µ2
k.

4. Stability of the difference scheme

To study the stability of the discrete problem (difference scheme) (3.4), we rewrite
the difference equations with respect to the difference zj = yn

j − f(xj , tn) in the
matrix operator form

(E + iτσ(Λ + δ))zn+1 = (E − iτ(1 − σ)(Λ + δ))zn,

where zn = (zn
1 , zn

2 , . . . , zn
N−1)

T is the error vector-column and E is the unit oper-
ator. Hence zn+1 = Gzn, where

G = (E + iτσ(Λ + δ))−1(E − iτ(1 − σ)(Λ + δ))

is the transition operator with the eigenvalues

λk =
1 + iτ(1 − σ)(µ2

k − δ)

1 − iτσ(µ2
k − δ)

, k = 1, N − 1,

where µ2
k are eigenvalues of the difference operator (−Λ) to be determined from the

boundary problem (3.5) µ2
k = 2h−2(1 − cos(qkh)). If µ2

k are real numbers, e.g., in
the case of the first kind boundary conditions (γ = ∞, zn+1

N = 0) qk = kπ
L

, then
from the stability condition [4]

|λk|2 = (1 + τ2(1 − σ)2(µ2
k − δ)2)(1 + τ2σ2(µ2

k − δ)2)−1 ≤ 1,

it follows that

σ ≥ 1

2
(4.1)
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independent of the size of the temporal step-length τ . Similar problem for Schrödin-
ger type differential equation was investigated in [3]. Taking the boundary condition
of the third kind in the form zn+1

N = Czn+1
N−1 and determining the complex parame-

ter qk in the form (3.8), we find from (3.11) that µ2k = α̃k + δ, where α̃k can be
determined from (3.9) and (3.10). Then from

|λk|2 =
(1 − τ(1 − σ)Bk)2 + A2

kτ2(1 − σ)2

(1 + τσBk)2 + A2
kτ2σ2

≤ 1

it follows that
−2Bk + τ(1 − 2σ)(A2

k + B2
k) ≤ 0.

If σ ≥ 1
2 and Bk ≥ 0, then this inequality holds and the difference scheme (3.4) is

stable. If σ = 1, we obtain the inequality

τ ≥ −2Bk(A2
k + B2

k)−1, (4.2)

which is important, if Bk < 0. It is seen from (3.11) that, if (ak, bk) is a solution
of this system, then also (−ak,−bk) is a solution. The values of the coefficients Ak,
Bk do not change and it is sufficient to consider only ak > 0. If simultaneously
bk > 0, then also Bk > 0, and the stability condition holds in the form (4.1). If
ak = bk = 0, then Bk = 0 and the difference scheme is stable. Calculations with the
help of ”MAPLE” show that positive variables ak correspond to positive variables
bk i.e., Bk > 0. If the parameter γ < 0, then it can be easily seen that positive ak

correspond to negative bk and the difference scheme (3.4) is absolutely unstable, if
the temporal step-length τ is not large enough (in inequality (4.2) Bk < 0).

5. Method of separation of variables

Let us consider the inhomogeneous equation

∂2f

∂x2
− i

∂f

∂t
+ δf = F (t, x), (5.1)

with a given function F (t, x). We seek the solution f = f(t, x) with the boundary
conditions (2.2) in the form of a series

f(t, x) =

∞
∑

k=1

ak(t)g̃k(x), (5.2)

where g̃k(x) are orthonormalized eigenfunctions and λkL = z(k) = z
(k)
1 + iz

(k)
2 are

solutions of (2.6). To determine functions ak(t), we use the given initial conditions
f(0, x) = f0(x). Taking a scalar product of (5.2) and a fixed eigenfunction, if t = 0,
we obtain ak(0) = 〈f0, g̃k〉. By analogy expanding the right-hand side of (5.1)

F (x, t) =

∞
∑

k=1

Fk(t)g̃k(x)
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we obtain Fk(t) = 〈F, g̃k〉. Assuming that series (5.2) and the series, differentiated
twice with respect to x and once with respect to t, uniformly converge, and substi-
tuting it into (5.1), we obtain the ordinary differential equation

−λ2
kak(t) − iȧk(t) + δak(t) = Fk(t), t > 0

and

ak(t) = ak(0) exp(iα(k)t) + i

∫ t

0

exp(iα(k)(t − ζ))Fk(ζ) dζ,

where ȧk(t) =
dak

dt
, α(k) = λ2

k − δ. As example, if f0(x) = sin
(

πx
L

)

, F = 0, then

solutions of the differential problem can be obtained in the form

f(t, x) = 2πL

∞
∑

k=1

exp(iα(k)t) sin(λkx) sin(λkL)(λ2
k − γ2)

(π2 − λ2
kL2)(λ2

kL − γ2L + iγ)
.

Solving the corresponding discrete problem with the initial condition

yj
0 = sin(

π

L
xj) ≡ f0(xj), j = 0, N ,

we obtain yn
j =

∑N−1
k=1 an

k g̃(k)(xj), where g̃(k)(xj) = sin(qkxj)/‖g(k)‖ are discrete
eigenfunctions. Determining a0

k from the initial condition

a0
k = (f0, g̃

(k)) = hbk, bk =
N−1
∑

s=1

sin(
π

L
sh)g̃(k)(sh),

we find from difference equations the recurrence relation an+1
k = ρkan

k or an
k =

(ρk)na0
k, where ρk = 1 + iτ α̃k/(1 − iτσα̃k). Hence

yn
j = h

N−1
∑

k=1

bk exp(iαkτn)g(k)(xj)

‖g(k)‖2
, (5.3)

where

bk =
sin( π

L
h) sin(qkL)

2(cos(qkh) − cos( π
L
h))

,

αk can be determined from (3.12), and α̃k from (3.9). It can be easily seen that
yn

j → f(tn, xj), if h → 0, τ → 0, i.e., the solution of the discrete problem converges
to the solution of the continuous problem. Using the method of lines (only spatial
discretization), we obtain yj(t) =

∑N−1
k=1 ak(t)g̃(k)(xj) by analogy, where functions

ak(t) are solutions of the Cauchy problem






dak(t)

dt
= iα(k)ak(t) ,

ak(0) = hbk ,

i.e., ak(t) = ak(0) exp(iαkt). Hence the solution can be written as

yj(t) = h

N−1
∑

k=1

bk exp(iαkt) sin(qjxj)/‖g(k)‖2,

i.e., analogously to (5.3) where αk = 2h−2(1 − cos(qkh)) − δ.
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Table 3. The values |f |, |fh|, |fl|, |f2h| for x = L, τ = 0, 01.

t |f | |fh| |fl| |f2h|

0,1 0,05087 0,05085 0,05162 0,04413
0,2 0,06217 0,06224 0,06269 0,05785
0,3 0,06871 0,06862 0,06899 0,06557
0,4 0,07289 0,07286 0,07311 0,07056
0,5 0,07574 0,07593 0,07590 0,07403
0,6 0,07806 0,07827 0,07808 0,07672
0,7 0,08041 0,08013 0,07977 0,07884
0,8 0,08103 0,08164 0,08225 0,08066
0,9 0,08214 0,08291 0,08338 0,08208
1,0 0,08310 0,08398 0,08403 0,08327

10,0 0,09468 0,09526 0.09457 0,09615
20,0 0,08996 0,08994 0,08996 0,09128
30,0 0,10289 0,10299 0,10289 0,10294
40,0 0,09560 0,09561 0,09559 0,09616
50,0 0,09127 0,09127 0,09125 0,09107

Abs(f_h)_solutions
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Figure 2. Solution of the grid problem |fh|, N = 750, x = L.

6. Numerical results and conclusions

Computations were carried out with the following values of the parameters δ = 0,
L = 15, γ = 2, h = 1/10; 1/50, N = 150; 750, τ = 0, 1; 0, 01, σ = 1,
and f0(x) = sin

(

πx
L

)

. The finite difference scheme was realized by means of the
FORTRAN code and analytically by using the expansion (finite series) in the form
of a sum. The results coincide up to seven digits. The discrete solutions |fh| and
|f2h| for x = L were compared with the solution |f | of the continuous problem
which was obtained from the series at fixed time moments t ≤ 50 (|f2h| is the
discrete solution obtained by means of the FORTRAN code and the second order
approximation of the boundary condition). In computing the series the terms were
summed up to the term whose modulus was smaller than ε = 10−8 (the number of
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included terms was in all cases smaller than 1000). In Tab. 3 we also present the
solution |fl|, which was obtained by means of the analytic expansion of the line
method. It does not depend on the temporal step-length τ . It is obvious that the
results coincide up to two or three digits. In Fig. 2 we show the numerical solution in
the interval τ ∈ (0, 400). The solution oscillates up to t ≈ 50, after which it rapidly
approaches zero. Calculations show that reducing the spatial step-length h in the grid
method improves the accuracy. For example, if t = τ = 0, 1, then

|fh| = 0, 0480 (h = 0, 1); 0, 0520 (h = 0, 05);

0, 0510 (h = 0, 025); 0, 0509(h = 0, 02) .

It follows from the results presented in Tab. 3 that the scheme with the first order
approximation of the boundary condition is even more accurate. This is due to the
orthogonality of the corresponding eigenfunctions and this fact is important in im-
proving accuracy of numerical methods.

References

[1] M.I. Airila, O. Dumbrajs, A. Reinfelds and U. Strautiņš. Nonstationary oscillations in
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Girotrono lygties vienos modos skaitiniai sprendiniai

O. Dumbrajs, H. Kalis, A. Reinfelds

Straipsnyje nagrinėjami skaitiniai sprendiniai gauti tiriant girotrono lygties vieną modą. Anali-
tiniai ir skaitiniai sprendiniai gauti taikant baigtinių skirtumų metodą. Ištirti kvazistacionarieji
sprendiniai ir atitinkamos tokio uždavinio tikrinės reikšmės ir tikrinės funkcijos.


