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A. WAVEFORM SIGNALS WITH MINIMUM SPECTRAL WIDTH

We consider in this report a type of signal that consists of successive waveforms

periodically and independently chosen from an orthonormal set sl(t), s 2 (t), ... ., sN(t)

with probabilities P 1, P ' "... PN In addition, the amplitudes, ai, of the waveforms

are distributed according to a probability density Pi(ai). A typical signal of this form

is shown in Fig. X-1. A single waveform is shown in Fig. X-2. It is defined to be zero
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Fig. X-1. A typical waveform signal. Fig. X-2. A typical waveform.

outside of the interval [0, T]. We shall now concern ourselves with the problem of

picking the set of waveforms in such a way that the expression

f 2 () d (1)l oo

is minimized, where 15(w) is the power density spectrum of the resulting stationary

random process. In the following discussion we shall assume that the waveforms have

continuous first derivatives and that E[a.] = 0 (here, i=1, 2, . . .,N) because, if E[a.]

were nonzero, periodicities would occur, and ((w) would contain impulse functions. In

this case it would not be apparent what set of waveforms minimizes expression 1.

We can find (w) by assuming that the random process was derived by applying unit

impulse functions to a bank of linear filters with impulse responses sl(t), .. ., sN(t)

and adding the outputs, as shown in Fig. X-3. Impulses are successively applied to one

of the N filters at a time, with probability P. of being applied to the ith filter. It is

seen that the input processes are uncorrelated. Letting 6(T) be the unit impulse func-

tion, we obtain for the individual input correlation functions:

P.



(X. STATISTICAL COMMUNICATION THEORY)

Fig. X-3. The system for deriving the signal.

where c = E Lag]. In accordance with

density spectra are Ti(() = ci/2Tr. It can I

has a power density spectrum

the Wiener-Khinchin Theorem, the power

be shown (1) that the resulting output process

N N
1(= Z ISn(W)1 2 I(W) nI 2

n=l n Sn

where

(2)

T

sn(t) exp(-iwt) dt = sn(t) exp(-iwt) dt

The method used to find (w) is similar to that used by Lee (2).

Equation 1 now takes the form

SN

n=1

N
= z c
2Tn =  n

n 1

00
oo

00

2

Sn() Sn(w) dw

where the asterisk denotes the complex conjugate.

In order for the integral of Eq. 1 to converge, it is necessary that

02 1(w) = O(lol-k)

for large w, with k > 1 (see refs. 3 and 4). Then,

and from Eq. 4

In(c)I 2 = O( 1
- k - 2)

n-00
S n () = ;0

S002
-Cc

(4)

(5)

(6)

(7)
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n = 1,...,N (8)

with k > 1.

We shall now show that in order for Eq. 8 to hold, it is necessary that

s (0) = Sn(T) = 0 n= 1,..., N

Integrating Eq. 3 by parts, we get

s n(0) - s n(T) exp(-iwT)

n io

Since the s' (t) are continuous on [0, T], they are bounded
n

0 - t -< T, for some number K. It follows that

l c n(t) exp(-it)

Unless the conditions of Eq.

(5), and Is'(t)l < K for
n

dt K I -exp(-iwT) Z
9 hold, it is seen that O( )

9 hold, it is seen that

(11)

(12)

which violates Eq. 8.

Since the s' (t) exist onn
forms of s' (t) exist and are

n

[0, T] and the conditions

(-io) Sn(w). Parseval's

of Eq. 9 hold, the Fourier trans-

Formula then holds, and

(-io) S (o)(i) S (w) dw = 2 I [s' (t)]2 dt
n~I ccn

_00W Z S ( )l  d
n(

(13)

The minimization problem is then reduced to the minimization of

N fT

nI [s'(t)]Z dt (14)

under the constraints that {sn(t)} be an orthonormal set and s n(0) = s n(T) = 0 for all

n = 1, ... , N.

We now assume that the ci are arranged in the following manner: c1 > c 2 > ...

cN. It can then be shown by the calculus of variations (6) that the minimization of

expression 14 is achieved by the first N solutions of the differential equation

s"(t) + Xs(t) = 0 (15)

with the boundary conditions

s(O) = s(T) = 0

+ T
1i 0

(10)

cc

-00

s' (t ) exp(-ict) dt
n

ISn(,,)I = O(1 o,(-k/2) - 1 )

ISn(w)l = O(IWI - 1 )
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These solutions are

s (t) = (
2 1/2

sin tT n= 1,...,N

for which

SSn)2 8r 2 nT 2 wT

(ni2_2T 2 ) 2

22T
8rr nT

T22 2 22T
(n 2T -w T

2 wT
sin 2

2

n odd

n even

From Eqs. 2 and 17 the power density spectrum D(w) then becomes

(W) = 4 r(cos2 wT
2

n odd (n2 n2

n odd (nw 2T ) 

+ 4r (sin2 wT
( ?- )n

even (n2Ea2-2T

even (n iT -w T

Several examples of power density spectra for signals using the waveforms of Eq. 16

with T = 1 are shown in Fig. X-4. In these examples it was assumed that the waveforms

I (W)

c(SEC-I)

Fig. X-4. Power density spectrum for the optimum waveforms (T=I).

were equally likely with E [a]= 1,
Ii -1

i = 1, 2, . . ., N. It is interesting that the bandwidths

of the spectra shown in Fig. X-4 are approximately equal to those that might be pre-

dicted from the Sampling Theorem; i.e.,

NiT
N-T (19)

where N is the number of degrees of freedom of the signal, and w0 is the bandwidth ino

radians per second. This gives 3. 14,

tively.

6.28, and 9.42 for n = 1, 2, and 3, respec-

(16)

(17)

(18)
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These results can be further generalized to the minimization of the integral

o0 n #(w) dw (20)

where n is any integer. In this case the waveforms will be the first N solutions to the

differential equation

s(Zn)(t) + Xs(t) = 0

where (n) denotes differentiation n times, with the boundary conditions

s ( n - 1)(0) = s ( n - 1 )( T ) = 0

s(n-2)(0) = s(n-2)(T)= 0

s(0) = s(T) = 0

K. L. Jordan, Jr.
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B. MEASUREMENT OF CORRELATION FUNCTIONS

A limitation to the use of higher-order correlation functions is the difficulty of their

determination. A practical and relatively simple method of measuring them without the

use of delay lines is presented in this report. To explain the method, the measurement
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of a second-order crosscorrelation function will be discussed.

Let us consider the second-order crosscorrelation function

1 T
Rabc(T T2) = lim -I f(t) fb(t+T ) fc(t+T) dt (1)

T-oo 0

Under some general conditions, it can be shown (1) that this function is absolutely inte-

grable and continuous for all values of T 1 and T 2 . Thus it generally may be represented

as

R abc Ai Ti(= ) j(T 2 )  (2)
i=1 j= 1

where { n(x)} is a complete set of orthonormal functions:

_1 for i =j

Pi(x) j(x) dx = (3)
oo0 for i j

The coefficients, Aij, are given by

-00 "00

We now restrict our attention to those sets that are orthonormal over the interval

[0, oo] and realizable as the impulse responses of linear networks. The Laguerre func-

tions are one such set. This set and others with their network realizations are given

by Lee (2). For these sets, Eq. 2 is valid only for the region T1 > 0, T 2 > 0. We shall

find, however, that this does not restrict our determination of Rabc (T 1 ,' ) over the

whole T1 -T2 plane.

We shall now present an experimental procedure for determining the coefficients,

A... Consider the circuit shown in Fig. X-5. For this circuit, the network with the

impulse response 4j(t) has the input fa(t) and the output ga(t); the network with the

impulse response 4i(t) has the input fb(t) and the output gb(t). We shall denote the

average product of ga(t) gb(t) fc(t) by B... Then,

f, () (t)LOWPASS 8.

b MULTPLIER FILTER Bij

f ( t)

Fig. X-5. Circuit for the experimental determination of B.
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Bi. = lim 
T....-)O

= lim
T-,o 0

fc(t) dt 0 (x) fa(t-x) dx ci(y) fb(t-y) dy

00 00

-00  W(dx00

= f- (x) dx

T
bi(y) dy lim fa f (x) y) fc(t) dt

T-oo dy Rb0c(

(y ) dy Rabc(x-y, x) (5)

The interpretation of Eq. 5 is simpler if we let x = T2 and let x - y = T 1 . Equation 5

then becomes

00
j(2) dT 2 _0

(6)
*i( r-T1) drl Rabc(T1' TZ)

By comparing Eq. 6 with Eq. 4, we observe that the average products, B.i, are the

coefficients in the expansion

oo

Rabc(T 1 ' 2 )= 
i=l

00

SBij i (TZ- 1) j (T 2 )
j=l 1

T2 > T1, T 2 > 0

Since the orthonormal functions are realizable as network functions, Eq. 7 may be

realized as the double-impulse response of a network. Consider the element network

shown in Fig. X-6. The unit impulse, 4 (t), applied to the network with the impulse

response cj(t) occurs 5 seconds ahead of the unit impulse applied to the network with

the impulse response ci(t). The responses are multiplied and amplified by an ampli-

fier with a gain A = B... The double-impulse response, hij(t, 6), is

h ij(t, 5) = B ij i(t-5) 4j(t) t > 6; t > 0

By summing the responses of such element networks, we obtain

H1 (t, 5) = Y Bij ci(t-5) (t)
i j

t > 5; t ' 0 (9)

This is Eq. 7 in which 5 = T 1 and t = T2 . Thus, for each 6, the double-impulse

response, H 1 (t, 5), yields the second-order crosscorrelation function along a line in

region 1 of the T 1 -T 2 plane as shown in Fig. X-7.

Now consider the average product, Cij, for the circuit shown in Fig. X-8. In a

manner analogous to the derivation of Eq. 6, it can be shown that

oo
--00

(7)

(8)

ga(t) gb(t) fc(t) dt



MULTIPLIER L hi (t,8)

Fig. X-6. Basic circuit element for the synthesis of Rabc(T T 2).

Fig. X-7. Lines of double-impulse responses in the T 1 -T 2 plane

(arrows point in the direction of increasing t).

fc (t)

fb(t)

Fig. X-8. Circuit for the experimental determination of C...1J

fc (t)

f, (t

Fig. X-9. Circuit for the experimental determination of D...1J

ko (t
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C = (T 1 ) dT1  i (TI--T2 ) dT 2 Rabc(T1, T 2 ) (10)

By comparing Eq. 10 with Eq. 4, we observe that the average products, Cij, are the

coefficients in the expansion

oo 00

Rabc(T 1' TZ2) = 1 C 1-T 2) ~j(T ) T 1  2; T 1 > 0 (11)
i=l j=l 1

Thus, by adjusting the amplifier of the circuit shown in Fig. X-6 to be A = Cij, the

summed double-impulse response becomes

H 2 (t, 6) = C ..ij (t-6) 4~(t) t 8; t > 0 (12)
i j

This is Eq. 11 in which 5 = T2 , and t - T 1 . Thus, for each 8, the double-impulse

response, H 2 (t, 8), yields the second-order crosscorrelation function along a line in

region 2 of the T 1 -T 2 plane as shown in Fig. X-7.

Finally, consider the average product, Dij, for the circuit shown in Fig. X-9. In

a manner analogous to the derivation of Eq. 6, it can be shown that

Dj = (-T) dT 2  i(-(T) dT 1 Rabc(T1 2 ) (13)

By comparing Eq. 13 with Eq. 4, we observe that the average products, Dij, are the

coefficients in the expansion

00 00

R abc (T 1 2) = D (-T (-T T 1 
< 0; T 2 < 0 (14)

i=l j= 1 ij 1 1 j

Thus, by adjusting the amplifier of the circuit shown in Fig. X-6 to be A = Dij, the

summed double-impulse response becomes

H 3 (t, ) = Z Dij i(t-5) i (t) t i ; t > 0 (15)

This is Eq. 14 in which 6 = T1  T 2 , and t = -T 2 . Thus, for each 6, the double-impulse

response, H 3 (t, 6), yields the second-order crosscorrelation function along a line in

region 3 of the T 1 -T 2 plane as shown in Fig. X-7.

In this manner, the second-order crosscorrelation function over the whole TI-T 2

plane may be obtained experimentally. Note that if fb (t) = fc(t), then Bij = Cij, and

only two sets of measurements are required. For the measurement of the second-order

autocorrelation function fa(t) = fb(t) = fc(t), and thus only one set of measurements is

required. The second-order correlation function can be approximated, with minimum

mean-square error, to any degree of accuracy by using N members of the orthonormal
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MULTIPLIER LOWPASS
FILTER i

O (t ) 

A

Fig. X-10. The network synthesis of Fig. X-11. Circuit for the experimental
Rab(T). determination of Ai..

set. For such a representation, the second-order crosscorrelation function can be
experimentally determined over the whole T 1 -T 2 plane by, at most, 3N 2 measurements.

It is now clear that this procedure can be extended to all orders of correlation func-
tions. Thus, if the third-order correlation function exists and is absolutely integrable,
it can be experimentally obtained as the triple-impulse response of a network. For
such a determination, 4N3 measurements, at most, would be required if N members
of the orthonormal set are used. A special case of this general procedure, which has
been described by Lampard (3), is the determination of the first-order crosscorrela-

tion function. For this case, the single-impulse responses of two networks of the form
shown in Fig. X-10 would be required - that is, for t > 0, H 1 (t) = Rab(t) and H 2 (t) =
R ab(-t) . The coefficients, Ai, are experimentally determined by means of the circuit
shown in Fig. X-11. However, for this special case, we note that since

Rab(t) = H 1 (t) + H 2 (-t) -o < t < 00 (16)

the cross power density spectrum is

ab(w) = F 1 (w) + F (w) (17)

where F(o) is the Fourier transform of H(t), and the star indicates the complex con-
jugate. Thus the cross power density spectrum may be obtained directly by measuring
the transfer function of each of the two networks. For an autocorrelation function, the

power density spectrum is just twice the real part of Fl(w). Experimentally, this is
obtained by measuring the inphase component of the sine-wave response of the network.

M. Schetzen
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C. DESIGN OF BINARY, SYNCHRONOUS PULSE-TRANSMISSION LINKS

1. Model for a Synchronous Pulse-Transmission Link

A diagram of our model for one link of a synchronous pulse-transmission system is

shown in Fig. X-12. A synchronous pulse-transmission system (e.g., a pulse code

modulation (PCM) system) would usually include a long chain of links. In each link the

pulse signals are sent through some transmission line (e. g., a length of waveguide or

a distance in air). At the receiving end the message is recovered from the received

signal, and new pulse signals are formed for the next link of the system. The adjective

"synchronous" is intended to imply that, ideally, the transmitter and receiver operate

periodically with a constant difference in phase.

In the model of Fig. X-12 the message generator produces a positive integer from

the set (1, 2,.. .,M) every T seconds. Each integer identifies which of M possible

messages is to be transmitted. In a binary link, M = 2.

The coder, C, instantaneously substitutes a fixed real number, a i (to be determined

later) for each message i; i = 1, 2, . . ., M. We assume that any more complicated

coding (such as block coding or error-detection coding) has been included in the message

generator. The output of C is a discrete time series, . . ., A_Z, A-1, A o , A 1 , A , ... ,

where A. is the particular output that occurs during the time interval (iT, (i+l)T);
1

i = 0, ±1, ±2, . .

The error noise generator, N 1, represents the changes that have taken place in the

ERROR TRANSMISSION
NOISE NOISE

GENERATOR SIGNAL TRANSMISSION GENERATOR

MESSAGE CODER PULSE LINE

GENERATOR GENERATOR

INPUT TRANSMITTER - TRANSMISSION MEDIUM -

WHITE-
DC. VOLTAGE NOISE
GENERATOR GENERATOR

PULSE-
RESHAPING SAMPLER QUANTIZER DECODER
AMPLIFIER

CLOCK

RECEIVER

Fig. X-12. Model for one link of a synchronous pulse-transmission system.
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original message time series as a result of its passage through all of the previous links
of the system. The outputs of C and N1 occur simultaneously. The noise values are
picked from the set {a -a )}, where i and j independently assume the values 1, 2, ... , M.
The output of N1 is a discrete time series, ... , X_2, X X , X' X' ... , where X.-2 -1 o 1 2' 1
is the output during the time interval (iT, (i+l)T); i = 0, ±1, 2, ...

Thus, the input to the signal pulse generator, S, is the sequence of real numbers
00

(Bi), i = 0, ±1, ±2, ... where B. = A. + X. The output of S is Z Bn s(t-nT), where
n=-oo

s(t) is a standard pulse that is integrable square.

The linear, time-invariant transmission line, L, has a unit impulse response f(t).
It operates on the output of the pulse generator to form

oo

SBn r 1 (t-nT)
n=-oo

O00

where rl (t) = s(u) k(t-u) du. To this waveform is added n2(t), a member of the

ergodic noise ensemble [n'2(t)] with correlation function n (u). The transmission noise
generator, N 2 , represents the effects of noise in the line. The resulting waveform at
the input to A corresponds to the received signal in a pulse transmission system.

The linear, time-invariant, pulse-reshaping amplifier, A, has the unit impulse
response a(t). It operates on this combination of signal pulses and noise. Its output is

00

Z Bn r 2 (t-nT) + n*(t)
n=-oo

00 *
where r (t) = rl(u) a(t-u) du and n2 (t) = nd(u) a(t-u)du. To this output is

-00 -C

added a de voltage that will offset the average noise level.
Noise generator N 3 adds white noise that represents the thermal noise in the ampli-

fier and sampler.

The time axis is divided into intervals of width T, called measuring intervals, and
S samples its input once and only once during each measuring interval. The exact

sampling times are determined by impulses from the clock. [More detailed assumptions
concerning the clock operation will be made later.]

The quantizer, Q, sorts the samples sequentially into M voltage intervals, each
corresponding to one unique message. From the quantizer output, the decoder, R, pro-
duces a new message integer sequence according to this correspondence. (This sequence
may be used directly or it may become the input for another link of the system.) The
sampling, quantizing, and decoding will be considered to be instantaneous operations.

It is important to note that, in our synchronous pulse transmission system, time,

100
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as well as voltage, is quantized. There are only M possible messages, and each mes-

sage is alloted T seconds at the transmitter and T seconds at the receiver. We shall

say that the link operates perfectly if the decoded message sequence is the same as the

message generator sequence (except for a fixed time delay). The probability that these

sequences will differ in any one place is called the error probability.

Let us now assume that, in our model of Fig. X-12, the messages represented by

the output integers of the message generator are coded, quantized samples of a band-

limited signal. The signal energy is assumed to be essentially confined to the frequency

interval 2T- ' 2T, and samples of the signal are instantaneously taken every T

seconds. As shown in Fig. X-13, the samples are sorted into L voltage intervals by

the quantizer. Each quantized sample is then coded into a sequence of g integers from

the set (1, 2, ... , M). An example of such a code is given in Fig. X-13 for M = 2. In

order that there shall be a one-to-one correspondence between the possible sequences

of length g and the possible quantized voltages that occur, the following equation must

hold:

L = M g  
(1)

It follows that gT = T .
o

If we assume that the message integers of Fig. X-12 are produced as outlined in

the two preceding paragraphs (that is, M of Fig. X-12 is composed of the blocks

depicted in Fig. X-13), then the model of Fig. X-12 becomes a model for one link of

a PCM system.

BANDLIMITED SAMPLER QUANTIZER PCM CODER
SIGNAL

1,2

+2 0 -2 -4

-4

QUANTIZER POSSIBLE PCM BINARY CODE
VOLTAGE QUANTIZER (FOR g=2)

INTERVALS OUTPUTS
(FOR L 4) (FOR L=4) +2

(F) LI

TIME SCALE + oO 0

- T SEC + +2 0 2

- T
o 
SEC(=2T SEC) O 0 0

- 2

-4 -2 0

-4 0

Fig. X-13. Message source in a PCM link.

101
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2. An Upper Bound to the Error Probability

Let us denote the actual waveform at the input to the sampler of Fig. X-12 by fa(t).
We define a desired waveform at the same point in the link by

oo

fd(t) Z= A d(t-jT) (2)

where {A.} is the coded message time series;

d when p(t-bT) > 0
d(t) = (3)

0 for all other time instants

the positive real number d is a measure of the voltage gain of the link; and the positive

integer b is the time delay of the link in units of T seconds. (The actual time delay

from message generator to quantizer is a random variable with possible values between

bT and (b+l)T.)

The probability density functions {p(t-jT)}, j = 0, ±1, ±2, ... , characterize the

operation of the clock of Fig. X-12. That is,

_00 p(u-jT) du

is the probability that the sampling instant associated with the measuring interval

(jT, (j+1)T) occurs before time t.

We call fd(t) a desired waveform because we shall always choose the pertinent design

parameters (the set of coded message values {ai}, the "voltage gain" d, and the set of

quantizer voltage intervals) in such a way that

(a) the only possible values for fd(t) are zero and the center voltages (so that we may

use Tchebychef's theorem as shown below) of each voltage quantization interval; and

(b) if fd(t) were the actual sampler input, then the decoded output message sequence

will be the same as the input message sequence (except for a finite time delay of

bT seconds).

Using this notation, we can say that an error occurs whenever

fd(ts)-fa(ts)I > -W i  (4)

where ts is a time instant at which the sampler operates; Wi is the "voltage width" of

the quantizer interval in which fd(ts) lies; and fd(ts) decodes into message i.

The error probability can be written as

M

PE =  Pr(IYi(ts) >ki ki) p'(i) (5)
i=l

102
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where p'(i) is the probability of occurrence of the ith message; Pr( Ji(ts)l>kik-i) is the

probability that Yi(ts) exceeds k.o-.; the quantity o- is the standard deviation of the

random variable Yi(ts) = fd(ts) - fa(ts), given that fd(ts) decodes into message i; and

the real numbers ki., i = 1, 2, ... , M, are selected in such a way that k. . = Wi/2.

We obtain our upper bound, B, by applying Tchebychef's theorem to each term on

the right-hand side of Eq. 5. This theorem states that if x is a random variable with

mean m and variance -2 , and if P is the probability that Ix-ml exceeds ko-, then P

does not exceed 1/k

Thus, if the conditional means {mi =E[Yi(ts)]} (with E[x] denoting the ensemble

average of x) are zero for i = 1, 2, ... , M, then we may say that

M p'(i)

PE < Z - B (6)
i=1 k1i

3. Design of a Binary Link

To design a link with an upper bound to the error probability as expressed by Eq. 6,

the following assumptions are made:

(a) The transmission line of Fig. X-12 is bandlimited to frequencies of less than

W cps. Its input impedance is a constant resistance, R.

(b) The message rate, I/T, is not less than the Nyquist rate, 2W.

(c) Every member of the coded message time series {A n}, n = 0, ±1, ±2, ... is

statistically independent of all other members.

(d) The coder operates in such a way that

E [AZ]= 1 for n= 0,l, ±2, ... (7)

and

E[An] = 0 for n = 0,± 1,2,... (8)

(e) There are only two messages, M = 2. The occurrences of these messages are

equally likely.

(f) The error noise generator is removed from the model of Fig. X-12.

(g) The average power entering the transmission line is E watts.

(h) The voltage range of the quantizer is 2V 2 volts.

(i) The two noise random variables are statistically independent of each other and

of the message random variable.

Assumptions (a) and (e) imply that al = +1 and a2 = -1. This defines the coder.

If we now reduce our upper bound B as much as possible by varying the widths of

the receiver quantization intervals (subject to the constraint of assumption (h) above),
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we find, by elementary calculus of variations, that each quantization interval should be

V 2 volts wide. That is,

W 1 = W2 = V2 (8)

Our definition of fd(t) (or the linearity of the transmission line and amplifier) shows

that the two quantization intervals must be positioned symmetrically about zero volts.

Hence our voltage gain d (cf. Eq. 3) must be equal to V 2 /2. Thus, we have defined

the quantizer of Fig. X-12.

We now wish to choose the input pulse shape, s(t), and the amplifier impulse

response, a(t). This must be done in such a way that the conditional means, m 1 and

m 2 , are each zero. As mentioned prior to Eq. 6, each conditional mean must be zero

if B is to be a valid upper bound to the error probability.

If we calculate m 1 and m 2, using assumptions (c), (d), and (f) of this section, we

find that sufficient conditions for m 1 = m 2 = 0 are

V = -E [n*(t)] - E[n 3 (t)] (9)

and

T p(t) h(t+bT) dt = d (10)

where

h(t)= 00 [fI s(x) (y-x) dxj a(t-y) dy (11)

Equation 9 is satisfied by the correct choice of our dc bias voltage, V. Equation 10

must be used as a constraint when we optimize s(t) and a(t) by minimizing B.

Our next step is to rewrite Eq. 6, using assumption (e) and Eq. 8:

2 2 2 2 2 2
1 1 T L Z 7B = = = 2 =22 ) -i (12)

k (k .) W Vi= 1 i=l i=l 1 V2 i=l

2 2
If we calculate -1 and a-2, we find that

2 2 2 2n(_
2 2 = = ) p(t-nT) [d(t)-h(t)] dt + a(o-) do- a(T) n2(--T ) dT

f-oo n
=
-oo -f -oo

+ E ([n 3 (t)] 2 - (E[n() 2  E [n2 (13)

where -2 is the variance of the random variable y(ts) = fd(ts) - fa(ts). Hence,

104



(X. STATISTICAL COMMUNICATION THEORY)

2
B 2 (14)

B 2
V 22

Since V 2 , the maximum permissible quantizer voltage, is held constant, minimiza-

tion of r 2 is equivalent to minimization of B. We now minimize a- by varying s(t) and

a(t) subject to the constraints of Eq. 10 and assumption (g).

If B does attain a minimum value as we vary s(t) and a(t), then, by Fourier and

variational analysis, their Fourier transforms, S(f) and A(f), must satisfy the following

phase and magnitude conditions:

S (f) + L(f ) + A (f) = p(f) - 2rrbTf (15)

S(f)12 T(d+ )JP(f) Nf) /
_ TNZ(f)

fL(f) I L(f) (16)

T(d+[) P(f)( X 1/Z TX (17)
A(f) IZ (17)

I L(f) I N Z(f)/ I L(f) 2

These equations hold only for values of f that are such that

(xN2 f))1/2
(d+p)JP(f) ( (18)

L(f)J

Otherwise,

S(f) = A(f) = 0 (19)

In Eqs. 15 to 19, the frequency functions denoted by capital letters are the Fourier

transforms of the time functions denoted by the corresponding lower-case letters and

S(f) = IS(f)j exp(jOS(f)), P(f) = IP(f)J exp(j0p(f)), and so on. The parameters X and 4

are Lagrange multipliers that must be chosen in such a way that our constraints are

satisfied. In the frequency domain our constraint equations are

P(f) H(f) exp(-j2rbTf) df = d (20)

and

R S(f) 2 df = E (21)

where

H(f) = S(f) L(f) A(f) (22)
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(Our expression for the average power, E, is simple because of assumptions (c), (d),
and (f).)

The transfer function from coder to quantizer, H(f), is found from Eqs. 15, 16, 17,
18, and 22. We have

6H(f ) = 6p(f) - 2rrbTf (23)

and

H(f) = T (d+ P(f) - i(f)i (24)
I L(f) I

provided that inequality 18 is satisfied. Otherwise

H(f) = 0 (25)

To gain some insight into what behavior our criterion demands of our link and what

compromises must be made because of our constraints, let us consider a particular

example. We now assume that IP(f)l is greater than some positive number N through-

out the frequency range -W < f < W. (For example, the probability density function p(t)

might be a narrow pulse.)

If X is small (i.e., we are willing to "spend" average power), if N 2 (f) is small

(i.e., the transmission noise power density spectrum is small at all frequencies), and

if IL(f)I is large in the band (-W, W) (i. e., the transmission medium does not attenuate

greatly in this band), then, for all frequencies in the band,

H(f) = T(d+p.) P(f) exp(-j2rrbTf) (26)

and otherwise,

H(f) = 0 (27)

If we specialize further by taking p(t) to be a unit impulse and

T - 2W 
(28)

then Eqs. 10, 26, and 27 may be used to show that the Fourier transform of H(f) is

d sin 2nW(t-2)

h(t) = b (29)
2nW (t- 2W

which is consistent with Shannon's (1) sampling theorem.

Equations 24 and 25 and inequality 18 show that at frequencies at which conditions

are poor (i. e., if X is large or N2 (f) is large or I L(f)I is small) we should not "try
very hard" to increase signal power. And, if conditions are so poor that inequality 18
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is not satisfied, then we should not try to put in any signal power or attempt any ampli-

fication at that frequency. Positive, quantitative results concerning "how hard we should

try" to signal and amplify (according to our criterion) are contained in Eqs. 16 and 17.

Extension of our results to M-ary, dependent, not equally likely messages is direct

if we are willing to use a quantizer with equally spaced levels (separation, W volts). In

this case, (4o-/W 2 ) is an upper bound to the error probability. If the quantizer is also

to be optimized, we must minimize the upper bound, B, directly. This leads to more

complicated notation and results.

Signaling below the Nyquist rate introduces dependencies that increase the number

of equations to be solved. The mathematical problems are then similar to those in

reference 2.
D. W. Tufts
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