A nselm Vossen for the COMPASS Collaboration ansem .vossen@ physik.uni-freiburg.de, Physikalisches Institut U niversitat Freiburg, 79104 Freiburg, G em any

Abstract

B y m easuring transverse single spin asym m etries one has access to the transversity distribution function $T \mathrm{q}(\mathrm{x})$ and the transverse m om entum dependent Sivers function $\mathrm{q}_{0}^{\mathrm{T}}$ ($\mathrm{x} ; \widetilde{\mathrm{K}}_{\mathrm{T}}$). N ew m easurem ents from identi ed hadrons and hadron pairs, produced in deep inelastic scattering of a transversely polarized ${ }^{6}$ L iD target are presented. The data were taken in 2003 and 2004 by the COMPASS collaboration using the m uon beam of the CERN SPS at $160 \mathrm{GeV} / \mathrm{c}$, resulting in sm all asym m etries.

K eyw ords: transversity, transverse spin asym m etry, C ollins asym m etry, Sivers asym m etry, C OM PA SS

1 Introduction

M easurem ents 1 ; $; 2$ showed, that the e ects of transverse spin in high energy hadronic physics are not naturally suppressed, as it was assum ed 3 . On the contrary, transverse spin asymmetries provide a way for a m easurem ent of transversity 4 and the quark transverse m om entum \widetilde{K}_{T} dependent distribution function $q_{0}^{T}\left(x ; \widetilde{K}_{T}\right)$, the distribution of unpolarized quarks in a transversely polarized nucleor1. Denoting the B joerken scaling variable by x, the spin structure of the nucleon can be described at leading order by three leading tw ist distribution functions, the unpolarized quark distribution $q(x)$, the helicity distribution function $q(x)$, and the transversity $T q(x)$. In the quark parton m odel ($Q P M$) $\quad q(x)$ can be interpreted as the di erence of distributions of quarks polarized parallel and antiparallel to the nucleon spin in a transversely polarized nucleon. Thus $q(x)$ and $T(x)$ are identical in a non-relativistic picture of the nucleon. But in the QPM $q(x)$ can be thought of as describing the nucleon spin structure in a fram e that is boosted parallel to the nucleon spin, whereas $\mathrm{T} q(\mathrm{x})$ in a fram e that is boosted in the transverse direction. Since rotational sym m etry is broken under boosts, ${ }_{T} q(x)$ provides com plem entary inform ation to the proton spin puzzle. T he three distribution functions are of equal im portance, how ever, in com parison to the rst two, know ledge of the transversity is quite scarce, since it rem ains inaccessible in inclusive D IS m easurem ents due to its chiral odd nature. H ow ever, sem i inclusive m easurem ents, where at least one hadron fragm enting via a chiral odd fragm entation function in the nal state is detected, allow to probe transversity. Because the product of a distribution function and fragm entation function is again chiral even, it can be observed in transverse single spin asym m etries. T he chiral odd fragm entation of a transversely polarized quark into a unpolarized hadron can be described by the C ollins fragm entation function $\int_{T}^{0} D{ }_{q}^{h}$ and the fragm entation into tw o unpolarized hadrons by the tw o hadron interference fragm entation function H_{1}. Denoting the unpolarized fragm entation function by $D{ }_{q}^{h}$, the spin dependent fragm entation of a quark can be written as $\mathrm{D}_{\mathrm{q}}^{\mathrm{h}}+{\underset{\mathrm{T}}{0} \mathrm{D}}_{\mathrm{q}}^{\mathrm{h}} \sin \mathrm{C}$ if one hadron is pro-

Figure 1: C oordinate system s for azim uthalangles. The $x-z$ plane is de ned by the incom ing and scattered m uon. T he z-axis by the virtualphoton In the one hadron case (left) the initial state and nalstate polarization vectors are denoted s and s^{\prime}.
duced and $\mathrm{D}_{\mathrm{q}}^{\mathrm{h}}+\mathrm{H}_{\mathrm{i}}$ sin R 11; 12; 13; 14 if tw o hadrons are produced. C , the C ollins angle and $\quad R$ are the azim uthal angles betw een the polarization vector of the fragm enting quark and the m om entum of the produced hadron and the vector R, describing the two hadron system, respectively. The relevant coordinate system s are depicted in $g .1 . \mathrm{K}$ is the linear com bination of the m om enta of the produced hadrons, weighted by the relative energy transfer from the scattered m uon, to ach ieve a de nition of azim uthal angles that is invariant against boosts along the photon direction: $R=\frac{\left(z_{2} \mathrm{P}_{1} z_{1} \mathrm{P}_{2}\right)}{z_{1}+z_{2}}$. By m easuring the angular dependence of the produced hadrons on C and R, respectively, it is possible to probe the transversity distribution. For the C ollins asym m etry one relies on the m easurem ent of transverse m om entum originating from the fragm entation process. H ow ever, the azim uthal dependence on R of the cross section for the process $\mathrm{T}_{\mathrm{q}} \hat{\mathrm{H}_{1}}$ should rem ain after integrating out transverse m om enta. If one leaves the collinear picture and allow stransverse m om enta of the quarks, m ore distribution functions of quarks exist. O ne of these, the so called Sivers function $q_{0}^{T}\left(x ; \mathbb{K}_{T}\right)$, describes the distribution of unpolarized quarks in a transversely polarized nucleon. It is strongly connected to the angular m om enta ofquarks in the nucleon, which m ight be another contribution to the nucleon spin. T he Sivers function can be probed via the Sivers e ect, where the correlation of the quark transverse m om entum w ith the nucleon spin leads to the dependence of the S \mathbb{D} IS cross section on the azim uthal angle betw een the nucleon polarization vector and the m om entum of the produced hadron. This angle s is called Sivers angle. Since the angular dependence of the cross section on s and c are orthogonal functions, Sivers and Collins e ects can be disentangled with a transversely polarized target.

2 Experim ental results

COMPASS is a xed target experim ent with a broad physics program at the M 2 beam line at CERN and is described in detail in ref. 6 . For about 20\% of the data taken in the years 2002,2003 and 2004 a transversely polarized ${ }^{6} \mathrm{~L}$ iD target is used, which has a favourable dilution factor of $f^{\prime} 0: 4$ and a polarization of about 50\% .. The target consisted of tw o cells which w ere polarized in opposite directions and polarization was reversed every 4-5 days to m in im ize system atic e ects. A Ring Im aging Cherenkov (R IC H-1) detector and two hadron calorim eters provide particle identi cation capabilities. RICH-17 is a gas RICH w ith a 3 m long $\mathrm{C}_{4} \mathrm{~F}_{10}$ radiator. It is characterized by large transverse dim ensions in order to cover the whole spectrom eter acceptance (250200 m rad) and was operational during data taking in the years 2003 and 2004. A sym m etries for unidenti ed hadronsw ere already published. For the analysis presented, events with an incom ing beam track crossing both target cells, a scattered muon track and at least one outgoing hadron for Collins and Sivers asym m etry extraction or two outgoing
hadrons w ith opposite charge for the two hadron correlation extraction, are selected. Positive identi cation of the hadrons in the naldata sam ple by R IC H-1 was required. C lean hadron and m uon selection w as achieved using the hadron calorim eters and considering the am ount of traversed m aterial. To select D IS events, cuts on $Q^{2}>1(\mathrm{GeV}=\mathrm{C})^{2}$ and $\mathrm{W}>5 \mathrm{GeV}=\mathrm{c}^{2}$ werem ade, Q^{2} being the photon virtuality and W the m ass of the nalhadronic state. A dditional cuts are applied to ensure that from the hadron sam ple the relevant physics signal can be extracted. R equiring the relative energy in the mon scattering process y to ful $110: 1<y<0: 9$ lim its the error due to radiative corrections (higher cut) but w arrants that the energy loss of the scattered beam particle is high enough to allow for reliable tracking (lower cut). For the one hadron asymm etries a lower lim it of 0.2 for the relative energy z of the hadron is dem anded. The underlying reasoning is that in the string fragm entation process hadrons with a higher energy are m ore sensitive to the properties of the struck quark spin. For the two hadron correlation the cut is $\mathrm{z}_{1} ; \mathrm{z}_{2}>0: 1$ and in addition $\mathrm{z}_{1}+\mathrm{z}_{2}<0: 9$ to avoid the kinem atic region of exchisive production. A fter all the cuts, 5:3 10 positive pions, 4:6 10 negative pions and 9:5 10 positive kaons and 6:2 10 negative kaons rem ain for the single hadron analysis. T he tw o hadron
 8:6 $10 K^{+} K$ pairs. From these sam ples the respective asym m etries A_{j} are extracted by azim uthal count rate asym m etries for target cells w ith di erent polarizations. The count rate in the upstream and dow nstream target cell $(k=u, d)$ for the two polarisations (+,) N ${ }_{j k}$ in a given j bin ($j=\mathrm{C}, \mathrm{S}, \mathrm{R}$) can be w ritten as

$$
\begin{equation*}
N_{j ; k}=F_{k} n_{k} \quad a_{j, k}\left(j_{j}\right) \quad\left(1_{j ; k} \sin \quad j\right) \tag{1}
\end{equation*}
$$

H ere F is the m uon $u x, n$ the num ber of target particles, the spin averaged cross section, a_{j} the product of the angular acceptance and e ciency of the spectrom eter. The quantity $j ; k$ is f $P_{r} j$ in $A_{N} A_{j}$. Where f is the dilution and $\mathcal{P}_{T ; k} j$ the polarisation of the target, $D_{N N}$ the spin transfer of the virtual photon to the fragm enting quark and A_{j} the asym m etry. For C ollins and two hadron asymm etries $D_{N N}$ can be calculated in QED as $D_{N N}=\frac{1 y}{1 y^{2} y^{2}=2}$. Since the Siverse ect probes unpolarized quarks $D_{N} N$ does not enter into the corresponding asym m etry. W ith the obtained count rates the double ratio product

$$
\begin{equation*}
A_{j}(j)=\frac{N_{j ; u}^{+}(j)}{N_{j ; u}(j)} \frac{N_{j ; d}^{+}(j)}{N_{j ; d}(j)} \tag{2}
\end{equation*}
$$

 $j>$ is calculated for kinem atical binning in z, the relative energy of the produced hadron, P_{t}, its transverse m om entum and x, the B joerken scaling variable in the one hadron case, whereas it is build for bin in z, M Inv and x in the two hadron case. z and $M_{\text {Inv }}$ denote the relative energy and invariant m ass of the two hadron system. The corrected asym m etries are show n in gures 2 and 3. Phenom enological work on the Sivers e ect has shown that HERM ES results for protons and COM PASS results on deuteron m ay be described with in the the sam e theoretical fram e, at least at the present level of accuracy of the data. T he obtained asym m etries are sm all and agree well w ith m odel calculations, that predict suppressed signals due to the isoscalar target. A m odel of transversity from the chiral quark soliton m odel and C ollins fragm entation function extracted from a t to HERMES proton data show sthat the favoured and unfavoured Collins fragm entation function seem to be of the sam e magnitude but of opposite sign. T he predictions obtained from this m odel agree wellw ith the m easured asym m etries for unidenti ed hadrons. Sim ilarly the predictions for the tw o hadron asym m etries depending on the convolution of transversity w ith H_{i} are predicted to be $s m$ all 11 . D ue to an interference term in the two pion production one m ode ${ }^{12}$ predicts a strong dependence on the invariant m ass around the

Figure 2: C ollins and Sivers asym m etries for pions

Figure 3: Two hadron asym metries in invariant m ass binning. D ue to space constraints not all binnings are shown.
m ass, which cannot be observed in the current C OM PA SS data. M easurem ents taken so far on a deuteron target allow constraints on m odels for the d-quark Sivers and transversity distributiorr 8 . They also point to the absence of a gluon contribution to the onbitalangular m om entum of the partons in the nucleon. 15

3 O utlook

C OM PASS continues data taking in 2007 w ith a transversely polarized proton target. In com bination w ith the data already m easured on deuteron avour separation for transversity and Sivers distribution function w ill be possible. A n additional analysis is planned for leading hadron pair asym m etriesw here according to $13 ; 14$ an enhancem ent of the signalm ight be seen.

R eferences

1. FNAL E-0008Collaboration, Bunce, G . et al 1976, Phys. R ev. Lett. 361113
2. A ntille, J. et al 1980, Phys. Rev. Lett. 94523
3. K ane, G L.,et al. 1978, Phys. R ev. Lett. 411689
4. C ollins, J.1993, N ucl. Phys. B 396161
5. Sivers, D. 1990, Phys. Rev. D 4183
6. C OM PA SS C ollaboration, A bbon, P. et al. 2007, hep-ex/0703049, accepted by N IM A
7. Baum , G.etal. 1999, Nucl. Phys. proc. Suppl.78 354-359
8. C OM PASS C ollaboration, A geev, E S.et al. 2007, Nucl. Phys. B 765 31-70
9. E frem ov, A .V ., G oeke, K ., Schw eitzer, P . 2006, Phys. R ev. D 73094025
10. A nselm ino et al 2005, Phys. Rev. D 72094007
11. R adici, M ., Jakob, R ., B ianconi, A . 2002, Phys. R ev. Lett D 65074031
12. Ja e, R L., Jin, X ., Tang, J. 1998, Phys. Rev. Lett. D 651166
13. C ollins, J., H eppelm ann, S. F ., Ladinsky, G A . 1994, N ucl. Phys. B 420565
14. A rtru, X ., C ollins, J.1996, Z . Phys. C 69277
15. B rodsky, S., G ardner, S . 2006, Phys. Lett. B 643 22-28
