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1. Introduction

The problem of calculating hadronic scattering amplitudes at high energy is an old one. It

goes back to classical works of Gribov on Reggeon Field Theory [1] in the pre-QCD days.

Within the framework of QCD this question has been addressed from different points of

view [2 – 5].

In the last ten years or so the subject has seen new developments. Some of these have

been triggered by Mueller’s reformulation of the BFKL equation [2] in terms of the dipole

model [6, 7] with additional input provided by the functional approach of [8]. The result was

the derivation of the functional evolution equation for the hadronic amplitude - the so-called

Balitsky hierarchy [9] or JIMWLK equation [10, 11]; and its simplified mean field version

due to Kovchegov [12]. This evolution takes into account coherent emission effects in the

dense hadronic wave function, or in other words partonic saturation effects. These effects

lead to unitarization of the scattering amplitude. Although the language of this approach

is different from the original Reggeon Field Theory, a direct relation between the JIMWLK

evolution and the QCD Reggeon Field Theory has been investigated recently [13, 14].
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In the last couple of years spurred on by observations of [15], the realization has

emerged that the existing evolution equations, which are tailored to describe the situation

when a small perturbative projectile scatters off a large dense target, do not include the

so called Pomeron loop effects. The effort to account for the Pomeron loops using the

probabilistic view of the evolution [16] has lead to interesting analogies between QCD and

statistical systems [22]. Alternative approaches based on effective Lagrangian can be found

in [17, 18, 20, 21, 19]

Another avenue that has been explored in this context is the direct approach to the

evolution of the hadronic wave function [23 – 26]. This approach yielded the evolution

equation valid in the limit opposite to that of JIMWLK, namely when the hadronic wave

function is dilute. This so called KLWMIJ equation [24] is related to the JIMWLK equation

by the dense-dilute duality transformation [25]. The basic strategy of this approach is to

calculate the light cone hadronic wave function of soft gluonic modes, given the color charge

density ja(x) due to the ’valence’ modes - the modes with large longitudinal momentum.

When the hadron is boosted, the longitudinal momentum of the soft modes is increased and

they contribute to the scattering matrix and other physical observables [27]. The evolution

of any physical observable is therefore in principle completely determined once we know

the soft part of the wave function.

So far the hadronic wave function has been calculated only in the KLWMIJ limit,

namely when the valence charge density is small; ja(x) ∼ g. The JIMWLK evolution on

the other hand is valid when ja(x) ∼ 1/g, but no wave function evolution is available in

the JIMWLK regime. The derivation of [9] is given directly for the scattering matrix. The

original derivation of [10] is not far in spirit from the wave function form of the evolution,

however it involves additional approximations which do not allow to read off the evolution

of the wave function directly from the JIMWLK equation.

The main motivation to know the explicit form of the wave function evolution comes

from the possibility to use it to derive the generalization of the JIMWLK/KLWMIJ evolu-

tion that includes the Pomeron loops. The knowledge of the wave function is also crucial

to be able to address a wide range of semi-inclusive observables [28].

In the present paper we derive the soft gluon wave function valid at any physically

interesting value of the valence color charge density. The expression we derive is valid both

in the JIWMLK and the KLWMIJ limits as well as at any value of the valence charge

density which interpolates between the two: g ≤ j ≤ 1/g . We do this by diagonalizing the

leading part of the light cone Hamiltonian on the soft gluon sector. The transformation

that diagonalizes the Hamiltonian turns out to be of the Bogoliubov type with parameters

depending on the valence color charge density operator. We find explicitly the action of

this transformation on the basic quantum degrees of freedom: the soft components of the

vector potential Aa
i (x, x−) and the valence color charge density ja(x).

We show that the expression for the wave function indeed reproduces the JIMWLK

and the KLWMIJ evolution equations. To reproduce the KLWMIJ equation one simply

neglects the coherent emission effects in the wave function. Thus the evolution of the

wave function in this limit is strictly perturbative [24]. The nontrivial physics in this

limit is entirely due to the multiple scattering corrections in the scattering amplitude. On
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the other hand to derive the JIMWLK limit we keep all the coherent emission effects in

the wave function. However as we show explicitly below, in this limit we neglect certain

multiple scattering corrections in the scattering amplitude. Physically this is justified in

the situation where our hadron scatters on a perturbatively small target, which is when

the JIMWLK evolution is valid.

To derive the evolution equation which includes Pomeron loops exactly we have to

keep both types of effects in the evolution of the scattering amplitude. Within the present

framework this looks like a tractable problem. It is however beyond the scope of the present

paper and is left for future work.

The paper is structured as follows. In section II we recall the general framework of

the high energy evolution. Sections III and IV are the main part of this paper. Section

III is devoted to the derivation of the ”vacuum” wave function of the soft gluon Hilbert

space in the presence of the valence color charge density. In Section IV we show that this

diagonalization is achieved by the action on the free vacuum of a Bogoliubov type operator

and derive explicitly the action of this operator on the soft and valence degrees of freedom.

In sectionV we show how both the JIMWLK and the KLWMIJ evolution equations follow

from the wave function we have found in section III in different limits. Finally a discussion

is presented in section VI.

2. High energy evolution

The logic of our approach is the same as described in [24, 27]. Suppose that at some initial

rapidity Y0 we know the wave function of a hadron. In the gluon Fock space it has a generic

form (we work in the A− = 0 gauge)

|P 〉Y0
= Ψ[a†a(x, k+)] |0〉 . (2.1)

There is some minimal longitudinal momentum k+ = Λ below which there are no gluons

in this wave function. More precisely, the number of soft gluons with k+ ≤ Λ is not zero

but is perturbatively small so that their contribution to the scattering amplitude at Y0 is

a small perturbative correction and can be neglected.

We are interested in describing the scattering of this hadron on some target. The target

is described by some distribution of color fields αT ≡ A+ with a probability density distri-

bution WT [αT ]. The second-quantized S-matrix operator in the eikonal approximation (in

which we are working throughout this paper) is given by

Ŝ = exp

[

i

∫

d2x ja(x)αa
T (x)

]

, (2.2)

where

ja(x) = g

∫

k+>Λ

dk+

2π
a†b(x, k+)T a

bc ac(x, k+) (2.3)

is the color charge density operator at the transverse position x ( with T a
bc = ifabc - the

generator of the color group in the adjoint representation). After scattering on a particular
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configuration of the target field the hadronic wave function becomes

Ŝ|P 〉Y0
= Ψ[Sab(x) a†b(x, k+)] |0〉 , (2.4)

where Sab(x) is a unitary matrix - the single gluon scattering matrix. Since the scattering

amplitude is sensitive only to the color charge density in the hadronic wave function and

not to any other characteristic of the hadron, we can think of this wave function as being

specified by some distribution of ja(x). The color charge density correlators are determined

in terms of the ’probability density functional’ W [j] via

〈ja1(x1) . . . jan(xn)〉Y0
=

∫

Dj WY0
[j] ja1 (x1) . . . jan(xn) . (2.5)

The forward scattering amplitude is then given by

S =

∫

Dαa
T W T

Y −Y0
[αT (x)] ΣP

Y0
[αT (x)] , (2.6)

where

ΣP
Y0

[αT ] = 〈0|Ψ∗[a(x, k+)]ŜΨ[a†(x, k+)]|0〉 =

∫

Dj WY0
[j] exp

[

i

∫

d2x ja(x)αa
T (x)

]

.

(2.7)

The total rapidity of the process is Y while the target is assumed to be evolved to rapidity

Y −Y0. Here, W T characterizes the distribution of color fields αT in the target, while W [j]

characterizes the distribution of color charges in the projectile. Due to Lorentz invariance

S is Y0 independent.

The evolution of the S-matrix (2.6) with energy in the high energy limit has the generic

form

− d

dY
S =

∫

Dαa
T W T

Y −Y0
[αT (x)] HRFT

[

αT ,
δ

δ αT

]

ΣP
Y0

[αT (x)] , (2.8)

where HRFT is the Hermitian kernel of high energy evolution, which can be viewed as

acting either to the right or to the left:

− ∂

∂Y
ΣP = HRFT

[

αT ,
δ

δαT

]

ΣP [αT ] ; − ∂

∂Y
W T = HRFT

[

αT ,
δ

δαT

]

W T [αT ] . (2.9)

The color charge density operators are the generators of the SU(Nc) algebra and as

such do not commute

[ja(x), jb(y)] = i fabc jc(x) δ2(x − y) .

As explained in detail in [24], to properly take into account the non commuting nature of

the charge density operators j(x) and to still be able to represent wave function averages in

terms of the functional integral over ’classical’ fields ja, one has to assign to j an additional

’longitudinal’ coordinate. Thus in effect ja(x) → ja(x, x−), where the value of x− simply

keeps track of the order of the operators j in the correlation function eq. (2.5). An analogous

‘longitudinal coordinate’ should be assigned to the target field αT . Since in this paper we
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work in the Hamiltonian formalism and explicitly keep track of the commutation relations

of the quantum operators ja(x), we will not need to dwell on this additional longitudinal

coordinate.

The preceding discussion is given in the situation when the increase of rapidity is

assigned to the target. One can equally well boost the projectile. The evolution of the

projectile probability density functional W [j] is related to that of Σ[αT ] since the two are

related by the functional Fourier transform eq. (2.7)

− ∂

∂Y
W [j],= HRFT

[

δ

δj
, −j

]

W [j] . (2.10)

As the hadron is boosted by rapidity ∆Y , the longitudinal momenta of the gluons

in its wave function are scaled by the boost parameter k+ → e∆Y k+. Thus some gluons

in the wave function emerge after boost with the longitudinal momenta above the cutoff

Λ and have to be taken into account in the calculation of the scattering amplitude. The

number of thus ’produced’ additional gluons in the wave function is proportional to the

total longitudinal phase space
∫

dk+

k+ = ∆Y .

To find the evolution of the scattering amplitude we need two ingredients. First we

have to solve for the initial hadronic wave function with greater accuracy on the soft gluon

Hilbert space than is necessary to calculate the scattering amplitude at the initial rapidity

Y0. Second we need to take into account the contribution of these soft gluons into the

scattering amplitude at the rapidity Y = Y0 + ∆Y , which amounts to the transformation

ja(x) → ja(x) + ja
soft(x) , ja

soft(x) = g

∫ Λ

Λ e−∆Y

dk+

2π
a†b(x, k+)T a

bc ac(x, k+) (2.11)

in eq. (2.2). This transformation is conveniently represented in terms of the charge density

shift operator (which also has the meaning of the ’dual’ to the Wilson line operator [25])

R̂a = exp

[
∫

d2z jc
soft(z)

δ

δjc(z)

]

, jc(x) → R̂a jc(x) . (2.12)

The crucial part of this program is the knowledge of the wave function on the soft

gluon part of the Hilbert space, k+ ≤ Λ with some minimal accuracy. The calculation of

this wave function is the subject of the next section.

The QCD light cone Hamiltonian H responsible for the dynamics of the soft modes is

diagonalized by the action of a unitary operator Ω∆Y , where ∆Y corresponds to the phase

space volume occupied by the soft modes. Equivalently, the vacuum wave function of the

soft modes in the presence of the valence color charges is Ω |P 〉. The kernel of the high

energy evolution, HRFT is related to Ω as [14]:

HRFT = − lim
∆Y →0

〈0a|Ω†
∆Y (j, a)

(

R̂a − 1
)

Ω∆Y (j, a)|0a〉
∆Y

. (2.13)

We will find below that Ω is an operator of the Bogoliubov type for any physically inter-

esting j:

Ω = C B
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with C denoting a coherent operator, which is the exponential of an operator linear in the

soft fields A, whereas B is an exponential of an operator quadratic in A. In the dilute limit

j ∼ g we have B = 1 and the coherent operator C leads to the KLWMIJ evolution [24]. For

dense systems j ∼ 1/g, the Bogoliubov operator B also contributes to the leading order

evolution kernel HRFT. We derive the action of Ω on both the valence and soft degrees

of freedom, which enter equation (2.13). The JIMWLK Hamiltonian [10] is obtained from

the general expression (2.13) in the limit of weak target fields αT expanding R̂a to second

order in δ/δj.

3. Diagonalizing the soft gluon hamiltonian

We will proceed in the following steps. In section 3.1 we formulate the light-cone Hamilto-

nian for soft gluon modes k+ < Λ, coupled to the color charge density of the hard modes

k+ > Λ. We observe that the zero modes of the vector potential are not independent

degrees of freedom, but are constraint by the residual gauge fixing and the requirement

of finiteness of energy. In section 3.2, we solve the resulting constraints. In section 3.3,

we diagonalize the resulting Hamiltonian, by first finding the complete set of solutions to

the classical equations of motion, and then expanding the field operators in this basis.

To ensure the canonical commutation relations for the creation and annihilation operators

associated with these basis functions, a proper normalization of the classical solutions is

needed. This normalization is found in section 3.4.

3.1 The hamiltonian and the canonical structure

The starting point of our approach is the light cone hamiltonian of QCD [29]

H =

∫

k+>0

dk+

2π
d2x

(

1

2
Π−

a (k+, x)Π−
a (−k+, x) +

1

4
Gij

a (k+, x)Gij
a (−k+, x)

)

, (3.1)

where the electric and magnetic pieces have the form

Π−
a (x−, x) = − 1

∂+

(

Di∂+Ai

)a
(x−, x) ,

Gµν
a (x−, x) = ∂µAa

ν(x
−, x) − ∂νAa

µ(x−, x) − gfabc Ab
µ(x−, x)Ac

ν(x−, x) , (3.2)

and the covariant derivative is defined as

Dab
i Φb =

(

∂i δab − g facb Ac
i

)

Φb . (3.3)

Our aim is to diagonalize this Hamiltonian on the Hilbert space of soft gluon modes -

those with longitudinal momenta smaller than some scale Λ. We assume that the valence

part of the wave function (the component of the full wave function which does not contain

soft modes) is known and is completely specified by the correlation function of the color

charge density

ja(x) ≡ igfabc

∫

k+>Λ

dk+

2π
ab †

i (k+, x) ac
i (k

+, x) . (3.4)

– 6 –



J
H
E
P
0
6
(
2
0
0
7
)
0
7
5

The soft modes are the interesting dynamical degrees of freedom of our problem, and they

interact with the valence ones via eikonal coupling in the Hamiltonian. The Hamiltonian

for the soft modes is then given by eq. (3.1) with the substitution

Π−
a (k+, x) =

1

i(k+ + iǫ)
∂i∂+Aa

i (k
+, x) +

1

−i(k+ + iǫ)
ja(x)

+g
1

−i(k+ + iǫ)
fabc

∫

|p+|<Λ

dp+

2π
Ab

i(k
+ − p+, x) (−ip+)Ac

i (p
+, x) . (3.5)

The soft fields A are defined only below the longitudinal momentum cutoff Λ, but we will

not explicitly indicate it in the following.

The canonical structure of the theory is determined by the commutation relations of

the fields. As we will see, the zero momentum mode of the field A is non dynamical and is

determined by the residual gauge fixing (still not specified so far on top of the usual light

cone gauge condition A+ = 0) and the constraint of finiteness of energy. We denote by Ã

the part of the field that does not contain the mode with vanishing longitudinal momentum

- the zero mode.

The canonical commutators of the field Ã are [30]

[Ãa
i (x

−, x), Ãb
j(y

−, y)] = − i

2
ǫ(x− − y−)δab

ij (x − y) , (3.6)

with

ǫ(x) =
1

2
[Θ(x) − Θ(−x)] . (3.7)

One defines the light cone canonical creation and annihilation operators as usual through

Ãa
i (x

−, x) =

∫ ∞

0

dk+

2π

1√
2k+

{

aa
i (k

+, x) e−ik+x−

+ aa
i †(k

+, x) eik+x−

}

,

[

aa
i (k

+, x), ab †
j (p+, y)

]

= (2π) δab δij δ(k+ − p+) δ(2)(x − y) . (3.8)

This translates into (k+ 6= 0):

[

Ãa
i (k

+, x), Ãb
j(p

+, y)
]

=
π

2

(

1

k+ + iǫ
+

1

k+ − iǫ

)

δ(k+ + p+) δab δij δ(2)(x − y) . (3.9)

The Hamiltonian eq. (3.1) commutes with the generator of the x− - independent gauge

transformation, which on physical states should vanish:
∫

dx−(Di∂
+Ai)

a − ja(x) = 0 . (3.10)

Following the standard procedure we should fix this residual gauge freedom by imposing a

gauge fixing condition. We will be working in the gauge (same as in [10])

∂i A
a
i (x

− → −∞) = 0 . (3.11)

¿From previous analysis of the behavior of the field in this gauge [10], we know that

the vector potential vanishes at x− → −∞ but approaches a non vanishing asymptotic
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value at x− → ∞, which we denote by Aa
i (x

− → ∞, x) = γa
i (x). Separating the nonzero

momentum modes, we thus write

Aa
i (x

−, x) =
1

2
γa

i (x) + Ãa
i (x

−, x) . (3.12)

Even though Ã has no zero momentum mode, its asymptotics is not vanishing but is rather

given by ±1
2γa

i . It is thus convenient to define a field c which has regular behavior at infinity

by

Aa
i (x

−, x) = θ(x−)γa
i (x) + ca

i (x
−, x) ,

Ãa
i (x

−, x) = ǫ(x−)γa
i (x) + ca

i (x
−, x) ,

ca
i (x

− → ±∞, x) → 0 , (3.13)

and

∂+Aa
i = ∂+Ãa

i = δ(x−)γa
i + ∂+ca

i . (3.14)

Our aim is to find the ground state of the Hamiltonian eq. (3.1) given the charge density

ja (more precisely we consider the matrix elements of the operators ja(x) on the Hilbert

space of the valence modes as known).

Our first observation is that since the Hamiltonian is the integral of the positive definite

Hamiltonian density over x−, the necessary condition for finiteness of energy is vanishing of

the density at x− → ±∞. The finiteness of the magnetic part of the Hamiltonian requires

Ga
ij(x

− → ∞) = 0 , (3.15)

while the finiteness of the electric part is ensured by eq. (3.10).

We will use the gauge fixing condition and the finite energy conditions as operatorial

constraints that determine γ in terms of Ã (or equivalently ci). This is equivalent to Dirac

bracket quantization of the fields A which leave the canonical commutators of Ã unchanged.

The commutators of γa
i with Ãa

i and between themselves are then determined by solving

the constraints.

Expressing the magnetic constraint equation (3.15) in terms of γa
i , we obtain

∂i γa
j (x) − ∂j γa

i (x) − gfabc γb
i (x) γc

j (x) = 0 . (3.16)

To express the electric constraint eq. (3.10) we use the fact that given the boundary con-

ditions on ca
i

∫

dx−∂+Aa
i = γa

i . (3.17)

We then find1

∂iγ
a
i − 1

2
gfabcγb

i γ
c
i − gfabc

∫

dx−Ãb
i (x

−)∂+Ãc
i (x

−) = ja(x) , (3.18)

1Here we used fabc
R

dx−Ab
i(x

−)∂+Ac
i (x

−) = 1

2
fabcγb

i γ
c
i + fabc

R

dx−Ãb
i(x

−)∂+Ãc
i(x

−) which follows

from eq. (3.17).
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or, equivalently,

∂iγ
a
i (x)− 1

2
gfabcγb

i (x)γc
i (x)+gfabc{γb

i (x), cc
i (x, 0)}−gfabc

∫

dx−cb
i (x

−)∂+cc
i (x

−)=ja(x) .

(3.19)

In this equation c(0) should be understood as

ca
i (x

− = 0) = Ã(x− = 0) =
1

2
[ca

i (x
− = 0+) + ca

i (x
− = 0−)] , (3.20)

where 0+ ≡ 0 + ǫ; 0− ≡ 0 − ǫ; ǫ → 0. This is important since c is not necessarily

continuous at x− = 0.

3.2 Solving the constraints

Our strategy now is the following. We should solve the two constraint equations,

eqs. (3.16), (3.18) and determine the commutation relations of the non dynamical field

γ. Then we must substitute it back into the Hamiltonian and express the Hamiltonian in

terms of the canonical degrees of freedom Ã.

We will do so by expanding the constraint equations and the Hamiltonian in powers

of g. When doing so we must have some knowledge of the parametric dependence of the

valence charge density j on the coupling constant g. The expansion in principle can be

performed for any parametric dependence. In this section we take j to be of order 1/g as

in the JIMWLK limit, and will collect all contributions to the Hamiltonian of order 1/g

and order 1. It turns out however that this same resummation collects the leading terms

in g also for any g ≤ j ≤ 1/g. We will discuss this point in detail in the discussion section.

Thus even though in this section we treat explicitly j as being of order 1/g this should not

be construed as limiting our calculation to the JIMWLK limit.

Thus our aim in this section is to expand γ to O(1), obtain the Hamiltonian to O(1)

and diagonalize this O(1) Hamiltonian exactly. Further corrections to this calculation are

strictly perturbative (small corrections in powers of g for any parametric dependence of j

on g) and will not be considered here.

To order 1/g the operator γ satisfies the ‘classical equations’ γa
i = ba

i :

∂i b
a
i (x) = ja(x) ,

∂i ba
j (x) − ∂j ba

i (x) − gfabc bb
i (x) bc

j(x) = 0 . (3.21)

To this order the commutation relations are calculated as

[

ba
i (x), bb

j(y)
]

=

∫

z,z̄

δba
i (x)

δjc(z)

[

jc(z), jd(z̄)
] δbb

j(y)

δjd(z̄)

= −i g

∫

z

[

Di
1

∂D

]ac

(x, z) f cde je(z)

[

1

D∂
Dj

]db

(z, y) , (3.22)

where D is the transverse covariant derivative in the ‘classical’ background field b: Dab
i =

∂iδ
ab − gfacbbc

i . Eq. (3.22) is the leading order result in g. Note however that it is exact in

the weak field limit, where the field b is linear in the valence charge density j.
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Eq. (3.22) can be further simplified, using the identity

g f cde je(z) = g f cde ∂ib
e
i (z) = − [∂i, ∂i − Di]

cd = (∂D − D∂)cd . (3.23)

Thus finally, to leading order in g

[

γa
i (x), γb

j (y)
]

=
[

ba
i (x), bb

j(y)
]

= − i dab
ij (x, y) ≡ i

[

Di
1

∂D
Dj − Di

1

D∂
Dj

]ab

(x, y) ,

[

γa
i , Ãb

j

]

= [ba
i , Ãb

j ] = 0 . (3.24)

Note that although γ itself is of order 1/g, the commutator of two γ’s is of order one.

It is thus clear that we will not need higher order corrections to the commutator eq. (3.24)

in the O(1) calculation.

To order O(1) we write

γa
i = ba

i + ζa
i , (3.25)

where ζ satisfies the equations:

∂iζ
a
i = −2gfabcbb

iÃ
c
i (x

− = 0) ,

Dab
i ζb

j − Dab
j ζb

i = 0 . (3.26)

The solution to these two equations is easily found as

ζa
i = −2

[

Di
1

∂D
(∂ − D)Ã(x− = 0)

]a

, (3.27)

where the product on the right hand side is understood in the matrix sense over all in-

dexes (including transverse coordinates). Note that the ordering of different factors of b in

eq. (3.27) is irrelevant, since the covariant derivative involves gb, and the commutator of

two such factors is O(g2) and is thus of higher order than the one we need to keep.

The canonical structure to O(1) follows from eqs. (3.25), (3.27)

[

γa
i (x), Ãb

j(y)
]

= [ζa
i (x), Ãb

j(y)] = −iǫ(y−)

[

Di
1

∂D
(∂ − D)j

]ab

(x, y) ,

[

ca
i (x), γb

j (y)
]

= iǫ(x−)

[

∂i
1

D∂
Dj − Di

1

∂D
Dj

]ab

(x, y) ,

[

ca
i (x), cb

j(y)
]

= − i

2
ǫ(x− − y−)δab

ij (x − y) − i

2
ǫ(x−)ǫ(y−)Cab

ij (x, y) , (3.28)

where for future convenience we have defined

Cab
ij (x, y) =

{

2∂i
1

D∂
Dj − 2Di

1

∂D
∂j

}ab

(x, y) . (3.29)
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3.3 The hamiltonian and the equations of motion to O(1)

Next we express the Hamiltonian to O(1) in terms of the field ca
i .

For the magnetic piece to O(1) we have:

Ga
ij(θ(x−)γ + c) = θ(−x−)[∂icj − ∂jci] + θ(x−)[Dicj − Djci] + O(g) . (3.30)

For the electric piece, using the constraint and after some algebra, we obtain:

Π−
a = − 1

∂+
[Di∂

+Ai − jδ(x−)]a = −
[

θ(−x−)∂ici + θ(x−)Dici

]a
+ O(g) . (3.31)

All said and done the Hamiltonian to O(1) is

H = −1

2

∫

dx−d2x
[

θ(−x−) ca
i (x

−, x)∂2ca
i (x

−, x) + θ(x−) ca
i (x

−, x)D2 abcb
i (x

−, x)
]

.

(3.32)

This is the Hamiltonian that we have to diagonalize. The most efficient way of doing

this is first to find the complete set of solutions of classical equations of motion, and then

expand the quantum field operators in the canonical creation and annihilation operators

with the coefficients given by the solutions of classical equations. The classical solutions

have to be properly normalized in order that the quantum field operators satisfy correct

commutation relations.

We start by deriving the equations of motion. Using the commutation relations

eq. (3.28) we obtain

i∂+∂−ca
i (x) = [H,∂+ca

i (x)] =

∫

dy−[∂+ca
i (x), cb

j(y)]
[

θ(−y−)∂2 + θ(y−)D2
]bc

jk
cc
k(y)

= − i

2
[θ(−x−)∂2δab + θ(x−)D2 ab]cb

i (x)

− i

4
δ(x−)Cab

ij (x, y)

∫

dy−
[

−θ(−y−)∂2 + θ(y−)D2
]bc

jk
cc
k(y

−, y) ,

(3.33)

where Cab
ij is defined in (3.29). Integrating these equations (avoiding the singularity at

y− = 0) gives

− i

2

∫ 0−

−∞
dy−∂2c(y) = i

∫ 0−

−∞
dy−∂+∂−c(y) = i∂−c(0−) , (3.34)

− i

2

∫ ∞

0+

dy−D2c(y) = i

∫ ∞

0+

dy−∂+∂−c(y) = −i∂−c(0+) . (3.35)

The last term in eq. (3.33) can be rewritten as

− i

4
δ(x−)Cab

ij (x, y)

∫

dy−
[

−θ(−y−)∂2 + θ(y−)D2
]bc

jk
cc
k(y) = −iδ(x−)Cab

ij (x, y)∂−cb
j(0) ,

(3.36)

so that finally the equations of motion are

i[∂+ + δ(x−)C]ab
ij (x, y)∂−cb

j(y) = − i

2
[θ(−x−)∂2 + θ(x−)D2]ab(x, y)cb

i (y) . (3.37)
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Matching the discontinuity across x− = 0 gives the relation

ca
i (0

+, x) − ca
i (0

−, x) = −1

2
Cab

ij (x, y)[cb
i (0

+, y) + cb
i(0

−, y)] . (3.38)

The solution to the equations of motion can be written down explicitly. At negative x−

this is just a free equation, and thus the solution is a superposition of plane waves. At

positive x− the solution is again a superposition of gauge rotated plane waves. This can

be written as

ca
i,p−(x) = exp

{

ip−x+
}

∫

d2q

[

Θ(−x−) exp

{

i
∂2

2p−
x−

}

vi−
p−q

(x) +

Θ(x−) exp

{

i
D2

2p−
x−

}

vi+
p−q

(x)

]

. (3.39)

Except at x− = 0 this solves the equations of motion with given p− for arbitrary vi,±
q .

Here q is the degeneracy index. In the free theory the index q would stand collectively

for transverse momentum k, polarization index i and color ”polarization index” a. In

the present case q also stands for i and a as well as some continuous degeneracy. For

simplicity of notation we will not differentiate between discrete and continuous parts of

q. In the following, integral over q stands both for the integral over continuous part with

appropriate measure as well as for summation over the rotational and color ’polarizations’.

Eq. (3.38) imposes the condition

va+
i (x) − va−

i (x) = −1

2
Cab

ij (x, y)[vb+
i (y) + vb−

i (y)] . (3.40)

This equation can be equivalently rewritten as

v+
i = [T − L]ij(t − l)jkv−k , (3.41)

where the projectors T, L, t, l are defined as

Lab
ij =

[

Di
1

D2
Dj

]ab

, T ab
ij = δab

ij − Lab
ij ; lij = ∂i

1

∂2
∂j ; tij = δij − lij . (3.42)

Eq. (3.41) is solved by

v+
i = [T − L]ijvj ; v−i = [t − l]ijvj (3.43)

for arbitrary vj. Thus we can write the solution eq. (3.39) in terms of one set of functions

vai
p−q

(x) as

ca
i,p−(x) = exp{ip−x+}

∫

d2q

[

Θ(−x−) exp

{

i
∂2

2p−
x−

}

[t − l]ijv
j

p−q
(x)

+Θ(x−) exp

{

i
D2

2p−
x−

}

[T − L]ijv
j

p−q
(x)

]

.(3.44)

On the level of the classical solution, the normalization of the functions vai
p−q

(x) is arbitrary.

However, in order to use eq. (3.44) as the basis for expansion of the operators c in terms
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of canonical creation and annihilation operators the normalization of vai
p−q

(x) has to be

determined. This will be done in the following subsection.

As a corollary to this subsection we note that the classical field b does not commute

with the Hamiltonian and is therefore not constant in time. Calculating the commutator

we obtain

i∂−ba
i (x) = [H, ba

i ] =

∫

dy−[ba
i (x), cb

j(y)]
[

θ(−y−)∂2 + θ(y−)D2
]bc

jk
cc
k(y)

=
1

2
dba

ji (y, x)

∫

dy−
[

−θ(−y−)∂2 + θ(y−)D2
]bc

jk
cc
k(y) . (3.45)

Using eqs. (3.34), (3.35) this can be written as

i∂−ba
i (x) = 2i∂−

{

Di
1

D∂
Dj − Di

1

∂D
Dj

}ab

cb
j(0) . (3.46)

This can be interpreted in the following way. Let us define the operator b̄, so that it has the

same exact matrix elements on the valence part of the Hilbert space as b, but commutes

with the operators c. Then we can write

ba
i = b̄a

i + 2

{

Di
1

D∂
Dj − Di

1

∂D
Dj

}ab

cb
j(0) , (3.47)

and

γa
i = b̄a

i + 2

{

Di
1

D∂
Dj − Di

1

∂D
∂j

}ab

cb
j(0) . (3.48)

This form will be convenient for calculating correlators of γ in the vacuum state.

3.4 Normalization of the eigenfunctions and the vacuum state

Given that the O(1) Hamiltonian is quadratic, and having found the complete set of solu-

tions of the classical equations of motion, we can find the quantum vacuum state.

The vacuum state of the Hamiltonian eq. (3.32) is the Fock vacuum of the canonical

annihilation operators βp−,q defined in terms of c by

ca
i (x) =

∫ ∞

0

dp−

2π

∫

d2q

[

Θ(−x−)e
i ∂2

2p−
x−

[t − l]ij(x, y)vaj

p−,q
(y) (3.49)

+Θ(x−)e
i D2

2p−
x−

[T − L]ab
ij (x, y)vbj

p−,q
(y)

]

βp−,q + h.c. ,

where the integral over the transverse coordinate y is understood but not written explicitly.

The operators β satisfy canonical commutation relations

[βp−,q, β†
p′−,q′

] = (2π) δ(p− − p′−) δ(q − q′) . (3.50)

Existence of such a set of canonical operators is guaranteed if the set of solutions of the clas-

sical equation is complete and the functions v entering eq. (3.49) are properly normalized.

To find the correct normalization of these functions we require that c satisfy eq. (3.28).
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We concentrate on negative x− and y− first, so that only the first term in the sum in

eq. (3.49) is important. For simplicity we suppress the color indexes and also the factor

t − l, thus we are working in terms of v− rather than v. Consider the commutator

[ci(x), cj(y)] =

∫ ∞

0

dp−

2π

[

e
i



∂2
x

2p−
x−−

∂2
y

2p−
y−

ff

∫

q

v−i
p−,q

(x)v∗−j

p−,q
(y) (3.51)

−e
−i



∂2
x

2p−
x−−

∂2
y

2p−
y−

ff

∫

q

v∗−i
p−,q

(x)v−j

p−,q
(y)

]

=

∫ ∞

0

dp−

2π

[

e
i



∂2
x

2p−
x−−

∂2
y

2p−
y−

ff

Wij

p−
(x, y) − e

−i



∂2
x

2p−
x−−

∂2
y

2p−
y−

ff

W∗ij
p−

(x, y)

]

.

We have defined the ‘correlator matrix’

Wij

p−
(x, y) =

∫

d2q v−i
p−,q

(x) v∗−j

p−,q
(y) . (3.52)

Note that this matrix fully determines the commutators of c, and there is no need to find

the individual functions vp−,q. Different choices of the functions v which give the same W
correspond to unitary rotations of the set of the canonical operators β.

To determine the correct normalization we first note that taking

Wij

p−
(x, y) = δij δ2(x − y)

1

2 p−
(3.53)

would give canonical commutation relations for the fields c. With this expression for W
we can change variables p− → −p− in the second term of eq. (3.51) to get

[ci(x), cj(y)] =

∫ ∞

−∞

dp−

4π p−
e
i{ ∂2

2p−
x−− ∂2

2p−
y−}

δ2(x−y)δij = − i

2
δijδ2(x−y)ǫ(x−−y−) , (3.54)

where the last line follows by change of variables p− → ∂2/2p−. To get the ǫ-function in

the commutator we have to regulate the singularity in 1/p− in the symmetric way

1

p−
→

(

1

p−

)2
[

1
1

p−
+ iǫ

+
1

1
p−

− iǫ

]

. (3.55)

To reproduce the extra term in the commutator of ci (the second term in the last line of

eq. (3.28)) we modify the matrix W in the following way

Wij

p−
(x, y) =

1

2

(

1

p−

)2 {

1
1

p−
+ iǫ

[

δijδ2(x − y) +
1

2
Cij(x, y)

]

(3.56)

+
1

1
p−

− iǫ

[

δijδ2(x − y) − 1

2
Cij(x, y)

] }

.

The new term we have added is imaginary and even with respect to p− → −p−. Thus it is

still true that the two terms in eq. (3.51) are equal. The extra term under the change of

variables p− → 1/p− gives
∫

d

(

1

p−

)

δ

(

1

p−

)

, (3.57)
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and thus generates the term in the commutator independent of x− and y−. The result is

precisely the last term of eq. (3.28). It is a matter of some straightforward algebra to check

that with W defined in eq. (3.56) the correct commutator of the fields c is reproduced also

for other values of x− and y−. The following identities come handy in this calculation

1 − 1

2
C =

[

1 +
1

2
C

]

(T − L)(t − l);

[

1 − 1

2
C

]

(t − l) =

[

1 +
1

2
C

]

(T − L) ;

(t − l)C(t − l) = −C;

(T − L)C(T − L) = −C . (3.58)

Returning from v− to v we conclude that the operators β, β† in the representation

eq. (3.49) have canonical commutation relations when (we use eq. (3.58))

∫

d2q vi
p−q(x) v∗j

p−q
(y) =

1

2

(

1

p−

)2
{[

1
1

p−
+ iǫ

+
1

1
p−

− iǫ

]

δijδ2(x − y) (3.59)

−1

2

[

1
1

p−
+ iǫ

− 1
1

p−
− iǫ

]

Cij(x, y)

}

.

We thus conclude that the vacuum of the Hamiltonian eq. (3.1) to O(1) is the Fock

vacuum of the annihilation operators β related to the original gluon field operators through

Ãa
i (x

−, x) = ǫ(x−)

[

ba
i (x) − 2Di

1

∂D
(∂ − D)(x, y)c(0, y)

]

+ ca
i (x

−, x) (3.60)

= ǫ(x−)

[

b̄a
i (x) + 2

{

Di
1

D∂
Dj − Di

1

∂D
∂j

}ab

(x, y)cb
j(0, y)

]

+ ca
i (x

−, x)

with the field ca
i (x

−, x) expressed in term of β and β† in eq. (3.49) with the normalization

eq. (3.59).

This completes the diagonalization of the light cone Hamiltonian to O(1).

4. The Bogoliubov operator

The calculation of the previous section can be viewed as the diagonalization of the light

cone Hamiltonian. Although we have only found the vacuum state, quite generally the

diagonalization is affected by the action of some unitary operator Ω. Namely for the case

of a quadratic operator H

Ω†HΩ =

∫

p−,q

p−β†
p−,q

βp−,q . (4.1)

The explicit knowledge of the operator Ω, or alternatively the knowledge of its action on all

the degrees of freedom of the theory furnishes much more information than just the vacuum

wave function, as it also in principle can give us the wave functions of excited states, which

are necessary to calculate more exclusive properties than the forward scattering amplitude.
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The aim of this section is to find explicitly the action of Ω on the degrees of freedom of the

theory.

Part of the answer to this question is already furnished by eq. (3.60) which can be

viewed as the transformation of the vector potential if we read the left hand side as Ω†ÃΩ

and the canonical operators β and β† in c on the right hand side as the original gluon

creation and annihilation operators a and a†. The missing piece of information is the

transformation of the valence charge density. This is the question we address now.

First, it is clear from eq. (3.60) that the transformation is of the Bogoliubov form,

namely

Ω ≡ C B = exp
[

E Ã
]

exp

[

1

2
Ã M Ã

]

, (4.2)

where E and M are operators which depend on the charge density j but do not depend

on the soft fields A. We do not indicate explicitly the indexes and coordinate dependences

of E and M for simplicity. Those should be clear from the context. Here C is a purely

coherent state operator - exponent of an operator linear in Ã, while B has no linear term

in the exponent. The coherent operator is easy to find by inspection, since it is the only

one that induces the shift of the soft field (the very first term in eq. (3.60)):

C = exp

[

2 i

∫

d2x ba
i (x) Ãa

i (x
− = 0, x)

]

. (4.3)

The Bogoliubov part of the transformation, the operator B is more difficult to determine.

Rather than looking for the explicit form of the operator B in terms of j, we will find its

action on the degrees of freedom of the theory by considering sequential action of C and B
on Ã and matching it onto eq. (3.60).

It is important to remember that we need to know the transformation of the color

charge density only to O(g). Only this order contributes to the JIMWLK evolution as

explained in detail in [10]. Thus we will determine the action of B on the fields to this

order only.

We first note the following ’combinatorial’ identity. For any operators O and L

e−LOeL = O + [O,L] +
1

2
[[O,L], L] +

1

3!
[[[O,L], L], L] + . . . (4.4)

Using eq. (4.4), we have for C of eq. (4.3)

C† Ãa
i (x) C = Ãa

i (x) + ǫ(x−) ba
i (x) + ǫ(x−)

∫

y

dab
ij (x, y) Ãb

j(y
− = 0, y) (4.5)

+
2 i

3
ǫ(x−)

∫

y,z

[dab
ij (x, y), bc

k(z)] Ãb
j(y

− = 0, y) Ãc
k(z

− = 0, z) ,

C† ja(x) C = ja(x) + 2

∫

y

{(

∂D
1

D∂
− 1

)

Dj

}ab

(x, y) Ãb
j(y

− = 0, y) (4.6)

+ 2 i

∫

y,z

[

{(

∂D
1

D∂
− 1

)

Dj

}ab

(x, y), bc
k(z)

]

Ãb
j(y

− = 0, y)Ãc
k(z− = 0, z) .
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To find the action of the Bogoliubov operator, we imagine diagonalizing the Hamil-

tonian first by acting with C and then subsequently acting with B. Transforming the

Hamiltonian eq. (3.1) with C obviously leads to

C† H[Ã, j] C ≡ H ′[Ã, j] = H[C† Ã C, C† j C] . (4.7)

It is straightforward to see using the expression for the transformed fields eqs. (4.5), (4.6),

that if we substitute for Ã in the function H ′ the following expression

Ãa
i (x) → ca

i (x) + ǫ(x−)∆ab
ij (x, y) cb

j(y
− = 0, y) , (4.8)

with

∆ab
ij (x, y) =

{

Di
1

∂D
Dj + Di

1

D∂
Dj − 2Di

1

∂D
∂j

}ab

(x, y) , (4.9)

we obtain to O(1) precisely eq. (3.32). This substitution should be equivalent to the action

of the Bogoliubov operator

B† H ′[Ã, j]B = H ′[B† ÃB, B† j B] ≡ H ′′[Ã, j] . (4.10)

In other words, up to (and including) O(g) terms the action of the Bogoliubov operator B
on the field Ã is

Aa
i (x, j) ≡ B† Ãa

i (x)B = ca
i (x) + ǫ(x−)∆ab

ij (x, y) cb
j(y

− = 0, y) , (4.11)

where the field c on the r.h.s. is understood as expressed in terms of the canonical creation

and annihilation operators a and a† (rather than β and β†)2.

Our aim is now to find the transformation of the color charge density ja under the

Bogoliubov transformation which induces eq. (4.11). This is indeed possible, even though

we do not know the explicit form of the operator B itself in terms of the fundamental fields.

The key is given by the following chain of arguments.

Consider a general Bogoliubov operator of the form

B = exp

[

1

2
Ãi Mij Ãj

]

. (4.12)

Here we denote all indexes/coordinates of the field A by a single index i. The fields A are

assumed to satisfy the commutation relation

[Ãi, Ãj] = Pij (4.13)

with some matrix P . Quite generally the matrix M is symmetric and anti hermitian,

while P is antisymmetric. The matrix M depends on the charge density and the coupling

constant only through the combination g j.

2We note that strictly speaking to make this identification we should also substitute into H ′ the trans-

formed expression for j in eq. (4.10), which we do not know at this point. However as we will see below and

is simple to understand by straightforward counting of powers of g, the operator B induces transformation

of j only to order g. Since we only need the Hamiltonian to O(1) it is therefore perfectly consistent to keep

j unchanged in H ′ eq. (4.10) for the purpose of the identification of the Bogoliubov transformation of Ã.
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Consider the transformation

Ak ≡ B† Ãk B = Ãk + (PMÃ)k +
1

2
(PMPMÃ)k +

1

3!
(PMPMPMÃ)k + . . .

= [ePM ]kl Ãl . (4.14)

Here we have used the identity eq. (4.4). Also, consistently with our counting of powers

of the coupling constant we have neglected all and any terms involving commutators of gj

which enter into M , since each such commutator brings a power g2.

Now to order O(g) we have

[ja,Mij ] = igfabcjc ∂Mij

δjb
. (4.15)

Thus consider the transformation of ja(x) induced by the action of B in eq. (4.12):

B†jaB = ja +
i

2
gfabcjc

{

Ã
δM

δjb
Ã +

1

2
Ã

(

δM

δjb
PM − MP

δM

δjb

)

Ã (4.16)

+
1

3!
Ã

(

δM

δjb
PMPM + MPMP

δM

δjb
− 2MP

δM

δjb
PM

)

Ã + . . .

}

.

Here again we neglected all commutators of gj in M beyond the first term, as they are all

higher order in g. The negative signs come from transposing the antisymmetric matrix P .

We can now check explicitly that eq. (4.16) is expansion in powers of M of the following

expression

ja +
i

2
gfabcjcAP−1 δA

δjb
(4.17)

with A defined in eq. (4.14). Remembering that in our case P = i
2ǫ(x−−y−) whose inverse

is −2i∂+, and restoring all the indexes and coordinate dependences we obtain

j̄a(x) ≡ B†ja(x)B = ja(x) + gfacdjd(x)

∫

dy−d2y ∂+Ab
j(y

−, y)
δAb

j(y
−, y)

δjc(x)
(4.18)

with A given in eq. (4.11).

An equivalent way of obtaining this result is to require that the transformed fields

satisfy the same commutation relations as the non transformed ones, the transformation

being unitary. Using the explicitly known commutator of the field c one can easily show

that
[

Aa
i (x

−, x),Ab
j(y

−, y)
]

= − i

2
ǫ(x− − y−)δab

ij (x − y) , (4.19)

[

ja(x),Ab
j(y

−, y)
]

=

∫

z

[ja(x), jc(z)]
δAb

j(y
−, y)

δjc(z)
= igfacdjd(x)

δAb
j(y

−, y)

δjc(x)
.

In this expression we should understand A as a function of j at fixed a. It is easy to check

that with the transformation eq. (4.18) to O(g)

[j̄a(x),Ab
j(y

−, y)] = 0 . (4.20)
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This is straightforward after noticing that the last term in eq. (4.18) can be written as

g facd jd(x)

∫

dy−d2y∂+Ab
j(y

−, y)
δAb

j(y
−, y)

δjc(x)
= (4.21)

∫

dy−d2y d2zAb
j(y

−, y)[ja(x), jc(z)]
δAb

j(y
−, y)

δjc(z)
.

Therefore we conclude that the transformation eqs. (4.11), (4.18) does indeed preserve

canonical commutation relations of the fields.

We can now put all the elements together and write down the transformation that the

operator Ω induces on the fields:

Ω†Ãa
i (x

−, x)Ω = ca
i (x

−, x) + ǫ(x−)

[

ba
i (x) + 2

∫

y

{

Di
1

D∂
Dj − Di

1

∂D
∂j

}ab

(x, y)cb
j(0, y)

]

+ǫ(x−)

∫

y,z

{

g

[

Di
1

∂D

]ab

(xz)f bcdjd(z)

∫

dy−∂+Ae
j(y

−, y)
δAe

j(y
−, y)

δjc(z)

+
2i

3
[dab

ij (x, y), bc
k(z)]cb

j(0, y)cc
k(0, z)

}

, (4.22)

Ω†ja(x)Ω = ja(x) + 2

∫

y

{(

∂D
1

D∂
− 1

)

Dj

}ab

(x, y)cb
j(0, y)

+gfacdjd(x)

∫

dy−d2y∂+Ab
j(y

−, y)
δAb

j(y
−, y)

δjc(x)

+2i

∫

y,z

[

{(

∂D
1

D∂
− 1

)

Dj

}ab

(x, y), bc
k(z)

]

cb
j(0, y)cc

k(0, z) . (4.23)

Here A is given by eq. (4.11) and the field c is understood as expressed in terms the

canonical creation and annihilation operators a and a† as in eq. (3.49). The first line of

eq. (4.22) coincides with eq. (3.60). The second and third lines are the O(g) terms. They

are given here for completeness even though they do not contribute in the calculation of the

previous section and also do not contribute to the transformation of the soft color charge

density eq. (4.25).

Eqs. (4.22), (4.23) are the main result of this section. They give the explicit action of

the diagonalizing operator Ω on the fundamental degrees of freedom of the theory.

Finally, for completeness we give the expression for the transformation of the total

charge density. This is the observable directly relevant for the calculation of the scattering

amplitude. It includes the contribution of the valence and the soft modes

Ja(x) = ja(x) + gfabc

∫

dx−Ãb
i (x)∂+Ãc

i (x) . (4.24)

Collecting the formulae given above we find

Ω†Ja(x)Ω = ja(x) + δ1j
a(x) + δ2j

a(x) , (4.25)
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with

δ1j
a(x) = 2

[

∂D
1

D∂
Dj − ∂j

]ab

(x, y)cb
j(0, y) , (4.26)

δ2j
a(x) = 2gi

[

faedjd(x)ebe
j (y, x), bc

k(z)
]

cb
j(0, y)cc

k(0, z)

+gfabc

∫

dx−Ab
i(x)∂+Ac

i (x)

+gfacdjd(x)

∫

dy−∂+Ab
j(y

−, y)
δAb

j(y
−, y)

δjc(x)
, (4.27)

with A given by eq. (4.11). Here

eab
i (x, y) =

δba
i (x)

δjb(y)
=

[

Di
1

∂D

]ab

(x, y) . (4.28)

As a consistency check with the calculation of the previous section we note that eq. (4.26)

coincides with the divergence of eq. (3.48).

5. Reproducing JIMWLK/KLWMIJ

As a cross check on our derivation we reproduce in this section the two known limits of the

high energy evolution - the JIMWLK evolution equation (the high density limit) and the

KLWMIJ evolution equation (the low density limit) .

5.1 The JIMWLK kernel

Under boost the color charge density j transforms into J of eq. (4.25). To derive the

evolution of the functional W we have to calculate the correlation functions of J over the

soft gluon vacuum, that is over the Fock vacuum of operators β. In the JIMWLK limit it

is only necessary to know two correlators,

χab(x, y) ≡ lim
∆Y →0

〈0β | δ1j
a(x)δ1j

b(y) |0β〉
∆Y

, σa(x) = lim
∆y→0

〈0β | δja
2 (x) |0β〉
∆Y

, (5.1)

since δ1j ∼ gj and δ2j ∼ g2j, and so only these two correlators contribute to the evolution

of 〈j(x1) . . . j(xn)〉 to relative order g2. In fact our task is somewhat easier, since we can

avoid the calculation of 〈δja
2 (x)〉 using the following argument. In terms of χ and σ the

evolution kernel has the form

HJIMWLK =
1

2
χab(x, y)

δ

δja(x)

δ

δjb(y)
+ σa(x)

δ

δja(x)
. (5.2)

However it was proved in [14] that the evolution kernel has to be a Hermitian operator (on

the space of functions of j). In conjunction with the fact that σa(x) is real, since it is a

diagonal matrix element of an Hermitian operator (on the QCD Hilbert space), it means

that σ is rigidly related to χ so that the evolution kernel is

HJIMWLK =
1

2

δ

δja(x)
χab(x, y)

δ

δjb(y)
. (5.3)
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This property of the JIMWLK kernel is of course well known and has been first noted by

Weigert in the last reference in [10]. Thus our task is first to calculate χab(x, y) and then to

show that the resulting evolution equation is equivalent to the standard form of JIMWLK

which involves derivatives with respect to the unitary matrices U rather than with respect

to the charge density j.

We start with the calculation of χ, defined as eq. (5.1). In preparation we calculate

1

∆Y
〈0β | ca

i (0, x)cb
j(0, y) |0β〉 =

1

8∆Y

∫

dp−

2πp−
[t − l + T − L][t − l + T − L]ab

ij (x, y)

=
1

4π
[1 − l − L + l L + L l]ab

ij (x, y) . (5.4)

Using eq. (4.26) we then find

χab(x, y) ≡ 〈δ1j
a(x)δ1j

b(y)〉
∆Y

=
4

∆Y

[

∂D
1

D∂
Di − ∂i

]ac

(x, u)〈cc
i (0, u)cd

j (0, v)〉
[

∂j − Dj
1

∂D
D∂

]db

(v, y)

=
1

π

{

∂D

[

1

∂2
+

1

D2
− 1

∂2
∂D

1

D2
− 1

D2
D∂

1

∂2

]

D∂

}ab

(x, y) . (5.5)

5.2 From j to U

To get the evolution equation in the familiar JIMWLK form we need to change variables

from j to the single gluon scattering matrix U . The matrix U is defined as the matrix of

the two dimensional gauge transformation which transforms the ’classical field’ b to zero

value [10]

Uab(x) =

{

P exp

[

ig

∫

C

dyiT
cbc

i (y)

]}ab

, (5.6)

where the contour C starts at some fixed point at infinity in the transverse plane and ends

at the point x. The matrix U does not depend on the curve C but only on its end point,

since the field b is two dimensionally a pure gauge. Using this definition we have

δUab(x)

δjc(z)
= g

∫

C

dyi

[

U(x)U †(y)T d δbd
i (y)

δjc(z)
U(y)

]ab

= g

∫

C

dyi

[

U(x)U †(y)T dU(y)
]ab

[

Di
1

∂D

]dc

(y, z) . (5.7)

Now we use the identity

[U †(y)T dU(y)]ab = T c
abU

cd(y) . (5.8)

Substituting this into eq. (5.7), and using the fact that
∫

c
dyi∂iF (y) = F (x) we find

δUab(x)

δjc(z)
= g

[

UT b 1

∂D

]ac

(x, z) . (5.9)
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This makes it possible to rewrite the real part of the JIMWLK kernel in the following form

∫

x,y

χab(x, y)
δ

δja(x)

δ

δjb(y)
=

g2

π

∫

x,y

δ

δUab(x)

δ

δU cd(y)
[U(x)T b]al[U(y)T d]cm (5.10)

×
[

1

∂2
+

1

D2
− 1

∂2
∂D

1

D2
− 1

D2
D∂

1

∂2

]lm

(x, y) .

Now remember that

δ

δUab(x)
[U(x)T b]al = −Tr

[

δ

δU †(x)
U(x)T l

]

= −J l
R , (5.11)

where JR is the operator of right rotation on matrix U . We also note that

∂i
1

∂2
(x, y) =

1

2π

xi − yi

(x − y)2
; Di

1

D2
(x, y) =

1

2π
U †(x)

xi − yi

(x − y)2
U(y) . (5.12)

Now, using eq. (5.3) we can write the complete kernel as

HJIMWLK = − αs

2π2

∫

x,y,z

(x − z)i(y − z)i
(x − z)2(y − z)2

[

Ja
L(x)Ja

L(y) + Ja
R(x)Ja

R(y) (5.13)

−2Ja
L(x)Uab(z)Jb

R(y)

]

with Ja
L(x) = Uab(x)Jb

R(x). This is by now one of the standard forms of the JIMWLK

kernel, see [31].

5.3 The KLWMIJ evolution

Although our derivation has been formally in the high density limit, as we noted in the

introduction and as we explain in the next section the result eqs. (4.25), (4.26), (4.27) is in

fact valid for all physically interesting situations, including the low density case j = O(g).

For the low density case we have to reproduce the KLWMIJ evolution equation [24, 25]. It

is easy to see that this is indeed the case. Examining the action of the Bogoliubov operator

B on the fields, we see that in the weak field limit they are sub leading. The shift of the

vector potential affected by the coherent part of the operator C is of order b ∼ j, while any

correction introduced by B is of order gb ∼ gj. This is also true in the strong field case,

however for j ∼ 1/g the corrections due to B are O(1) and therefore could not be neglected.

In the weak field case these are not only sub leading but also genuinely perturbative! We

can therefore neglect the action of B altogether. Thus in this limit the operator Ω reduces

to the coherent operator C with the ’classical field’ b given by the leading order perturbative

expression. This is precisely the operator that was used in [24] to derive KLWMIJ evolution

equation. Obviously, repeating the same derivation we obtain the same result.

One important thing to be noted here is, that in order to derive KLWMIJ we are

not allowed to expand the correlators of the transformed charge density to first order in

δ2j eq. (4.27) as is done to derive JIMWLK equation. The reason is very simple. When

j ∼ O(g), the second term on the r.h.s. of eq. (4.27) is of the same order as j itself .

Therefore its contribution to the evolved correlators of J has to be resumed to all orders.
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This is indeed what is done in the derivation of [24]. It is the resummation to all orders

in fabc
∫

dx−Ãb(x)∂+Ãc(x) that is responsible for the appearance of the ’dual Wilson line

factor’

R(x) ≡ exp

[

T a δ

δja(x)

]

in the KLWMIJ evolution equation [24].

6. Discussion

In this paper we have carried through the diagonalization of the QCD light cone Hamilto-

nian in the presence of a valence charge density j. We found that for large valence charge

density, to O(1) the vacuum is the Bogoliubov transform of the free gluon vacuum. We

have also found the action of the Bogoliubov operator on the dynamical variables of QCD

including the valence color charge density. The evolution of hadronic wave function to

high energy increases the longitudinal momentum of the gluons in this state. Thus more

energetic gluons scatter on the target leading to the evolution of the hadronic scattering

matrix.

6.1 The calculation is valid for any j

We have shown that when the valence charge density is large j ∼ O(1/g) the wave function

we found leads to the JIMWLK evolution equation. However, our calculation itself is valid

beyond the high density limit, and does in fact give the leading solution of the light cone

Hamiltonian for all physically interesting magnitudes of the color charge density j ∼ O(gn);

−1 ≤ n ≤ 1. The precise statement is that relative corrections to the solution we have

given here are proportional to a positive power of g at any interesting value of the valence

charge density.

To see this, recall that the basis of our approach was the perturbative solution of

eqs. (3.16), (3.19). We have solved eq. (3.16) exactly, while eq. (3.19) was solved treating

the second, third and fourth terms on the left hand side (l.h.s. ) as perturbations. The

solution of this pair of equations to leading order in the coupling constant is always of order

γ = O(j) = O(gn) for −1 ≤ n ≤ 1 . The magnitude of corrections is easy to estimate.

Since, by definition the field c is O(1), we have

gfabc[γb
i (x), γc

i (x)] ∼ g

(

δγ

δj

)2

[j, j] ∼ g2j = O(g2+n) ,

gfabc{γb
i (x), cc

i (x, 0)} = O(g1+n) ,

gfabc

∫

dx−cb
i (x

−)∂+cc
i (x

−) = O(g) . (6.1)

The first term is always smaller than the second. It always scales as a positive power of g

and therefore can always be treated perturbatively.

The second term is also small as long as n 6= −1. It is a factor g smaller than the

zeroth order solution and thus again can be safely treated perturbatively. For n 6= −1 it

can be neglected since its magnitude is a positive power of g. The case n = −1 is a bit
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different, since then this term is O(1) and so has to be taken into account, which is what

we did above.

Finally the third term is always O(g). It can be neglected for all n 6= 1. For n = 1

this term is of the same magnitude as j and thus it may seem that it has to be taken into

account already in the leading order. However this is not the case for the following reason.

The vacuum of the Hamiltonian of the field c at j ∼ O(g) is a free vacuum. This state is

annihilated by the ’soft’ color charge density operator fabc
∫

dx−cb(x)∂+cc(x). Thus this

operator only gives non vanishing contribution to γ in the sub leading order in g, where the

vacuum is not a free vacuum anymore. Thus we see that for all −1 ≤ n ≤ 1 our solution of

eqs. (3.16), (3.19) keeps the leading terms and for n = −1 also the important sub leading

term of O(1). The terms that we omit are not only suppressed by a positive power of g

relative to the terms we keep, but also vanish in the limit g → 0 at any j.

To reiterate, our procedure keeps all the terms that are important for physically in-

teresting values of the color charge density. This is not to say that our solution can be

considered as a leading order of some expansion which has the same expansion parameter

for all n. The corrections to the leading term may have different magnitude for different

values of n, and thus the properties of the expansion are different at different values of n.

At this point however we are not interested in the sub dominant corrections and will not

discuss this issue any further.

6.2 What JIMWLK misses?

We want now to return to the point briefly mentioned at the end of the previous section.

Even though our diagonalization procedure and the solution for the vacuum wave function is

valid for any j, the derivation of the evolution equation for the scattering amplitude involves

one extra step, and that is adding the charge density of the soft gluons to the valence charge

density. For n 6= 1 this is a perturbative proposition, since the soft gluon charge density

is parametrically smaller than j itself. Thus for the derivation of the JIMWLK evolution

equation one expands to first order in the soft gluon color charge density, the second term

on the r.h.s. of eq. (4.27). For the KLWMIJ evolution on the other hand all powers of

the soft gluon color charge density are resummed. The addition of the soft gluon charge

density is achieved by acting on any observable function of j by the shift operator of the

form

R̂a = exp

[
∫

d2x ja
soft(x)

δ

δja(x)

]

. (6.2)

In the KLWMIJ limit only one gluon is produced at one step of the evolution with probabil-

ity of order αs, and thus ja
soft(x) = T a when acting on the component of the wave function

which contains this extra gluon. The phase factor of eq. (6.2) therefore simply becomes the

dual Wilson loop R. In the general case however the action of the Bogoliubov operator B
produces an arbitrary number of gluons. For j ∼ 1/g the number of gluons of order O(1)

is produced with probability of O(1), while with probability O(g) one can produce O(1/g)

extra gluons. The phase factor becomes a product of dual Wilson loops R(x1) . . . R(xn)

when acting on a component of the wave function with n extra gluons. Now the JIMWLK

equation is valid when a large dense target scatters off a small perturbative projectile.
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In this situation each gluon in the target wave function undergoes only a small number

of scatterings on the projectile. In fact the leading order scattering on a small target is

only due to two gluon exchange. This corresponds to expansion of each dual Wilson loop

factor R to second order in δ/δj. It is also true that in this situation it is unlikely that

two or more produced gluons scatter simultaneously. Indeed the expansion of eq. (6.2) is

equivalent to approximating the scattering amplitude of the configuration of n produced

gluons by the sum of the individual scattering amplitudes.

Recall that in calculating the evolution of any correlation function of j in the JIMWLK

approximation, we only keep terms of the first order in δ2j and of the second order in δ1j.

Thus the correction to the scattering matrix S = exp{i j αT } due to the evolution is at

most of second order in the target field αT . This is another way of saying that the whole

system of soft gluons produced in one step of the evolution scatters on the target only

via the two gluon exchange. To be a little more precise we have to remember that while

calculating the evolution of the scattering matrix, a factor R accompanies not only each

soft emitted gluon but also every factor of j in the operator Ω. The eikonal scattering

matrix of the projectile wave function on the target field αT is given by (we drop the

transverse coordinate dependence to simplify the notations)

ΣP = 〈Ψ[j]|Ω†[j, a, a†]ei(ja+ja
soft

)αa
T Ω[j, a, a†]|Ψ[j]〉

= 〈Ψ[j]|Ω†[j, a]eijaαa
T Ω[j,Ra,Ra†]|Ψ[j]〉

= 〈Ψ[j]|Ω†[j, a]Ω[Rj,Ra,Ra†]eijaαa
T |Ψ[j]〉 , (6.3)

where |Ψ[j]〉 is the valence wave function and the functional derivatives in R act only on

the eikonal factor ei ja αa
T . The first equality is the reflection of the fact that multiplying

every soft gluon creation operator by R is equivalent to shifting the charge density j by

the charge density of this soft gluon. The second equality follows from commuting of the

operators j in Ω with those in the eikonal factor as explained in detail in [32]. Since every

R becomes an eikonal factor after acting on ei ja αa
T , multiplication of j by R in the second

line in eq. (6.3) physically corresponds to the effect of scattering of the valence charges

involved in the emission of soft gluons. Thus the expansion of all the factors of R to second

order in δ
δj

approximates the interaction of the whole system of soft gluons emitted in one

step of the evolution plus the valence charges involved in their emission (in the following

we will refer to this system as ”soft gluons” to avoid lengthy and wordy descriptions), with

the target by a two gluon exchange.

The JIMWLK evolution therefore does not take into account multiple scattering cor-

rections to the amplitude due to simultaneous scattering of two soft gluons emitted in the

same step of the evolution. This is not to say that the JIMWLK evolution does not allow

any multiple scattering corrections at all. In particular the probability that a soft gluon

scatters simultaneously with some of the valence gluons not participating in its emission,

is accounted for. We will refer to these multiple scattering events as ”long range multiple

scatterings” to emphasize the fact that the two objects that scatter simultaneously have

vastly different rapidities. This as opposed to ”short range multiple scatterings” where both

objects have similar rapidity, which are taken into account by the KLWMIJ evolution.
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It is these long range multiple scattering corrections that unitarize the scattering ampli-

tude in the JIMWLK approximation. If no multiple scattering corrections where included

at all, the amplitude would not unitarize even though the coherent effects in the wave func-

tion are taken into account exactly. Recall that the charge density itself does not saturate

even in the dense regime, although its growth with rapidity is much slower than in the

BFKL approximation [27]. In particular in the BFKL (or equivalently KLWMIJ) limit the

color charge density grows exponentially with rapidity

j2(Y ) ∝ j(0)2eωY , (6.4)

while in the ”saturated regime” the growth is a random walk process and thus [27]

j2 ∝ j(0)2 + kY . (6.5)

Since the charge density does not stop growing even in the saturated regime, the scattering

amplitude would not saturate if no multiple scattering corrections are taken into account.

It is thus precisely the long range multiple scattering corrections that stop the scattering

amplitude from growing beyond one in the JIMWLK approximation.

Eqs. (6.4) and (6.5) in fact clearly indicate that the short range multiple scatterings are

dominant in the KLWMIJ regime while the long range multiple scatterings are dominant

in the JIMWLK regime. Consider first the evolution of a dilute projectile (KLWMIJ

evolution). According to eq. (6.4) the color charge density grows exponentially fast and is

always (at large enough rapidity) dominated by gluons created in the last rapidity interval

of the size ∆Y ≈ 1
ω
. Thus the dominant multiple scattering effects indeed are due to

the simultaneous scattering of two or more gluons at approximately the same rapidity -

the ”short range multiple scatterings”. On the other hand in the JIMWLK regime where

eq. (6.5) is valid, the color charge density is uniformly distributed in rapidity. Thus clearly

the dominant multiple scattering corrections are due to simultaneous scatterings of gluons

at far away rapidities - the ”‘long range multiple scatterings”’.

We thus see explicitly that while the KLWMIJ evolution takes into account all multiple

scattering effects but does not include nonlinearities in the evolution of the wave function,

the JIMWLK evolution fails to take account of the short range multiple scattering correc-

tions to the amplitude.

6.3 Short range multiple scattering and the dipole-dipole amplitude

In relation to the preceding discussion we want to comment briefly on one aspect of the

Pomeron loop correction to the JIMWLK evolution. In particular recently much attention

has been devoted to scattering of two unequal size dipoles. In this context there has been

much discussion of the effects of discreteness and fluctuations in the target (taken to be the

larger of the two dipoles) wave function [22]. Although our derivation does not indicate any

reason to expect that discreteness and/or fluctuations are particularly important, it does

indeed show that the application of the JIMWLK or KLWMIJ evolution to the target wave

function in the dipole-dipole scattering is flawed. The reason KLWMIJ evolution fails is

obvious. Starting with a dilute single dipole target initial stages of the evolution are indeed
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well described by the KLWMIJ equation. However when the density in the target wave

function reaches large value j ∝ 1/g neglecting high density effects in the evolution of the

wave function is not permissible. This density is parametrically the same as that for which

the scattering amplitude becomes of order one, and it is therefore also the same density

at which the effect of the multiple scattering corrections in KLWMIJ evolution becomes

significant. This has been recognized in the literature for a long time, see for example fifth

paper in [10].

On the other hand the reason for the failure of JIMWLK is somewhat more subtle.

Again starting with the dilute target one can initially evolve it with the JIMWLK equation.

The multiple scattering effects are not important as long as the density is small, and thus

the use of JIMWLK in the dilute regime is as good as the use of KLWMIJ. When the

density is parametrically large again the JIMWLK evolution is valid, since the evolution

of the wave function is accounted for appropriately and the long range multiple scattering

corrections dominate at high density. It might therefore seem that JIMWLK equation can

be used all the way through in this situation. This is however not the case. The reason it

fails is that there is a range of rapidities in the evolution when the density is already not

very small but the rate of growth is still large. This happens just before the saturation is

reached. Since the density in this range of rapidities still grows exponentially, the short

range multiple scattering effects dominate. Those are not included in JIMWLK evolution,

and thus the rate of growth of the amplitude is overestimated. Note that if already at the

initial rapidity the density in the target wave function is large (e.g. for a heavy nucleus)

there is no rapidity window in which the short range multiple scatterings dominate, and

thus JIMWLK evolution is valid.

We close the discussion by stressing that the calculation of the wave function given

in the present paper is the correct starting point for derivation of the complete evolution

equation which takes into account all relevant Pomeron loop effects. The validity of such

equation will not be limited to the process of collision of two small objects, but more

interestingly to the situation where two colliding objects are large. The use of JIMWLK

evolution in this case is not justified since the soft gluons produced in the wave function

can multiply rescatter on the large target field.
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