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RESEARCH OBJECTIVES

Our long-range objective is to achieve a better understanding of the properties of
electric networks. This includes investigation of such fields as topology, conventional
and parametric amplifiers, analysis and synthesis of nonlinear circuits, and of linear
circuits with characteristics distinctly different from RLC circuits.

Short-range projects include studies of parametric amplifiers, frequency multi-
pliers, synthesis by means of inert transformations.

5. J. Mason, H. J. Zimmermann, C. L. Searle, R. D. Thornton

A. INERT TRANSFORMATIONS AND NETWORK CONSTRAINTS

1. Inert Transformations

Network design usually consists of finding some way to interconnect available com-
ponents so as to achieve some desired result. An important problem is to determine
how the characteristics of the individual components constrain the type of network that
may be realized. Brune (1), Bode (2), and others have derived a number of constraints,
but most of these depend upon a simple component characteristic and/or a specified
topology. If we are not willing to limit the components and the topological possibilities,
the problem must be attacked from a more general point of view. For example, we are
still able to derive a number of basic limitations if we assume a simple property for the
interconnection network. We could assume that the interconnections are lossless; but
let us go one step farther and assume that they are conservative of complex power. For
simplicity, a network that conserves complex power will be called "inert."

Inert networks, by our definition, are unable to absorb power at any power angle,
and hence P = [V]* [I] = 0 ([V] and [I] are the column matrices of node-to-datum voltages
and in-flowing current, and [V]X is the conjugate transpose of [V]). The term "inert"
has been used primarily to distinguish the network from what is commonly called a loss-
less network. Lossless, by longstanding convention, implies that Re (P) = Re (IvI* (1)) =
0 for s = jw, or, in other words, only the real power is conserved. By this definition,
inductors, capacitors, gyrators, circulators, and many other circuit components are
lossless. None of the components that have been mentioned are inert, however, because,

with a proper choice of excitation, Im P # 0.. We can think of an inert network as a
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lossless network with the additional restriction that Im P = 0.

The restriction to inert interconnections seems to be much more restrictive than
if we allowed lossless components. However, the result need not be more restrictive,
since an inductor, gyrator, or the like, may be considered as an additional available
component. The advantage of treating lossless elements as components distinctly sep-
arate from the interconnection network is that in this case analysis may be performed
at any complex frequency. Clearly, a capacitor is not lossless for right half-plane
excitation, since growing waveforms must supply real power to charge the capacitor.
In brief, an inert network must have P = [V]¥ [I] = 0 for all possible excitations at all

complex frequencies.

2. Canonic Forms under Inert Transformations

We can now visualize network design as shown in Fig. XXIII-1. The available com-
ponents or devices will be assumed to be linear but otherwise unrestricted. Let us
assume that the interconnection network may be frequency dependent but must be inert
at all frequencies. In order to simplify calculations, it is expedient to perform the
synthesis in three steps, as shown in Fig. XXIII-2. First, we reduce the individual
components to a canonic form by means of transformations Tl’ TZ’ ..., then synthesize

the desired network in a canonic form, and finally convert the canonic form to a desired
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Fig. XXIII-1. Synthesis with inert Fig. XXIII-2. Synthesis with inert inter-
interconnections. connections but with the use

of canonic forms.
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Fig. XXIII-3. Inert transformation of Y into Yc'
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network. It is the purpose of this report to consider some appropriate canonic forms
for two- and three-terminal devices and to determine the power constraints for networks
constructed from these components.

If we express the characteristics of the interconnection network by a chain matrix,
we can readily derive some of the restrictions necessary to insure inertness. For the
purpose of finding canonic forms, it is desirable to insist that this chain matrix be non-
singular. The matrix can be partitioned into four n X n square matrices A, B, C, D.
Defining variables as in Fig. XXIII-3, we can write

A\ A B[V V, = AV_+ BI
1 o} 1 o} o}

I C DIl I I. =CV_+ DI
1 0 1 o 0o

Applying the inert restriction P = 0, we have

v, = (VXAXHXBX) (CV +DI ) = V41
(o] (o] O o] O 0

forall V_and I_. If VI, = VXI_ for all possible values of V_and I , we must clearly
o o] 1”1 e} o o]

have A*C = B*C = B*D = 0, and A*D = I. Thus A¥ and D must be nonsingular, and
hence B = C = 0. For convenience, we define A = TII, and then we see that D = T}l(.
Hence

If we now express Yl in terms of YO, we have

Y, =Ty T Y= (TII>XY1<TII> (1)
Equation 1 expresses the simple fact that Yl is a conjunctive transform of Yo’ and
that YO is a conjunctive transform of Yl; hence an inert transformation has an inverse
so that all networks that are conjunctively equivalent to a given network are also con-
junctively equivalent to each other. It is natural to expect that among all networks
conjunctively equivalent to Yo’ there might be one with a particularly simple form. We
could then choose this simple network, with relatively few variables, to represent a

more general admittance Yo. This simple network is a canonic form that completely
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represents the more complicated network, as long as we allow any inert interconnection
for circuit synthesis.

As an example,

1 -1 -1
Y = and Y, =
°© -1 o - 1

are conjunctively equivalent. The transforming matrices are

j .] -1 0 —(1+j)/2:\
T, = and T_! =
Llorsy o 1 - (149)/2

Thus networks described by

-1 1 -1
Y1 = and YO =
-j 1 -1 0

are identical as far as our assumed restrictions are concerned. Notice that we have
a reciprocal admittance equivalent to a nonreciprocal admittance, and hence reciprocity
is not preserved under an inert transformation. The Hermitian property of a network
is preserved, however, as can be seen in this example.

If we go farther and ask for the simplest network equivalent to the Y0 and Yl of

our example, we have the possibility

10 11
Y, = T. =
2 1o -1 2 1o 1

Although Y2 is the simplest for this example, it is not, in general, possible to achieve

this diagonal form. Simple and more general forms are

0 1 2a 0 1 0
YC = e or e’ for Y nonsingular
0 1 0 +1
.0
0 1 e’ 0
Y = or for Y of rank 1
€ lo o 0 0

Any Y0 can be converted to one, and only one, of the above forms. For the case in

which YC is nondiagonal, we can use a slightly different form
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e¥ 2
Y = y=a+ip=-In|al +jo
0 e’
and hence a single complex quantity, vy, offers a complete description of Yo' If a = -0,

we have the singular case, and if ¢ = +o, we have the equivalent of a = 0. The vy is
closely related to the familiar y of transmission-line theory, and -« indicates that there
will be gain if a signal is applied at the appropriate terminal pair and a matched load
(not conjugate matched) is applied at the other terminal pair. There is alsc a close
relation between vy and the unilateral gain of S. J. Mason, u = e—za(cos [3)—2. It can
also be shown that the region of the complex plane in which ¢ < 0 is the same as the
region of possible natural frequencies for networks constructed from devices equivalent
to YC only.

A detailed proof of these comments is included in a monograph that is being prepared

for publication, but a simple example can be given now.

3. Transistor Example

A transistor can often be approximated by the model shown in Fig. XXIII-4. The

admittance matrix is, then

1 0
1
Y= (2)
wO
_S I‘C(S+wo)

Calculating y, we find that

2

Zearcls|*(| stoy | =)

2y =1n 4rC(s+wO) ISIZ - 1ln [w

The region of allowed natural frequencies for networks containing only transistors of

Fig. XXIII-4. Transistor model.

this type is the region bounded by the equation 2rC ] S I 2 ('S+w0|+cr+w0) = “’g’ The max-
imum frequency of sinusoidal oscillation can be determined by letting ¢ = 0. Thus
rC 6 2 “o _ -
w3 W tw oc - 0 for w= @ ax (3)
o
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This expression is different from the more familiar relation

© 1/2
. e}
“max 2<rC> (4)
because the derivation of Eq. 4 assumes that inductors and capacitors are avail-

able.
R. D. Thornton
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B. LOW-ORDER FREQUENCY MULTIPLIERS

Leeson and Weinreb (1, 2) have developed a theory for frequency multiplication
which utilizes the nonlinear capacitance of a semiconductor diode. It has been found
that frequency doublers have an optimum efficiency of approximately -1 db. If three
doublers were cascaded to multiply by eight, it would be reasonable to expect an effi-
ciency of approximately -3 db.

Since cascading requires impedance matching between stages, it is desirable

to make the input and output impedances of all stages equal. This factor has led

VARACTOR

(1%l
N
i 1 v, L Fig. XXIII-5. Impedance matching circuit.
'y T1 sv-pass ' RSV,
N 1t :
17

1 buss

to the study of the circuit of Fig. XXIII-5. Using a fixed-load resistance RL’
and a fixed bias, we have tested the circuit to determine the variation of effi-
ciency and input resistance as a function of the input signal level, and as a
function of the settings of the coil taps. Some representative results are shown
in Fig. XXIII-6.

It has been found that the peak efficiency of this circuit depends principally on
the Q of the output tuned circuit (setting of the output coil tap). Conversely, varying
the input coil tap has little effect on the circuit efficiency, but the transformer

action makes it possible to change the input resistance of the circuit.
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Fig. XXIII-6. Variation of efficiency and input resistance as a function
of input signal level and of the settings of coil taps.

Present studies indicate that doublers of the type shown in Fig. XXIII-5 can
be easily designed and adjusted one at a time, and then finally connected together
in cascade to give the desired result. Further studies are in progress to determine
the best procedure for designing cascaded frequency multipliers.
B. L. Diamond
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