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RESEARCH OBJECTIVES

Our long-range objective is to achieve a better understanding of the properties of
electric networks. This includes investigation of such fields as topology, conventional
and parametric amplifiers, analysis and synthesis of nonlinear circuits, and of linear
circuits with characteristics distinctly different from RLC circuits.

Short-range projects include studies of parametric amplifiers, frequency multi-
pliers, synthesis by means of inert transformations.

S. J. Mason, H. J. Zimmermann, C. L. Searle, R. D. Thornton

A. INERT TRANSFORMATIONS AND NETWORK CONSTRAINTS

1. Inert Transformations

Network design usually consists of finding some way to interconnect available com-

ponents so as to achieve some desired result. An important problem is to determine

how the characteristics of the individual components constrain the type of network that
may be realized. Brune (1), Bode (2), and others have derived a number of constraints,
but most of these depend upon a simple component characteristic and/or a specified

topology. If we are not willing to limit the components and the topological possibilities,
the problem must be attacked from a more general point of view. For example, we are
still able to derive a number of basic limitations if we assume a simple property for the
interconnection network. We could assume that the interconnections are lossless; but
let us go one step farther and assume that they are conservative of complex power. For
simplicity, a network that conserves complex power will be called "inert."

Inert networks, by our definition, are unable to absorb power at any power angle,
and hence P = [V]x [I] = 0 ([V] and [I] are the column matrices of node-to-datum voltages
and in-flowing current, and [V] x is the conjugate transpose of [V]). The term "inert"
has been used primarily to distinguish the network from what is commonly called a loss-
less network. Lossless, by longstanding convention, implies that Re (P) = Re ([V]x [I])
0 for s = jw, or, in other words, only the real power is conserved. By this definition,
inductors, capacitors, gyrators, circulators, and many other circuit components are
lossless. None of the components that have been mentioned are inert, however, because,
with a proper choice of excitation, Im P * 0. We can think of an inert network as a
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lossless network with the additional restriction that Im P = 0.

The restriction to inert interconnections seems to be much more restrictive than

if we allowed lossless components. However, the result need not be more restrictive,

since an inductor, gyrator, or the like, may be considered as an additional available

component. The advantage of treating lossless elements as components distinctly sep-

arate from the interconnection network is that in this case analysis may be performed

at any complex frequency. Clearly, a capacitor is not lossless for right half-plane

excitation, since growing waveforms must supply real power to charge the capacitor.

In brief, an inert network must have P = [V]X [I] = 0 for all possible excitations at all

complex frequencies.

2. Canonic Forms under Inert Transformations

We can now visualize network design as shown in Fig. XXIII-1. The available com-

ponents or devices will be assumed to be linear but otherwise unrestricted. Let us

assume that the interconnection network may be frequency dependent but must be inert

at all frequencies. In order to simplify calculations, it is expedient to perform the

synthesis in three steps, as shown in Fig. XXIII-2. First, we reduce the individual

components to a canonic form by means of transformations T 1 , T 2 , ... , then synthesize

the desired network in a canonic form, and finally convert the canonic form to a desired

AVAILABLE DEVICES

D, D2  D3

T T2  T 3

AVAILABLE DEVICES

D D D3  INERT COUPLING
NETWORK

INERT COUPLING
NETWORK

DESIRED NETWORK DESIRED NETWORK

Fig. XXIII-1. Synthesis with inert Fig. XXIII-2. Synthesis with inert inter-
interconnections. connections but with the use

of canonic forms.
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Fig. XXIII-3. Inert transformation of Y into Yo c
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network. It is the purpose of this report to consider some appropriate canonic forms

for two- and three-terminal devices and to determine the power constraints for networks

constructed from these components.

If we express the characteristics of the interconnection network by a chain matrix,
we can readily derive some of the restrictions necessary to insure inertness. For the
purpose of finding canonic forms, it is desirable to insist that this chain matrix be non-

singular. The matrix can be partitioned into four n X n square matrices A, B, C, D.
Defining variables as in Fig. XXIII-3, we can write

V A- B A V V =AV + BI

I C D I II =CV + DI

Applying the inert restriction P = 0, we have

V x I (VxAx +IxBx (CV+DI) = VxI
x o

for all V and Io. If VI = VxI for all possible values of V and Io, we must clearly
have AxC = BxC = BXD = 0, and AXD = I. Thus A x and D must be nonsingular, and

-1
hence B = C = 0. For convenience, we define A = T , and then we see that D = T.
Hence

V T 01 V V=TV1 o 1 lo

I 0 T I T X I

If we now express Y 1 in terms of Yo, we have

I TI =TYV =TYTV =YV1 Tlo = T oVo 1oV1 = Y1V1

and therefore

Y1 = TYoT1 Y = T 1 Y 1 T 1 ) (1)1 1 0 1 0

Equation 1 expresses the simple fact that Y 1 is a conjunctive transform of Yo, and

that Yo is a conjunctive transform of Y1; hence an inert transformation has an inverse
so that all networks that are conjunctively equivalent to a given network are also con-
junctively equivalent to each other. It is natural to expect that among all networks

conjunctively equivalent to Yo, there might be one with a particularly simple form. We
could then choose this simple network, with relatively few variables, to represent a
more general admittance Y . This simple network is a canonic form that completely
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represents the more complicated network, as long as we allow any inert interconnection

for circuit synthesis.

As an example,

Y= io - 1 
and Y

0 -j

are conjunctively equivalent. The transforming matrices are

T1 = - 1 + j
-1and T

and TI
-(l+j)/2

(1+j)/2 I

Thus networks described by

Y and Y =ii 0 K1
-1
oj

are identical as far as our assumed restrictions are concerned.

a reciprocal admittance equivalent to a nonreciprocal admittanc

is not preserved under an inert transformation. The Hermitian

is preserved, however, as can be seen in this example.

If we go farther and ask for the simplest network equivalent

our example, we have the possibility

Notice that we have

e, and hence reciprocity

property of a network

to the Yo and Y 1 of

0l

-1

Although Y 2 is the

this diagonal form.

Y = ej

-0

simplest for this example, it is not, in general, possible to achieve

Simple and more general forms are

or e °

1-0

0

±1

1 e
j or

00

for Y nonsingular

for Y of rank 1

Any Y can be converted to one, and only one, of the above forms. For the case in

which Y is nondiagonal, we can use a slightly different form
c
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2]

e']
y = a + jp = -lnj a + jO

and hence a single complex quantity, y, offers a complete description of Y . If a = -0o,

we have the singular case, and if a = +oo, we have the equivalent of a = 0. The y is

closely related to the familiar y of transmission-line theory, and -a indicates that there

will be gain if a signal is applied at the appropriate terminal pair and a matched load

(not conjugate matched) is applied at the other terminal pair. There is also a close

relation between y and the unilateral gain of S. J. Mason, u = e-2a(cos p)-2. It can

also be shown that the region of the complex plane in which a < 0 is the same as the

region of possible natural frequencies for networks constructed from devices equivalent

to Ye only.

A detailed proof of these comments is included in a monograph that is being prepared

for publication, but a simple example can be given now.

3. Transistor Example

A transistor can often be

admittance matrix is, then

approximated by the model shown in Fig. XXIII-4. The

1 (2)

Calculating y, we find that

2y = In 4rC(s+wo) s 2 - In [w2+2rCis 2(Is+wol- oW0)]

The region of allowed natural frequencies for networks containing only transistors of

V I ffV
2

r Oie C Fig. XXIII-4. Transistor model.

this type is the region bounded by the equation 2rC s2 (s+o + +W o ) 
= 2.

imum frequency of sinusoidal oscillation can be determined by letting -c = 0.

rC 6 2 oa + -0
3 4rC
o

for O = wmax
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This expression is different from the more familiar relation

1/2
S -- (4)max 2 rC

because the derivation of Eq. 4 assumes that inductors and capacitors are avail-

able.

R. D. Thornton
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B. LOW-ORDER FREQUENCY MULTIPLIERS

Leeson and Weinreb (1, 2) have developed a theory for frequency multiplication

which utilizes the nonlinear capacitance of a semiconductor diode. It has been found

that frequency doublers have an optimum efficiency of approximately -1 db. If three

doublers were cascaded to multiply by eight, it would be reasonable to expect an effi-

ciency of approximately -3 db.

Since cascading requires impedance matching between stages, it is desirable

to make the input and output impedances of all stages equal. This factor has led

VARACTOR

I, N V , Fig. XXIII-5. Impedance matching circuit.

v I / BY-PASS / R V 'vZ

to the study of the circuit of Fig. XXIII-5. Using a fixed-load resistance RL,

and a fixed bias, we have tested the circuit to determine the variation of effi-

ciency and input resistance as a function of the input signal level, and as a

function of the settings of the coil taps. Some representative results are shown

in Fig. XXIII-6.

It has been found that the peak efficiency of this circuit depends principally on

the Q of the output tuned circuit (setting of the output coil tap). Conversely, varying

the input coil tap has little effect on the circuit efficiency, but the transformer

action makes it possible to change the input resistance of the circuit.
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Fig. XXIII-6. Variation of efficiency and input resistance as a function
of input signal level and of the settings of coil taps.

Present studies indicate that doublers of the type shown in Fig. XXIII-5 can

be easily designed and adjusted one at a time, and then finally connected together

in cascade to give the desired result. Further studies are in progress to determine

the best procedure for designing cascaded frequency multipliers.

B. L. Diamond
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