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RESEARCH OBJECTIVES

The purpose of this project is to carry thermodynamics beyond its classical limi-
tations. There are several factors that make the extension of the traditional frame-
work possible, the most important of which may be summarized as follows.

The well-known universal principles of thermodynamics do not form a complete
basis for a rigorous establishment of the theory; it is necessary to formulate additional
assumptions concerning the properties of material systems, such as the existence of
homogeneous phases, validity of equations of state, and the like.

Within judiciously chosen limitations, a set of basic assumptions can be expressed
in terms precise enough to generate a mathematical theory with desirable properties.
Some of the limitations of the theory can be overcome by the formulation of sets of
successively more refined postulates. These generate theories that are adequate for
dealing with the more exacting requirements. Thus thermodynamics becomes a master
scheme, consisting of a number of closely knit deductive systems devised for different
types of situations.

Two systems of this sort have been developed in detail, thus far, and the study of
another is in a preliminary state. The first is the thermostatic theory of phase equi-
librium, which follows essentially Gibbsian lines with certain innovations. The defi-
nition of homogeneous phases has been changed to include symmetry properties. This
led to a significant generalization of the classical phase rule. Also, a new kind of geo-
metrical interpretation of the thermostatic formalism was established, an example of
which is discussed in this report.

The second theory deals with the statistical aspects of equilibrium. It was inves-
tigated primarily by P. M. Quay.

A detailed account of the first theory is ready for publication. A second paper on
the statistical theory is being prepared.

L. Tisza

A. THE GEOMETRICAL INTERPRETATION OF THE THERMOSTATIC

STABILITY CONDITIONS

It has been pointed out (1) that the thermostatic formalism can be given a mathe-

matical interpretation in terms of affine geometry. The most interesting aspect of the

geometrical interpretation of a physical theory is that the geometry is characterized

by a group of transformations, the invariants of which are likely to be of physical inter-

est. We consider an example to show that the geometrization of thermostatics gives

rise to a physically meaningful theory of invariants.

Let

u = U(x 1 , x 2 , .. r) (1)

This research was supported in part by the U. S. Air Force (Office of Scientific
Research, Air Research and Development Command) under Contract AF49(638)-95.
Reproduction in whole or in part is permitted for any purpose of the United States
Government.

162



(XVI. STATISTICAL THERMODYNAMICS)

be the fundamental equation of a homogeneous phase referred to a system of fixed size.

For the sake of definiteness, we may keep the volume fixed, and interpret Eq. 1 as the

energy density, expressed as a function of the densities of the extensive variables.

Equation 1 represents a surface in the space x 1 , x 2 , . .. x r , u that is called the Gibbs

space. The stability of the system is determined essentially by the quadratic form

r
w = ik i k

1

which appears in the expansion of the fundamental equation. Here

2 aP.a82u Pi
Uik- axiaxk -ax k

i = 6x.i
1 1

and P. is the intensity conjugate to x i..

In points of normal stability the quadratic form in Eq.

Gibbs (2) has already stated, this leads to the conditions

=ak P1 P2 Pk-1 Xk+l ... xr > 0

kx

We do not consider here points of critical stability, in

singular.

The substitution of specific thermodynamic variables i

that each Xk has an intuitive physical meaning. A complet

elementary, but somewhat abstruse, algebra. This can b

interpretation provided by affine geometry.

We propose to transform w to the diagonal form

2 is positive definite. As

k = 1, 2,...r

which the form of Eq. 2 is

n Eq. 4 makes it apparent

e proof of Eq. 4 requires an

e elucidated by a geometrical

r 2
w = k 'k

1

There are infinitely many nonsingular linear (affine) transformations,

S= Trl

that diagonalize a quadratic form. Equation 5, involving the coefficients Xk' is obtained

by imposing the condition that the determinant of the transformation T be +1. Such

transformations are called unimodular, or equiaffine. In affine geometry they are the

counterparts of the orthogonal transformations of Euclidian geometry. Equiaffine

transformations leave volume elements invariant, but lengths and angles have no invar-

iant meaning. The coefficients X. are somewhat similar to eigenvalues, but there are
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also marked differences.

A unimodular transformation satisfying the requirements stated above can be con-

structed stepwise by the well-known method of "completing the square":

2r r
w u ik i k = u 1  

1 
+  

ulkk
I 11 2

u 1ulkak Uik i k11 2 2

2
SXl 1 + w1 ( 2, 3 ' ... (r )  

(7)

where X1 = ull,

r

1 +1 uik ak (8)
1 1 2

and w 1 is a quadratic form of only (r-1) variables. This procedure can be continued,

and leads to Eq. 5. The transformations of the type of Eq. 8 consist of subtracting the
.th th

multiple of the i t h row and column from the j row and column, where j > i. Hereby

the principal minors Dk = det l uij I with i, j = 1, 2, .. k are unaltered. Thus

Dk = 1 x2 . x k  (9)

and

D

k D (10)
k- Dk- 1

By writing the minors as Jacobians, we have

a(P1 P 2 .. .Pk)

Dk = x(11)k a(x 1 x 2 . .xk)

Equation 10 is easily reduced to the form of Eq. 4.

For the case of two variables, r = 2, the foregoing transformation is represented

in Fig. XVI-1. This figure is the affine mapping of Fig. XVI-2. We recall that affine

transformations preserve parallelism, but not orthogonality. The orthogonal diameters

A'A', B'B' are mapped into so-called conjugate diameters AA 1 , BB 1 . For equiaffine

transformations, the square O'A'B'C' is mapped into the parallelogram OABC of

equal area.

Figure XVI-1 is to be constructed in the following sequence: Obtain A as the
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Fig. XVI-1. Equiaffine transformation 52 - '' T12 that diago-

nalizes the quadratic form represented by the ellipse.

intersection of the conic (ellipse) with the axis 1, construct tangent AC and the parallel

diameter BB . The tangent in B is parallel to OA.

The generalization to many dimensions is straightforward, provided that the rules

of working with oblique coordinates are observed. Such coordinate systems are

specified by the families of parallel hyperplanes: i = constant (i=l, 2, . . . r). With

orthogonal coordinates, each family of parallel planes is uniquely represented by their

normal. This short cut is not available for oblique coordinates. The axis 1 is

now defined as the intersection of the plane

2 = 0, 3 =  0, ... r = 0.
B' C' Although the line OA represents both the

S1 and the1l axes, the planes 1 = constant

and -1 = constant are different from each

A' 0' A' other. If xl is interpreted as the entropy,

the planes 1 = constant and 1 = constant

B correspond to processes at constant entropy

and temperature, respectively. The pecu-
Fig. XVI-2. Equiaffine mapping of liarity of the thermodynamic formalism, that

Fig. XVI-1 to orthogo-
nal axes. the variables to be kept constant have to be
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especially indicated, appears to be the consequence of the use of oblique coordinate sys-

tems. This situation is unaffected by the ingrained habit of drawing the diagrams in

Gibbs space with orthogonal axes.

It is evident from either Fig. XVI-1 or Eq. 4 that the k. are not invariant. Thus
1

different coefficients are obtained if the variables are relabeled, for example, 51 = 6n,

52 = 6S, instead of 1 = 8S, 2 = 8n, where n is the number of moles per unit volume.

However, the determinant

Dr = X1 X . rr 12 r

is an equiaffine invariant, a quantitative measure of the stability of the system.

metrically (Dr)-1/2 is the area OABC for the ellipse w = 1.

(12)

Geo-
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ERRATA for "The Thermodynamic Theory of

Systems," Quarterly Progress Report No. 55,

Page 135, Eq. 1 should read:

G(p, T) = g(p) + (T-TX) f(p) + h(T-T\)

Line Singularities in One-Component

October 15, 1959, pages 135-138:

where g(p) is a slowly varying function of pressure. The rest of the

defined correctly. The second derivatives g" and f" are neglected.

The other formulas follow through straightforward differentiation.

of Ehrenfest's relations (page 136) should read:

symbols were

Thus the analogs

C
p

Va =-+ f' 

V KT t = Va + f'

(10)

(11)

L. Tisza
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