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Investigation of the Networking Performance
of Remote Real-Time Computing Farms for

ATLAS Trigger DAQ
B. Caron, R. Hughes-Jones, K. Korsyl, C. Meirosu, and J. L. Neilsen

Abstract—To test the feasibility of using remote farms to perform
real-time event selection in the Trigger/Data Acquisition System
for the ATLAS experiment at CERN, a Proof of Concept was set
up during 2004. The behavior of the request-response protocol to
move application data has been measured for remote farms con-
nected with different Wide Area Networks including a dedicated
lightpath, a Virtual Private Network, and the standard production
network. The dynamics and effect of using TCP/IP as the trans-
port protocol has also been investigated for this real-time applica-
tion. These data are compared with conventional bulk data trans-
fers and used to validate the observed performance of the online
farms and estimate the effect of this traffic pattern on the Wide
Area Network.

Index Terms—Protocols, real time systems, TCP, wide area
networks.

I. INTRODUCTION

SEVERAL experiments, including ATLAS at the Large
Hadron Collider (LHC) and D0 at Fermi Lab, have

expressed interest in using remote computing farms for pro-
cessing and analysing the information from particle collision
events. Different architectures have been suggested, ranging
from pseudo-real-time file transfer and subsequent remote
processing, to the real-time requesting of individual events
described here.

To test the possibility of using remote computing farms for
real-time processing within the ATLAS experiment, a collabo-
ration [1] was set up between members of ATLAS Trigger/DAQ,
Canarie, DARENET, Netera, PSNC, UKERNA and Dante to
demonstrate a Proof of Concept and measure end-to-end net-
work performance. The testbed shown in Fig. 1 was centred at
CERN and used three different types of wide area high-speed
network infrastructures to link the remote sites:
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Fig. 1. The network configuration of the testbed.

• an end-to-end Ethernet over a Synchronous Digital Hier-
archy, (SDH) lightpath1 to the University of Alberta in
Canada

• standard end-to-end Internet Protocol (IP) connectivity
over the academic production network to the University
of Manchester in the UK and the Niels Bohr Institute in
Denmark

• a Virtual Private Network (VPN) composed of an MPLS
tunnel over the GEANT network and an Ethernet VLAN
over the Polish PIONIER network to IFJ PAN Krakow.

For potentially interesting particle interactions in ATLAS,
the standard data acquisition system [2] records all the data
fragments from the sub-detectors and builds them into full
blocks of data (called events in the particle physics world)
using code called the Sub-Farm Interface (SFI). These events
are then fed to processors that form the Event Filter (EF) that
analyse the detailed physics content of the event. Selected
events are then recorded. As in the standard data acquisition
system, the Proof of Concept used Transmission Control Pro-
tocol (TCP/IP) streams to move events from an SFI located at
CERN to remote sites for Event Filter computation and then
return the results. The remote EF processors used a request-re-
sponse protocol to obtain the events from the SFI and return the
result to the Sub-Farm Output (SFO). In the final experiment, a
typical event will be 1.5 Mbytes and EF computation times

1Here a lightpath means an end-to-end path over the network configured with
a fixed and guaranteed bandwidth. The bandwidth of the path is not shared with
other users and may be thought of as “circuit switched” rather than “packet
switched” as in the conventional internet.
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of the order of 1–2 s. To meet security requirements [3], the
testbed at CERN used a private network. This required the
use of Network Address Translation (NAT) systems to allow
connections to be made to the remote farms over the production
network. The remote farms connected using a lightpath or a
VPN appeared as an extended local area network (LAN) and
used the same IP network addresses as the systems at CERN.

Section II presents the methodologies used in testing the be-
havior of the network infrastructure, the Trigger/DAQ (TDAQ)
application and its protocol. The results section begins by
presenting the performance of the network components using
User Datagram Protocol (UDP/IP). This is followed by and
evaluation of the application request-response protocol over
the testbed using TCP/IP as in the TDAQ application. Finally
the operation of the real TDAQ application software over the
testbed is presented.

A comprehensive discussion on potential scenarios using re-
mote computing farms with the current ATLAS TDAQ software
is reported elsewhere [4].

II. METHODOLOGY

A. End Hosts, NAT Systems, NICs and Networks

Even though server-quality PCs (the PCs used SuperMicro
P4DP8 motherboards) were used for these tests, it was impor-
tant to characterise the performance of the end systems, the NAT
boxes, as well as the networks involved. The end hosts and NAT
boxes should have sufficient CPU power, memory bus band-
width and Input/Output (I/O) capability to cope with the ex-
pected network traffic, i.e., packets should not be dropped in
the end hosts themselves. It was also important to establish the
throughput and packet loss of the end-to-end network infrastruc-
tures used.

A methodology [5] for evaluating the end host network
performance by using UDP packets to measure the latency,
throughput, jitter, packet loss and the activity on the PCI/PCI X
buses was used to evaluate these PC systems. udpmon [6] was
used to send streams of UDP packets spaced at regular, care-
fully controlled intervals between the server systems connected
back to back. UDP/IP frames were chosen for the tests as
they are processed in a similar manner to TCP/IP frames, but
are not subject to the flow control and congestion avoidance
algorithms defined in the TCP protocol and thus do not distort
the base-level performance. The packet lengths given are those
of the user payload.2 The methodology was also applied to each
of the networks tested to measure end-to-end performance and
characterise packet loss.

B. The Request-Response Application Protocol

The data transfer protocol used in the TDAQ DataFlow ap-
plication is presented in Fig. 2. The EF sends a small request
to the SFI, which immediately responds by transferring an en-
tire event. The EF processes the event data and, if the event is
considered interesting from the physics point of view, requests
a buffer for temporary storage at the SFO. The SFO grants the

2Allowing for 20 bytes of IP and 8 bytes of UDP headers, the maximum user
payload for an Ethernet interface with a 1500 byte Maximum Transfer Unit
(MTU) would be 1472 bytes.

Fig. 2. Request-response protocol used in the ALTAS Event Filter Application.

request (immediately, if enough space is available) and as soon
as the EF receives this grant response, it starts transferring the
event to the SFO. The work presented in this paper focused on
determining the performance of the transfers over a long-dis-
tance network, so all the data was dummy and no physics anal-
ysis was performed.

The operation of the event request-response application pro-
tocol used in TDAQ was investigated with the test program
tcpmon [7]. Tcpmon implemented a request-response protocol
over a TCP connection to transfer data as shown in the top por-
tion of Fig. 2. This program was instrumented in a similar way
to udpmon and provided histograms of the round trip request-re-
sponse times as well as a time series of these latencies.

C. TCP Stacks and Operation

Work on advanced network protocols implementing sender
side modifications to TCP, has highly increased the bandwidth
utilisation in long delay high bandwidth and multi-user network
environments [8]. This allows a single stream of a modified TCP
stack to transmit at rates that would otherwise require multiple
streams of standard TCP. The measurements reported here were
made on systems using RedHat Linux 9 with the 2.4.20 kernel,
patched to allow choice of the active TCP stack algorithm [9]
with no system reset required after changing the stack. The pos-
sible choices included standard TCP, High Speed TCP [13] and
Scalable TCP [14]. The High Speed and Scalable stacks both
make the reduction of the rate less severe when detecting packet
loss, whilst increasing the transmission rate more aggressively
than standard TCP during the recovery. Web100 [10] was used
to instrument the TCP stacks.

III. RESULTS AND DISCUSSION

A. Characterising the Network Testbed

Fig. 3 shows the UDP achieved throughput, packet loss and
packet re-ordering for memory-to-memory tests performed be-
tween PCs at CERN and Manchester when passing through
the NAT box. For packets greater that 1200 bytes the systems
were capable of operating at line speed with no packet loss,
but small packets suffered considerable losses. For UDP tests
between CERN and Manchester made without the NAT box,
packets were only lost when the length was 200 bytes or less
and spacing of less than 5 s. This, together with observations
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Fig. 3. Results of UDP traffic sent from Manchester to CERN through the NAT
box.

of the number of packets transmitted and received in the end
hosts, suggests that the NAT box was responsible for the losses
observed in Fig. 3.

However, this packet loss did not affect the TCP flows used
for the request-response application protocol as TCP tries to
completely fill the packets when sending data and only uses
small packets to acknowledge (ACK) the data received. These
ACK packets are only sent for every other received data packet,
which would give a spacing of s, where there is no ob-
served loss for UDP traffic.

The packet re-ordering shown in the bottom graph in Fig. 3
was due to the multiple forwarding engines in the M160 Juniper
core routers of the production network, and is a well known
effect [12].

B. The Request-Response Protocol Over the WAN

After characterising the end to end links using UDPmon,
tcpmon was used to investigate the performance of the re-
quest-response traffic. In these tests, the size of the TCP send
and receive buffers were set to delay bandwidth product for
each link used. For all the tests reported in Sections III-B
and III-C the MTU was set to 1500 bytes giving a maximum
segment size (MSS) for the TCP data of 1448 bytes.

To understand the action of TCP, the internal parameters were
sampled every 10 ms using the web100 kernel interface. Fig. 4
shows the behavior of the standard TCP stack for the first 2 sec-
onds of the test when tcpmon was run between Manchester and
CERN. This network path had a round trip time (RTT) of 21 ms.
The upper plot shows the 64 byte requests in green, highlighted
with arrows, followed by the 1 Mbyte response shown as blue
points. A new request was sent 80 ms after each response was
received. TCP is in its slow start phase where it exponentially in-
creases the Congestion Window (cwnd) each RTT thus allowing

Fig. 4. Request-response traffic showing the effect of cwnd reduction after pe-
riods of no data transmission. Upper plot: the request is shown in green with an
arrows, and the response in blue points Lower plot: The variation of cwnd in
solid red line and the TCP throughput in blue points.

Fig. 5. The bandwidth (points) of the request-response traffic with the standard
TCP congestion algorithm but with cwnd reduction turned off. Cwnd is shown
as the solid red line.

more data to be sent each time. In this case it takes 8 round trip
times or 160 ms to send the response. In the lower plot, the
red solid line indicates the increasing behavior of the TCP Con-
gestion Window as a function of time and the blue points show
the corresponding increase in throughput.

After the 80 ms pause in sending data (which would occur
while the remote CPU was analysing the event), the TCP stack
dramatically reduces the congestion window; as proposed in
RFC 2861 [15] where it is suggested that after inactivity in
sending data, cwnd no longer reflects the current information
about the state of the network and should be reduced. This
means that for our TDAQ distributed application, TCP is always
in the slow start phase limiting the request-response latency to
160 ms and the maximum throughput to 120 Mbit/s. Fig. 5
shows the case with the standard TCP congestion avoidance
algorithm (AIMD), but with the cwnd reduction feature turned
off. TCP slow start allows the congestion window to open,
when it does, the response occurs in about 1–2 RTT giving a re-
quest-response latency of 40 ms and a maximum throughput
of 800 Mbit/s.

Fig. 6 shows the results of a similar test on the Geneva-Ed-
monton connection, performed using the same TCP stack and
the cwnd reduction turned off. Having an RTT of 150 ms, this
was the longest connection of our testbed, giving a correspond-
ingly longer TCP slow start period. The first 1 Mbyte event
took about 1.8 seconds. Soon afterwards the TCP stack entered
the congestion avoidance phase and the throughput grew slowly
up to about 800 Mbit/s. The congestion window grows much
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Fig. 6. Request-response transfers on the Geneva-Edmonton connection using
the standard TCP congestion algorithm but with cwnd reduction turned off. The
achievable bandwidth is shown by the blue points and Cwnd by the solid red
line.

slower than that of the Manchester-CERN path because the RTT
is much larger.

As the sending and receiving TCP buffers were set to the
delay bandwidth product for these tests, when a request is re-
ceived, and data is sent for transmission over the network, TCP
is limited by cwnd, and only transmits data up to the current
value of cwnd. With a 1 Gbit/s link this takes less than the 10 ms
sample interval. To send more data, TCP has to wait for the
ACKs to arrive one RTT later and then sends more data. This
gives the “spiky” aspect observed in the plots. Closer examina-
tion of the data plotted in Fig. 5 for the Manchester-CERN path
reveals that 3 RTT were required to send the 1 Mbyte of data
up to 1.5 s into the test and then 2 RTT were needed, but the
amount of data sent in the second RTT gradually decreased as
the cwnd increased. For the CERN-Edmonton path, 3 RTT were
required up to 11.5 s into the test then 2 RTT up to about 166 s
and then the 1 Mbyte could be sent in one RTT.

Fig. 7 presents the time series plots of the individual
request-response transaction latencies obtained on the
Geneva-Manchester and Geneva-Edmonton connections, for a
response of 1 MB in length. The delay is clearly dominated by
the physical RTT of the respective connection, as demonstrated
in the above discussion. For the Geneva-Manchester plot, the
drop from 64 ms to 54 ms at 1.4 s into the test corresponds to
the change from needing 3 RTT to send the data to only 2 RTT,
and the curved decrease indicates that less and less time is re-
quired in the second RTT to send the data. The artefact at 8.1 s
corresponds to a congestion event requiring the re-transmission
of two packets. The alternate latencies of 29 ms and 42.5 ms
from, 18.5 s onwards, correspond to the need to send a small
amount of data during the second RTT for alternate transfers.

The step changes in the latency observed on the Geneva-Ed-
monton circuit at 10.8 and 166 s correspond to the need for 3,
2, and finally 1 RTT being required to send the response data,
as discussed above.

C. Using the ATLAS DataFlow Application.

As one of the tests, the Atlas Online and DataFlow software
[11] was configured at CERN to operate a three node EF farm in
Manchester, while the SFI and SFO applications ran on the same
node installed at CERN. Two of the EF nodes were connected
through 100 Mbit/s Ethernet links, while the third node had a
Gigabit Ethernet link to the same switch that was in turn con-
nected to the wide area network. The ATLAS Online software
allows for pre-defined nodes to be removed or added from/to

Fig. 7. The delay of the request-response transaction on the Geneva-Man-
chester (top plot) and Geneva-Edmonton (bottom plot) connections.

Fig. 8. Average event rate received by the SFO as a function of the time though
the test.

the system configuration at runtime. The solid magenta line in
Fig. 8 presents the number of active EFD nodes during a certain
time interval and the diamond points show the average total rate
of received events, as reported by the SFO.

At about 120 s into the test, the node with the Gigabit Ethernet
connection was removed and at about 220 s another node was
removed. At 300 s and 350 s the nodes were returned to the farm.
The results show a rate of about 6 Hz, for the node connected
through Gigabit Ethernet and 1–2 events/s for the 100 Mbit
nodes. At this time the socket buffers of the application could
not be set to the value of the delay bandwidth product as used in
the other tests described above. The RTT was 20 ms and for the
transferred event size of 1 MB the transfer time determined by
tcpmon was 42.5 ms. Taking into account the SFI-EF-SFO com-
munication, the time for returning an event to the SFO would be
around 95 ms. giving an expected event rate of 10.5 Hz.

Tcpdump, a software tool that allows the parameters of indi-
vidual packets to be recorded, was used to investigate the be-
havior of the application. Tcpdump was run on the SFI node at
CERN. Fig. 9 and Fig. 10 show the data transfer from the SFI
to the EF. Fig. 9 shows the classic TCP slow start period of the
communication between the SFI and the EF, which took roughly
320 ms, and Fig. 10 shows the detailed packet dynamics as a
function of time for the transfer of a 1 Mbyte response, taken
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Fig. 9. Detailed view of the slow start phase of the SFI-EFD communication.

Fig. 10. Detailed view of the SFI-EF communication.

well after the slow start phase had ended. The almost vertical
black lines are composed of small bars, each bar corresponding
to the sending of a TCP packet of 1448 bytes. The green solid
line represents the amount of transmitted data that has been ac-
knowledged by the remote node, with the steps corresponding
to the arrival of the acknowledgment packets received by TCP.

Fig. 10 shows that data are sent out in a small burst of packets
sufficient to fill but not overflow the remote TCP buffer. As soon
as the acknowledgments arrive, one RTT later, more data (repre-
sented by the black lines) are sent on the TCP connection. This
plot demonstrates that the application could not set the buffer
size of the receiving socket to the required value, thus TCP was
unable to obtain the maximum transfer rate on the connection. It
took about 115 ms to transmit one event, which meant a rate of

4 events per second for the overall system, much lower than
the expected 10 events per second and closer to the measured
6 events per second.

The SFO application establishes an application level timeout
for the interval when a complete event should arrive. This was
fixed at a value characteristic for a local computing cluster en-
vironment. The counting starts after sending a positive answer
to the EF’s request for temporary storage space. Due to the TCP
buffer limitations discussed above, sometimes the event cannot
arrive within the configured timeout value. The application con-
sidered this to be an error and dropped the connection volun-
tarily, only to try re-enabling it immediately. Fig. 11 shows this
behavior, when the dark lines terminate near the top of the plot.
Unfortunately, the newly established connection will have to
pass through the TCP three way handshake and the slow start
phases before being able to transmit data at the highest rate,
causing further delay. As TCP has its own timeout mechanisms
and can inform the application if a link is terminated, it is clear
that the use of application timeouts and the response to error
conditions must be approached with some care.

Fig. 11. tcpdump trace of the EFD-SFO connection.

IV. CONCLUSION

We investigated the behavior of an application designed for
a computing cluster when used in a long-distance network sce-
nario. The application consisted of a request-response protocol,
running over a TCP/IP connection and designed for high-en-
ergy physics data analysis in the Trigger and Data Acquisition
System of the future ATLAS experiment at CERN.

The dynamics of the TCP protocol strongly influence the per-
formance achieved by the application. Due to the request-re-
sponse nature of the protocol, it is not the TCP throughput but
the round-trip time that determines the performance of the ap-
plication. The transmission time of the first block of data sent
after the opening of the connection is considerably increased
by the TCP slow start. It is also essential to set the TCP buffer
sizes to allow rapid transmission of the data. Linux TCP im-
plementation-specific optimisations, like the automatic reduc-
tion of the current window size after a certain time of inactivity
on the connection considerably reduced the performance of our
application.

The request-response nature of the protocol under investiga-
tion makes this application different from standard high-energy
physics applications deployed over long-distance networks,
which usually involve the bulk transfer of large files. However,
in addition to the high-energy physics field, our findings are
relevant to applications that use iSCSI transfers over Internet
remote database accesses or to interactive medical imaging
applications that need to transfer large patient images in real
time. These investigations are also relevant to simulations that
use High Performance Computing facilities with a remote
researcher requiring real-time visualisation to allow interactive
computational steering using haptic input devices.

We believe that the advanced TCP stacks tested are effective
for rapid recovery from packet loss and are stable. They could
be built into the ATLAS TDAQ installation environment. We
note during the manuscript process that the 2.6 kernels now have
these features.
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