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Abstract. We discuss an approach for modal expansion of optical far-field quantities based on quasinormal
modes (QNMs). The issue of the exponential divergence of QNMs is circumvented by contour integration
of the far-field quantities involving resonance poles with negative and positive imaginary parts. A numerical
realization of the approach is demonstrated by convergence studies for a nanophotonic system.

Introduction

For the study of physical phenomena in nano-optical sys-
tems, a modal description is the most instructive approach.
Modal expansion techniques using QNMs [1–3] have been
proposed to analyze light-matter interaction in nanores-
onators [4–7]. As the QNMs are the solutions to open
systems, they decay in time and are characterized by com-
plex eigenfrequencies. State-of-the-art approaches use the
electromagnetic fields of the QNMs in the near-field re-
gion of the resonant systems to expand near-field quan-
tities of interest. However, far-field properties of opti-
cal systems are important for many applications because
typical experiments perform measurements in the far-field
region. QNMs diverge exponentially in the far-field re-
gion [2, 3], which is a key issue for modal expansion
techniques. Approaches using model approximations with
real-valued frequencies have been proposed to overcome
the divergence problem [8–10].

Here, we discuss an approach for modal expansion of
optical far-field quantities [11]. The approach is based on
the complex eigenfrequencies of QNMs. The divergence
issue in the far-field region is circumvented by introducing
contour-integral-based expressions of the far-field quanti-
ties involving resonance poles with negative and positive
imaginary parts. In this way, one can derive nondiverging
expansions of the far-field quantities while the model with
complex-valued frequencies of the resonant systems can
be retained. We demonstrate the approach by convergence
studies for a nanophotonic system.

Modal expansion of far-field quantities

In nano-optics, QNMs, Ẽ(ω0) ∈ C3, are solutions to the
time-harmonic Maxwell’s equations in second-order form,

∇ × µ−1
0 ∇ × Ẽ(ω0) − ω2

0ε(ω0)Ẽ(ω0) = 0, (1)

where ω0 ∈ R is the angular frequency, µ0 is the vacuum
permeability, and ε(ω0) is the permittivity tensor. For sim-
plification of the notation, we omit the spatial dependence

(a)

(b)

Figure 1. One-dimensional resonator defined by different refrac-
tive indices, where n2 > n1. Solving the Helmholtz equation with
a source term corresponding to incoming plane waves yields so-
lutions for the electric field, E(x, ω) and E◦(x, ω). For simpli-
fication, only the real parts of the scattered fields (a.u.) out-
side the resonator are shown. (a) Diverging field E(x, ω̃k,∆) =

Aei(n1ω̃k,∆/c)|x|, where ω̃k,∆ = ω̃k + ∆ω̃k is a frequency close to ω̃k.
The frequency ω̃k is a resonance pole of E(x, ω). (b) Nondiverg-
ing field E◦(x, ω̃k,∆) = Be−i(n1ω̃k,∆/c)|x|.

of the quantities. The eigenfrequencies ω̃k ∈ C corre-
sponding to the QNMs have negative imaginary parts as
the QNMs have to satisfy outgoing radiation conditions.

The approach proposed in [11] is demonstrated by de-
composing the energy flux density,

s(E(ω0),E∗(ω0))

=
1
2

Re
(
E∗(ω0) ×

1
iω0µ0

∇ × E(ω0)
)
· n,
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where the field E∗(ω0) is the complex conjugate of the
electric field E(ω0) and n is the normal vector on the as-
sociated far-field sphere. The Riesz projection expansion
(RPE) is used to expand s(E(ω0),E∗(ω0)) into modal con-
tributions [7, 12]. The RPE is based on complex contour
integration, which means that s(E(ω0),E∗(ω0)) has to be
evaluated for complex frequencies. This is not straight-
forward as s(E(ω0),E∗(ω0)) is nonholomorphic. This
challenge has been addressed by exploiting the relation
E∗(ω0) = E(−ω0) for ω0 ∈ R, which is also a solution
to Eq. (1). The field E(−ω0) has an analytical continuation
into the complex plane ω ∈ C, denoted by E◦(ω). This
field yields the required analytical continuation given by
s(E(ω),E◦(ω)). With this, Cauchy’s integral formula,

s(E(ω0),E◦(ω0)) =
1

2πi

∮
C0

s(E(ω),E◦(ω))
ω − ω0

dω,

is exploited for the closed integration path C0 around
ω0, where s(E(ω),E◦(ω)) is holomorphic inside of C0.
Cauchy’s residue theorem leads to

s(E(ω0),E◦(ω0)) = −

K∑
k=1

1
2πi

∮
C̃k

s(E(ω),E◦(ω))
ω − ω0

dω

−

K∑
k=1

1
2πi

∮
C̃∗k

s(E(ω),E◦(ω))
ω − ω0

dω

+
1

2πi

∮
Cr

s(E(ω),E◦(ω))
ω − ω0

dω, (2)

where C̃1, . . . , C̃K are contours around the resonance poles
of E(ω), given by ω̃1, . . . , ω̃K , and C̃∗1, . . . , C̃

∗
K are con-

tours around the resonance poles of E◦(ω), given by
ω̃∗1, . . . , ω̃

∗
K . The contour Cr comprises ω0, the resonance

poles ω̃1, . . . , ω̃K and ω̃∗1, . . . , ω̃
∗
K , and no further poles.

The Riesz projections

s̃k(E(ω0),E◦(ω0)) = −
1

2πi

∮
C̃k

s(E(ω),E◦(ω))
ω − ω0

dω

−
1

2πi

∮
C̃∗k

s(E(ω),E◦(ω))
ω − ω0

dω

are modal contributions for the energy flux density. The
contribution

sr(E(ω0),E◦(ω0)) =
1

2πi

∮
Cr

s(E(ω),E◦(ω))
ω − ω0

dω

is the remainder containing nonresonant components as
well as contributions corresponding to eigenfrequencies
outside of the contour Cr.

The presented approach is based on computing the
quantity s(E(ω),E◦(ω)) by solving Eq. (1) for ω and for

−ω. Due to the compensation of the factors ei(nω/c)r and
e−i(nω/c)r of the fields in the far-field region, this yields
a nondiverging quadratic form s(E(ω),E◦(ω)), where a
product of E(ω) and E◦(ω) is involved. In this way, modal
expansions of far-field quantities can be computed.

To illustrate this, a one-dimensional resonator with
the fields E(x, ω) and E◦(x, ω) fulfilling the corresponding
Helmholtz equation is considered. Figure 1(a) sketches
the diverging field E(x, ω̃k,∆), which relates to a QNM of
the problem as ω̃k,∆ = ω̃k + ∆ω̃k is a frequency close to
the eigenfrequency ω̃k. Figure 1(b) shows the nondiverg-
ing field E◦(x, ω̃k,∆) outside of the resonator. Note that the
frequency ω̃k,∆ represents a point on an integration con-
tour C̃k from Eq. (2). The product E(x, ω̃k,∆) · E◦(x, ω̃k,∆)
shows a nondiverging behavior and relates to the en-
ergy flux density. The approach also applies to arbitrary
three-dimensional problems, where, in the far-field region,
E(r, ω) ∼ ei(nω/c)r(1/r) and E◦(r, ω) ∼ e−i(nω/c)r(1/r).
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