
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 4, AUGUST 2006 2167

The ATLAS Experience With Databases
for Structured Data With Temporal and

Hierarchical Order
Nuno Barros, Antonio Amorim, Richard Hawkings, Tiago Franco, Dinis Klose, and Luis Pedro

Abstract—Developing systems for the ATLAS (A Toroidal LHC
ApparatuS) detector at LHC poses a new set of challenges like
the storage of enormous amounts of data with different structures.
This data is not only traditional Conditions Data which is slowly
evolving data but also data from the online systems which cannot
be stored with the event data but must be accessible from each
event, like run information. Following the requirements from such
systems we have developed a system which provides the facility to
store structural data in a time order and with the possibility to clas-
sify hierarchically. We will also present a case study of use in the
online systems of the ATLAS experiment where this system was
used to store online data. Furthermore, we will show the different
interfaces developed for this system and its use in different areas
of application.

Index Terms—A Toroidal LHC ApparatuS (ATLAS), conditions
data, databases, Interval Of Validity (IOV).

I. INTRODUCTION

RUNNING a detector like A Toroidal LHC ApparatuS
(ATLAS) [1] poses many challenges in the requirements

for storing different kinds of data. The information on the
detector calibration and alignment, commonly named Condi-
tions, must be classified in an hierarchical way and by having a
time interval of validity (IOV). By looking at the applications
that must store data in the database it became clear that one
needed to extend the previous implementation [2] to create
an extra layer where it would be possible to map data that
could have temporal, hierarchical, and multi-version data. At
the same time, this layer should also allow easy retrieval of
structured data mapping the relational table into a transient
C++ object. Furthermore, based on the experience acquired
with the previous version, it was understood that the usage of
serialization mechanisms in the user applications raised many
issues that did not allow the sharing of data between applica-
tions that did not use the same serialization approach. Another
disadvantage of this method was the inability of the central

Manuscript received July 20, 2005; revised May 23, 2006. This work was
supported by the Fundação da Ciência e Tecnologia by Grant PDCT/FP/FNU/
50224/2003.

N. Barros is with the European Organization for Nuclear Research,
CERN, CH-1211 Genève 23, Switzerland, and also with the Faculty of
Sciences, University of Lisbon, P-1749-016 Lisbon, Portugal (e-mail:
Nuno.Barros@cern.ch).

A. Amorim, T. Franco, D. Klose, and L. Pedro are with the Faculty of Sci-
ences, University of Lisbon, P-1749-016 Lisbon, Portugal (e-mail: Antonio.
Amorim@fisica.fc.ul.pt; Dinis.Klose@cern.ch; Tiago@cern.ch).

R. Hawkings is with the European Organization for Nuclear Research, CERN,
CH-1211 Genève 23, Switzerland (e-mail: Richard.Hawkings@cern.ch).

Digital Object Identifier 10.1109/TNS.2006.879018

database management system (DBMS) to provide each user
with enough information to process the requested data as from
the DBMS point of view each object was nothing more than a
binary large object (BLOB) without any kind of data structure.
Following a case study in the ATLAS online environment, an
approach was developed that could extend the relational model
tables while keeping the object schema available from the
central databases. To address these problems a solution based
on a generic transient object was introduced, which could be
interpreted and mapped into a relational table, keeping knowl-
edge of its structure, contents and IOV. Being very generic,
these new features made the interface more exportable to other
areas of application where structured temporal data storage is
needed. After a successful presentation to the users, a couple
of interfaces were implemented to ease the usage of this tech-
nology and better integrate it into the overall infrastructure. The
area of application became larger, allowing the basic interface
to be used for different purposes on interacting with different
technologies.

II. THE ATLAS DATABASE ENVIRONMENT

The ATLAS software system is composed of two usual sub-
systems, the Online and Offline systems. The Online System [3]
is responsible for the software to read the detector Conditions
and data and the Offline [4] system is related to the post-run
tasks, like event reconstruction and data analysis. However, the
Conditions Databases is a component that connects both sys-
tems, having thus a very different set of requirements imposed
by each system. In the Online system, the Conditions Database
is used mainly to store Slow Control Data through a SCADA
system, PVSS [5]. Another Conditions Database usage is in the
storage of Bookeeping data like run parameters. Run parame-
ters data is all the data that define a particular run, like beam
energy, beam type, run number and number of events in the run.
Both these applications were intended to store objects with some
structure that could be packed in the same folder, thus being a
very interesting case study for a future implementation. In the
Offline environment the Conditions Database is used both to
read detector control system (DCS) data stored by the online
system, the Run parameters data and to store data computed
from the Offline system. As examples of data stored from the
Offline system we can highlight the references to external ob-
jects that need to have an IOV, such as calibration and alignment
constants.

0018-9499/$20.00 © 2006 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/44179802?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2168 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 4, AUGUST 2006

Fig. 1. Schema of the tag mechanism.

III. THE IMPLEMENTATION BASED ON BYTE ARRAYS

The first implementations of the ConditionsDB used either
a separate commercial object database to manage the data [6]
or provided the basic store of hierarchical data based on IOVs,
storing the objects as BLOBS in the database [7]. These imple-
mentations allowed storage of temporally varying objects in a
hierarchical structure using an internal mapping of folders. The
mapping was transparent to the users, who just needed to pro-
vide the folder name at the moment of storage of the object. On
the user side, the data seemed to be stored in a folder tree, while
in the database itself, the data was stored in different tables, with
at least one table per folder [8]. Another feature that was used
mainly in the offline system, was the tagging mechanism. This
feature allowed the users to insert objects with overlapping IOVs
and apply a tag to each version of the object. Later, a user could
provide one of these tags to specify which version of the object
should be retrieved. This versioning system required a special
database schema, specifically to map which objects were part
of each tag. The user could only tag the latest version of the
objects, which allowed the user to take a snapshot of the latest
version of the objects in the folder (Fig. 1).

However, this implementation of the Conditions Database
had the same limitation of other streamable solutions (see
Section V), which was a great performance penalty for objects
of big size and complexity. This was the main reason that
leaded to the improvements described in this publication.

IV. CASE STUDY OF THE ATLAS ONLINE SYSTEM

In the ATLAS Online System, there was a need to store the
detector control system (DCS) data into a persistency service
that could handle the interval of validity (IOV) of the data stored.
Thus, the Conditions Database was the natural solution.

Following the experience of the byte array based solution (see
III) it became clear that storing the data as a BLOB imposed a
big penalty both in performance and in functionality, as there
was not a standard in the way the data was encoded. So, there
was a need to find a different solution, that could solve the prob-
lems described.

Another kind of data to be stored was the Run Parameters
and other similar objects published in the information service
(IS). The IS is a component of the ATLAS Online Software
Infrastructure, which allows information to be shared between
all the ATLAS Online Software components.

The run parameters are data that classifies the current run-
ning state of the detector, and thus can be considered Conditions
Data. Like DCS data, these objects have a structure, sometimes
complex, and need to be stored keeping temporal information
that would allow the users to later reconstruct the history of the
state of the detector. The IS provides the facilities that allow the
data to be published and read.

Having multiple partitions defined, as shall be the case during
the data taking period, these objects can change at a high fre-
quency, which imposes a great constraint in performance to the
conditions DB. A partition is a logical representation of software
and hardware resources that handle the ATLAS data acquisition.

Following the particular case of the DCS Data, we realised
that the next natural step in the evolution of the Conditions data-
base would be the creation of a storage mechanism that would
allow to keep the object structure, getting rid of coding con-
straints, and making the objects more portable.

This new technology should not only be able to keep the data
structured, but should also keep the same functionality of the
legacy implementation. Due to the similarity in the characteris-
tics of the objects to be stored from the ATLAS Online System,
the previous arguments where taken as a base for the new im-
plementation of the Conditions Database.

V. THE INTRODUCED IMPROVEMENTS

Resulting from very useful information that was collected
from the use case analysis of the ATLAS online and offline
system and their requirements, many improvements were intro-
duced. The most significant was shifting the responsibility of
encoding the objects from the user applications to the central
database server.

As most data that is stored in the Conditions Databases results
either from calculations or from specific monitoring hardware,
the objects are generally larger and more complex than the ones

BARROS et al.: ATLAS EXPERIENCE WITH DATABASES FOR STRUCTURED DATA 2169

resulting from typical database user interfaces. Thus a new in-
frastructure was developed, the CondDBTable, along with asso-
ciated managers, which implemented the ability to store struc-
tured data in a simple, straightforward way.

The new implemented infrastructure should provide the users
the functionality to store structured data without imposing on
them the responsibility for the object encoding. Thus, the best
solution would be the creation of a generic object that could
map, as directly as possible, into a relational table, or in par-
ticular into a relational row, and at the same time provide the
information about the object schema.

Depending on the complexity and size of the objects stored,
this solution proved to have advantages when compared with
streamable solutions like POOL [9] and Root [10] files, and even
the old BLOB based implementation, being more performant
and thus more reliable for the needs of the online systems. The
CondDBTable became a halfway house between the object ori-
ented and relational models, combining the advantages of each
technology.

The CondDBTable, was developed based on standard tem-
plate library (STL) [11] containers that would hold the contents
of the object. Using an internal system of enumerations, the ob-
jects keep also information about the object structure by column
basis, having a strong relation with the structure of the object in
the persistency.

Along with this object, a new set of updates were necessary
in the core of the ConditionsDB implementation, allowing not
only to store the legacy BLOBS but also the new table based
objects. These changes lead to an evolution of both the database
schema and the managers necessary to store and read this new
kind of data.

Following the understanding of the online system needs, it be-
came obvious that the ability to store the data mapped in a rela-
tional table combined with the hierarchical classification could
lead to problems with the database size and number of tables.
So, the CondDBTable was extended to support the storage of
different objects with the same structure, which became known
as table with IDs. This new feature allowed to manage several
objects, sharing the same schema, with a single relational table
and a single CondDBTable.

Each object was inserted into the CondDBTable, and a new
column was created by default, which contained an identifier,
specified by the user, that could distinguish from the other
objects in the table. This was specially useful to store DCS
channel data, where each channel had a unique identifier and
thus avoiding the creation of a great number of tables in the
database for each channel.

In order to extend the usability of this technology, the Cond-
DBTable supported the storage of a larger range of native data
types as well as strings. It was also extended to support arrays
of the data types specified earlier in a single relational column.
These types were mapped from a STL vector into a relational
row. In Table I one can see the available data types and how
they were mapped into the CondDBTable.

Being an in memory table, the CondDBTable is completely
customisable by the users. The users are the responsible for
defining the schema of a new object, using the provided methods
to define both the schema and contents of the object. In Table II

TABLE I
MAPPING FROM THE C++ DATA TYPE INTO THE CONDDBTABLE MAP

TABLE II
SOME OF THE MOST USED METHODS AVAILABLE TO

THE USERS TO HANDLE THE CONDDBTABLE

a list of the most used methods is presented. In the table, the
typename stands for templated methods. In this case an over-
loaded method for each supported data type is made available.

There are still some other methods that allow the users to
further manipulate the object, however, its use was not wide.
Examples of such functionalities are the change of object data
and IOV.

VI. THE SPECIFICALLY DEVELOPED INTERFACES

The implementation of the CondDBTable was successfully
deployed and was used by many applications for each of the
ATLAS subsystems. To ease the usage of this infrastructure by
the different ATLAS subsystems, several specific interface ap-
plications were developed aiming to simplify both writing and
reading data on the databases. A web browser was also devel-
oped, which allowed to look at the data without need to write
any specific application. Some of the interfaces developed shall
be described in more detail later.

A. The Online Conditions Database Interface

The interface to the Online Software, the conditions database
interface (CDI) [12] was implemented in order to store the data
objects collected by the trigger and data acquisition (TDAQ) IS
[13] about the run parameters, and to store them in the Condi-
tionsDB.

The IS is a system that allows several resources from the
Online Software to share information between them. Amongst
several other features, it is able to keep the structure of the data
published, which made it a very good component to connect to
the Conditions Database to store the data.

2170 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 4, AUGUST 2006

Thus, the CDI was implemented to connect to the IS and re-
trieve the data published by the resources. Using the structure
information kept by IS, the CDI was able to translate the struc-
ture of the objects and map them into the CondDBTable.

The CDI connects to the IS and subscribes for a couple of
objects that were defined by the user in order to specify the
information sources (also IS objects) that will be the input in-
formation for the ConditionsDB. Using callbacks, when one of
the subscribed objects was updated a signal was sent back to
the CDI, which was responsible for retrieving and mapping the
IS object into a CondDBTable, add the IOV and store into the
database.

This was the main use of the CondDBTable in its basic form
(without IDs). In fact, the CDI package was developed in a way,
that, making use of the IS services, it was possible to subscribe
and store into the ConditionsDB any object that could be pub-
lished into the IS.

There was also some use for histogram storage into the Con-
ditionsDB which was very simplified with the CondDBTable
support for arrays.

B. The PVSS Data Manager

The main use of the CondDBTable derived from the storage
of detector control system (DCS) data through the SCADA
system PVSS. To provide support to this system a package was
implemented, the PVSS Data Manager that acts as a PVSS
standard plug-in, which linked both the PVSS libraries and the
ConditionsDB.

Making use of the CondDBTable support for structured
data with ID’s, the different channel conditions acquired by
the PVSS system were stored in the ConditionsDB into the
same relational table. As the different channel information
has the same structure, the ConditionsDB stores the different
objects into the same relational tables, handling each object
independently due to the additional index added internally to
the object.

This system represented the largest source of usage of
CondDBTable with the ID feature. The different channels
represented objects with the same structure. Nonetheless these
objects needed to be distinguished in some way since the IOV
of each object could be different.

In this way, one could reduce the required number of tables
and queries to the database, since the data with the same struc-
ture could be in the same place. The users could handle each
object with different ID independently of the existing others, ei-
ther to read or to store. This PVSS Data Manager was developed
for both Linux and Win32 platforms, the later being extensively
used by the ATLAS user community.

C. The Athena Conversion Service

Due to the success of the CondDBTable amongst the online
community, the users demonstrated a great interest in reading
the Conditions data into the offline reconstruction algorithms.

The offline system is composed by a modular framework,
the Athena Framework [14], and is intended to be used by the
scientific community to do the physics analysis in the ATLAS
experiment.

The old byte array solution was already integrated into
Athena, by means of the IOVDbSvc, which was mainly re-
sponsible for the objects stored as BLOBS with references for
external objects. However, the new implementation, even if it
kept the same functionality as the previous one, provided new
features that would require a lot of modifications in the existing
integration modules to provide the new functionalities. Thus it
became clear that it would be best to make a distinction between
the functionalities and implement a new module, responsible
for the integration of the new CondDBTable technology.

In order to integrate the new improvements, both an Athena
Conversion Service and a new object were created in the Athena
framework [14]. The object, the GenericDBTable, is analogous
to the CondDBTable and provides the same functionality. Like
the CondDBTable, this object could easily map any object
storable in the ConditionsDB, which means that the Conversion
Service was not much different from a simple application to
read data from the database.

With this interface the users could easily retrieve conditions
data by issuing a request to the Athena StoreGate. The Conver-
sion service knows how handle both the CondDBTable and the
GenericDbTable, being thus able to convert data from one ob-
ject to the other.

In Fig 2, one can see the structure and relation between the
different Conditions Database related components.

D. The ConditionsDB Web Interface

For generic browsing of the conditions data, a Web Browser
Interface was created. This tool was implemented in PHP and,
due to the mapping of the objects in relational tables made by
the ConditionsDB, it could show to the user the contents of the
object, its metadata, allowing at the same time to make searches
based both in the hierarchical order, IOV, tagging mechanism
and even in the contests of the objects (for the case of objects
stored with any “flavour” of the CondDBTable).

In order to be able to handle the C++ objects returned by the
ConditionsDB, a bind was developed to extend the functional-
ities of PHP to read and handle the CondDBTable (Fig. 3). In
this way the PHP browser was able to handle all the information
available in the ConditionsDB, be it folder information, object
structure or object data.

The tool was also developed in order to allow the users to
have some basic information about the objects that were stored
as BLOBS, however, due to the user side coding, it was not
possible to usefully show the contents.

The browser allows the user to specify their own connection
parameters, showing multiple information in several frames. In
particular one can see an hierarchical folder tree which repre-
sents the hierarchical structure of the data in the database, and
each leaf of the tree opens another frame where the user can
make multiple queries, depending on the kind of object stored.
For instance, the user can make searches by tag, by timestamp
or interval of validity [15].

Fig. 4 depicts a representation of the contents of an object
stored using the CondDBTable, as it is presented by the Web
Browser. It also shows the web form that allows the user to re-
fine his search based on the contents of the object and taking

BARROS et al.: ATLAS EXPERIENCE WITH DATABASES FOR STRUCTURED DATA 2171

Fig. 2. Schema of the integration of the ConditionsDB into the Athena Framework.

Fig. 3. Schema of the bind developed to interact with the ConditionsDB from a PHP web browser.

into account its structure: different column types allow partic-
ular search patterns.

In a later step the browser was extended to allow advanced
searches, which allowed the users to make searches in particular
values of the objects stored as CondDBTables, having already
limited the amount of objects by choosing the folder and the
IOV.

VII. EVALUATIONS

This new evolution of the ConditionsDB was extensively
tested and tuned leading to very promising results from its use

in the ATLAS Combined Testbeam that occurred from May to
November 2004. The overall performance of the new features
surpassed the previous implementation providing faster storage
and retrieval of objects from the database.

The DCS data was stored into the ConditionsDB using the
PVSS Data Manager, leading to storage of the data as Cod-
DBTables. In particular, the feature of tables with IDs (see V)
was extensively used to store data points set up by the users.
The byte array feature was still used, mainly to store references
to external objects, where the integration of the byte array tech-
nology into the analysis framework played a major role. The

2172 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 4, AUGUST 2006

Fig. 4. Contents of the object as shown in the web browser.

data was computed with the user algorithms and stored into ex-
ternal objects, like POOL files. Then, a reference for this object
was stored into the ConditionsDB, together with a IOV.

For the CondDBTable, the integration into Athena was exten-
sively used to read data for the reconstruction jobs, particularly
the DCS data stored using the PVSS Data Manager. Overall
the ConditionsDB proved to be very reliable and performant,
storing data in a simple, reliable way, that even now is being
used to perform reconstruction on real data.

VIII. CONCLUSION

The new evolution of the ConditionsDB presents a solution
based on the study of the requirements from the ATLAS sys-
tems, resulting in a very successful development which was
widely tested and accepted among the user comunity.

Although this implementation was developed inside a particle
physics experiment, and some of the extensions are very spe-
cific to this environment, the ConditionsDB use can easily be
exported to other areas of application.

In fact, this solution is appropriate to every application that
requires the storage of structured data that must have a tem-
poral classification. Moreover, the hierarchical solution and ver-
sioning mechanism allows the ConditionsDB to be used in very
different areas where the data stored can be very different in na-
ture. The hierarchical solution allows to have a transparent sep-
aration of uncorrelated data inside the same database. The ver-
sioning mechanism proved to be very useful in areas where the
data can change with external parameters and the need to have
the different versions available is crucial. The small amount of
external dependencies makes this technology very portable and
easily configurable by any user.

As a result, the presented infrastructure is a reliable, easy
to set up solution which can be easily applied in different
areas, having already the successful background of the ATLAS
experiment.

REFERENCES

[1] The ATLAS Experiment Web Site, [Online]. Available: http://atlas.web.
cern.ch/Atlas/

[2] A. Amorim, J. Lima, C. Oliveira, L. Pedro, and N. Barros, “Experience
with the open source based implementation for atlas conditions data
management system,” CoRR, vol. cs.DB/0306006, 2003.

[3] The ATLAS Online System Web Page, [Online]. Available: http://atlas-
onlsw.web.cern.ch/Atlas-onlsw/

[4] The ATLAS offline Computing Web Page, [Online]. Available: http://
atlas.web.cern.ch/Atlas/GROUPS/SOFTWARE/OO/

[5] The Athena Framework Web Page, [Online]. Available: http://atlas.
web.cern.ch/Atlas/GROUPS/SOFTWARE/OO/architecture/

[6] The BaBAR Experiment Web Site, [Online]. Available: http://www.slac.
stanford.edu/BFROOT/

[7] The CERN IT Conditions Database Project Web Site, [Online].
Available: http://wwwdb.web.cern.ch/wwwdb/objectivity/docs/condi-
tionsdb/

[8] A. Amorim, J. Lima, L. Pedro, D. Klose, C. Oliveira, and N. Barros,
“An implementation for the ATLAS conditions data management based
on relational DBMSs,” IEEE Trans. Nucl. Sci., vol. 51, Jul. 2004.

[9] The POOL Web Site, [Online]. Available: http://lcgapp.cern.ch/project/
pool/

[10] The ROOT Web Site, [Online]. Available: http://root.cern.ch/
[11] The Standard Template Library, [Online]. Available: http://www.cp-

preference.com/cppstl.html
[12] A. Amorim, “Conditions databases: The interfaces between the dif-

ferent ATLAS systems,” CHEP, 2004.
[13] The Information Service Manual Web Page, [Online]. Available: http://

atlas-onlsw.web.cern.ch/
[14] The Athena Framework Web Page, [Online]. Available: http://atlas.

web.cern.ch/Atlas/GROUPS/SOFTWARE/OO/architecture/
[15] A. Amorim, “The WEB interface for the AT-LAS/LCG MySQL condi-

tions databases and performance constraints in the visualization of ex-
tensive scientific/technical data,” in Computing in High Energy Phys.
Proc. CHEP, 2004.

