
XII. PHYSICAL ACOUSTICS

Prof. U. Ingard E. J. Martens, Jr.
Prof. R. D. Fay M. B. Moffett
L. W. Dean III G. W. Myers
G. C. Maling, Jr. H. L. Willke, Jr.

A. NONLINEAR DISTORTION OF SOUND WAVES IN LIQUID HELIUM

Some initial results in this investigation were presented in Quarterly Progress

Report No. 54, pages 152-154. The photographs (Fig. XIII-2, p. 153) indicated a roughly

linear spatial growth in the second harmonic of an initially monochromatic finite wave,

followed by a steep exponential decay. It is possible that some of this nonlinear

distortion occurs at the crystal surface as the wave bounces back and forth between

the crystals. In order to

10 -avoid this possible mixing

at the crystal surfaces, the
9

multiple-reflection method

8 - of measurement was avoided,

Sand the spatial distortion
- 7

of the wave was studied as

8 a function of travel distance

<5 by variation of the location

of the pickup crystal.
6J 4 -

Such spatial measure-

S3 ments were taken over a

a- range of source strengths
2

and helium temperatures.

The poor reproducibility of

these measurements led
0 4 8 12 16 20 24 28 32

CRYSTAL SEPARATION (CM) to partial redesign of the

electronic apparatus. The
Fig. XII-1. Wave pulse amplitude of second harmonic first set of data taken with

as a function of separation between source
and pickup transducers. T = 2. 94 ±. 03K; the redesigned equipment
the driving voltage was 11.4 volts rms. is plotted in Fig. XII-1.

Curve 1 in Fig. XII-1

shows the amplitude of the pulse at the second harmonic as it strikes the pickup crystal.

Curve 2 in Fig. XII-1 shows the amplitude of the pulse at its second reflection from the
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pickup crystal. If the horizontal scale is changed by a factor of 3 for curve 2, and if

the nonlinear distortion at the crystal surfaces is considered negligible, then because

the acoustic path is three times longer for the second reflection than for the first, we

would expect curve 2 to be an attenuated version of curve 1. In fact, the first curve

does begin to flatten at a point near 16 cm, while the second curve flattens near 4-6 cm,

which is consistent with these expectations. The anomalous second peak, on the other

hand, departs significantly from the 3/1 adjustment, since the peaks occur at 25 cm

and 16 cm. If forthcoming measurements bear out the present data, it will appear that

this second peak, whose existence is unexplained thus far, is dependent on factors other

than the distance of acoustic travel. Conditions at the reflecting surfaces will be inves-

tigated further.

H. L. Willke, G. W. Myers, U. Ingard

B. SCATTERING OF SOUND BY SOUND

Work is progressing on the scattering of two sound pulses by each other. The

pulses are generated in water and collide at right angles. In the absence of hard objects

in the interaction region no scattered wave has been observed. However, when hard

objects are placed in the interaction region, strong signals are observed.

Measurements were taken with a glass rod placed in the interaction region perpen-

dicular to the plane of interaction. They are being analyzed to determine whether or

not they represent nonlinear scattering.

L. W. Dean III

C. GENERATION OF HYPERSONIC WAVES

Two years ago, generation of sound waves of frequencies of the order of 1000 me

was reported by Baranskii, at the University of Moscow (1). About a year ago, we set

up an experiment designed to reproduce Baranskii's results, and to go to higher fre-

quencies.

Our technique was similar to Baranskii's - driving a quartz crystal bar by the elec-

tric field in a resonant cavity. The presence of sound in the quartz crystal is detected

by diffraction of light. Several cavities have been built with resonant frequencies

between 2000 mc and 500 mec. Our initial work was performed at frequencies near

1000 me, but no positive results were obtained. Meanwhile, Bommel (2) succeeded

This research was supported in part by the U.S. Navy (Office of Naval Research)
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in generating 1000 mc/sec sound in quartz by using the same method as Baranskii. The

purpose of this note is to report that we have now been able to generate 570 mc/sec

sound in quartz. Details of this work are reported in the author's thesis (3).

M. B. Moffett
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D. THE INFLUENCE OF ATMOSPHERIC TURBULENCE ON THE SOUND FIELD

OVER A PLANE BOUNDARY*

1. Introduction

The influence of atmospheric turbulence on sound propagation in free space, with no

consideration of reflecting boundaries, has been discussed in numerous papers. The

addition of boundaries, of course, does not introduce anything basically new; the problem

is roughly equivalent to that of radiation from an extended sound source in a turbulent,

infinite medium. However, in the analysis of the sound field from a source over ground,

it has been customary to consider only the effects of the (reflecting) ground alone, with

no regard to the fluctuations of the atmosphere. The sound fields obtained on this basis,

in both homogeneous and inhomogeneous atmospheres, have been found to be in good

agreement with the results of experiments in the laboratory, where the medium above the

reflecting boundary can be kept quiescent. But similar experiments performed outdoors

give results that generally deviate considerably from the field obtained from the custom-

ary analysis. For example, the measured sound pressure in shadow zones created by

temperature or wind is considerably greater than that predicted from diffraction theory.

Similarly, in the absence of shadow zones, the sound pressure squared is predicted to

decrease as i/x 4 with the horizontal distance x from a point source (12 db per doubling

of distance) when x is sufficiently large. Field measurements rarely confirm this result.

It is the purpose of this note to investigate this problem and to determine to what extent

atmospheric turbulence modifies the conventional field distribution. It will be shown that

even modest fluctuations of the atmosphere produce marked changes of the field distri-

bution.

This work was sponsored by National Aeronautics and Space Administration under
Contract NAw-6516.
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2. The Field from a Point Source

We shall consider the field from a point source located a distance h above a plane

boundary, as shown in Fig. XII-2. The boundary is specified acoustically by a normal

admittance, r, which is assumed to be independent of the angle of incidence. The sound

field above the boundary can be expressed as the sum of the direct and reflected fields,

p = Pd + Pr. If the source height is larger than a half-wavelength, this field has an inter-

ference pattern with maxima and minima that extend a certain distance from the source.

h =i ~ x24h
2

X2

<p2> <

Fig. XII-2. Sound source over a plane boundary. If the atmosphere is homo-
geneous and quiescent, the sound field (if h > X/4) consists of an

interference zone (approximately defined as x < 4h2/X) with max-

ima and minima. For large values of x, (p2) 1/x 2 when the

boundary is totally reflecting, and (p 2 ) 1/x 4 when the boundary
is partially reflecting.

Beyond this distance, the field decreases monotonically with distance. Since the field

depends on the phase difference between the direct and the reflected waves, it is clear

that fluctuations of this phase difference can cause changes of the rms value of the

sound pressure field which should be particularly significant in the minima of the inter-

ference pattern and in the 1/x 4 (12 db per doubling of distance) region.

In a homogeneous, quiescent atmosphere the sound pressure in the direct wave at

a horizontal distance x from the source can be expressed as pd = exp[i(kx-wt)]/x. Then,

for the purpose of this report, it is sufficient to use as an approximation for the reflected

wave the value pr = R exp[i(kr-4)]/r, where R = (cos c -q)/(cos 4 +rj) is the plane-wave

reflection coefficient, and x, r, and 4 are the distances and angle indicated in Fig. XII-2.

Then, if we restrict ourselves to a real value of q (and R), the variance of the total

sound pressure becomes

p 2> ()2 +R2(+2R <cos for R real (1)

where p is the phase difference between the direct and the reflected waves, and angular
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brackets represent time average.

If the index of refraction is denoted (1+±) - , the speed of sound is c = c (1+4), where

c is the speed of sound in the quiescent atmosphere. If the temperature fluctuations in
o

the atmosphere are negligible, the index of refraction is simply the component of the

(vector) Mach number m in the direction of sound propagation; that is, [ = m Then,

if we use ray or geometric approximation, the phase difference between the direct and

the reflected rays is

p = k (r-x) + koX (l-z/sin )dx = Po + 5 (2)

in which I and 42 are the values of the index of refraction along the paths of the direct

and the reflected waves, respectively, and sin 4 = x/(x +4h )1/2 We have denoted the

steady part of the phase difference po, and the fluctuating part 5. Then, if we assume

equal probability of positive and negative values of 6, the variance of the pressure can

be rewritten as

p (1)2 +R + <cos 8>cospo (3)

It has been assumed in taking the time average that the fluctuations of 6 have a much

lower frequency than the acoustic frequency. If the amplitude of the 6 fluctuations is

assumed to increase with distance, it is clear that at a certain distance x 1 the ampli-

tude of 6 reaches a value approximately equal to ZrT. Beyond this distance, the average

of cos 6 will approach zero, the direct and reflected waves will be uncorrelated, and

the rms value of the sound pressure will decrease with distance as in free field, that is,

with 6 db per doubling of distance.

In order to determine the effect of the fluctuations on the sound pressure field in

more detail, we must express <cos 6> in terms of the statistical properties of the index

of refraction. We have already indicated that when the amplitude of the fluctuation of 6

is larger than 27r we have <cos 6> - 0. Therefore, we are interested mainly in the

region in which 6 is small. When 6 is sufficiently small, we can approximate <cos 6>

by cos ( 62)1/2. The variance <62) can be expressed in terms of the index of refrac-

tion as

K a2) = k2  1- 2/sin 4)' (p.l 1- 2/sin P)"> dx' dx" (4)

For the purpose of estimating the effect of the fluctuations of the index of refraction, we

shall neglect Kl ) in comparison with 6L> and ±) , an approximation that is justi-

fied if the eddy size is sufficiently small in comparison with the height of the source over

ground (1 refers to the position at the height y = h, whereas 1±Z refers to the position

y = h - x cot 4 along the path of the reflected ray). Then, using an autocorrelation func-

tion of the form 112 ) = Z exp(- 2 /L 2 ), where x = x"-x' , we obtain the approximate
tion f th for \ 0
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expression for < 2):

562)> 2 T- kx kL 42

where L is a measure of the eddy size and correlation length. Using expression 5 for

the calculation of the rms value of the phase difference, we estimate that the direct and

the reflected waves will be incoherent at a distance X that is given approximately by

2 kX kkL 42 T, and hence

1 1 X
2

8 2 L8,T
(h<<X)

For example, with L = 5 ft, [o = 0. 01, and k = 1 ft (1000 cps), the critical distance

will be approximately X 150 ft.

In Figs. XII-3 and XII-4 are shown the results of some numerical calculations of

the sound field, as given by Eq. 3, in which we have used the approximate value of

(<6>2)1/2 given in Eq. 5.

0--

-- 0.01

a o
0 = 

0.001

o -2o-
0 0

x(f t)

Fig. XII-3. Effect of turbulent fluctuations on the sound field from a
point source over a plane, totally reflecting ground surface.

For values of (<6>2)1/2 larger than T, we have assumed incoherence between the

direct and reflected waves. Three different values of : 0, 0. 001, and 0. 01, and two

different boundary admittances, Tj = 0 and r = 0. 2, have been used, corresponding to the

specific acoustic impedances = oo and t = 5 (in units of the characteristic impedance
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Fig. XII-4. Effect of turbulent fluctuations on the sound field from a point
source over a plane, partially reflecting ground surface.

of the medium). With a totally reflecting boundary (i=0), we see that the deep pressure

minima in the interference zone are blurred out by the fluctuations, and with a partially

reflecting boundary (T1=0. 2), the decrease of the sound pressure level with distance for

large values of x is reduced by the turbulent fluctuations from 12 db to 6 db per doubling

of distance.

3. Fluctuations in the Sound Field

The fluctuations in the sound pressure field in a plane wave, or about a point source

in an unbounded turbulent region, can be shown to increase monotonically with the dis-

tance from the source. In the presence of a reflecting ground surface, on the other hand,

when the sound field exhibits an interference pattern with maxima and minima, the meas-

ured fluctuations are found to be much larger than those obtained in free field and do not

always increase with distance. Often we find that the fluctuations reach a maximum at

a relatively short distance from the source. We can readily demonstrate this effect by

measuring the fluctuations of a pure-tone signal from a reasonably directive source

(an ordinary loud-speaker) when the signal is transmitted, first, parallel with the ground,

and then straight up (in which case reflections from the ground are negligible). With a

signal frequency of approximately 2000 cps (or higher) and a source and receiver height

of approximately 5 ft, the fluctuations at a distance of 50 ft can be as great as 15 to

20 db, whereas at the same distance above the source and with the signal directed

upward, the fluctuations are found to be approximately 2-4 db.
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These experimental results can be understood qualitatively by noticing that at a

minimum in the interference pattern, where the sound pressure is practically zero,

even a slight contribution of scattered energy will produce a considerable fluctuation

in the sound pressure level. Consequently, large fluctuations of the sound pressure

level are expected in the interference region, which for a perfectly reflecting plane is

defined by x < 4h2 / (if we assume the receiver height to be the same as the source

height, h).

To compute the corresponding peak-to-peak fluctuations in the sound pressure level

over ground, we need to determine the ratio between the maximum and minimum values

of <p 2 > in Eq. 1, because cos (po+6) varies (slowly) with time on account of the fluctua-

tions of the phase difference 6. The fluctuation amplitude obtained on this basis will

depend on the distance from the source. We shall not carry through a detailed numeri-

cal analysis now but limit ourselves to a study of the fluctuation amplitude only at the

locations of destructive interference, where cos Po = -1. At these points the minimum

and maximum levels are obtained at the instants when 6 passes through zero and a

maximum value, respectively.

The minima in the interference pattern are located at

x 2n - 1 k n = 1, 2, . . .N (7)
n 4 zn-1 1)...

Equation 7 applies only when Tj = 0 and the source height is equal to the receiver

height. The minimum farthest from the source corresponds to n = 1, and is located at

xI = 4h 2 /X - X/4. (Clearly, in order to have a minimum point at all, the height of the

sound source above the ground must be larger than a quarter-wavelength when the

boundary is totally reflecting.) The (time-dependent) ratio between the maximum and

the minimum values of the variance of the sound pressure at such a point becomes

2 2
max n-1

y ma +- (1 - <cos 6>) (8)n 2 2

n \ 2n-1 "nminn

For large values of A and small values of 5 , Eq. 8 can be writtenn

2

n = 1 62  (A>>1) and (62<<1) (9)
yn + h2

Since, according to Eq. 5, 562 ) is proportional to kx kL, it follows that the (yn-1)

increases as the third power of the distance xn and as the second power of frequency.

In the case of a totally reflecting boundary, the interference zone reaches out to a
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distance of x= 4h/X - X/4, which at a frequency of 1000 cps and a source height of 10 ft

is approximately 150 ft. After this last minimum is reached the sound pressure field

decreases monotonically with x in the same way as it does from a point source in free

space. The fluctuations in the sound amplitude are then expected to be approximately

the same as for a plane wave in a turbulent medium, a result which is well known.

If the sound pressure amplitude in a plane wave is denoted by A = Ao + a, where Ao
is the unperturbed amplitude, and a is the perturbation caused by turbulence, the
variance of the perturbation is forvariance of the perturbation is a2 )/A2  0. 5 kx kL for sufficiently large values

of x, x > 4-L-. If we add a factor 2 to account for the reflecting plane, and rewrite

this expression to conform with Eq. 9, we have, for x > (4L2/X-X/4) and x > /LX,

A 2 + (a 2 )

o2 1 + kx kL 42 ) (10)
A

o

However, when the boundary is not perfectly reflecting, we shall not approach free-

field conditions even for large values of x. The variance of the unperturbed sound pres-

sure field will decrease as i/x , rather than 1/x , as in free field. Consequently, the

ratio between the maximum and the minimum values of the fluctuating variance will be
2

proportional to x , and the fluctuations will be considerably larger than those predicted

for the free-field condition in Eq. 10. In other words, the amplitude of fluctuation of the

variance of the sound pressure over a boundary should increase with distance as x3 in

the interference region and approach x 2 beyond this region for large values of x.

4. Experimental Results

The experimental results presented here were obtained in the summer of 1953 at

Ipswich Beach, Ipswich, Massachusetts, in connection with studies of sound propagation

in the atmosphere. The object of these particular measurements was the study of sound

propagation into shadow zones created by temperature and wind; the results obtained on

fluctuations were incidental and incomplete. Nevertheless, it is interesting to see how

the results compare with the analysis which is presented here.

In Fig. XII-5 the peak-to-peak fluctuations of pure tones transmitted over ground

(wet sand with sparse grass) from a sound source located 6 ft above the ground are

shown. These fluctuations, measured 6 ft above ground, and read directly on the record

of a logarithmic sound-pressure-level recorder, represent the peak-to-peak variations

of 10 log <p 2 ). The average wind velocity measured at 6 ft above ground was 9 ft per

second, and the direction was the same as the direction of the course of the sound prop-

agation over which the measurements were taken. Similar results, obtained when

the direction of the sound propagation was opposite to the wind direction, are shown in

Fig. XII-6.
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Fig. XII-5. Measured and calculated Fig. XII-6. Measured and calculated
fluctuation amplitudes of fluctuation amplitudes of
the sound pressure level the sound pressure level
in a turbulent atmosphere in a turbulent atmosphere
over a plane boundary. over a plane boundary.

To discuss these results, we note that at the lowest frequency shown, 1200 cps, the

interference zone reaches out to approximately x = 160 ft. Here, we expect to find the

beginning of a transition in the fluctuation curve to an x2-like dependence for large values

of x. The experimental curve shows a leveling off in this region, and there is an indica-

tion of a later increase. However, there are not enough experimental points on the curve

for drawing any conclusions regarding the continued slope of the curve. A similar

behavior is shown at 2900 cps. At this frequency the distance to the last minimum in

the interference pattern is expected to be approximately 380 ft. We find an indication of

a transition at a position close to 200 ft, that is, closer to the source than expected. At

5000 cps the scatter of the points is considerable, and there is an indication of a transi-

tion at 200 ft. With fluctuations as great as 20 db it is conceivable that background noise

might have limited any continued increase of the curve at this point.

The results obtained when the sound propagates into the wind indicate a marked

decrease in the fluctuation beyond a certain distance. This behavior presumably is a

result of the acoustic shadow formed in the upwind direction. In this case the shadow

boundary is located approximately 100 ft from the source. Inside the boundary there is

no interference between a direct and a reflected wave, and the fluctuation is therefore

expected to be somewhat smaller in the shadow than in the interference region.

In order to compare the experimental results in the interference region with Eq. 3,

we select a value for the unknown product of the scale L and the variance of the index of

refraction- 2"> so that Eq. 3 will be in agreement with the experimental values at one

particular distance and one particular frequency. We choose for reference a distance

of 100 ft and a frequency of 2900 cps, which correspond to a measured value of the 8-db
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fluctuation in the downwind direction (see Fig. XII-2). The corresponding value of L[2)
-6

then is 0. 2 - 10 . If we use this value in Eq. 3 for the calculation of the fluctuation at

other locations and other frequencies, we obtain the curves shown in Fig. XII-4. Although

considerable deviation occurs at certain points, our analysis of the fluctuations at the

minimum points in the interference pattern gives an over-all x-dependence of the fluc-

tuation amplitude that is roughly in agreement with measurements. At frequencies much

lower than 1000 cps, the length of the interference region becomes very short and the

number of minima too small to make a comparison between predicted and measured

x-dependence meaningful. At sufficiently low frequencies, such as X > 4h, there will

be no interference region at all. In this case the fluctuation amplitude of the variance

of the sound pressure should increase with distance approximately as x2 after a com-

paratively short distance that is determined by the impedance of the ground.

U. Ingard
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