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A. SPACE-CHARGE MODE THEORY OF GAP INTERACTION

We have already presented (1) a linear space-charge theory of gap interaction for a

thin electron beam. We shall now take account of the space variation of the space-charge

fields and present the interaction for both infinite and Brillouin magnetic-focusing fields.
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Fig. VI-1. Electron beam in a drift tube with circuit fields coupled through a gap.

A system consisting of an electron stream and a gap region is shown in Fig. VI-1.

We have defined (1) the gap voltage, Vg, and gap current, Ig, at the surface. Excita-

tions in the electron stream will be represented by kinetic voltage V, and current I. In

matrix form, they are given by

B= (1)

By superposition we can write
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1. The Undriven System: V = 0

We shall assume that the gap surface is a perfect electric short. The electromag-

netic fields of interest are the TM On modes; that is, a/a 0. We also assume that

S/w << 1, and disregard the nonpropagating (cutoff) fields.

Case a. B = 00
oz

We have found (2) an infinite set of modes

Ez(z, r) = I A n exp(-jp ±nz) Jo(Pnr) (3)
n

in which

in = Pe T Pqn (4)

n =  (5)
qn

are determined from the boundary conditions, with

S q 2 2 2 k 2

Pe = v 0 Pq v 0 Y = Pe c
o o

Case b. Brillouin focusing (nonrelativistic)

For this case we find an infinite number of degenerate modes at p , to which the

external fields of the gap cannot couple, and a surface-wave mode (3):

Ez(z, r) = A+B Io( er ) exp(-jp Bz) (6)

±B = Pe qB (7)

with PqB determined from the boundary conditions.

For case a and case b the kinetic voltage and beam current for each mode satisfy a

set of transmission-line equations:

D = jZ P I (8)
Dz Vn, B On, B qn, B n, B
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D
Dz n,B On,B Pqn,B n, B

For case a,

V (zr) =M v v (z, r) (10)n e on

In(z, r) = -Jn(z, r) (11)

1 o o
On 2 V

o qn

For case b,

m
VB(Z) = -Vo Vz(z, b) (13)

IB(z) = 2TbKz(z) (14)

I Io w 2 I 1 (Peb)
YB (15)
OB 2 V 0qB (Peb) I (Peb)

In Eqs. 8-15, vo is the z-component of the time-average electron velocity; v n(z, r) and
th

v (z, b) are the first-order electron velocities for the n space-charge mode and
th

surface-wave mode, respectively; J n(z, r) is the current density of the n mode; K (z)n z
is the z-component of the surface current; a is the cross-section area of the beam;

I and Vo are the dc current and voltage of the beam; and Ii(Peb) and Io(Peb) are

modified Bessel functions.

The solutions of Eqs. 8 and 9 give the elements of the D-matrix:

n, B Bn, B

n, B n, B

An, B = [exp(-jP+ B 21) + exp(-jp-n B 21)] (17)

B n,,B B n, B
Bn, B = ZOn, B [exp(-jp+n, B 2f) - exp(-jp-n, B 22)] (18)

Cn, B 1 Yn, B [exp(-jp+n,B 2) - exp(-j n,B 2)] (19)

2. Circuit-to-Beam Coupling

We assume that the circuit field, Ec(z, r), can be identified in the presence of the

electron stream. This is consistent with our assumption (w /w) << 1, and allows us to

use a weak-coupling formalism. We have
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zVnB [ jZOnB qn, B InB + Ec(z, r) (20)

ZDz In, B O J n, B qn, B n,B (21)n n

We use the orthogonality properties of the space-charge modes (4), and neglect the

electromagnetic power flow because it is small compared with the kinetic power flow.

Then, the excitation of each mode is given by

D A

Dz Vn, B = Z0On, B Pqn, B In, B Cn, B Ec(z) (22)

D A A

I jY p V (23)Dz n, B On, B qn, B n, B

where the circumflex denotes that the r-dependence is omitted, and

f Fc(r) Jo (pnr) da

C = (24)
n J2(P r ) da

nn

CB = Fc(b) (25)

In Eqs. 24 and 25 we have written

Ec(z, r) = Fc(r) Ec(z)

Equations 22 and 23 can be solved by finding the impulse response (Ec(z) = Uo(z))
and then using the superposition integral. The elements of the K-matrix

n, B (26)
k n ,

are found to be

an, B 1 [M, B exp(-jp + M-n, B exp(-jp+n, B 1)] Cn, B (27)

bn, B 2 On, B [M+n, B exp(-jp+n, B ) - M-n, B exp(-jp-n, B I)] Cn, B (28)

where

M±n, B =  ±n, B( ±n, B ) exp(j±n, B ) dO±n, B (29)

as defined (1) previously.
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3. Beam-to-Circuit Coupling

The kinetic power theorem

Re IVg
(g g)

= Re [ VI [
(VI*)_ da (30)

imposes certain relationships (5) upon the matrices of Eq. 2.

find that

From Eqs. 30 and 2 we

En, B [cn, B
dn, B

c 1 Y M exp(-jp+n, - M
cn, B 2 YOn, B +n, B P +n, B -n,

d = M exp(-jp+n, B 2 +n, B +n, B ) + M exp(B -n, B

B exp(-jp-n, B

-j-n, B i)] Kn, B
n, B

Kn = Fc(r) J o(Pr) da

KB = CB

Equation 3 also gives the real part of the electronic loading admittance for each mode:

G1 Y
ef n, B 4 o [ M+n, B2 -n, B I2

(36)C K
n, B n, B

The imaginary part of the electronic loading admittance is readily obtained from

Eq. 2, in conjunction with the following kinetic energy theorem (5)

Im (VI ) = Im f (VI*) - (VI*)_ ] da

+ W J LoE 2 dr

Finally, Eqs. 2 and 37 yield

Bef n, B

(37)

1 Im BM-n, B exp(jqn, Cn, Kn,
2-On, B Im +n, B -n, B K qn, B I n, B n,B

+ W n, B an B(z) dz
+ op C n, B n

(38)

A. Bers

where

f)] Kn, B

(31)

(32)

(33)

(34)

(35)
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