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We discuss the algebraic construction of topological mog@#l®oth Schwarz- and Witten-typevithin the
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I. INTRODUCTION models and gravity3,19] where a VSUSY-like invariance

also existq20].

The present paper is devoted to the algebraic construction The fundamental ingredients of the algebraic approach
[1] and to the symmetries of topological field theories of[1,12] are extended formgcorresponding to theomplete
Schwarz-typdsee[ 2] for a review of the latter theorigsThe  laddersof the BV formalisn): the latter can be used to write
classical action of some of these mode@dsy.,BF models in  down action functionals as well dsorizontality conditions
a space-time of dimensiai=4 [3,4]) admits on-shell reduc- or Russian formula$21,22 summarizing the basic symme-
ible symmetries and thus leads to a Becchi-Rouet-Storaries of the action. The essential tool for describing VSUSY
Tyutin (BRST) operator which is only nilpotent on shell. transformations is given by the so-call@dsymmetry condi-
Moreover, the gauge-fixed action for these models admits @ons introduced in Ref[16].
supersymmetry-like in\{ariance, the so-called vector super- oy paper is organized as follows. In Sec. II, we briefly
symmetry(VSUSY), which also generates an on-shell alge-rgcq]l the BV approach and the geometric framework which
bra [5-8]. Such on-shell invariances raise problems upong generally chosen for its formulation. In Sec. Il we for-

qu?_rr\]nzitlon of t.hesg th?pn\efs”.( iSkyBY) f i mulate general principles for the algebraic construction of
e Lagrangian Batalin-VilkoviskyBV) formalism rep- topological models and summarize the different classes of

resents a systematic approach to.th|s' prob[@.n (For a topological models of both Schwarz- and Witten-type which
short summary, see R¢fl0].) In fact, in this canonicalsym- . . . )

. . , . can be obtained along these lines. Moreover, we will outline
plectic setting, all fields are supplemented from the begm-th derivati f VSUSY-t f i ithin the al
ning on withantifieldsand these additional variables ensure € derivation o -transformations within the aige-

the off-shell closure of symmetry algebras. Thus, antifield§ra'(_: approac_h to the BV formallsm._To_ anticipate our con-

somehow play the same role asxiliary fieldsin supersym- clusions in this respect, we aIr_eady indicate that thl_s proce-

metric field theorie$7,10]. The antifields of the BV formal- dure allows us to recover various known results slight

ism correspond to the external sources of the standard BRSgeneralizations therepfalmost effortless, in a systematic

approach and can be expressed in terms of the latter. In thi¥ay and in a quite compact form. As a by-product, we will

way, one recovers symmetry algebras for the basic fieldd!so present a novel interpretation of the VSUSY-algebra in

whose closure is guaranteed by the external sources. THeeC. IV C. For concreteness, 3D Chern-Simons theory is oc-

corresponding symmetry transformations coincide with thos&asionally considered for illustrative purposes and the 4D

obtained in the standard BRST-approach by the action of thBF model is discussed in detail in the Appendix: this also

linearized Slavnov-Taylor operator allows for a comparison with previous studies within the
As a matter of fact[Zy?], topo|ogica| field theories of BRST or BV setting(Since this tOpO'OgiC&' model admits an

Schwarz_type provide a neat app“caﬁon for the BV forma|_0n-Sh6” reducible symmetry, it exhibits the typlCEl' features

ism which is often discussed in quite general terms in thedf such models.

literature[11]. The algebraic approach to this formalism was

pioneered by lkemorjl] and applied to various models in

the sequel12,13 (see alsg14] for earlier work and 15] for Il. BV APPROACH TO FIELD THEORIES WITH LOCAL

an interesting field-theoretic interpretatjokiVe will incorpo- SYMMETRIES

rate VSUSY in this framework and show that this algebraic

treatment of VSUSY vyields a major simplification with re- A. General setting

spect to a similar approach within the BRST formaligts], The field theoretic models to be discussed admit a Lie
thus simplifying the study of the renormalization and finite- algebra of symmetries and the involved fields préorms
ness properties of topological modéls7]. with values in this Lie algebra. In particular, we always have

In the present work, we restrict our attention to models inthe Yang-Mills connection 1-formh and the associated cur-
flat d-dimensional space-time, but a generalization ofvature 2-formF=dA+ 3[A,A]. The field strength of a Lie
VSUSY to arbitrary manifolds can be achievied]. In fact,  algebra-valued field other thanA is given by its covariant
the latter allows us to tackle the relationship betw&drn  derivativeDo=de+[A,¢]. We will only be concerned with
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the classical theory and the fields occurring in the initialnal sources ¥, o, .. .): this allows us to recover essentially

invariant action of a model will be referred to akssical the same results as those given by the Slavnov-Taylor iden-

fields. tity of the BRST approach—see Appendix 1.5. for more de-
tails.

B. A simple example: Chern-Simons theory in R

One of the simplest examples of a topological field theory D. BV algorithm

(of Schwarz-typgis given by the Chern-Simons theory in  The BV algorithm starts with a classical action

R®. The corresponding action Sl A, ...] which is defined ord-dimensional space-time
1 5 Mgy and which is invariant under son@RST transforma-
_ tions denoted bys,®?. For many models, the operatsy is
Sl Al szatr{AdA 3AAA] @ only nilpotent on the mass-shell. The goal then consists of

determining a so-callethinimal action
is invariant under infinitesimal gauge transformatioag,
=Dc, and it leads to the equation of motidr=0, i.e., a - i . . a
zero-curvature conditiofior the connectiorA. In expression  Smil ®% Pz 1=Sn[A, ... 1+ 21 o PR AP,
(1) and in the following, the wedge product sign is omitted. a

The gauge invariance of the functiond) represents an satisfying theclassical BV master equation
off-shell, irreducible symmetry and therefore the BV descrip-

tion of this invariance leads, up to minor modifications sum- 8Suin 8Smin
marized in the Appendix, to the same results as the BRST f r (-0 2
approach. Mg | 6P 6Py

and generating nilpoterst variationsby virtue of the defini-
C. Geometric framework of BRST and BV approaches tions

Let us briefly recall the conventions and notation that are
generally used for the geometric framework of the standard a_ Shin «_ OSnin
BRST approactf8,22]. In this setting, infinitesimal symme- sP7=— SP* Pa=- Spa

. . a

try parameters are turned inghost fieldsThus, thegeomet-
ric sectorof the Chern-Simons model involves the classicalThus, the minimal action represents ainvariant action
field A and the ghost fieldc associated with infinitesimal extending the classical action,
gauge transformations. Lower and upper indices of a field
label its form degree and ghost number, respectively. For SnlA, ... ]=Su[P3,d% =0], 4
each field, the ghost number is added to the form degree in
order to define aotal degreeand all commutators are as- and thes variations extend the standard BRST transforma-
sumed to be graded with respect to this degree. BRST-  tions in the sense thap®?=(sd?)|¢x - o. (Accordingly, the
operator sincreases the ghost number by one unit, but itclassical equations of motion can be viewed as a conse-
does not modify the form degree of fields. In view of the quence of the choic? =0=sd* .)
definition of Green functions or the formulation of the
Slavnov-Taylor identity, one also introducesternal sources
v,a, ... which couple to thénonlineaj BRST transforma-
tions of the fieldsA,c, ... belonging to the geometric sec-  The gauge degrees of freedom of the models have to be
tor: for the Chern-Simons theory, this simply amounts to thefixed by virtue of some gauge-fixing conditiotf§,=0. The
addition of the term latter are implemented by introducing a gauge-ferntiog

of ghost number-1 depending on antighost field@:

' a

©)

E. Gauge-fixing procedure

Sext= J R3tr{ v, 'sA+ o5 %sc} o
W= tr{C*F,}. (5)
Mg

to the action. The latter contribution gsinvariant since the
operators is nilpotent and since external fields are assumedrye s variation of C® yields the multiplier field¢,
to besinert.
In the BV approachto Chern-Simons theory, one starts sC*=1I1%, sII®=0, (6)
with the basic fields ®2)=(A,c) together with the corre-
sponding antifields (®%)=(A*,c*)=(A;',A;?) which and the corresponding antifields are assumed to transform

have thesame index structuras the sourcesy, 1 O3 ). Al “the other way round:”
of these fields then define the geometricxinimal sectorof - .
the theory. Thereaftes variations are defined for all of these SIT* =(— 1)@+ Ddc+1c* - sC* =0. (7)

variables, the transformations of the antifields being
nontrivial. After carrying out the gauge-fixing procedure, all (Here and in the following, the total degree of a fietdis
antifields @*,c*, ...) can beeliminated in terms of exter- denoted by|¢|.) These trivial (“contractible”) BRST dou-
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blets which do not contribute to the physical content of the

theory, are taken into account by adding auxiliary fields
contribution

SwlCh M= | w(Cimey ®
My

to the actionS,,;,. The rejultingwonminimal actiordepends

on the fields @¢*)= (Eba,C“,l'[“) and the corresponding an-

tifields (®3)= (P} ,C* 11%):

Sl @A, @1 ]= Syl @2, % ]+S,,[CE 119 (9)

The master equatiof2) and thes variations(3) still hold if
Shin is extended tdS,,, and®? to A,

Theelimination of all antifieldg®7}) in terms of external
sources f,) is performed according to thgeeneral prescrip-
tion

~ ov
5 A of
d* = PA=—p +(_1)(d+l)|<1 [+d 9

DA (10
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oT
SPA 5DF

=0, (13

{I',I'}=0, i.e.,f tr
My

and thes variations of fields and antifieldse given by

oI
sOA={T",0%}, ie., sb?=-—
IO
. oI’
and s®=— E. (14

By virtue of sI'={I",T"}, the master equatiofil3) simply
expresses the invariance ofl’. The off-shell nilpotency of
the s operator can be viewed as a consequence of the graded
Jacobi identity for the BV bracket.

Since the implementation of the gauge-fixing conditions
follows a canonical proceduisee Eqs(5)—(11)], the non-
trivial part of the problem consists of determining the func-
tional Sy, i-€., a solution of the master equation which only
depends on the variablesb¢;®%). The next section pre-
sents an algebraic procedure for constructing this functional

After substituting these expressions into the nonminimal BV, topological models.

action (9), one obtains theertex functional:

2[(I)AaPA] = S’lm| R Snvt ng+ Sextt Squadr- (11

Here, the termSy=sWV i denotes the gauge-fixing part for

the classical, gauge invariant acti®y},,, the contribution
S.yi represents the linear coupling of the external soupges
to thes variations of the fieldsb”, andSy,¢,is an additional
term (that is nonlinear in the sourcewhich appears in the
case of on-shell reducible symmetries.

F. BV brackets and master equation

As in Eq.(9), let (®*) = (®?,C*,11%) collectively denote
all fields, i.e., the classical and ghost fields¥) defining the
minimal sector, the antighosg‘*, and the multiplier fields
I1“. Accordingly, let @%)=(®* ,C* ,IT*) denote the asso-
ciated antifields and let§”) = (®”;d%). Quite generally, if
®* has index structured¢”)3, then the corresponding anti-
field has index structured(,ﬁ)g?;l where d denotes the
space-time dimension. Accordingly, for a space-timg; of

Ill. ALGEBRAIC APPROACH TO TOPOLOGICAL
MODELS AND TO THEIR SYMMETRIES

After presenting some general principles summarizing the
algebraic construction of topological models, we will inves-
tigate which models can be constructed using this approach
and determine their characteristic features.

A. Geometric framework

To start with, we recall the general framework for describ-
ing a gauge field and, more generalyform potentials, on
d-dimensional space-timé14 [1,12].

1. Generalized fields and duality

In the BRST approach, the ghost fietds added to the
connectionA in order to define the generalized Yang-Mills
field A=A+ c. In the BV approach, one includes fieldsadf
form degrees which are allowed by the dimension of space-
time [1] so as to obtain thgeneralized fieldor extended

odd (even dimension, the fields and their antifields have theform or complete ladder

same(opposite parity.
For any two functional[ ®”] and Y[©®*] of the fields
(0", the BV bracketis the graded bracket defined by

6X oY o6Y X
+

X, Y= tr * ,
XY} SPA 5b%  SPA 5D

My

12

where the sign depends on the Grassmann pari¥/arfid .

(Our convention to usdeft functional derivatives differs

from the one which is frequently used in the literat{it&].)
Let I[®A,®%] be the nonminimal BV actioii9) as de-

A=A 94+ A9+ 1A A+, (15)
e.g., in three dimensions:
A=A;2+A 1+ At+c=c* +A* +A+c. (16)

Thus, generalized fields also involve fields witlegative

ghost numbefwhich are to be interpreted as antifields
More specifically, the 3D Yang-Mills ladd€id6) can be

viewed as a “self-dual” quantity since it involves the basic

fined on M. As noted above, the latter is a solution of the fields A and c together with their antifield§1,12]. To make

classical BV master equation

this notion of duality more precisg¢l2], we consider a
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p-form gauge potentiaK,=XJ with pe{0,1,...d}. This =¥, ,, Some models contain additional dual pairs
field gives rise to ayeneralized form (Xp,Y4-p-1) with 0<p=d—1 which are coupled to the
d generalized gauge field.
')’(p: xg:g+q:x3*d+xg:g+l+ S+ X We now summarize the general algebraic procedure for
q=0 constructing model§l,12].
-l (17) (1) One imposeshorizontality conditionson A,B,X,Y,

i.e., conditions on their field strengtiksDB,DX,DY which
which involves all ghosts and “ghosts for ghosts,” as well asare compatible with the Bianchi identities
some fields with negative ghost number. However, in gen- s o o
eral, the index structure of the latter fields does not allow us DF=0 and D?Q=[F,Q] for Q=B,X,Y.
to identify them with the antifields associated to the fields

appearing in?(p. Rather one has to introduce a so-calledThis determines nilpoterstvariations for the components of

dual formY,_,_; with an analogous expansion, A,B,X,Y. (For instance, for the Chern-Simons theory, the
q horizontality condition read§ =0 and is equivalent tGA
7d7p71= > ygf;lm:yg P—lp ... +Ygop-1 =—F") In practice, the horizontality conditions are nothing
q=0 but thetilted equations of motioof the model to be defined

in the next step: thus, the horizontality conditions fix both the
symmetries and the dynamics.

The generalized form& 7) and(18) are dual to each otherin  (2) One looks for ageneralized Lagrangian densitg,

the sense that the fields withegativeghost number con- i-€., @ generalizegp form which depends polynomially on
tained in the first one are the antifields associated to the field&,B, ... and their exterior derivativesA,dB, ... and
with positiveghost number contained in the second one angyhich satisfies theocycle condition £=d(..) wheres de-
vice versa. 1.e., notes the operator defined in the first step. By integrating the
d-form part of Z over space-time, we obtain tisgnvariant
action

o4 YSPL (18)

(Xg_g)*=Yq9ptq for q=0,...p,
- (19
(Yd-p-1-¢)* =Xpi17q for g=0,...d-p—-1.

o o i q>a,<1>*sf L3, 23
For instance, fod=3, the Yang-Mills laddeA=X; is self- Sinl ] My o @3

dual and, ford=4, this ladder is dual to the 2-form potential
ladderB=Y, (the potentialsA and B being the basic vari- from which we can infer thelassical actionby virtue of the

ables of the 4DBF model, see Append)jx projection(4). Thes variations defined in the first step coin-
_ o _ cide with those generated by the functio(@8) according to
2. Generalized derivatives and field strengths relations(3), i.e., Sy, solves the BV master equatio(For
The s differential is added to the exterior derivatideso  instance, for the Chern-Simons theory &, the cocycle
as to define thgeneralized derivative dd+s. In the same condition
vein, one introduces thgeneralized field strengthasf A and o -
: str{AdA+ A3 = —d tr{AdA+ 1 A%} (24)
¢
- —— 1 — - - - . - .
=y E[A’A]’ Bo=de+[A ¢]. (20) yields the minimal BV action
: , . 1 e 2 °
Actually, it also proves usefill2] to define the generalized S P D% = _f trl AdA+ —AAA
fields 2R3 3 3
~ - 1 - - ~ - -
FA=dA+S[AA], DRe=de+[Ae], (2D =SnlAl—- fRstr{CI);S@a}-) (25
which satisfy the Bianchi identities Since thes operator is defined in terms of conditions involv-
-~ - - ing the covariant quantitief,DB, ..., the polynomial £
ApA_ ARA __TEA o
DTF"=0, D"D%e=[F"¢]. (22) depends ondA,dB, ... by virtue of the field strengths
_ _ FAD”B, ... . By construction, the classical acti¢d) is
B. Field content and construction of models invariant under thestandard BRST transformationg,&?

All of the models to be considered involve a gauge ﬁe|dE(Sq)a)|<p;:o- If sd? involves @} , thensy is only nilpo-
A, hence a generalized ford=X, and the dual formB  tent on the mass shell.
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Obviously, the algebraic approach proceeds in the oppo-
site order than the usual BV-algorithm summarized above
[12]. It raises some general questions to which we will coméNe now impose the complete equation of motion for the

sB*=—[c,B*]—(F+\B). (29)

back to at the end of Sec. lll.

C. Examples

Mostly following reference$1,12], we will now present

2-form potentialB, i.e.,

5Snin _
6B

0=(FA+\B)|9= —sB*. (30)

an overview of models which can be constructed by the proThjs implies that the fiel®* can be set to zero consistently.

cedure outlined above. As pointed out by Bauli@,13,

In addition, we choose.=—1 for the sake of simplicity.

this construction not only yields topological field theories of prom Egs.(30) and (29), we then conclude tha&8=F and,
Schwarz-type, but also theories of Witten-type. We will noty,y, sypstitution into Eq(28), we obtain

spell out the explicit form of the cocycle condition for each
model, since the latter can easily be obtained from the given

LagrangianZ by application of thes operator. However, we
note that(contrary to the indications if12]), the cocycle

condition does not always have the simple forsw()Z
=0 as illustrated by Eq24). The compatibility of horizon-
tality conditions can readily be verified for each example.

1. BF model in &=2

This model involves the pairA,B), the action being
given by

Swi- | 6B [ wiBRlest o)
My My

where s.t. stands for sourdger rather antifieldl terms. The

1
i Js=0—7| WFF
Sl 55,/ 58 =0 2]/\44{ ki

+ X

®3=A,c,B;,By Y Ma

tr{®}sd?. (31)

This expression represents the minimal action associated
with the topological invarian{ ,t{FF} whose gauge fix-

ing gives rise to Witten'stopological Yang-Mills(TYM)
theory[2]. For the latter theory, both the BRST algeb2a]

and the VSUSY algebrfl6,24 close off-shell for different
classes of gauge-fixings so that the introduction of antifields
does not seem useful for studying the quantization of this
model. Yet, it is quite interesting that the TYM theory whose
gauge-fixing procedure refers to sdifiality conditions can

classical equations of motion are the zero-curvature condi€ obtained from an action involving only @ual pair of
tions F=0=DB. The 4D model is worked out in detail in Potentials(13].

the Appendix. Fod=2, the fieldB represents a 0-form and

does not have a local gauge symmegpart from ordinary
gauge transformation$2,3,7].

2. BF model with cosmological constant

Ford=3 andd=4, a term involving a real dimensionless

parametein can be addefi3] to the BF action for the pair
(A,B). Ford=3, the minimal action readl]

0

~ = Ao
smsf tr[BFA+—B3]
Mg 3

=f tr
M3

which leads to the classical equations of motier- \B?
=0=DB.
For d=4, the action

3

A
BF+ ~B3

+s.t.
3 s.t.,

(27)

0

~ = Ae
Siin= f tr(BFAJr—BZ)
My 2

[
My

leads to the complete equations of motieif -+ \B=0
=DB. From these, we can deduce, amongst others, that

4

A
BF+ - B?

+s.t
> S.t

(28)

3a. BF-XY model

Ford=2, one can add to thBF model (26) some dual
pairs (X,,Y4_p-1) with 0<p=d—1 coupling toA accord-
ing to[12]

0

d-1
Sin= JM tr|”BFA+ ZO XpDA?dpl}
d p= d
d-1

=f tr[BF+§) xpDdel]Jrs.t. (32
Md p=0

This action leads to the classical equations of motienF0
=DB—E‘;;%)_(—1)P[xp,Yd__p_l]sz_p:DYd_p_l. It rep-
resents a first order action that is analogous to three-
dimensional Chern-Simons theory.

3b. BF-XY model with BX coupling

For anyd=2, the 2-form potentiaK, appearing in the
previous model can be coupled directly B [12] with
strengtha e R:

Smin= fM tr{B(FA+ aX,) + XoDAY g 3}(g
d

=f tr{B(F+ aX,)+X,DYy4_3}+s.t. (33
My
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The classical equations of motion then take the formF0 . .
+aX=DY+aB=DB—-[X,Y]. By elimination of X from Siv= fM t{DUDU°~F[U,U ]}—jM tr{FDY}

the action functional by virtue of its algebraic equation of 6 6

motion, one gets a classical action of the form .

[ m dtr{FYq_3} which is analogous to TYM theorj12]. = fM dtr{UDU} fM dtr{FY}. (36)
More specifically, for d=3, this action, fM3d tr{FYo} ° °

=fM3tr{FDYo} describes magnetic monopoles and itsThe first_ part of this action admits _BRST and VSUSY glge_—
gauge-fixing via Bogomol'nyi's equations yields a topologi- bras which close off shell and which have been studied in

cal model that is closely related to four-dimensional TYm Refs.[13,27.

theory[25]. ) _

Ford=4, a “dual” form of the model(33) is obtained by 4. 3D Chern-Simons theory and extensions thereof
exchanging the generalized field and X, in the pairs For d=3, we can choos&;=A=Y, and consider the
(A1,By). (X5, Yy): Chern-Simons theorysee Eq.(25). One can also combine

this theory with the models considered abd¥&] or include
I a term fMStr{Xlel} [4]. The generalization of Chern-
Smin= JM tr{X,(FA+aB,) +B.DAY1}HE. (39 Simons theory to an arbitrary dimensi¢a] may be dis-
4 cussed as well using the algebraic appros;.

To this functional one can add a contributiftr ]-'(~BZ)|2 of 5. Supersymmetric extensions of the previous models

the formsfA, "+ fd(- ). Dlﬁergnt gauge fixings then al- The algebraic formalism admits a supersymmetric exten-
low us to recover the Lagrangian{tFF;} for the TYM  iqnro9] which should allow us to discuss the supersymmet-
theory and the one of the dual theory defined by the duallt)ﬁc versions of the previous models, e.g., SuB& models
transformationr— 1/7 (see Ref[26] for this and the follow- (see[30] and references thergin ’ '

ing pointg. The # parameter of the theory can be adjusted by

adding the topological invariant o
D. General features and generalizations

1. General features
StopEf dtr{a(AdA+5AAA) +DbFY,;+cY,DY,} ) i )
M, One may wonder what kind of field theoretic models can

be constructed by the algebraic procedure summarized above
:aJ' tr{FF}+bf tr{FDY,} and which generic f_eatures ar_e_shared by a_lll of_ the models
My My that we listed. Obviously, theifield contentis given by
p-form potentialsand they involve at least the connection
+CJ tr{DY,DY;+F[Y1,Y,]} 1-form A. Only in three dimensions, the corresponding ex-
4

tended formA contains solelyA, its ghostc, and the associ-

ated antifieldsA*,c*. Thus, 3-manifolds are the only ones
with appropriately chosen complex parametarb,c. The for which a model involving solely a Yang-Mills potential
different formulations of the TYM theory in two and eight can be constructedActually, such models can be obtained

dimensions can be approached along the same lines. indirectly in other dimensions by eliminating some fields, as
illustrated in Sec. Il C 2 abovg.
3c. BF-XY model with mixed couplings Otherwise, a common feature of all models constructed
e~ ~ o~ above is that theiminimal action(involving the classical
_Several sets of pairsX,Yq-p-1),(Up.Va—p-1), -+ fieldsA, ..., theghostsc, . . ., and theassociated antifields
with O<p=<d—1 can be considered and coupled by terms ofa ,C*, ...) can bewritten directly in terms ofjeneralized
the form [X,Y],[X,U],B[X,U], ... [13]. For concrete- ~ . .
; - . . fields A ... obeying somegeneralized zero-curvature con-
ness, we considerd=6 and independent pairs - ) ) i
ditionsO=F=- .. [31]. This fact is related to the following

(A1§4) ’ (“)‘(2 1?3) ’ (D 2 1v3) ’ (DC 1v§) with an action Smin

S +s.t where one. The dynamics of fields is described by ametric-
- nv LT

independent, first order actiothe kinetic term being of the
form AdA,BdA,XdY and the gauge invariant interaction be-
Sﬁn\/:J tr{B(F+X)+X(DY+[U,U%]) ing given by some polynomial of the field&General argu-
Mg ments supporting that this is the only class of examples have
been put forward in Ref.28].) All of these theories are of
+UDV-UDV +VVeL. (39  topologicalnature.
If some of the classical equations of motion are algebraic
By substituting the algebraic equations of motios B+ X (and linear in the basic fielgflsas it is the case in Secs.
=V+DU=V +DU into the latter functional, we obtain [I1C2, IlIC3b, and Il CX then they imply all other equa-
the following six-dimensional topological model of Witten- tions of motion by application of the covariant derivative.
type[13]: Moreover, elimination of fields by some algebraic equations
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of motion then reduces the first order actions to second ordet (¢ ). The resulting gauge-fixed action is invariant under
actions analogous to the TYM theory, i.e., topological mod-ySUSY transformationg5] and this symmetry is usually

els of Witten-type. described by a Ward identify8]. An invariance of the same
_ o type can be found in other topological models of Schwarz-
2. Other models and possible generalizations type[7,8] or of Witten-type[16,24.

Some examples related to two-dimensional gravity have At the infinitesimal level, VSUSY transformations are de-
been studied in Ref§12,31]. In this case, the components of scribed orRY by an operatos, wherer= 74, represents a
the space-time metric are viewed as gauge potentials assoeenstants-invariant vector field of ghost-number zero. The
ated to the invariance under general coordinate transformaeariation §, acts as an antiderivation which lowers the ghost
tions. number by one unit and which anticommutes withThe

A further extension of the formalism is the following. operatorss and &, satisfy a graded algebra of Wess-Zumino
Consider the case of an Abelian gauge group. The pairs dpe:
potentials ,,Y4_,_1) can be generalized to mixed dual
pairs (X,,dYy_p-2) and @X,,Y4-,-») each of which in-
volves an Abelian potential and an Abelian field strength.Here, £,=[i,,d] denotes the Lie derivative with respect to
Such pairs appear in the transgression constructiondof (the vector fieldr andi . the interior product withr.
+1)-dimensional  topological field theories from A general procedure for obtaining the explicit form of
d-dimensional topological mode[82]. VSUSY transformations for topological models of Schwarz-

A different generalization of the algebraic formalism con-type is known[8,36], but it is rather involved for complex
sists of introducing incomplete ladders and deformations ofnodels. Alternatively, the VSUSY variations can be derived
the operatod=d+s [33]. This approach allows us to dis- Within the standardBRST approachfrom the so-called
cuss cohomological aspects of Yang-Mills-type theories ofJ-type symmetry conditiofi6]
supersymmetric extensions ther¢af,33. - -

Finally, we note that Yang-Mills theories can be formu- o0,A=i,A (39)
lated in terms of a first order action by deformingB& - o~ ) .
model [34]. Thus, the algebraic formalism discussed hereland ,B=i B for p-form potentialsB). Though this ap-

should also be useful for describing the@®ntopological ~ Proach works quite well for topological models of Witten-
field theories. type [16], it is also involved for topological models of
Schwarz-type due to the fact that it refers to the equations of
3. Some open questions motion. To avoid the latter complication, we will now apply
The numerous examples presented above illustrate ththis simple algebraic approach withi_n the BV formalism jn
pertinence of the principles summarized in Sec. B Angrder to obtain VSUSY transformations as well as the in-
P AL ' " " duced variation of the BV action.
intriguing question is why the whole procedure works and,
more specifically, why thes variations defined in the first
stepli.e., by virtue of horizontality conditiojsoincide with
those encountered in the second giep, those generated by In the BV approachwe can start from the symmetry con-
the functional23)]. A further, related question is whether the gition (38), the only difference being thd now involves
constructed solution of the master equation always represengyth fields of positive and negative ghost number. In the 3D

a proper solution, i.e., one involving all of the local symme- case, substitution of the expansitib) into Eq. (38) yields
tries and of the associated reducibility identities. This questne \V'SUSY variations in the geometric sector,

tion can be answered in the affirmative for the examples

considered. This fact certainly relies on the principle thatone §.c=i,A, &§.A=iA*, §,A*=i_c*, §,c*=0.
considers complete laddergor consistent truncations (39
thereoj and horizontality conditions which are compatible , )

with the corresponding Bianchi identities. A detailed answerW5e note that, if two fields are related by VSUSE.g,,

to these questions seems to require a deeper geometric ug-- A), then the corresponding antifields are related “the
derstanding of the BV framework in genef&b], and of the
algebraic construction of topological models in particular.
Presumably the field theoretic formulation of Ref$5,29

[s,6,.]= L+ equations of motion. (37

A. Algebraic approach

s, ]
other way round”(i.e., A* — ¢*). This feature represents a
useful guideline for dealing with more complex models or

provides the appropriate setting for this endeavor. field contents. Using Eq(38) and sA=—F*, it can be ex-
plicitly shown that[s,5,.]A= LA, i.e., the VSUSY algebra
IV. VSUSY is satisfied off-shell for all fields of the geometric sectdm.

fact, this result holds by constructi¢t6].)

For Chern-Simons theory, we can fix the gauge by impos- |n the sequel, we will sketch the general procedure for
ing the Lorentz condition using a Landau-type gauge, i.e., b¥btaining the VSUSY variations of all fields and antifields on
choosing the gauge-fixing conditioff,=dxA=0 (where RY A p-form gauge potentiak, generally admits a hierar-

* A denotes the Hodge-dual of the 1-foA). This cgmtraint chy of ghOStSX;l)—l-X;ZFZu ... and the gauge-fixing of the
is implemented using a trivial BRST doubleC¢,11¢) corresponding symmetries leads to analogous hierarchies of
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TABLE I. X, pyramid.

Xp
Elll Xrl)—l
EE—Zz Ep—z XS—Z
_5—33 ?5—13 E%)—s XS—3
_,;,44 E,;z; Ep—4 35—4 Xg*‘l
antighosts. All of these fields can be organized B\apyra- The §,-variations of the muItipIiersH”‘st“ follow

mid culminating inX,, see Table I. from the variations of th€“ by requiring the VSUSY alge-
For a complete ladde®, the VSUSY variations are pos- pra[s,s,]=L, to be satisfied:

tulated to be given by
L 8.11%=8.sC*=L C*—s(5,C%. (43)
5.0=i,0, (40)

. . . The antifields C* ,IT*) associated with the BRST doublets
i.e., VSUSY climbs the ladder from the highest ghost num'(C“,H“) again transform “the other way round.”

ber to the lowest one. Theariations of the classical fields, . . .
the ghosts, and the associated antifidioléow directly from For @stantf, for Chern-slmons theory, .tb‘l,a/ananon of
the antighostc has to vanish for dimensional and ghost-

Eq. (40) by choosingQl=X,,Y4_,-1. As noted after Eq. ‘ . o 9N
(39), the antifields transform in the other direction than thenumber reasong'there is nothing it can transform intg

fields do. and the argumen¢i3) then yields thes, variation of the
Next, we consider theantighosts with negative ghost auxiliary fieldb=sc:

number i.e., those located on the left half of the BV pyra- — — -

mid, i.e., c,*;,c,%,.co k5, ... . Their variations follow 6.c=0=0b=4:sc=(L,—sd)c=L.C. (44

from the arguments preceding EqA30) of the Appendix. . e )

Those of theassociated antifieldare inferred from the gen- The associated doublet of antifields*(b*) is assumed to

eral guideline that antifields transform in the other directiontransform “the other way round:”

— 0. — 6.
':)halm fields do, i.eC*— CP impliesC%—C% , cf., Eq.(A31) 5,b*=0, 6,c*=L.b*. (45)
elow.
All of the remainingantighostshave apositive(more pre- o
cisely non-negativeghost number Those which have the B. Ward identity
same total degree can be gathered in ladders which corre- Consider again Chern-Simons theory for concreteness.
spond to the diagonals on the right half of the pyramid:  The transformation law38) induces the following variation
of the minimal BV action(25):

-~

Iy | p-2
Cp2=Cppt+Ch gt --+cCP77%

1 ~
o - @ .Sy | AL At
Cpoa=Cp_a+Ch g+ - +CP 4 ..
— * *
These generalized forms are incomplete since they only in- n JRStr{A L A+C*Locl.

volve components with positive ghost numbegimilarly,

the antifields associated to the antighogl) can be col- The transformationg44) and(45) yield a similar expression
lected into ladders containing only components with negativéor the variation of the auxiliary action:

ghost number:

-~ — — 5.5 =—5,f tr{c*b =f tr{b* £.b+c* £.C}.
(Cpua)*=(CP 2+ +(Cp)*,.... (42 o RO [t &

The transformation law40) is now postulated for all of ghuksy ”:/?/ ngr?(Ti”ima' BV actioS,n= Spint Sux satisfies a
. ~ = - , t

these ladders, i.e., forQd=cy ,,,(Cp_2n)* With roken Ward identity

=1,2,....

8Snm s 8Snm

5,04 S
SPA A oo

W.Sim= f R3tr

We note that the BV pyramid does not involve the complete

ladderX,, either, but only those components which have positive :f tr{®% L DA}, (46)
ghost number. R3
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The breaking is linear in the fieldand also in the antifields The linear parts, of the s operator(which already deter-
Henceforth, it is unproblematic for the quantum theory sincemines the non-Abelian structure of the theory to a large ex-
“insertions” that are linear in quantum fields are not renor-tent [37]) also allows for a unified formulation of all sym-
malized by quantum corrections. We note that the rgdt  metries. To present this geometric description, we defime
can also be derived from the expressid®,=Syn,  analogy tod=d+s)
— [ratr{®@%s®”} by substituting the variation§39), (44),
and(45), and using’s,8,]=L,. do=d+sg,

After elimination of the antifields, the Ward identit}6)

takes the form T.=i.—-6,. (51)
53 The horizontality conditior{48) definings, and the symme-
W2 = f tr{ & CDA—+ O, pA = o try condition (38) defining 5, are then equivalent to
doA=0, T,A=0 (52)
RS and the compatibility condition for these two equations,
It has the same form as the one found in the BRST frame- 0=[do,i,]=[d,i,]-[So,5.]

work [8,31] where no external sources are introduced for the _
fields c and b. Yet, it is their inclusion which leads to the IS the VSUSY-algebra relatiof50).
quite symmetric expressioi@7).

The fact that the breaking is linear in the quantum fields V. CONCLUSION
and in the sources only holds in theandau gauge €A
=0: in a different gauged*A— a/2xb=0 with « € R*, the
breaking term is nonlinear in the quantum fields.

To summarize the two previous sections, we can say th
the BV approach readily leads to a VSUSY algebra which
closes off shell and to a Ward identity which is broken by a
term that is linear in the quantum fields and sour@Geshe
Landau gauge

As is well-known, the BV formalism represents a system-
atic procedure for constructing ainvariant action in the
ase of a gauge algebra which is reducible and/or only valid
n shell. Thes operator of the BV-setting is nothing but the
linearized Slavnov-Taylor operator. If the symmetry algebra
is only valid on shell, antifields appear in tegariations and
the squtionSnm|q,z of the Slavnov-Taylor identity involves

terms that are quadratior of higher orderin the antifields.

The algebraic framework for the BV formalism on which
we elaborated here represents an elegant procedure for con-

It is interesting to compare the action of the operai®rs structing solutions of the Slavnov-Taylor identity fapo-
and s on the basic fieldgconsidering again Chern-Simons logical models of Schwarz-tyges defined in various dimen-
theory for illustration. For this purpose, we decompose sions. In particular, it allows us to obtain quite
according tos=sy+s; wheresy, ands; represent, respec- straightforwardly the VSUSY transformations which are
tively, the linear and nonlinear parts of the operator. By vir-most useful for dealing with the quantum version of these
tue of sSA= —F*, the action ofs, on the generalized field  theories. As pointed out above, deeper geometric insights
is given by into the BV framework should explain more fully why

highly nontrivial solutions of the master equation can be ob-
SOA: —dA. (48) tained from such a simple algebraic procedure.
As emphasized in Sec. lltppological models of Witten-
Comparison with Eq(38) shows that each of the operators typecan also be introduced along these lines. However, their
sy and &, acts in the same fashion on all fields occurring inBRST and VSUSY algebras close off shell in the standard
BRST approach and therefore the introduction of antifields is
not useful for their descriptiofl6,24,27.

Our discussion of VSUSY for topological models defined
on flat space-time can be generalized to generic manifolds by
incorporating VSUSY in thes operation: this leads to an
exact rather than a broken Ward identity and it proves to be
useful for discussing the relationship between topological
(49) models and gravity18].

C. On the algebra of symmetries

the expansio\. However, the two operators act in opposite

directions inside the laddek: while s, increases the ghost
number by one unitd, lowers it by the same amount,

So

—

A=c*+A* +A+c,
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F=0 and DB=0, (A5)
APPENDIX: EXAMPLE: BF MODELINR 4

. . . . whereF andD are defined by Eq(20). The previous rela-
In this Appendix, we discuss the symmetries of the 4Dtions are equivalent to

BF model using the algebraic approach to the BV formalism
outlined in Sec. Il B. We will carry out explicitly the elimi-
nation of antifields so as to allow for a comparison with the
results obtained from other lines of reasoniimy particular
with those obtained from the standard BRST apprpach

sA=—FA and sB=-D’B (A6)

and thereby determine adlvariations: by substitution of ex-
pressiongA4), one obtains

1. Symmetries of the classical action sc= — % [c,c], sB*=—F—[c,B*]

a. The model and its symmetries

= — *x * _ *
The BF model inR* involves two gauge potentials: the sA=-Dc, sB DB —[c,B1] (A7)

YM 1-form A and the 2-form potentiaB=B), i.e., a Lie
algebra-valued 2-form transforming under the adjoint repre-
sentation of the gauge group. The model is characterized bé(nd
the action

sB; =—DB}] —[c,Bg]—3[B*,B*]

sBy=—[c,Bg],

SnlAB]= f 4tr{BF}, (A1)
R sB,=—DBy—[c,B,],

which leads to the equations of motion sB=—DB,—[c,B]~[B*,B,],

F=0 and DB=0. (A2 A~ _DB—[c.A*]-[B*.By]-[B* By, (A8)

The functional (A1) is not only invariant under ordinary . .
gauge transformations, but also under the local symmetry ~ s¢*=—DA* —[c,c*|-[B*,B]-[B},B;]—[Bg ,Bol.

5B=DB;. (A3) The fields and antifields of the minimal sector can be col-
lected in @®?)=(A,c,B,B{,By) and @)
By virtue of the second Bianchi identitp (DBy)=[F,Bg] =(A*,c*,B*,B} ,B§). By construction, thes variations of

and the equation of motioR =0, the right-hand side of Eq. these variables as given by E¢7) and(A8) are nilpotent
(A3) is on-shell invariant under the transformatiaiB; off shell. The fact that the transformation law of the classical
=DBy,. Thus, the symmetryA3) is one-stage reducible on field B involves the antifieldB* reflects the fact that the
shell symmetry algebra generated by E@\3) closes only on

shell. If all antifields are set to zero, one recovers the stan-

b. Horizontality conditions and s transformations dard BRST transformations ofA(c,B,B;,B,) which are

Apart from the ghostc parametrizing ordinary gauge OnlY nilpotent on the mass-shell.
transformations, we have gho®$=B, andB3=B, param-

etrizing the reducible symmetr§A3). Thus, one introduces ¢. Minimal BV action

generalized form$l] Proceeding along the lines of Sec. 11l B, we can extend the
classical actiorfAl). From the horizontality condition@\6),
A=A C+HA2+A M+ A+C we obtain thecocycle conditiorf12]
=Bj +BI +B* +A+c, str{BFA = —d tr{BFA},
B=B,2+B;'+B+B!+B2 which yields thes-invariantminimal BV action1,12]
=c* +A* +B+B;+B,y, (Ad) - =
8o Sl @%50%1= | u(BFA. (A9)

where B§ =(Bg)*,B} =(B;)* and where the identification
of antifieldshas simply been performed by considering theSubstitution of the expansiorid4) leads to the explicit ex-
index structure of all fieldésee Sec. )l The gauge potentials pression
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Shiin= Sinv— fR4tr{<b;sCI>a}

1
-5 f (B [B” Bol}, (AL0)

where the last term reflects the antifield dependence of the

transformation law oB. We note that all of thes variations
(A7) and (A8) have the BV form(3) which confirms the
identification of antifields made in E¢A4).

d. Gauge fixing and elimination of antifields

Gauge fermion and auxiliary field$sauge fixing of all

PHYSICAL REVIEW D 66, 025027 (2002

The antifields ¢x) will now be expressed in terms of these
sources by virtue of the prescriptigh0). For the antifields
of the minimal sector, this entails

A*=—(y=#do)=—7,

c*=—-o,

B* = —(p, "+ xdc; H=—p; ",

B = —(pg*—*dc ?)=—ps?,

BY=—p,°3, (A16)

whereas the antifields associated to the antighosts and mul-

symmetries, i.e., of YM invariance and of the reducible sym-tiplier fields are given by

metry of the 2-form potentiaB, requires a gauge fermion of
the form

W= R4tr{€d*A+€;1d*B+€—2d*Bl

+c0(drc; *+axm )} (aeR). (A1l)

The involved antighostsaa)z(?cl_l,g‘z,@) are supple-
mented with auxiliary fieldsI{®)= (b, ;,7 1, 7') so as to
define BRST doublets:

sc=b, 2

SE_ = 77_1, SEO= 771,

(A12)

Sql:’ﬁl,

sb=0, sm;=0, sw =0, s#'=0.

The corresponding antifields transform in a dual Wefy Eq.

(],
sc*=0, s(c;H)*=0, s(c™?)*=0, s(c®)*=0,

sb*=c*, s(m)*=—(c H*,

s(m Y*=—(c ?)*, s(mh*=—(c* (A13)

and thereby ensure theinvariance of the auxiliary func-
tional S, = — [ ratr{(C*)*I1,} which gives rise to the non-
minimal actionS;,,,= Siint Saux-

Elimination of antifields Since antifields have been asso-

ciated to all fieldsexternal sourcesre also introduced for

c*=—(o+dxA)=—o,

(e )* =~ (03~ dxB—xdc")= o},

(c H*=— (0}~ dxBy)=—03,
(€)%= —(0p '—axm l=dsc; H=—0, 1,
b*=—\,

B i (A17)
(m H* == A3+ axc®)=-2J,

(mh*=—n;7.
Vertex functional The gauge-fixed action including external

sources is obtained froi8,,= Spyint Saux DY eliminating an-
tifields according to relationA16) and(A17). This leads to

2=Sn+t fRJr{FA)ASq)A} + Squadr

=S t+sv gf T R4tr{PAS(I)A} + Squadr

=St ng+ Sextt Squadrl (A18)

each field(and not only for those transforming nonlinearly Where

under thes operation, as is usually done in the BRST ap-

proach. Altogether, we have the fieldsb(*) = (@a,E“,H")
with

(®®)=(A,c,B,B1,Bp), (CH=(c,c;*,c 2cY),

(II*)=(b,m, 7 1 mt) (A14)

and the associated external sources) (are to be denoted as
follows:

-1 -2 -3 01 _—1
(v,0,p5 " ,p3°.ps°), (0,03,05,0,7),

(M BN D). (A15)

1 a_q A
Squadr: - EJR4tr{BO[F’2 ! P2 l]} (A19)

is related to the fact that the variation of B exhibits an
antifield dependence, see E@#8). For po=0, expression
(A18) coincides with the one of Ref7] in which external
sources are introduced at a different stage.

s variations After elimination of all antifields in terms of
sources, thes variations of the basic fieldsA(c,B,B;,B)
are exactly the same as before except for the fact slBat
now depends on éhatted source rather than an antifield:

sB=—-DB;—[c,B]+[p, *,Bo]. (A20)

025027-11



GIERES, GRIMSTRUP, NIEDER, PISAR, AND SCHWEDA

The sources associated to the basic fields transform as
sy=DB—[ps*Bo]—[p,",B1]—[c,y]—*db,
so=—Dy—[ps°,Bol—[p3°.B1]-[p,",B]-[C,0],

spy '=F—[C,p; 1+ *dmy, (A21)

sp3 2=—Dp, '~ [c,p3*]—*d7m L,

_ ~l N 1.,
Spa*=—Dps =[c.ps 1+ 5[ps 02 ],

and those associated to the antighosts and multipliers tran

form as

so=—dxDc, (A22)

so3=d(DBy+[c,B]—[p;*,Bo]) — *dm,
sos=dx(DBy+[c,Bl]),

so, t=—dxmy,
S\=c+d*A,

Shz '=— o0+ dxB+*dc’,
S\9=—gi+dxBl—axrl,

SNy 2= —0, t+axm Thdrcy L.

The s variations of fields and sourcedl have the form

62 62

A__ " —
SO = Spa= SO

, A23

and can be viewed as the relict of the BV variatidig)
after the elimination of all antifields. Obviously, tisevaria-

tions (A23) determine thdinearized Slavnov-Taylor opera-

tor, i.e.,

5% 6 6% 6

= 2 (a2
SDA Opa  Spa SPA (A24)

s=SEEf tr

Thus, the BV master equatid3) (with antifields expressed

in terms of sourcesrepresents th&lavnov-Taylor identity

=0, (A25)

which ensures thas?=0 off shell and thatsX=Ss(2)

=28(3)=0. This interpretation of the master equation is a

PHYSICAL REVIEW &5, 025027 (2002

and multipliers form BRST doubletfsee Egs.(Al13) and
(A17)] which simplifies the cohomogical analysis of the
quantum theory.

e. BV versus BRST

Let us summarize the conclusions that we can draw from
our discussion of the BF model at the classical lejaid
which are in accordance with the general resi8td1]). For
an off-shell,irreducible symmetry(such as YM invariange
the differences between the BV approach and the BRST pro-
cedure are twofold.

The s operator of the BV formalism represents the linear-
'%z_ed Slavnov-Taylor operator: unlike the standard BRST dif-
erential, this operator doesot leave the external sources
invariant.[ The nontrivial transformation laws of the sources
follow from the nontrivials variations of antifields given by
Egs. (14), after the elimination of antifields in terms of
sources by virtue of the gauge fermidry. |

In the BV approach, one introduces sources for all fields,
not only for those transforming nonlinearly, as one usually
does in the BRST framework. Of course, the latter frame-
work alsoallows for the inclusion of such sources: although
they are not particularly useful, they lead to a more symmet-
ric expression for the Slavnov-Taylor identitgnd also for
the Ward identities, see EqA33) below and comments
thereaftet.

For the local symmetry of the 2-form potent®l(which
represents eeduciblesymmetry, an extra feature appears in
the BV formulation.

The s variation of the classical fielB depends on sources
(thereby ensuring theff-shell nilpotencyof the s operatoy.
Another facet of this issue is the presence of the functional
Squaarin the vertex functional. While the BV approach auto-
matically produces such contributions which are nonlinear in
the external sources, they have to be added “by hand” in the
standard BRST frameworke.g., sed5,7,39.

2. VSUSY

a. VSUSY transformations of fields

As in the standard BRST approalts], we start from the
ZJ-symmetry conditions

5.A=i_A, 5,B=i,B. (A26)

These relations are then spelled out in terms of component
fields [as in EqQ.(39)] and the antifields are eliminated in
terms of sources. In this way, we obtain thi&USY varia-
tions of the basic fields

cornerstone of the theory and is further discussed in the lit- 2t should be noted that an off-shell formulation for the basic

erature, both at the classical and quantum I€9€l1]. Here,

variations can eventually be given within the BRST framework by

we only note that the hatted sources associated to antighostsmicking the BV approach, see Ré8].
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5.c=i,A, 6.By=i,By, S,0=LN—dxi p,?,
8.A=—ip,*, &,B1=i.B, (A27) SA=0,
5TB:_i‘ra/7 5T;g=_£T)\??1+d*iT?y’
and thevariations of the associated sources S\31=0,
(A31)
S,y=i.o, 6,0=0, 57341‘: —LT)\g— a( T);g-i- (1—a)*L T?O,
8z =132 Sp3=ipg®, (A28) SN0=—g(rns 1,
73_ — B _ _
6,p,°=0. 8,0, =—LN;?—dxg(7)c 2+ axL c 2,
We now define the VSUSY variations of the antighosts SN 2=0
T4 .

(C%=(c,c;t,c72,cY in such a way that relationgA28)

hold for the unhatted sources, i.e., such that we have By construction, the VSUSY algebra is satisfied off shell for

all fields and sources.
5.0=0, Ward identity The &, variations of fields and antifields

57.’)/:iTO', 0= H H i
induce thebroken Ward identity
-1_: -2 -2_. -3
57'/72 =13, 57-/)3 1704 (Azg) WTSnm: fR4tr{i®KcT®A}' (A32)
-3_
9:p4"=0. which takes the following form after elimination of anti-
fields:

The transformation laws of the multiplierdI(*) are then

determined by the requirement that the VSUSY algebra is

satisfied, see Eq(44). Altogether, we find the following W,E=f M= D)lealpar @Ay, (A33)
variations of antighosts and multipliers R

Thus, we have a breaking which is linear in the sources and
in the quantum field§7,31]. It is worthwhile to note that this
result has been obtained for an arbitrary value of the gauge
6,.¢ t=g(nc 2 8.m=L,cH+g(nm L parametera. This is in contrast to the usual formulation

(A30) \[/vhereﬂVSUSY puts some restrictions on the gauge parameter
— 7,8,31.

5,C=0, 8,b=LT,

b. BV versus BRST

Quite generally, we can say the following. Once external
) sources(associated to nonlinear field variatioresre intro-
Here,g(7)=7"g,,,dx" denotes the 1-form associated 10 the gyced in theBRST frameworkor discussing Ward identities,
vector field by virtue of a space-time metrig(,) [8,16.  one recovers the same results for VSUSY transformations as
_ If we set all sources to zero, we recover the transformaiy, the BV approach and also the same type of expression for
tion laws and on-shell VSUSY algebra of the standard BRST|pe breaking of VSUSY. Yet, in th8V frameworkwhere
approactj16]. If sources are included in the latter framework soyrces are introduced for all fields under the disguise of
for the discussion of Ward identities, considerations differenypifields, the VSUSY-breaking term has a more symmetric
from ours lead to the introduction of the hatted sourcesgrm.

(A16) and to the variationgA27)—(A30) [7]. The algebraic derivation of VSUSY variatiofior topo-

To conclude, we come to th& -variations of the sources  |ogical models of Schwarz-typdased on the symmetry con-
(Al15) associated to the doublet field€“,11¢). According  ditions (A26) is quite simple and straightforward within the
to the general guideline indicated after E(R9), these BV formalismwhereas the same approach within the stan-
sourcedantifieldg are assumed to transform “the other way dard BRST formalism is fairly involved due to the fact that it
round,” in the opposite direction as the fields, see &&): refers to the equations of motig@6].
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