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Gluon propagator without lattice Gribov copies
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We study the gluon propagator in quenched lattice QCD using the Laplacian gauge which is free of lattice
Gribov copies. We compare our results with those obtained in the Landau gauge on the lattice, as well as with
various approximate solutions of the Dyson-Schwinger equations. We find a finite value;(445 MeV)22 for
the renormalized zero-momentum propagator~taking our renormalization point at 1.943 GeV! and a pole mass
;6406140 MeV.
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I. INTRODUCTION

Over the last 20 years, widely different conjectures ha
been proposed for the infrared behavior of the gluon pro
gator. Although it is a gauge dependent quantity, it can
discussed in a given gauge. Even within the same gauge
proposals for the infrared dependence differ drastically@1#.
We mainly summarize here the results that are given in
literature within the Landau gauge, since that gauge
widely used in studies of Dyson-Schwinger equatio
~DSE’s! as well as in lattice QCD. Early predictions we
obtained by solving approximately the DSE’s. Mandelst
@2# obtained a solution of a set of truncated DSE’s with
infrared behavior of the form (q2)22 for the gluon propaga-
tor. Such an infrared enhancement was shown, if obtaine
any gauge, to lead to an area law for the Wilson loop@3# and
thus to be sufficient for confinement. Infrared enhancem
was assumed in various phenomenological studies@4# and
corroborated by later studies of DSE’s with refined appro
mations@5#. A different perspective was taken by Gribov@6#,
who showed that avoiding gauge copies one would obta
gluon propagator which vanishes in the infrared in the L
dau and Coulomb gauges, of the form

D~q2!;
q2

q41m4
. ~1!

An infrared suppressed behavior was advocated by St
@7#, and recently by others@8#, as a possible solution
to DSE’s. Following a procedure similar to that by Gribo
Zwanziger@9# gave arguments to show that, on the lattic
for any finite spacing in the limit of infinite volume
D(q250)50.

We will also consider in this work the parametrizatio
deduced by Cornwall@10# using a resummation of Feynma
graphs which leads to gauge-invariant amplitudes. The gl
propagator is obtained as a solution to this special se
0556-2821/2001/63~9!/094504~8!/$20.00 63 0945
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DSE’s where the claim is that the only gauge depende
appears in the free part. Cornwall’s solution, in addition
fulfilling the Ward identities, allows a dynamical mass ge
eration. Thus this formulation has the additional attract
feature that the gluon mass vanishes in the ultraviolet
required perturbatively. Since the self-energy obtained
Cornwall is claimed to be gauge independent, we will use
model to fit the propagator both in the Landau and in
Laplacian gauges.

In contrast with all the approaches described above,
tice QCD provides a framework for the calculation of th
gluon propagator starting directly from the QCD Lagrangi
and can thus yield a conclusive result. Attempts to calcu
the gluon propagator started more than ten years ago@11,12#
on rather small lattices. These early results could be in
preted in terms of a massive scalar propagator, but confirm
the expectation that a Lehmann-Ka¨llen representation is no
applicable: positivity of the transfer matrix is lost after no
local gauge fixing. Results on larger lattices were accoun
for by assuming a positive anomalous dimension@13#. Re-
cently, a detailed study of the gluon propagator on very la
lattices@14# has been performed, which makes an impress
effort towards bringing under control errors due to the fin
lattice spacing and to the finite lattice volume. However,
to now, all lattice studies have used a similar implementat
of the Landau gauge on the lattice. Gauge fixing is acco
plished by using a local iterative procedure which identifi
local stationarity, but in general fails to determine the glob
extremum. Which local extremum~‘‘lattice Gribov copy’’!
is selected depends on the starting condition. These la
Gribov copies cannot be eliminated. In this situation, th
effect has repeatedly been claimed to be small@15#. As dis-
cussed in Sec. III, we are not convinced by such claim
Results obtained so far will have a safer foundation if t
effects of lattice Gribov copies are better understood.

In this work we address the problem of Gribov copie
We use a different gauge condition, which produces
©2001 The American Physical Society04-1
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smooth gauge field like the Landau gauge, but which sp
fies the gauge uniquely: no ambiguity arises due the lat
gauge fixing procedure. This is accomplished by using
Laplacian gauge@17#. The motivation and implementation o
this gauge are given in Sec. III.

We calculate the gluon propagator in quenched QCD
lattices of sizes 84,164 and 163332 atb55.8 and 6.0, in an
attempt to study its zero-temperature behavior. Our pro
dure can be extended straightforwardly to finite tempera
where the infrared behavior of the propagator yields
chromo-electric and chromo-magnetic screening masses.
results that we obtain, within the Laplacian gauge, show
same ultraviolet behavior as in the Landau gauge. Howe
there are significant modifications in the infrared. In partic
lar we find that the zero-momentum propagator is fin
obeys scaling, and becomes volume independent for la
enough volumes. It should not however be used as a de
tion of the gluon mass, since the zero-momentum limit of
propagator is gauge dependent. It is simply a measure o
susceptibility of the gauge-fixed fieldAm in the Laplacian
gauge. A quantity which instead can be shown to be ga
independent to all orders in perturbation theory is the p
mass of the transverse partD(q2) of the propagator@18#. To
determine this pole if it exists at all, an extrapolation to ne
tive q2 is necessary. We compare the inverse propag
D21(q2) in the Laplacian and the Landau gauges. Usin
variety of extrapolationAnsätze, in particular a fit to Corn-
wall’s model @10# which describes the momentum depe
dence of our results rather well, we find that data in
Laplacian gauge give support for the existence of a pole
mass of;640(140) MeV. Data at smaller momenta a
needed to consolidate this result.

Section II introduces our notation, Sec. III motivates a
describes our choice of the Laplacian gauge, and Sec
presents our results. They are summarized in Sec. V.

II. DEFINITION OF THE GLUON PROPAGATOR

The gluon propagator in the continuum is given by

D mn
ab~q!52 i E d4x^0uT@Am

a ~x!An
b~0!#u0&eiq•x. ~2!

This tensor can be decomposed into a transverse and a
gitudinal part:

D mn
ab~q!5S dmn2

qmqn

q2 D dabD~q2!1
qmqn

q2
dab

F~q2!

q2
.

~3!

For a covariant gaugeF(q2) reduces to a constant and co
responds to the gauge fixing parameterj which in the Lan-
dau gauge is zero. Since we want to make a comparison
recent results@14# obtained in the Landau gauge, we stu
the transverse scalar functionD(q2) which can be extracted
from D mn

ab(q):

D~q2!5
1

3 H(
m

1

8 (
a

D mm
aa ~q!J 2

1

3

F~q2!

q2
. ~4!
09450
i-
e
e

n

e-
re
e
he
e
r,
-
,
ge
i-

e
he

e
e

-
or
a

-
e
a

IV

n-

ith

F(q2) is determined by projecting the longitudinal part
D mn

aa(q) using the symmetric tensorqmqn.
On the lattice the dimensionless gluon field can be defi

by

Am~x1m̂/2!5
1

2ig0
H @Um~x!2Um

† ~x!#2
1

3
Tr@Um~x!

2Um
† ~x!#J 1O~a3! ~5!

where a is the lattice spacing. One may consider differe
definitions for the gluon fieldAm , accurate to higher order in
a. It has been found@19# that these different definitions giv
rise to modifications that can be absorbed in the multipli
tive field renormalization constant. The gluon propagator
momentum space is constructed by taking the discrete F
rier transform ofAm for each color component,

Am
a ~q!5(

x
e2 iq•(x1m̂/2)Am

a ~x1m̂/2!, ~6!

where the discrete momentumq5(qm ,m51, . . . ,4) takes
values

qm5
2p

aLm
nm , nm52S 1

2
Lm21D , . . . ,S 1

2
LmD ~7!

and the momentum-space gluon propagatorDmn
ab(q) is de-

fined by

V d~q2q8!Dmn
ab~q!5^Am

a ~q!An
b~2q8!& ~8!

with V the lattice volume. In the ultraviolet the gluon prop
gator is expected to behave like 1/q2. Since on the lattice the
free massless propagator behaves as

D~q!5
1

(
m

@~2/a!sin~qma/2!#2

, ~9!

to reduce errors due to the finite lattice spacing we take
our momentum variable the usual

q̂m5
2

a
sin

qma

2
. ~10!

To relate the bare lattice propagator to the renormali
continuum propagatorDR(q;m) one needs the renormaliza
tion constantZ3(m,a):

a2D~qa!5Z3~m,a!DR~q;m!. ~11!

Imposing a renormalization condition such as

DR~q!uq25m25
1

m2
~12!
4-2
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GLUON PROPAGATOR WITHOUT LATTICE GRIBOV COPIES PHYSICAL REVIEW D63 094504
at a renormalization scalem allows a determination o
Z3(m,a). Connection to other continuum renormalizatio
schemes can then be made.

III. GAUGE FIXING PROCEDURE

A. Motivation

The gluon propagator is normally considered in the La
dau gauge,]mAm(x)50 ;x. On the lattice, this condition
becomes

F~V![(
x,m

Re Tr@V~x!†Um~x!V~x1m̂ !# maximum.

~13!

The gauge-fixing functionalF has many local maxima. To
specify the gauge uniquely, the gauge condition above re
to theglobal maximum. This defines thefundamental modu-
lar region ~FMR! Landau gauge. In practice, however, t
gauge transformationV is found by an iterative local maxi
mization of F, which terminates when anylocal maximum
has been reached. A different gauge condition is thus im
mented, which one might call therandomLandau gauge, and
which depends on the details of the maximization proced

It is commonly believed that the effect of choosing a loc
maximum of Eq.~13! rather than the global maximum i
small, so that the ‘‘random’’ Landau gauge is a good a
proximation to the FMR Landau gauge. The following arg
ment is often presented to support this view. A given gau
configuration is gauge fixedn times, each time after perform
ing a random gauge transformation; this procedure gener
many gauge copies, each corresponding to the local m
mum nearest to the random starting point along the ga
orbit. It is observed@20# that the difference between gluo
propagators measured on copies corresponding to the la
and the smallest values of Eq.~13! is found to be statistically
insignificant. A possible problem with this argument ho
ever is that the numbern of gauge copies considered in su
comparisons~typically 30 or less! is extremely small com-
pared to the total number of local extrema of Eq.~13!: for
simple entropic reasons, all copies considered miss the
bal maximum by similar amounts, and no reliable inform
tion can be extracted about the gluon propagator in the
bal maximum configuration. It is therefore possible, and
believe quite likely, that the ‘‘random’’ Landau gauge an
the FMR Landau gauge are significantly different.

Further evidence for this situation has recently been p
vided in another gauge, the direct maximal center~DMC!
gauge@21#. Although the functionalFDMC(V) to be maxi-
mized differs from Eq.~13!, a similar approach of local it-
erative maximization is taken, leading to the ‘‘random
DMC gauge, with similar problems. In this case, however
is also possible to converge to a large valueF̃L of FDMC by
starting from a Landau gauge copy~‘‘Landau’’ DMC
gauge!. This valueF̃L can then be compared with the valu
obtained fromn random starting points. One may fit th
maximum value amongn copies,F̃(n), by a reasonableAn-
satzlike a series in 1/n, and extrapolate ton→`. It turns out
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that the extrapolated value falls well belowF̃L , which is
itself below the global maximum@22#. Furthermore, the
properties of the gauge-fixed field are qualitatively differe
between the ‘‘random’’ and the ‘‘Landau’’ DMC gauges: th
former confines after center projection, while the latter do
not @16#.

Since in the Landau gauge as in the DMC gauge the n
ber of local maxima is expected to grow exponentially w
the lattice volume, we expect a similar situation in the La
dau gauge, leading to large differences between the ‘‘r
dom’’ ~local maximum! and the FMR~global maximum!
gauges. One might argue that this is not a problem, and
the local maximization of Eq.~13! implements in the ther-
modynamic limit a well-defined, butstochasticgauge condi-
tion. The relationship between that gauge condition and
perturbative version]mAm(x)50 is unclear however. There
fore, one should consider the possible effects of selectin
local rather than the global maximum of Eq.~13! with a
great deal of caution. This is the motivation for our study
the gluon propagator in a well-defined, unambiguous gau

B. SU„3… Laplacian gauge fixing

In @17#, Vink and Wiese proposed a simple method to
the gauge unambiguously inSU(N). It uses N auxiliary
Higgs fields, which are chosen as theN lowest-lying eigen-
vectorsv ( i ) of the covariant Laplacian. Under a local gau
transformationV(x), these eigenvectors transform cova
antly: v ( i )(x)→V(x)v ( i )(x). Therefore, the gauge can b
fixed by requiring, at each space-time pointx,
$V(x)v ( i )(x),i 51, . . . ,N%, to have some predefined orien
tation in color space. Specifically, each eigenvectorv ( i )(x)
hasN complex color components, so that theN eigenvectors
form a complexN by N matrix M. Reference@17# projects
this matrix onto SU(N) by polar decomposition:M
5WP,WPU(N),P5(M†M )1/2. The required gauge trans
formation is thenV(x)5eiaW†, wherea5(1/N)arg(detW).
Here V(x) rotatesM ‘‘parallel’’ to the identity 1N at each
space-time point. The gauge is unambiguously defined,
cept for these gauge configurations where some of thN
lowest eigenvalues are degenerate. Such configurations
genuine Gribov copies; they never occur in practice. T
approach has been tested forSU(2) andU(1) @23# and it
was shown to reduce to the Landau gauge in the continu
limit aside from exceptional configurations~e.g. an instanton
background!. Here, we use a slightly modified procedu
which requires only (N21) eigenvectors@2 for SU(3)], as
follows @24#.

First, apply a gauge transformationV (1)(x) which rotates
v (1)(x) to

S uv (1)~x!u

0

0
D .

Five real components of the rotatedv (1)(x) must vanish,
which specifies five constraints. ThereforeV (1)(x) is not
fully specified, but has 82553 degrees of freedom. Any
satisfactoryV (1) can be used.
4-3
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To completely fix the gauge, we use the second eigenv
tor v (2), already rotated byV (1) to

S v1
(2)

v2
(2)

v3
(2)
D .

Three additional constraints are obtained by requiringv (2) to
be rotated to

S v1
(2)

Auv2
(2)u21uv3

(2)u2

0
D .

This fixes the gauge completely and uniquely.
Note that the second rotation is in anSU(2) subgroup,

since it leavesv1
(2) untouched. This indicates how to gene

alize this construction toSU(N): the first rotation fixes
(2N21) constraints, which leaves (N221)2(2N21)
5@(N21)221# degrees of freedom, forming a subgrou
SU(N21). The next step reduces the gauge freedom
SU(N22), etc. down toSU(2). It is easily seen that, in this
recursive procedure, the matrixM is reduced to upper trian
gular form ~with real positive diagonal elements! by the ro-
tation V(x). This is why theNth eigenvector need not b
computed: it is only transformed by a phase, which is se
rately determined by the requirement thatV(x)PSU(N).
Our procedure can thus be viewed as aQR decomposition of
M. The gauge, which is globally well defined~provided the
N eigenvalues are distinct!, may be ill defined on a sub
manifold of pointsx where our recursive process brea
down. It can be seen that such local gauge defects occ
isolated points, where, forSU(3), Auv2

(2)u21uv3
(2)u250. The

correlation of these points with instantons is studied in@24#.
The Laplacian gauge so defined has the great virtue

being unambiguous. Hence it is the appropriate tool to
dress our concern about the effect of local extrema of
usual Landau gauge. It also has strong similarities with
Landau gauge: it is smooth, Lorentz symmetric, and gau
fixes a pure gauge lattice configuration@gauge transformed
from Um(x)51 ;x,m] back to U51. Nevertheless, it is a
different gauge: its perturbative definition is under consid
ation @25#; it differs from the Landau gauge most strong
where the magnitude of the eigenvectorsuv (1,2)(x)u becomes
small.

IV. RESULTS

Since most of the previous studies were performed in
Landau gauge, it is important to compare our Laplaci
gauge propagator with the Landau-gauge one. For this
pose, we have taken, for our analysis, lattice configurati
available on the Gauge Connection database@27#, which had
already been gauge fixed to the Landau gauge with the u
local over-relaxation method@28#. These are 200 configura
tions of a 163332 lattice, atb55.8 and 6.0 each.

The transverse gluon propagator is shown in Fig. 1 for
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two gauges atb56.0. As expected the ultraviolet behavior
identical in the two gauges, whereas in the infrared, which
the region of interest, significant differences are visib
Since we use a different gauge, this should not come a
surprise. We show the usual quantityq̂2D(q2). The Laplac-
ian propagator is clearly not as large as the Landau prop
tor at low momenta.

The difference between the Landau and Laplacian gau
can also be seen in the deviation ofF(q2) from zero.
Whereas in the Landau gauge we find that

q̂mq̂nD mn
aa!1 ~14!

as expected, in the Laplacian gaugeF(q2) is not small, and
has a maximum at low momenta. The behavior ofF(q2) is
shown in Fig. 2 for 84 and 163332 lattices atb56.0. Since
F(q250) cannot be obtained by our projection, we on
have one point, at the smallest momentum 2p/32 on the
larger lattice, to ascertain thatF(q2) really has a maximum

FIG. 1. Comparison of the transverse gluon propagator timesq2

in the Landau and Laplacian gauges on a 163332 lattice atb
56.0.

FIG. 2. F(q2) as a function ofuq̂u in lattice units after applying
the cylindrical cut in momentum.
4-4
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GLUON PROPAGATOR WITHOUT LATTICE GRIBOV COPIES PHYSICAL REVIEW D63 094504
and does not keep diverging asq2→0. But since the data ar
systematically higher for the smaller lattice than for t
larger one, it seems unlikely that increasing the lattice s
further would bring the infrared data up and remove
maximum.

It is interesting to examine the volume dependence of
zero-momentum propagatorD(0)[ 1

4 (mm(aD mm
aa (q250).

We note that in order to determine the transverse part of
propagator at zero momentum,D(0), onemust subtract from
D(q2) the quantityF(q2)/q2uq250, which we can only obtain
as limq2→0F(q2)/q2.

From Fig. 2 it can be seen that to extract the limit
F(q2)/q2 asq2→0 reliably, one needs more data in the i
frared. Therefore, with the volumes at our disposal we
only examine the zero-momentum limitD(0) of the full
propagator. In the Landau gauge, Zwanziger has argued
D(0)5D(0) should vanish in the infinite lattice volum
limit @9#. A recent lattice study inSU(2) at finite tempera-
ture @20# seems indeed to indicate such a behavior. With
data on our present volumes the needed subtraction in
Laplacian gauge cannot be reliably performed, and thus
cannot extractD(0). What we find isthat D(0), the zero-
momentum propagator, is finite and volume independent
large enough volumes. The volume dependence and sc
of the renormalized zero-momentum propagator in phys
units is displayed in Fig. 3 where we collected results fro
b55.8, 6.0, 6.2, and 6.5. To obtain the renormalized pro
gator we impose the renormalization condition given in E
~12! where we choose the renormalization point to bem
5a21 for b56.0, i.e. m51.943 GeV. This determine
Z3(m,ab56.0)'2.312. We then use Eq.~11! to find the ratio
of the Z3 factors for differentb values at the same physic
momentumq e.g., forb55.8 atq5m we have

Z3~m,ab55.8!

Z3~m,ab56.0!
5

ab55.8
2 D~qab55.8!

ab56.0
2 D~qab56.0!

50.97~4!. ~15!

FIG. 3. The renormalized zero-momentum propagatorD(0)

[ 1
4 (mm(a

1
8 D mm

aa (q250) versus volume in physical units. Th
dashed line is a fit to the forma exp(2V/V0)1c.
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In this way we obtain the renormalization factors at allb
values. Forb56.2 andb56.5 we find 1.04~4! and 1.07~6!
respectively as compared to the value atb56.0. We also
obtained consistent results by fitting our data in the ultrav
let regime using the asymptotic one-loop result forDR
;Z/q2@1/2 ln(q2/L2)#2dD, with dD513/22 as in the Landau
gauge since in this regime the results in the Laplacian
Landau gauges are the same. As can be seen from Fig.
renormalizedD(0) displays reasonable scaling, and appe
quite volume independent for volumes larger th
;1/2 fm4. We find a value ofD(0)55.020(16) GeV22 or
D(0)21/25445(3) MeV, corresponding to a length scale
;0.5 fm. Since the zero-momentum propagator measu
the susceptibility of theAm

a field, the length associated with
determines the domain over which the gluon field rema
correlated in the Laplacian gauge. If the lattice dimensio
become of the order of this characteristic length, then o
expects finite size effects to become appreciable. This is
deed what is observed, as shown in Fig. 3, with an appro
mate volume dependence of exp(2V/V0) with V the lattice
volume andV0;D(0)2.

On the lattice, the Lorentz symmetry is only approx
mately restored. Lattice artifacts cause some dependenc
D(q) on the orientation of the vectorq rather than just onq2.
To minimize these discretization effects, we filter our data
making a cylindrical cut in momentum along a referen
direction n̂5 1

2 (1,1,1,1), in the same manner as in Ref.@14#.
Namely, we only consider momenta obeying the criteri
uDq̂u,2p/Ls , whereLs is the number of sites in the spatia
direction, andDq̂ is the momentum transverse ton̂ (Dq̂

5q̂2q̂•n̂ n̂). Using these filtered data which allow a dire
comparison with@14#, we examine the various proposals di
cussed in the Introduction for the infrared behavior of t
propagator. We find that Gribov type parametrizations@6,7#
as well as infrared enhancement of the type (q2)22 @2,4,5#
are excluded@29#. TheAnsatzof Marenzoniet al. @13#,

D~q2!5
Z

~q2!11a1M2
, ~16!

with a non-perturbative anomalous dimensiona, gives a bet-
ter description of the lattice data than the aforemention
parametrizations, but, as seen in Fig. 4, underestimates
peak of the propagator. On the other hand, Cornwall@10#
allows for a dynamically generated gluon mass which v
ishes at large momentum in accordance with perturba
theory. Using a special set of DSE’s referred to as a ga
invariant ‘‘pinch technique,’’ he obtains the following solu
tion for the gluon propagator:

D~q2!5ZF @q21M2~q2!# ln
q214M2~q2!

L2 G21

with

M ~q2!5M H ln@~q214M2!/L2#

ln@4M2/L2#
J 26/11

. ~17!
4-5
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Cornwall’s proposal provides a reasonable fit to the d
over the whole momentum range~with x2/NDF52.5). The
quality of this fit can be seen in Fig. 4. For comparison
also fitted our data to the form suggested by Leinweberet al.
@14# where two terms were used, one to describe the ul
violet behavior of the formDUV;@1(q21M2)#L(q2,M )
and one the infrared of the formD IR;1/(q21M2)11a. The
exact form, referred to as model A, as taken from Ref.@14#,
is

D~q2!5ZF AM2a

~q21M2!11a
1

1

q21M2
L~q2,M !G

L~q2,M !5H 1

2
ln@~q21M2!~q221M 22!#J 213/22

.

~18!

This parametrization, which includes one more parame
than Cornwall’s and is purely phenomenological, does fit
data best over the whole momentum range~with x2/NDF
51.2).

We address the question of scaling by comparing our
sults atb55.8 andb56.0 on the largest lattice. In the sca
ing regime the renormalized propagatorDR(q;m) is indepen-
dent of the lattice spacing. Therefore, as in Ref.@14#, we can
use Eq.~11! to obtain the following expression for the rat
of unrenormalized lattice propagators at some physical
mentum scaleq:

D1~qa1!

D2~qa2!
5

Z3~m,a1!DR~q;m!/a1
2

Z3~m,a2!DR~q;m!/a2
2

5
Z1

Z2

a2
2

a1
2

~19!

and where the labels 1,2 refer to the data atb56.0 andb
55.8 respectively. The scaling properties of the lattice glu
propagator can now be investigated using Eq.~19! by adjust-
ing the ratiosZ1 /Z2 anda1 /a2. In Fig. 5 we show the two

FIG. 4. The gluon propagatorD(q2) multiplied by q̂2 on the
163332 lattice atb56.0. The dash-dotted line shows the fit to t
model by Marenzoniet al., Eq. ~16!, the solid line to Cornwall’s
model, Eq.~17!, and the dashed line to model A of Ref.@14#, Eq.
~18!.
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sets of data lying on the best scaling curve. The shifts
quired along the horizontal and vertical axes determine
ratios of the wave function renormalization constants and
the lattice spacings. We find

ab56.0/ab55.850.7160.02, Zb56.0/Zb55.851.0760.075
~20!

with strongly correlated errors. The ratio of lattice spacin
is in agreement with the value of 0.72(4) obtained from
detailed analysis of the static potential@26#. The ratio of the
Z factors is within what is expected from perturbation theo
and in agreement with the value of 1.04(3) of Ref.@14#. In
other words, scaling is very well satisfied for the Laplaci
gauge, and performing the fits atb56.0 gives the behavior
of the gluon propagator in the physical regime.

We focus now on the infrared behavior of the transve
propagator. Figures 6 and 7 show the inverse propagator
function of q̂2 in the two gauges. Two advantages of t
Laplacian gauge become visible.

First, the orientation of the momentumq has less effect
than in the Landau gauge: the data points at a given valu
q̂2 show less scatter, and the cylindrical cut is not as esse
as in the Landau gauge in the infrared region. At a giv
lattice spacing, the Laplacian gauge approximates better
Lorentz symmetry of the continuum. This reduction of latti
artifacts is understandable since the gauge is fixed by c
sidering the lowest-lying eigenvectors of the Laplacia
which are the least sensitive to UV-cutoff effects. In contra
the Landau gauge comes from the iteration of a comple
local, UV-dominated process. Better rotational symmetry
lows for better accuracy or for the same accuracy on coa
lattices.

Second, the inverse propagator is closer to a linear fu
tion of q̂2 in the Laplacian gauge. If it were the propagat
for a free boson, it would be described by a straight li
since 1/D(q2)5Z21(q21m2). Having curvature means tha
one has a momentum-dependent effective massP(q2). In
particular, the infrared massP(0) and the pole massP(q2)
such that@q21P(q2)#50 are different.

FIG. 5. Scaling of the data atb55.8 and 6.0 on the 163332
lattice. The solid curve is the best fit to both sets of data.
4-6
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GLUON PROPAGATOR WITHOUT LATTICE GRIBOV COPIES PHYSICAL REVIEW D63 094504
The latter is of special interest, because of its gauge in
pendence at least to all orders in perturbation theory. Find
a pole, i.e. a zero of the inverse propagator, requires
extrapolation of our data to negativeq̂2. The less curvature
in the inverse propagator in the infrared, the more relia
the extrapolation will be.

Three types of extrapolation are displayed in the figur
quadratic and cubic polynomials inq̂2, and our fit to Corn-
wall’s model. The location of the pole—and even
existence—is affected by the choice of extrapolation in
Landau gauge. The coefficientsa1 ,a2 ,a3 of the cubic poly-
nomial extrapolation keep increasing, indicating poor sta
ity. Essentially, no statement about a pole can be mad
that gauge. Differentiating between a cubic fit~which gives a

FIG. 6. The inverse gluon propagator at low momentum in
Landau gauge, atb56.0 on the 163332 lattice. The solid triangles
and crosses show the data which are kept and discarded b
cylindrical momentum cut respectively. Three extrapolations

negativeq̂2 are shown: quadratic and cubic polynomials inq̂2, and
Cornwall’s model. Note the instability of the poleD21(q2)50 with
respect to the type of extrapolation chosen.

FIG. 7. Same as Fig. 6, for the Laplacian gauge. The redu
vertical scatter of the data at a given momentum indicates a sup
restoration of rotational symmetry. The reduced curvature as a f

tion of q̂2 improves the stability of the pole with respect to the ty
of extrapolation.
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pole! and a Cornwall-type fit~which does not! will require
extremely accurate data on large lattices. Extracting the p
is also difficult in the Laplacian gauge but at least one fin
a pole with all theAnsätzethat we tried. Given the convexity
of the data, a lower bound is provided by a linear fit ne
q250, which defines the~gauge-dependent! infrared mass.
Quadratic and cubic terms in the polynomial extrapolat
represent small corrections of decreasing size. One can
make some estimate of the gluon pole mass. A similar st
of a lattice of double size, as was considered in Ref.@14#,
would produce more than 4 times as many points in the sa
q̂2 interval, and should allow for an accurate determinat
of the pole mass.

We also measure the correlator of the gluon field av
aged over a time slice. Namely, we measure

C~ t !5
1

Ls
3

1

8 (
a51

8
1

3 (
m51

3 S (
x

Ls
3

Am
a ~xW ,0!D S (

x

Ls
3

Am
a ~xW ,t !D

~21!

which is displayed in Fig. 8. At large time separationst, this
correlator should decay exponentially like exp(2mpolet),
giving us another approach to extracting the pole mass.
use this observable to perform a cross-check on this m
and as a further study of the systematic errors in its deter
nation. This correlator is measured on the same config
tions asD(q2), so it contains no additional information. Bu
the same information is given a different weight, so that a
to C(t) will give different results than a fit toD21(q2),
especially after the cylindrical momentum cut. Therefore,
fit Cornwall’s model directly toC(t) instead ofD21(q2).
Remarkably, the difference is rather small, which atte
again to the soundness of the model. The dashed lines in
8 show the original fit of Cornwall’sAnsatzto D21(q2),
which already provides a fair description of the data. T
solid lines represent a direct fit of the same 3-parameterAn-
satzto C(t), excluding the first few time slices which othe
wise completely dominate the fit. The fit started fromt54

e

the
o

d
ior
c-

FIG. 8. Time-slice gluon correlator, in the Laplacian gauge,
b55.8 and 6.0. The dashed lines show Cornwall’s model fitted

D(q̂2) after the cylindrical momentum cut; the solid lines are dire
fits to the time slice correlators, excluding the first few time-slic
4-7
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and t52 at b56.0 and 5.8 respectively, which amounts
discarding similar intervals in physical units. Given the
fitted parameters, one can then solveD21(q2)50 numeri-
cally, with D(q2) as per Eq.~17!. The corresponding pole
mass varies little from one fit to the other, and rema
roughly constant in physical units atb55.8 and 6.0. Also, a
model-independent extraction of the pole mass, by mea
ing the effective massme f f(t)52 ln@C(t11)/C(t)#, gives a
consistent value. Taking these results into account, toge
with the quadratic and cubic extrapolations displayed in F
7, we estimate the pole mass to lie in the interval@500,785#
MeV, where we useda21(b56.0)51.943 GeV to convert
to physical units@26# with As5440 MeV. The lower bound
is given by the infrared mass, which corresponds to a lin
extrapolation ofD21(q2); the upper bound is provided b
the largest value obtained when fitting to our data Cornwa
model. A reasonable central value is 640 MeV, which cor
sponds to Cornwall’s extrapolation in Fig. 7.

We have performed a similar exercise for the Land
gauge. The fit of Cornwall’s model toD(q2) or C(t) is quite
satisfactory, but the equationD21(q2)50 gives a complex
pole, far from the real axis. Note that Ref.@30# also finds
oscillatory behavior for the time-slice correlator in 3
SU(2) theory fixed to the Landau gauge, reflecting a co
plex pole. This disagreement with the Laplacian gauge
puzzling, since one expects the pole to be gauge invar
Possible causes include the inadequacy of the Landau g
fixing procedure on the lattice or finite-size effects. Larg
volume studies, currently under way, should elucidate
issue.
s
.
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V. CONCLUSIONS

We have evaluated the gluon propagator using the Lap
ian gauge which avoids lattice Gribov copies. We extrac
the transverse part of the gluon propagator and verified
scaling in this gauge. Examining the scaling and volume
pendence of the zero-momentum propagatorD(0), we
reached the conclusion that it is a constant beyond a la
size of;0.8 fm. This size is consistent with the characte
istic length scale determined fromD(0) itself as the range
beyond which the gluon field decorrelates in this gauge.

Among the various proposals for the transverse propa
tor which are physically founded, Cornwall’s model@10#
provides a reasonable fit to the lattice results over the wh
momentum range. We find it satisfying that the lattice d
seem to favor a model with a dynamically generated ma

By looking at the inverse propagatorD21(q2) at small
momenta, we see that the Laplacian gauge is superior to
Landau gauge in its restoration of Lorentz symmetry on
lattice. Furthermore, it turns out that the inverse propaga
is almost linear inq̂2 in the Laplacian gauge. This allows fo
a more reliable extrapolation toq̂2,0, as compared to the
Landau gauge. We tested a variety of extrapolationAnsätze.
They consistently yield a pole mass at;6406140 MeV.
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