CERN-THESIS-2007-039

28/11/2006

<)

A REST Model for High Throughput Scheduling in
Computational Grids

[an James Stokes-Rees
Linacre College, Oxford

Thesis submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy at the University of Oxford

Michaelmas Term, 2006

Abstract

Current grid computing architectures have been based on cluster management and
batch queuing systems, extended to a distributed, federated domain. These have
shown shortcomings in terms of scalability, stability, and modularity. To address
these problems, this dissertation applies architectural styles from the Internet and
Web to the domain of generic computational grids. Using the REST style, a flexible
model for grid resource interaction is developed which removes the need for any
centralised services or specific protocols, thereby allowing a range of implementa-
tions and layering of further functionality. The context for resource interaction is a
generalisation and formalisation of the Condor ClassAd match-making mechanism.
This set theoretic model is described in depth, including the advantages and features
which it realises. This RESTful style is also motivated by operational experience
with existing grid infrastructures, and the design, operation, and performance of a
proto-RESTful grid middleware package named DIRAC. This package was designed
to provide for the LHCb particle physics experiment’s “off-line” computational in-
frastructure, and was first exercised during a 6 month data challenge which utilised
over 670 years of CPU time and produced 98 TB of data through 300,000 tasks
executed at computing centres around the world. The design of DIRAC and per-
formance measures from the data challenge are reported. The main contribution
of this work is the development of a REST model for grid resource interaction. In
particular, it allows resource templating for scheduling queues which provide a novel

distributed and scalable approach to resource scheduling on the grid.

I dedicate this work to Emily and Maggie,
who have made it possible, and made it purposeful.

9 What has been will be again,
what has been done will be done again;
there is nothing new under the sun.

10 Is there anything of which one can say,
Look! This is something new?
It was here already, long ago;
it was here before our time.

11 There is no remembrance of men of old,
and even those who are yet to come

will not be remembered by those who follow.

FEeclesiastes 1:9-11

Acknowledgements

There are numerous groups of people who have, each in their own way, contributed
to the four years of work you are now (in part) reading about. My supervisors lan
McArthur and Steve McKeever I thank for their constant encouragement and direc-
tion. Thank you for letting me pick the direction three years ago and then standing
each side of me to keep it all on course. Within the rest of the Oxford Physics
Grid group, this work has been improved by the camaraderie of Alexander Soroko,
Carmine Cioffi, Matt Leslie, Stefan Stonjek, Chris Dennis, and Rhys Newman. Jeff
Tseng’s time and experience with physics computing has been invaluable, and I
thank him for corralling us software-types. For an incredible and life changing year
in Marseille, I have to thank Frank Harris for befriending me and introducing me
to Andrei Tsaregorodtsev and the LHCb computing group based at CPPM. Great
thanks to my partner in crime Vincent Garonne for all the time spent developing
DIRAC and watching Sopranos at CERN. As well, thanks to everyone on the LHCb
Computing Team. It was great to work so well together making “the grid” a reality
for LHCb and particle physics.

These have been several exciting years for grid computing. The time spent
with the various Oxford e-Science projects, our monthly lunches at St. Hugh’s
(not fish again!), and the Software Engineering seminar series provided an informal
environment that deeply affected my thinking on grid computing. The results were
additional insight into the broader challenges of the field, inspiration for new ideas,
and much hilarity as we repeatedly discovered everyone was finding it pretty hard
to make grid computing really “work”.

Much of this work was developed on experimental kit rigged together and con-
nected to the department network with the kind permission and even support of
Pete Gronbech, Chris Hunter, and John Harris. Thank you for your patience and
allowing me to keep turtle-pace Pentium’s with Red Hat 7 running for so long.

I must also thank the patient readers of the various mailing lists I spent endless

hours writing to, in search of solutions to the problems of grid computing. In

i

particular, thanks to tb-support, lcg-rollout, Ihch-paste, and globus-discuss.

Contributing in less concrete ways I also must thank the MER team at the FSA
for the good times over the final 8 months (and for paying my rent), the time during
which the bulk of this was actually written, for the many early morning walks and
talks with Robin Mayfield along the canal, and for the Oxford Vineyard Church staff
team, who have been incredible to work with and grow along side. In particular, my
thanks to Andrew Myatt for patience, leadership, high expectations, and believing
in my ability to do more and be more than I ever thought possible.

I have come to realise the importance of family in the last few years and must
acknowledge the incredible influence my parents, Mary and Jim Stokes-Rees have
had on my life. Thank you for putting in me the values and priorities which I
have today. Thank you to Andrew, my brother, for constantly challenging me to
remember how big and exciting the world is, the need to find balance, and the
importance of life long learning.

Finally, thanks to the most important people in my life. Emily, for encouraging
me and supporting me in every possible way over the past four years, Maggie, for
giving me the world’s best thesis break wrestling matches, and of course to God for
the blessing of this opportunity and having a plan for my life. For everyone, I pray

I will be able to make the most of it.

1l

Statement of Authorship

The bulk of the work presented in this dissertation is solely my own. Conceptually,
the idea of Condor-style prioritised task queues and dynamic queue re-ordering is
attributed to Andrei Tsaregorodtsev, my supervisor while at the Centre de Physique
des Particules de Marseille and one of the lead scientists for the LHCb grid soft-
ware. These are core architectural aspect of the LHCb DIRAC grid infrastructure
described in Chapter 3. This chapter is largely taken from the journal paper [1],
where I was the primary author. Other sources of material in this chapter came
from these conference papers which I co-authored: [2—4].

Within this chapter, the LHCb computing requirements (Section 3.5.1) are, as
referenced, a summary of the salient points from the LHCb Computing Model [5].
The overall DIRAC Architecture was conceived by Andrei Tsaregorodtsev (Section
3.5.2). He also had full responsibility for the Data Management Service and the
DIRAC Agent aspects (Sections 3.5.4 and 3.5.7, respectively). The Job Management
Service described in Section 3.5.3 was implemented by Vincent Garonne, who also
created Figure 3.5. The Monitoring and Accounting Services (Section 3.5.6) were
conceived and implemented by Ricardo Graciani, Manuel Sanchez, and Vincent
Garonne.

My involvement with the work described in Chapter 3 was implementing the
DIRAC Agent (Section 3.5.7), the XMPP Instant Messaging infrastructure (Section
3.6.3), the service fault tolerance strategies (Section 3.6.4), the Configuration Service
(Section 3.5.5), and prototyping the OGSI implementation of DIRAC (Section 3.5.8).
The actual LHCb Data Challenge 2004 was, as described in Section 3.7, conducted by
a team of 6-8 people, of which I was one. Vincent Garonne, Andrei Tsaregorodtsev,
and myself had primary responsibility for the continuous operation of the DIRAC
Services over the 6 month period of DCO4. I had primary responsibility for the
interface between DIRAC and the LHC Computing Grid (LCG), both in terms of
the software interface within DIRAC, and operationally monitoring and managing

these jobs. Towards the end of DCO04 this task management responsibility was

v

shifted to Ricardo Graciani. All of the discussion, metrics, plots, and analysis found
in Sections 3.7 and 3.8 are entirely mine, based on work I did to merge task-level
logs, DIRAC logs, and LCG logs over 6 months and 330,000 tasks (this work is
briefly described in Section 3.8.2).

The work in the remaining chapters is exclusively my own.

Contents

1 Scalable Computational Grids
1.1 The RESTful Grid Vision
1.2 Key Goals
1.3 Single Task Particle Physics Use Case
1.4 Contributions
2 Terminology
2.1 Elements, Form, Rationale
2.2 Resources and Representations
2.3 Representational State Transfer
2.4 Identities and Delegation
2.5 Hosts, Executors and Storage
2.6 Services and Agents o
2.7 USErs e
2.8 Grid Task
2.9 Computational Grids
3 Grid Computing for Particle Physics
3.1 Introduction
3.2 The CERN Large Hadron Collider
3.3 Typical Particle Physics Computing Model
3.4 LHC Computing Grid
3.5 DIRAC Grid Infrastructure
3.5.1 LHCb Computing Requirements
3.5.2 Architecture L
3.5.3 Job Management Services
3.5.4 Data Management Services
3.5.5 Configuration Service

vi

11
12
13
14
15
15
16

3.5.6 Monitoring and Accounting Services 34

3.5.7 Agent 34
3.5.8 OGSAand OGSI 35
3.6 DIRAC: Key Features and Advances 36
3.6.1 Pull Scheduling 36
3.6.2 Lightweight Modular Agents 38
3.6.3 Instant Messaging for Grid Services 39
3.6.4 Fault Tolerance 43
3.7 LHCDb 2004 Data Challenge 43
3.7.1 Historical Background 44
3.7.2 Experienceo 45
3.7.3 Faults and Major System Failures 46
3.7.4 LCG Integration L. 49
3.7.5 Development and Deployment Environment 52
3.8 DCO04 Performance Results 52
3.8.1 Challenges presented by LCG 55
3.8.2 LCG Performance 57
3.9 Summary of LHCb Computing 65
3.10 Summary 67
Cluster and Grid Task Management 69
4.1 Operating Systems and Computational Grids 70
4.2 Traditional Task Scheduling and
Resource Management 73
4.3 Existing Description Mechanisms 75
4.3.1 Job Control Language 76
4.3.2 PBS and Torque 7
4.3.3 ClassAds 79
4.3.4 Grid Laboratory Uniform Environment Schema 81
4.3.5 Job Description Language 83
4.3.6 Resource Specification Language 84
4.3.7 Job Submission Description Language 85
4.3.8 Configuration Description, Deployment, and Lifecycle Man-
agement L. 87
4.4 Summaryo 88

vii

5 A REST Model for Resource Matching 90
5.1 Resource Model Overview 92
5.2 Resource Characteristics 94

5.2.1 Value Types 97
5.2.2 Examples of Resource Characteristic Sets 98
5.3 Comparability 100
5.4 Comparatorso 101
5.4.1 Basic Pairwise Comparator 102
5.4.2 Equivalence L 102
54.3 Ordering 104
5.5 Transforming Comparators 106
5.5.1 Type Transforming Pairwise Comparator 107
5.5.2 Dimension and Type Transforming Pairwise Comparator . . . 108
5.6 Set Comparisono 111
5.7 Summaryo 113

6 Resource Requirements 114
6.1 Requirements 115
6.2 Requirement Sets 118

6.2.1 Requirement Space 120
6.2.2 Multiple Requirements Within the Same Dimension 121
6.2.3 Multi-dimensional Requirement Sets 121
6.3 Matching Semantics. 123
6.3.1 Symmetric Matching 126
6.3.2 Transitive Properties 126
6.3.3 Partial Match 127
6.3.4 Matching Examples L. 128
6.4 Interpretation of Unspecified Values 130
6.5 Complete Set Requirements 134
6.6 Matchers 135
6.6.1 One-Way Pair Match 136
6.6.2 Hierarchical Match 137
6.6.3 Peer Pair Match 138
6.6.4 Multi-Resource Peer Match 139
6.6.5 Aggregated Match L. 141
6.7 Summary 144

viil

7 Resource Preferences

7.1 Sub-selection of Resource Composition Alternatives

7.2 Preference Semantics

7.3
7.4
7.5
7.6
7.7

Ranking Algorithm

7.2.2 Preference Ordering Operators
Preference Comparisons
Consistency of Preference Set Ordering
Multilateral Ranking
Task and Executor Batch Pair Matching and Ranking

SUmMmary

8 Applications of the Grid Resource Description Language

8.1 Composition Profiles and Contracts

8.2 Matching Transitivity and Templates for Resource Composition

8.3
8.4
8.5
8.6
8.7
8.8

Transitivity of the Matching Operation

8.2.2 Match-Equivalent Templates
8.2.3 Shared-Composition Templates
8.2.4 Template Preferences L.
XML Schema Validation of GRDL
Consuming Characteristics
Block Reservation
Priority Queues
Security

SUMmMAary

Future Work and Conclusions

9.1 A Scalable Computational Grid Architecture
9.2 Examination of Key Goals,
9.3 Future Work

Al
A2
A3
A4
A5
A6

Task and Executor Description Languages

Globus Resource Specification Language
Job Description Language
GLUE Resource Description Schema
Outline of JSDL
Comparison of JSDL, JDL, GLUE and RSL
GLUE SE properties oo

156

146
146
148
149
149
152
154
154
157
161

162
163

. 166

168
169
169
170
171
174
174
174
176
177

178
178
182
182

A.7 Summary of CDDLM State Machine and API

B Grid Resource Description Language
B.1 GRDL Property and Type List Schema
B.2 GRDL Dimensions Schema,
B.3 GRDL Base Schema,
B.4 GRDL Namespace Wrapping Schema
B.5 GRDL DTD Schema

C Haskell Descriptions of the GRDL Model and Operations
C.1 Core GRDL Components
C.2 Dimension Functions
C.3 Type Definitions and Mapping Functions
C.4 Boolean Operations,
C.5 Basic Pairwise Comparator
C.6 Type Transforming Pairwise Comparator
C.7 Dimension and Type Transforming Pairwise Comparator
C.8 Example Comparators
C.9 Boolean Conversion
C.10 Characteristic Subsets
C.11 Requirement Subsets
C.12 Resource Matching
C.13 Sorting by Ranked Preferences
C.14 Preference Equivalence 0 L.

C.15 Resource Templates

Bibliography

202
202
209
213
213
214

216
216
218
218
222
223
223
224
225
225
226
226
227
228
229
229

230

Chapter 1
Scalable Computational Grids

One of the main goals of computational grids is to facilitate the interorganisational
sharing of data and computing resources in a ubiquitous manner, similar to the way
in which the World Wide Web has facilitated global information sharing, and the
Internet global networking. While the inherent complexity of remote task execution
and a multitude of strategies for work-flow management and data replication may
preclude a single “Global Grid” from emerging, it is still of great value to consider
combining the strategies which have contributed to the success of the Internet and
the Web into a grid architecture which could operate on an Internet-scale.

The primary motivation for this work is the present lack of a stable, scalable
computational grid infrastructure. Existing systems are largely based on extending
distributed computing paradigms and single-site/single-organisation batch comput-
ing systems. These approaches have failed to demonstrate scalability, usability, and
manageability, therefore it is necessary to consider if fundamentally different ap-
proaches are required. The underlying usage scenario for this work is drawn from
simulation and analysis tasks typical of a particle physics experimental environment.
In particular, this research has been funded through the United Kingdom Particle
Physics and Astronomy Research Council (PPARC)! and the author has been affil-
iated with the LHCb experiment? based at CERN?, in Geneva, Switzerland.

This dissertation considers architectural aspects from the Internet and Web and
proposes a model for distributed, scalable grid computing. Five major areas are
covered: a report on the DIRAC grid infrastructure developed by the author for the
CERN LHCDb project; analysis of a 6 month particle physics grid computing run; a

!See http://www.pparc.ac.uk/
2See http://lIhcb.cern.ch/
3See http://www.cern.ch/

1.1 The RESTful Grid Vision 2

survey of grid task and resource description languages; a RESTful (Representational
State Transfer) model for grid resource interaction; and scheduling and resource
management properties derived from the RESTful grid model. REST is the name
given to the architectural style used to guide the development of the Web, and
was coined by Roy Fielding, one of the original architects of the World Wide Web,
and who wrote the httpd server and co-authored the HTTP[6] and URI[7] IETF
specifications.

This is one part design report and operational experience, and one part theoret-
ical model. Chapter 3 covers the DIRAC design and operational experience, while
Chapters 5, 6, and 7 introduce a set-theory based grid resource description model
which follows the REST architectural style. Chapter 8 then explores, among other
things, the scheduling properties of this model, showing how it enables an effective
scalable distributed scheduling strategy while avoiding attempts at finding an opti-
mal schedule, which is an NP-complete problem (and therefore intractable in a grid
environment)[8]. Chapter 4 provides the bridge between the DIRAC operational
experience sections and the theoretical sections by detailing the characteristics of
existing grid resource description strategies prior to presenting a new model which
is partially novel, and partially a synthesis of the best of the existing models. The
overall vision, which is only just begun in the work presented here, is a RESTful
grid. For that reason, Chapter 2 is found at the start of the work in order to set
the scene by describing the components of the RESTful grid, and defining the ter-
minology used in the remainder of the dissertation. As the theoretical portion of
this work is limited to the initial representation, composition, and scheduling of grid
resources, Chapter 9 provides a summary of conclusions and discussion of the future

work required to more fully realise a RESTful grid.

1.1 The RESTful Grid Vision

This dissertation presents the first steps towards an architecture for large computa-
tional grids based on the REST[9] principles which guided the development of the
Web and HTTP. As Fielding puts it, the Web consists of “communicating large-
grain data objects across high-latency networks and multiple trust boundaries” [9] —
just one of many properties also shared by a grid. Computational grids draw closer
similarity to the Web than they do to distributed applications or batch systems, the
latter two being the more common influences for grid architectures. Consider the

following which are common to grids and the Web, but typically not found in tra-

1.1 The RESTful Grid Vision 3

ditional distributed systems or batch systems: heterogeneity, dynamism, federated
or untrusted interconnected systems, high fault rate, and a multiplicity of security
domains. The central contribution of this work is to re-phrase a computational grid
using a REST architecture, focusing on describing all elements of the system as
“resources” using a common description language, and restating interaction of these
resources as “compositions”, using set theory and set comprehensions, while leav-
ing the architecture sufficiently open (under or unspecified) to allow independent
client “rendering” (interpretation) of resource representations and the realisation of

resource compositions formed within the framework presented here.

The REST architectural style consists of a stateless, layered, cacheable, client/
server model, where the “visible” components of the system consist of resource rep-
resentations, accessed via a uniform resource naming scheme. REST emphasises a
simple scalable resource-centred distributed architecture rather than common soft-
ware interfaces (e.g. libraries, protocols, APIs) as the basis of a large scale federated
computing environment. This is sometimes described as the REST style emphasis-
ing a plethora of “nouns” (named object classes, or “resources”) within the system,
and a limited or constrained set of “verbs” (actions which can be carried out on
the “nouns”), where these “verbs” can be applied universally to the “nouns” (i.e.
providing a limited but universal interface to the unconstrained set of object classes
within the system)[10]. This, and other aspects of the REST architectural style, are
clearly in stark contrast to the more common Service Oriented Architecture (SOA)
or Object Oriented Design which emphasise service or object interfaces and data
hiding (i.e. the importance and richness of many well defined “verbs”, specific to

each particular “noun”).

The RESTful grid design described here is inspired by successful Internet stan-
dards — HTTP[6], DNS[11], and the Web[12] — and an approach to “cycle-scavenging”
championed by the highly successful Condor Project[13], namely High Throughput
Computing (HTC)[14]. The RESTful approach is conducive to simplicity and repli-
cation which are seen as essential properties for robustness and scalability. A REST
approach naturally avoids the monolithic and homogeneous nature of existing grid
systems by decoupling descriptors (resource representations) from services which
act on those descriptors. Federations of heterogeneous computing resources on an
Internet scale require different approaches from those currently being developed or
adopted[15]. This argument in favour of a different design paradigm and fundamen-
tally different software architecture for Internet-scale computing has been presented

by Rosenblum [16] and Fielding [9], and is suggested in “Architectural Principles of

1.2 Key Goals 4

the Internet” [17].

Preliminary verification of this strategy can be found in the LHCb particle
physics experiment which has developed a proto-RESTful grid infrastructure. Fur-
ther application of a RESTful approach to grid computing shown in the grid model
presented later in this dissertation also reveal attractive properties not found in
existing systems. It is argued that priority must be given to descriptions of compu-
tational tasks and resources which succinctly capture their salient features, yet also
allow for extensibility. An emphasis of this proposed architecture is to recognise
the duality which exists between resources and tasks, to abstract that commonal-
ity, and allow task/resource matching to be driven equivalently by the task owner,
the resource owner, a third party, or some combination of all three. This builds
on the concept of symmetric matchmaking developed by the Condor Project[13],
where computing resources can constrain the tasks they will accept, and tasks can
constrain the set of computing resources they are prepared to run on. By developing
a model for this based in set theory it is then possible to derive valuable properties
which greatly facilitate scheduling in a grid environment. This is also abstracted to

general pair-wise and n-way resource composition.

1.2 Key Goals

The key underlying goals for a generic computational grid are enumerated below

and will be referred to repeatedly throughout this work:

KG1 Scalability The grid architecture must be able to operate on a scale the size

of the Internet in terms of hosts, users, files, and domains.

KG2 Reliability The grid architecture must be fault tolerant. Failure of any one

component or area of the grid must have little or no effect on other areas.
KG3 Usability Users must be able to interact easily with the grid.

KG4 Extensibility It must be possible for developers to extend, replace, and in-
terface with the grid infrastructure. This is associated with modularity and

replaceability of grid components.

KG5 Manageability Administrators must be able to easily deploy, monitor, and

maintain aspects of the grid under their authority.

1.3 Single Task Particle Physics Use Case D

KG6 Security Users, hosts, and resources must have a flexible but secure mecha-

nism for controlling access. Delegation of authority is also critical.

From an engineering perspective, both DIRAC and the REST model which ex-
tends DIRAC, are of particular value because they directly address Key Goals 1
to 5 in a realisable way. Key Goal 6, Security, has not fully been incorporated
into DIRAC, however the REST model provides a number of avenues for identity
management, access control policies, and delegation to be developed on top of the

RESTful grid architecture presented here.

1.3 Single Task Particle Physics Use Case

While consideration has been made not to preclude advanced features of computa-
tional grids such as work flows, parallel processing, resource coordination, account-
ing, multiway resource composition and advanced reservation, this dissertation only
discusses the simple use case of self-contained remote task execution. As will be de-
scribed, this base case has yet to be satisfactorily addressed in what will be defined,
for the purposes of this dissertation, as a computational grid (see Section 2.9).

The particle physics community, in particular, has an impending demand for a
reliable computational grid that will handle exactly this simple use case. By the
end of 2007 the four Large Hadron Collider (LHC) experiments based at CERN will
require a global computational grid of 140,000 of today’s fastest CPUs operating 24
hours a day, 365 days of the year, and accessing 47 PB of data[5, 18-20]. These
CPUs will be spread across hundreds of sites around the world, and also often be
shared with other non-physics users local to those sites. Furthermore, the data
access will, in general, be random and high volume, meaning the transfer of data
from its storage location to an executing process could require significant time and
bandwidth. This consideration must be factored in when task scheduling occurs.

The combined LHC computing load will be a significant test of the most basic
objective of grid computing: large-scale sharing of federated computing resources
and distributed data over a long time period across a diverse collection of ad hoc
user groups. Addressing this successfully will provide a platform for many other
applications and a stepping stone to the more advanced functionality mentioned
above.

DIRAC, implemented for use by the LHCb experiment in 2004, was utilised for
the execution of 300,000 tasks consuming 670 CPU years and producing 98 TB of

data at dozens of sites located around the world. The performance of this system

1.4 Contributions 6

and operational experience led to the refinement of the RESTful grid architecture
presented herein through a better understanding of failure modes, bottlenecks, and
functional requirements. Furthermore, DIRAC operated in parallel with the LHC
Computing Grid, providing numerous points of comparison with another grid in-

frastructure.

1.4 Contributions

This dissertation makes the following contributions to the field of computational

grid research:

1. Presentation of the DIRAC grid infrastructure, developed for the CERN LHCb
experiment. This service oriented architecture has been developed to meet the
Key Goals described in Section 1.2 and address the needs of particle physics

computing, which it has done successfully.

2. A study of a large grid computing run. The results from over 300,000 long-
running jobs executed over 200 days on a global network of sites provided
invaluable insight into real grid computing issues[1]. Operational issues, ar-
chitectural issues, and overall performance were all examined. This grid com-
puting infrastructure incorporated early implementations of the architecture
proposed by this dissertation|[3], thus providing an opportunity to validate the

model, and resulted in an improved understanding of the system requirements.

3. A survey and critique of existing batch system and grid description languages.
This covers nine different task and computing resource descriptors, drawing
out those properties which facilitate the Key Goals, and those which obstruct
it. An analogy of a grid task to an operating system process is also made, in
order to highlight key features and complexities of describing and managing

grid task state throughout its lifetime.

4. The observations from the survey form the basis for the proposed RESTful
Grid Resource Description Language. This focuses on the aspects for initial
description leading towards matching and scheduling of resources, and support
for grid process description throughout the full task life-cycle. Well defined
properties of this model are developed by utilising a set theory approach. This
is a refinement and extension of the Condor ClassAd language, and avoids the

need for tri-state logic (true, false and undefined states, and the consequent

1.4 Contributions 7

3 x 3 truth tables), thereby significantly simplifying comprehensibility and

implementation.

5. A distributed grid scheduling architecture. This extends and generalises the
concept of “matchmaking”, originating from the Condor project[21]. Push,
pull, and third party scheduling mechanisms for grid tasks are proposed. Sup-
port for hierarchical matchmaking via templates, gang scheduling, and priority
pools are all discussed. It is shown how this strategy avoids the NP-complete
problem of finding an optimal schedule while still efficiently providing an ef-

fective schedule.

The emphasis of this work is on laying a foundation for a practical architecture
for task management in scalable, generic, computational grids. Issues around se-
curity, data management and networking are only touched on briefly, as this work
has focused on the REST representation of grid resources, rather than interactions

(beyond composition and scheduling) between those resources.

Chapter 2
Terminology

This chapter defines important terms used throughout this dissertation. It lays a
conceptual foundation for the idea of a RESTful computational grid by describing

the constituent aspects and their interrelationships.

2.1 Elements, Form, Rationale

Specific terms regarding the proposed architecture are taken primarily from Perry
and Wolf[22] and Fielding[9].

Perry and Wolf propose that software architecture consists of elements, form,
and rationale[22]. The elements are further broken down into three different classes:
processing elements, data elements, and connecting elements. The form refers to
how the elements are structured, while the rationale presents the motivation.

Fielding chooses to use the terms components, data, and connectors for Perry
and Wolf’s three classes of elements and configuration in place of form[9]. This dis-
sertation will use Fielding’s terms. For completeness we reproduce their definitions

here:

Component An abstract unit of software instructions and internal state that pro-

vides a transformation of data via its interface.

Datum An element of information that is transferred from a component, or received

by a component, via a connector.

Connector An abstract mechanism that mediates communication, coordination,

or cooperation among components.

Chapter 2. Terminology 9

Configuration The structure of architectural relationships among components,

connectors, and data during a period of system run-time.

Figure 2.1 illustrates the relationships of this terminology. The system architecture
is made up of a rationale, which describes the motivation and objectives of the
overall architecture, the elements which are the components which make up the
architecture, and a configuration which describes how the components relate to each
other. The elements can further be broken down into components, containing the
processing rules or intelligence of the system (e.g. the software), data, which contain
the information on which the components operate, and the connectors, which provide
the interfaces, connections, filters, and buffers over which the components interact

and the data items are transmitted.

system
architecture
rationale element configuration
form
component data connector
processing data connecting
element element element

Figure 2.1: Hierarchy of system architecture terminology (italics indicate original
terms used by Perry and Wolf[22])

2.2 Resources and Representations

In the REST architecture components and data are resources with corresponding
identifiers. Resources are hidden entities which are only observed through their
representations, and operations on resources are done by sending the representation
and representation meta-data (that is, what to do with that representation) to a
particular resource[9]. For example, a web server may provide English or German
language representations of a particular web-page resource dependent upon the re-
quest or request meta-data. One or more identifiers are associated with a single
resource, and access to a resource is achieved via one of these identifiers. The infor-

mation which is available concerning a particular resource is contained within the

Chapter 2. Terminology 10

resource representation, which may be only a sub-set of the entire resource’s state
and may be interpreted (or rendered) in any way by the receiver.

A key aspect of a RESTful style is to phrase the entities within the system as
resources, emphasising a common representation of those resources’ state, and de-
emphasising an architecturally asserted behaviour, protocol, or interface on those
resources. Figure 2.2 illustrates the ontological decomposition of resource classes
within the RESTful grid model. Behavioural inter-relationships (e.g. user resource
creates and submits task resource which runs on executor resource), and compo-
sitional relationships (e.g. data resources associated with a particular storage re-
source) are explicitly unspecified in a RESTful architecture and are left to user
communities or applications to assert on top of the underlying RESTful architec-
ture. The first division of resource classes is into host, user, task and data resources,
where hosts represent physical hardware, users are the people who interact with
the system, tasks which represent actions or work-flows initiated by users, and data
which is created or used by user tasks. Hosts are further divided into executors and
storage, the former representing systems focussed on data processing, and the latter

data storage. Service and agent resource classes are discussed in a later section.

resource

host user task data

executor storage

PN

service agent

user agent

|
task agent

Figure 2.2: Resource class relationships

It is important to note that in a REST context the term “resource” takes on a
much broader meaning than is commonly used within the grid computing domain.
A grid resource is usually considered only to be a computing resource: either a single
CPU, a node, a task queue, or a computing cluster. This work will refer to such a
resource as an ‘executor” or a “computing resource”. The more general definition
of “resource” was deemed appropriate as a key position of this dissertation is the

similarity between tasks and executors from the perspective of symmetric scheduling,

Chapter 2. Terminology 11

and the desire to model a computational grid in a RESTful way, where the primary

entities are all “resources”.

2.3 Representational State Transfer

The Representational State Transfer (REST) architectural style presented by Field-
ing forms the foundation for the architecture described in this dissertation. REST is
a retrospective description of the principles which led to the design of the Web and
HTTP, which in turn were built on the “end-to-end argument”[23] which formed the
basis for the early Internet protocols and architecture evolutionary process[17, 24].

Fielding writes:

REST is defined by four interface constraints: identification of resources;
manipulation of resources through representations; self descriptive mes-

sages; and hypermedia as the engine of applications state.[9]

REST emphasises representation of system state over operational interfaces, leav-
ing interpretation and manipulation of that state under (or un-) specified. In REST,
units of system state are representations of resources and first class objects. This
is in stark contrast to an Object Oriented paradigm which emphasises exactly the
opposite, with state encapsulated and hidden inside objects with strict interface
definitions. They key REST properties relevant to a RESTful grid are:

1. Stateless services and interaction, allowing for service replication/parallelism

and caching.

2. Communication and interaction conducted (primarily) through the transfer of

resource representations.

3. “Hypermedia as the engine of application state” [9], meaning system state and
state transition alternatives are contained within persistent resources, rather

than executing applications or services.

4. Dynamic, unspecified, and “hidden” resource and service component topology,
thus alleviating the problem of brittleness, as the topology can continuously
change. This is facilitated by a consistent, uniform, and loosely bound resource

identification mechanism.

5. Uniform resource naming (e.g. URIs for the Web).

Chapter 2. Terminology 12

6. Hidden resource state, exposed resource representation.

7. Consumer-driven interpretation of resource state (i.e. client-side rendering of

representation).

8. Decoupling and flexibility due to loose binding of references to resources (i.e.

references to non-existent resources are permitted).

9. Dynamism through late binding of references to representations (i.e. repre-

sentation of a particular resource is realised as late as possible “at run-time”).

10. Content negotiation, returning a resource representation customised to a par-

ticular resource request or the preferences of the client.

11. Client-side and server-side cacheable representations.

The main observation is that a large, federated, dynamic, and generic distributed
system requires flexibility in utilisation to allow different communities to develop in-
teraction patterns suitable to their needs, while still having design constraints which
allow an underlying common infrastructure to be put in place. REST constrains a
system by asserting stateless, connectionless, cacheable client/server interactions
with a uniform entity naming system, while providing design freedom (for higher
layers) in terms of interpretation of resource representations and operations (ac-
tions) on those representations. The RESTful grid model, therefore, does not assert
any behavioural constraints on grid resources and instead constrains resources in
terms of how they are described and that the first “stage” of resource interaction
is understood through resource composition, based on a strong set theoretic model

describing resource properties.

2.4 Identities and Delegation

In this work, the term identity will use a broad definition that may contain verifiable
properties regarding a resource. In this sense, an identity is also a resource.
Resources may delegate part of their identity to another resource, providing that
second resource with a mechanism to act on behalf of the first resource. Instantiation
and identity management of a particular resource or its delegate is the responsibil-
ity of the instantiator, within an identification namespace delegated from another
resource. This means there may legally be multiple instances of the same resource

within the system, each with multiple identifiers. Four examples of this are files,

Chapter 2. Terminology 13

tasks, users, and executors. For each one of these it is possible to imagine a single
“abstract” or “true” instance of the resource, with multiple “actual” instantiations
within a grid system, and each one of those instances having multiple identifiers
associated with it. Of course in practice such replication, if permitted at all by a
particular implementation, must be carefully managed in order to manage consis-
tency and equivalence of resources.

REST describes identifiers simply as pointers to a resource representation. In
the Web context, these identifiers are URIs. Here, there is no restriction given to
the mechanism for resource identifiers, although URIs would be suitable in many
cases. Identifiers and identities are quite independent of each other.

This dissertation does not attempt to specify any particular mechanism of iden-
tity exchange, delegation, verification, or use. Suffice it to say that various mech-
anisms exist to do this to different degrees of functionality, secrecy, and security
(e.g. PERMIS[25], X.509[26-28], Globus proxy certificates[29], and LCG Virtual
Organisation Management System[30, 31]). Furthermore, analogous to the Web, a
large computational grid infrastructure could reasonably be expected to support a
range of different approaches to security. Although the RESTful grid architecture
presented here does not presume to use URIs and HTTP, one of the experimental
systems developed does utilise URIs to reference resources accessed over HIT'TP and
representations realised in XML. In this scenario, all interactions could be subject
to any one of: X.509-based certificate authentication, HTTPS-encrypted username/
password, plain username/password, or client-side cookies. Expanding the range
of protocols beyond HT'TP, a single work-flow could be envisioned to include data
access via the Secure Shell protocol (ssh)[32] using DSA keys[33], OpenPGP[34] to
sign an SMTP email message, one X.509 certificate to submit a sub-task to one
cluster, and another X.509 proxy certificate to make a data base query to a remote
service. The point of this illustration is to emphasise the importance of decoupling a
particular security strategy from the underlying computational grid infrastructure,
thereby allowing a range of different security strategies to be layered on top. In this
domain, the objective is to avoid precluding any particular security strategy of a

higher architectural layer.

2.5 Hosts, Executors and Storage

This architecture describes four autonomous types of resources: executors, storage,

services and agents. In Unified Modelling Language (UML) parlance, these would be

Chapter 2. Terminology 14

considered actors which initiate and respond to change within the system. A meta-
class of resource is the host which provides the underlying system for an executor or
storage resource.

Hosts represent abstractions of hardware — for example, a particular CPU or
operating system instance — or a system acting as a gateway to a collection of
hardware resources. A host will typically have full control (e.g. “root” access) over
the resource it represents and all its subordinate resources, and may encapsulate the
various “core” processing components which make up that resource (e.g. storage,
operating system, and associated utilities).

Executor resources, or ezecutors for brevity, represent the computational re-
sources within the system. An executor may contain and manage a set of subordinate
services and agents.

Storage resources provide the infrastructure which manage data resources. This
is included for completeness, however a system for data management is not an em-
phasis of this research, therefore is not covered in any depth. In the particle physics
use case, efficient data management is a critical aspect of the computational infras-
tructure, given the volume of data which is produced, processed, and queried. As
such, data catalogues, meta-data, access control, staging and replication are all areas
where extensive work has been done. In a fashion similar to the discussion earlier
on security, data management services must be layered on top of an underlying grid
architecture. The RESTful architecture presented here allows a range of different

data management techniques to be used without prejudice for one or another.

2.6 Services and Agents

Services represent processing components which are “externally” accessible (mean-
ing accessible beyond the context of the immediate component which started them).
These may operate on behalf of a host or user and hold delegated identities, or have
their own identities. Service entities typically are reactive (rather than proactive),
long lived, stateless, and instantiated by a host, although none of these are essential
properties. Services may instantiate agents in order to monitor or carry out some
request.

Agents are similar to services, but instead are typically proactive (goal oriented),
have a limited life time (until the goal is achieved), are stateful, and are instantiated
by users, services, or other agents. They accept and delegate identities and may

have their own identities. They are not necessarily externally accessible.

Chapter 2. Terminology 15

2.7 Users

Users are human beings with a set of identities available to them. Users are also
considered a type of resource. They utilise “interactive” processing components
to interact with the system. A user may create a delegate which will operate au-
tonomously (without user interaction) on behalf of the user. The delegate may
appear as a service or agent. A typical form of user agent is a task agent which

operates on a task resource (via its representation) to execute the task.

2.8 Grid Task

A self-contained piece of work to take place “on the grid” will be termed a grid task
or simply task. In the general sense a task can have dependencies with other tasks,
or can itself consist of a sequence of sub-tasks. In many ways it closely parallels the
concept of a “process” in an operating system, with the key difference being that a
grid task may not be actively executing. This allows for a task to be a template prior
to execution, and to continue to exist after the execution of the task has completed.
A grid task is synonymous with a “grid job” (although it should be noted that the
GGF Grid Scheduling Dictionary[35] makes a subtle distinction between the two).

The overhead and latencies involved in cross-site communication is such that
a grid task is taken to be fairly coarse grained, typically requiring on the order
of minutes to hours to execute, and an overall lifetime of months or even years.
Finer grained tasks will suffer from a high overhead to computation ratio (OCR),
and would more suitably be batched together as a coarser grained single grid task.
Furthermore, task-external communication performance in a grid environment is
expected to be relatively slow, unreliable, and unpredictable, meaning that a low
communication to computation ratio (CCR) is expected. This does not preclude a
single grid task from encapsulating a parallel execution involving a large number of

co-located processors.

A task consists of some combination of: processing operations, data operations,
constraints, characteristics, configuration, security policy, accounts, and an identity

set.

2.9 Computational Grids 16

2.9 Computational Grids

The definition for a computational grid is taken from the context of particle physics
computing. It consists of 100 or more computing sites each consisting of 1-10,000
independent nodes. A computing site is an autonomous computing centre, typically
located at a single physical location (for example, a university, a research centre,
or a company). FEach site is assumed to have complete authority over their own
resources. A node is the smallest managed computing resource, which is typically a
dual or quad processor rack mounted computer. The total number of nodes provided
by all sites is 100,000 or more, and the sites are interconnected via the Internet. The
user base consists of 1000-1,000,000 users, arranged in dynamic autonomous virtual
organisations which can self-create, and utilising minimally or un-coordinated user
identity and accounting systems. The per-centre storage will typically be 1-1,000
TB, with 10-10,000 Mb/s bandwidth between nodes and between sites. The grid will
typically be loaded with computing tasks at 0.01 (low task contention) to 100 times
(high task contention) the available computing resources, with some “hot spots”
possibly having a TCR (Task Computing Power Ratio) of up to 1000 (that is, 1000
tasks queued per available CPU).

There is no assumed coordination between any two centres, and failures, net-
work topology changes, and dramatically varying resource demands are regular but
unpredictable. Furthermore network partitions, both intentional (nodes disconnect-
ing from the network) and accidental (power outages, network or equipment failure,
etc.) are a regular feature. The grid is also considered to be a hostile environment,
in that some nodes and users may attempt to corrupt data, interfere with execution,
and hijack identities or resources. The hardware and software which makes up the
grid is entirely heterogeneous, and the overall system state is hidden. That is to
say, there can be no expectation of discovering the complete and consistent system
state. From any point within the grid, only portions of the system can be expected
to be visible (i.e. have state information available), however it is likely that this
view will provide out of date and possibly erroneous information.

Table 2.1 lists typical ranges for some of these properties, and includes a col-
umn with reference values for a representative computational grid. The reference
values are rounded to the nearest order of magnitude typical for the combined LHC
experiments’ computational needs.

Use of the term grid refers to computational grids, unless the context suggests

otherwise.

2.9 Computational Grids

Characteristic Range Reference Value
Sites 100+ 100

CPUs/Site 1-10,000 1,000
Storage/Site 1-1,000 TB 100 TB

Total CPUs > 10,000 100,000

Users 1000-1,000,000 | 10,000

Task Load 0.01-100 10

Task Duration > 10s 10 hr

Intra-Site Bandwidth | 100-1000 Mb/s | 1,000 Mb/s
Inter-Site Bandwidth | 10-10,000 Mb/s | 100 Mb/s

Table 2.1: General quantitative characteristics of a computational grid.

Chapter 3

Grid Computing for Particle
Physics

Having introduced and defined the key aspects of a RESTful grid ar-
chitecture in the previous chapter, this chapter summarises experience
from within the LHCb experiment of designing, operating, and using a
large computational grid. It is composed of material from a number of
reports and papers which presented the work of the 2004 LHCb Data
Challenge[1], the design of the DIRAC grid software system|[3], and a
study of the performance of the computational grid used for the Data
Challenge[36]. It provides an overview of the computational needs of
current particle physics research and considers experience with existing
grid architectures to meet those requirements. The DIRAC architecture
applied proto-RESTful grid principles in terms of decoupled, stateless
services, generic resource composition, and client-driven resource access
and resource interpretation, thereby serving as the basis for the work
developed in later chapters.

3.1 Introduction

The particle physics community is one of the strongest drivers for the development
of computational grids. Experimental particle physics is breaking new ground in
our understanding of the most basic laws of the universe and therefore receives
significant research funding around the world. The nature of experimental particle
physics is such that individual experiments will typically have a lifetime of fifteen to
twenty years, cost hundreds of millions of pounds, and involve thousands of people.
The collaborators for each experiment are distributed across institutions around the
world. In the past it was possible for the majority of experiment related computing
to take place at the experiment site with “local” storage of all data, however this will
not be possible with the newest generation of experiments. For example, the four

new CERN experiments estimate they will each require thousands of dedicated CPUs

18

3.1 Introduction 19

(by today’s computing power) on a continuous basis just for the reconstruction stage
which converts the raw data produced by the detectors into physics “events” [5, 18—
20]. This load must be distributed to national and institutional computing centres
as CERN is not in a position to provide this quantity of dedicated processors. In
fact, this initial reconstruction phase is only the tip of the iceberg, making up less
than 20% of the total computational demand of the four experiments. Other large
physics centres such as the Stanford Linear Accelerator (SLAC) and Fermi National
Laboratory (FNAL) in the United States have similar requirements to distribute

significant amounts of data and computing to remote sites.

The new generation of particle physics experiments have orders of magnitude
greater demands for data storage and data processing. While it would be conceiv-
able to centralise all data and processing at CERN, using a large but otherwise
traditional computing cluster providing a “batch farm”, this is undesirable from a
number of perspectives. As an organisation, CERN attempts to distribute as much
responsibility to member states and their respective physics institutes as possible.
This principle reduces administration and management at CERN, and provides a
better mechanism for responsibility, accountability, and dissemination of knowl-
edge by having CERN’s work completed by members within their home institutes.
Furthermore, a distributed model allows member states or individual institutes to
commit computing resources relative to their own priorities and capabilities. This
issue dovetails with the desire to have the large volume of data replicated and avail-
able “close” to the computing centres which will process it, thus providing increased
robustness, increased effective network bandwidth, and reduced latencies. Many of
these issues are common to data and compute intensive applications and scientific re-
search, especially given the increase in inter-organisation collaborative teams, where
each sub-team may be participating in numerous collaborations. In this environment
of Virtual Organisations, the importance of a robust framework for distribution of
data and dynamic sharing of computing resources towards a common goal becomes
clear. This scenario provides the motivation for Key Goals 1, 2 and 6 (Scalability,

Reliability, and Security).

This chapter will look at experience with existing grid computing infrastructures
for handling the requirements of particle physics computing. Based on these require-
ments and experience from deploying and utilising early grid systems, a new grid
computing architecture was developed in 2003 and 2004 for the LHCb experiment.
It followed many REST principles of atomicity and simplicity of services. In partic-

ular DIRAC featured stateless, connectionless services, a client-server model, and a

3.2 The CERN Large Hadron Collider 20

RESTful resource model for tasks and agents. The operation of this system led to
the largest known utilisation of a global generic computational grid, consuming 670
CPU years over 6 months and producing 98 TB of data from 300,000 tasks. This
experience led to key insights which have further refined the requirements definition
for particle physics computational grids. This system, the results of its use in 2004,

and the observations drawn from that experience are presented in later sections.

3.2 The CERN Large Hadron Collider

The four new CERN-based particle physics experiments — ATLAS, CMS, Alice,
and LHCb — will all utilise the Large Hadron Collider (LHC) once the collider
and detector construction is complete with a projected start date in 2007. As a
proton/proton collider it will have a centre of mass energy of 14 TeV, many times
greater than any existing collider, allowing it to examine high energy particles better
than ever before, and some, such as the anticipated Higgs Boson, hopefully for the
first time. The higher energy collisions will necessarily produce a larger number of
particles, and the short life time of the highest energy particles requires very precise
spatial, temporal, and energy measurements. This is now possible due to improved
electronics and the decrease in computing and storage cost but will result in the
production of unprecedented amounts of data which will then require analysis.

The detectors, while in operation, have particle collisions occurring at rates of
up to 1 MHz. A series of “triggers” are used to down-sample this to only select
collisions containing events of interest. This produces an output stream at a rate of
100-2000 Hz. Each “event” contains a picture of the particle collision as seen by the
entire detector assembly. It contains information taken directly from the online data
acquisition system. This includes for example, time stamps, signal pulse information
and channel information from which spatial and other information can be deduced.
Real-time calibration data concerning the configuration of the detector may also be
included. The detectors are in full operational mode for a 7 month period each year,
and during each operational day 14 hours are spent “filling” the particle ring, and
then 10 hours “draining”. The draining period is when the collisions occur and real
data is gathered.

Figure 3.1 shows the historical and estimated annual storage and computing
requirements for different particle physics experiments. It is compiled from [5, 18-
20, 37, 38]. The LHC experiments anticipate 140 million SPEC Int 2000[39] years of

processing power in 2008, which will be the first full year of normal operation of the

3.2 The CERN Large Hadron Collider 21

Computational requirements

Alice

MSI2k

I I L I I J

10 .
2003 2004 2005 2006 2007 2008 2009 2010

year
Disk storage requirements
S¢ Atlas
CMS
ab Alice
m
3L /’Q
T LHCb
CAF
2k —O & ©
o
1 1 1 1 1 1 J
2004 2005 2006 2007 2008 2009 2010
year
; Mass storage (tape) requirements
10 CMS
Atlas
Alice
10"
m
'_
10° DO
LHCb
i CAF
102 [1 1 1 1 1 J
2004 2005 2006 2007 2008 2009 2010

year

Figure 3.1: Particle physics computing requirements. Processing, tape, and disk
storage requirements for a selection of current large experiments. 2007
and beyond are estimates.

LHC. This is approximately equivalent to 140,000 3GHz Intel Xeon CPUs operating
continuously for a year. At the same time 47 PB of tape storage and 64 PB of disk
storage are required[5, 18-20].

3.3 Typical Particle Physics Computing Model 22

3.3 Typical Particle Physics Computing Model

Modern particle physics experiments have come to adopt similar strategies for organ-
ising and executing their simulations and data analysis. It is this common approach
to mass data handling and processing which motivates the model described in later
chapters. Furthermore, the field of grid computing largely grew out of physics
computing requirements which were not met by existing cluster or supercomputer
systems. For this reason, many of the existing grid computing strategies have been
developed with physics computing requirements in mind. This section provides a

summary of the computing model used by the CERN-based experiments.

Distribution of LCG computing power
between Tier 0, 1, and 2 sites totalling 118 MSI2K

Tier 1
56 MSI2K
47%

Tier 0
3 MSI2K
11%

Tier 2
50 MSI2K
42%

Figure 3.2: Computing resource distribution for Tier 0, 1, and 2 sites committed to
LCG in 2008.

The CERN MONARC project[40] proposed a four tier system for distributing
the processing load and data across a global network of physics sites[41]. The sys-
tem is centred at CERN, called the Tier 0 site, where the data from the detector
originates. Subsequent tiers consist of increasing numbers of sites, but the comput-
ing and storage capacity at each site is successively smaller, and the reliability of
the site decreases. Tier 1 sites are typically large national computing centres with
high reliability systems, dedicated support staff, high bandwidth networks, and large
storage capacity. They are also termed “Regional Centres” and act as hubs for the
Tier 2 to 4 sites under their umbrella. Tier 2 sites represent institution or univer-
sity computing centres which are predominately dedicated to physics computing.
Tier 3 sites are small clusters typically belonging to individual working groups, and

Tier 4 represents individual computers, typically desktops or laptops belonging to

3.3 Typical Particle Physics Computing Model 23

Distribution of LCG disk storage
between Tier 0, 1, and 2 sites totalling 42 PB

Tier 1
27 PB

65% Tier 0

1PB
3%

14 PB
32%

Figure 3.3: Disk storage distribution for Tier 0, 1, and 2 sites committed to LCG
in 2008.

Distribution of LCG tape storage
between Tier 0, 1, and 2 sites totalling 43 PB

Tier 0
14 PB
32%

Tier 2
2PB
5%
Tier 1
27 PB
64%

Figure 3.4: Tape storage distribution for Tier 0, 1, and 2 sites committed to LCG
in 2008.

experimental collaborators. The current LCG Memorandum of Understanding de-
tails commitments of Tier 0, 1, and 2 sites and describes Service Level Agreements,
expected operational environment, qualitative requirements, and quantitative char-
acteristics for computing power, disk storage, tape storage, and network bandwidth
committed by institutions involved with LCG[42]. Figures 3.2, 3.3, and 3.4 illustrate
the distribution of some of these quantities between the Tier 0, 1 and 2 sites. It
should be noted that there is a shortfall for all three of these, as the MoU commits
118 MSI2K computing resources, 42 PB of disk storage, and 43 PB of tape storage,

3.3 Typical Particle Physics Computing Model 24

while the experiments’ computing models require 140 MSI2K computing resources,
47 PB of disk storage, and 67 PB of tape storage. As the MoU is the most re-
cent document, it is possible this is due to the latest official experiment computing

models being out of date with the current computing requirements.

Within particle physics experiments grid computing is taken to mean the trans-
mission, processing, and storage of data once it is on commodity components. Every
experiment will contain custom hardware, electronics, sensors, and processing which
is “close” to the detector and part of the real-time “on-line” system which is not
considered part of the grid computing infrastructure. Grid computing provides facil-
ities for what is known within the particle physics domain as “off-line” computing.
There are three primary operating modes for particle physics grids: reconstruction,

simulation, and analysis.

Reconstruction is very predictable, as it must be completed as the raw detector
data is produced, during the annual 7 month operational period of the detector.
This utilises stable software with parameters describing the detector configuration
and calibration values. Reconstruction must take place in near-real time, meaning
the data produced by the detector each day must be reconstructed into physics
events within a day. The throughput of reconstruction must match the rate of
data generation, as the detector operates continually during the 7 month period
and anything less would lead to a permanent and growing backlog until either the
operational period came to an end or the disk storage buffers were saturated and
it became necessary to flush the data and later retrieve it from tape storage. It
also allows for data quality monitoring which feeds back into controlling the run
conditions. Beyond the annual operational window, the detector data may be re-
processed (that is, reconstructed a second or third time) based on improved software,
calibration data, or detector models. This reconstruction is planned in advance and

administered at the experiment level.

Simulation can be done by individuals, small working groups, or directed by
the experiment. The experiment-level simulations are well defined in advance and
typically consist of thousands of days of computing doing wide ranging simulation
of detector response. Simulations conducted by individuals or working groups are
much more chaotic, in terms of the data requirements, software requirements, and

computing load.
Analysis is the most chaotic and consists of individual physicists or small working
groups making cross-cutting selections of reconstructed data in a search for interest-

ing physics. This will typically use locally customised software to analyse the data,

3.4 LHC Computing Grid 25

and will be even more unpredictable than the simulation work. These present some
of the greatest challenges to grid computing as the requirements of these jobs vary

widely.

3.4 LHC Computing Grid

In preparation for the computational demands of the LHC experiments, and in
acknowledgement of a new paradigm for computation in scientific research, the Eu-
ropean Data Grid (EDG) project was initiated in 2001 with the objective of de-
veloping a set of grid tools and an overall grid framework addressing security, data
management, task management, and system monitoring[43]. The specific goals and
use cases of this work were largely driven by the CERN LHC experiments, and
described in two reports HEPCAL I and HEPCAL II (High Energy Physics Com-
puting Application Layer)[44, 45], although consideration for other fields such as

bio-medical research, economic analysis, and climate modelling were also included.

The EDG project looked to build on and stabilise the Globus Toolkit, which had
been utilised successfully by many distributed computing applications, thereby pro-
viding a generic grid computing framework suitable for the full range of computing
applications required by particle physicists. The product of this work would ulti-
mately be delivered to the CERN-based computing group for the LHC which would
coordinate the distribution, deployment, and operation of the LHC Computing Grid
(LCG)[46]. Concerns with EDG in 2002 and 2003 led to the ARDA Report (Ar-
chitectural Road-map for Distributed Analysis)[47], prepared jointly by members of
the CERN experiments, which proposed a more decoupled and modular approach
to LCG than EDG was providing. This report motivated, in part, the direction of
the successor project to EDG, the Enabling Grids for e-Science in Europe (EGEE)
project[48]. This project operated in parallel with LCG and looked to re-engineer

the EDG software into a system named “gLite”.

It was at the point of transition when the ARDA Report was published and
LCG and EGEE were commencing their work with the inherited EDG software that
the work described in this dissertation was initiated. The LHCb experiment sought
to implement aspects of the services proposed by ARDA, given the difficulties of
working with EDG, in order to reduce the risk of relying completely on LCG for the

experiment’s computational infrastructure.

3.5 DIRAC Grid Infrastructure 26

3.5 DIRAC Grid Infrastructure

During 2003 and 2004 the CERN LHCb experiment developed the DIRAC comput-
ing infrastructure to support the transition from traditional batch farm computing
at large computing centres to distributed grid computing. In the Spring of 2004
this system was simultaneously deployed at 12 European physics computing centres
affiliated with the LHCb experiment and integrated with the LHC Computing Grid
(LCG). There were four objectives for the 2004 Data Challenge:

1. Test the LHCb software chain for physics simulation and analysis;
2. Simulate physics events for the LHCb detector using Monte-Carlo methods;
3. Validate the LHCb computing model;

4. Test the LCG (grid) computing infrastructure (software, hardware, and pro-

cesses).

The following sections describe the LHCb grid software which was developed to
support this initiative, and examines the results from the Data Challenge. Many
of the strategies and approaches espoused by this dissertation are motivated by the
LHCb computing requirements, the prior experience and philosophical approach
which led to the development of DIRAC, and the observations made and conclusions
drawn from the utilisation of a real grid infrastructure during the 2004 LHCb Data
Challenge.

The author’s primary contributions to the DIRAC infrastructure were around the
integration of OGSA [49] principles, exploring security options for DIRAC, interfac-
ing DIRAC with LCG, designing and implementing a novel instant-messaging based
monitoring system, designing and implementing a dynamic, distributed configura-
tion service, and putting in place fault tolerance mechanisms for Services, Agents,
and Tasks. In depth discussion is limited to these areas, however the other aspects

of DIRAC are presented for completeness.

3.5.1 LHCb Computing Requirements

The LHCb Computing Model [5] describes the approach taken by the experiment
for handling and processing data, outlining the storage and processing requirements
for the next several years. There are four main types of offline processing: initial

reconstruction of physics events from detector signals, stripping of detector data

3.5 DIRAC Grid Infrastructure 27

to select particular channels (groups of “interesting” events), data analysis, and
Monte Carlo simulation. There are also five main types of data produced by the
experiment: RAW data, which represents the response of the detector to collision
events after calibration adjustments have been applied; DST data, which are the
reconstructed events from the RAW data; rDST data, which are reduced versions of
the DST sufficient only for efficient pre-selection of full DST data sets; TAG data, for
quick reference to DST data “of interest”, which summarises event characteristics
and references the relevant DST data; and N-tuples which are specially selected sets
of events from DST data which contain comparable or groupable events.

Online processing takes place either within the detector assembly itself, or util-
ising computing resources co-located with the detector and are not relevant to this
discussion except in that the general purpose computing hardware which is part of
the online system can contribute to the grid environment when the detector is not
operational.

The remaining processing is done in the offline system. DIRAC is the grid com-
puting environment developed by LHCb to do this offline processing. It incorpo-
rates LCG computing resources and functionality while also, critically, allowing the
integration of non-LCG resources (see Figure 3.5). This section reports on the expe-
rience of developing DIRAC, integrating it into the LCG grid environment, making
use of existing middleware services and libraries, and advances from incorporating

new technology such as instant messaging into the architecture.

D

S

'."‘ o
<

Canada

a

® : DIRAC Sites

& : DIRAC via LCG Taiwan
@ : DIRAC and LCG Sites -~

Figure 3.5: Sites running DIRAC. This includes a mizture of grid-enabled sites and
conventional computing centres.

3.5 DIRAC Grid Infrastructure 28

3.5.2 Architecture

DIRAC is designed following a lightweight Agent/Service model, which emphasises
a service oriented architecture (SOA). It provides a scalable high throughput generic
grid computing environment for uncoupled or loosely coupled long running computa-
tional tasks, requiring significant input data and producing large volumes of output
data. The basic design objectives are to support 100,000 queued jobs, 10,000 running
jobs, and 100 sites.

Job Submission | _ _ _ _ _ _
Client

submit

..

el Attt v
: o corder ueue ob Receiver
: . Job R
: Optimiser Service - —p
E queue
' e —— store
H Optimiser) o 5
: > g8
>3
Job Database D ¢
. =
j=
o
\ match

[Matchmaker } ____________ >
Service
—

DIRAC Core Services

request request

Figure 3.6: DIRAC Core Services.

The architecture is divided into five areas: Services, Agents, Executors, Storage,
and User Interface. The core of the system is a set of independent, stateless, dis-
tributed Services. The services are meant to be administered centrally and deployed
on a set of high availability machines. Fzrecutors and Storage are resources available
at remote sites, beyond the control of any central administration. Agentsrun on each
executor to monitor the resource availability, requesting jobs when possible from the
DIRAC services. Figure 3.6 illustrates these components and their relationships.

The User Interface API provides access to the Services, for control, retrieval,

3.5 DIRAC Grid Infrastructure 29

and monitoring of jobs and files. It has been incorporated into command line tools,
GUIs, and web sites. A complete GUI interface for managing LHCb jobs has been
produced by the Ganga project[50].

The general separation between Services and Agents is that Services are state-
less and reactive, whereas Agents are stateful and proactive. The Services can be
distributed across several machines, or run from a single server. This allows easy

replication for redundancy and load-balancing.

3.5.3 Job Management Services

Jobs are described using the text based ClassAd Job Description Language (JDL)
designed by the Condor project for use with the Condor Matchmaking scheduling
system[21]. A JDL file is submitted to the Job Receiver Service which registers the
job in the Job Database and notifies the Optimiser Service. The Optimiser Service
sorts jobs into different job queues and dynamically re-prioritises queue ordering.
Agents monitor availability of remote executors. When they detect “free slots”, they
submit a job request to the Matchmaker Service, which interrogates the various Job

Queues and returns a suitable job, based on the resource’s profile.

3.5.4 Data Management Services

The DIRAC Data Management Services provide fault tolerant transfers, replication,
registration, and meta-data access for files both at DIRAC computing centres and
long term mass storage sites.

A Storage Element (SE) is an abstracted interface to Internet-accessible storage.
It is defined entirely by a host, a protocol, and a path. This definition is stored
in the Configuration Service (see Section 3.5.5), and can be used by any Agent,
Job, Service or User, either for retrieving or uploading files. Protocols currently
supported by the SE include: gridftp, bbftp, sftp, ftp, http, rfio or local disk access.

The File Catalogue Service provides a simple interface for locating physical files
from aliases and universal file identifiers. This has made it possible to utilise two in-
dependent File Catalogues, one from the already existing LHCb Bookkeeping Data-
base, and another using the AliEn File Catalogue from the Alice experiment[51].
In the recent LHCb Data Challenge they were both filled with replica information
in order to provide redundancy to this vital component of the data management
system, and to allow performance comparisons to be made.

Within a running job, all outgoing data transfers are registered as Transfer

3.5 DIRAC Grid Infrastructure 30

Requests in a transfer database local to each Agent. The requests contain all the
necessary instructions to move a set of files in between the local storage and any
of the SEs defined in the DIRAC system. Different replication, retry, and fail-over
mechanisms exist to maximise the possibility of successfully transferring the data
(see Section 3.6.4). This system decouples the data transfer from the job execution
in a manner similar to that done by Condor Stork[52]. This also allows pipelining
of execution and data transfer. It recognises that data placement is a significant,

but under appreciated, part of a computational grid infrastructure.

3.5.5 Configuration Service

When working with large numbers of dynamic collaborating components, possibly
with replication either on the same host or across a set of hosts, coordinating the
configuration and information access for each of these components and between
components is a difficult task. This is closely related to the classic Name Service
problem, addressed in other contexts by DNS (Domain Name Service)[11], LDAP
(Lightweight Directory Access Protocol)[53], UDDI (Universal Description, Discov-
ery, and Integration)[54, 55|, MDS (Monitoring and Discovering System)[56], and
R-GMA (Relational Grid Monitoring Architecture) [57, 58], to name a few[2]. Of
these alternatives, DNS came the closest to providing a simple, de-centralised sys-
tem that did not require the installation and configuration of a central information
server, or have particular preconceptions concerning the information contained by
the service or the method of service access. DNS, however, still presented a suffi-
cient level of complexity from both the implementation and end user perspective to
warrant the development of a new service. The other approaches were all powerful,
yet complex, and required significant infrastructure to utilise. Many design ideas
for the DIRAC Configuration Service are taken from the DNS architecture, such as
iterative navigation, hierarchical information, replication, and caching. The DIRAC
Configuration Service featured a simple interface, with a conceptually simple design,
replicating the concept of a configuration file.

The specific requirements were that every DIRAC Service, Agent, and Client

required a uniform API which would provide:

e Local configuration and information;
e Global (system wide) configuration and information;
e Remote component configuration and information;

e Configuration and information sharing;

3.5 DIRAC Grid Infrastructure 31

[ServiceA]
ServiceName = DIRAC Job Matcher

[AgentConfig]
Modules = JobAgent TransferAgent

[JobAgent]
CEUniqueIds
AgentName

in2p3.fr/pbs-short
TestModularAgent

[InfoServicel

List = /etc/site-config.ini \
http://1lbnts2.cern.ch \
http://marsanne.in2p3.fr

Listing 3.1: Ezxzample configuration file.

void set (section, option, value, [sourcel])
value = get (section, option, [sourcel])
list = options (section, [sourcel)
list = sections([sourcel])
Listing 3.2: Configuration Service API.
e Overriding of global settings;

Ease of deployment;

Ease of updates;

Robustness;

Simplicity.

As such, and in keeping with the principles of simplicity and lightweight imple-
mentation, a network-enabled categorised name/value pair system was implemented,
which overloads the Python ConfigParser API and utilises the Microsoft Windows
“INI” file format. An example is shown in Listing 3.1. Components which use the
Configuration Service do so via a Local Configuration Service (LCS). This retrieves
information from a local file, from a remote service, or via a combination of the two.

The simplicity of this format means non-expert users can easily modify config-
uration files. As well, it presents an information data model which is conceptually
easy to grasp. The goal was to present information to a software component as if it
had come from a single local INI file. The basic interface is borrowed directly from
the ConfigParser module and is shown in Listing 3.2.

To clarify the distinction between the local object which exposes this API and a

remotely accessible service, two distinct classes were created: LocalConfiguration-

3.5 DIRAC Grid Infrastructure 32

Service and ConfigurationService, respectively. The intention was that on a
semantic level the APIs to these two objects will be identical, although syntactically,
and due to particularities of the RPC mechanism, it is possible the API may vary.

A LocalConfigurationService object can be passed a number of information
sources when it is created. This ordered list represents the hierarchy of sources
which will be queried in order, either until a requested item is found or an exception
returned once all sources have been attempted, thus indicating the item does not
exist. This list of sources can be composed of a mixture of local files and remote
sources. Local files are read directly into memory and not referenced again, while
remote sources are queried only when necessary. This approach implies file based
information is static and a snapshot is taken at object creation time, while remote
information can be dynamic and subsequent requests may return different results.
A mechanism exists to copy results from remote sources, placing a snapshot of those
requested items in memory in the local object, avoiding subsequent calls to the
remote service, but sacrificing the ability to catch changes to remote information.

There is also the option to create a LocalConfigurationService without any
information sources, and simply add information to the object during program ex-
ecution, or add a list of sources at a later point. Similarly it is possible to change
the list of remote sources, meaning a single LocalConfigurationService object
can act as an interface to request information dynamically from any remote source.
This functionality explains the use of the optional source parameter in the API,
which makes the object a stateless adapter for interfacing to a remote information
source exposing the Configuration Service API.

The following lists the primary strategies for utilising the Configuration Service.

e A list of service access points which expose their local configuration via the
Configuration Service API can be registered with a LocalConfigurationService
object, which will iterate through them to acquire required information from
the first source which can provide it. Copy-on-read can be specified to avoid

future requests for the same information being made to remote sources.

e A service exposing the Configuration Service API may provide recursive fetch-
ing of information such that when it receives a request for information, rather
than simply checking the local in-memory information, it may forward the
request to its own set of remote or alternate sources. In this way the service

acts as an intermediate proxy for queries.

e An object which requires information from multiple sources can either be

3.5 DIRAC Grid Infrastructure 33

passed the location of the sources “directly” (via local initialisation files, start-
up parameters, or hard-coding), or can refer to a Configuration Service which
acts as a directory, and returns the location of a particular service given, for
example, its canonical name. With this list of sources, the LocalConfigura-
tionService object within the component in question can then fetch necessary

information from the relevant remote components directly.

For DIRAC, the central Configuration Service is implemented using an Internet
accessible multi-threaded XML-RPC interface, over HT'TP. The actual information
is contained in a database for persistency, making use of (section, option, value)
tuples where (section, option) form a joint key. This service is supported by a
multi-threaded database connection pool which allows a pre-defined number of si-
multaneous queries to be supported.

During DCO04, it was found that using a single central Configuration Service and
a set of local INI files for each component allowed the efficient distribution and
management of system information. In this way, the central Configuration Service
provided system-wide “global” information, such as the location of other services,
grid-enabled storage nodes, or configuration parameters. At each site a site-wide
configuration file was used, coupled with a component specific configuration file.
These three sources (component, site, and global) allowed Clients, Agents, and
Services to self-configure and inter-operate, and provided the flexibility to override
information if necessary (e.g. by utilising a local value in preference to a global
value).

Due to the importance of this information-sharing network, it was found that net-
work outages, system failures, and overloading of the central Configuration Service
could result in failure of active jobs, therefore to address this several complementary

techniques were used to minimise the chance of failed information queries:

e Replication of the central Configuration Service at multiple sites;

Timeout, retry, and fail-over settings;

Caching of information to eliminate multiple queries;

Block queries to return values for an entire section at once;

“last-ditch” information source from a local INI file.

These combined techniques resulted in a robust grid information infrastructure

which could handle the load of thousands of jobs executing simultaneously. Figure

3.5 DIRAC Grid Infrastructure 34

3.7 illustrates the load placed on the Configuration Service during DC04, show-
ing peaks of 300 requests per minute. Load testing showed that the system lost

responsiveness when more than 40 requests per second were made.

300 - q

250 7

N

=}

=}
I

requests (#)

.
a
=)

Figure 3.7: Configuration Service queries per minute over 24 hour period.

3.5.6 Monitoring and Accounting Services

The Job Monitoring Service provides an interface for Agents and Jobs to update job
state and for other Services or Users to query job state. This only retains information
for jobs which are active in the system. Jobs which have completed or failed are
eventually cleared to the Job Accounting Service. There are three access modes to

the Monitoring Services: an API, a web-interface, and command line tools.

3.5.7 Agent

The Agent handles DIRAC jobs at a computing site by submitting them to the
Local Resource Management System (LRMS). The current system supports PBS,
LSF, BQS, Sun Grid Engine, Condor, Globus, EDG/LCG, Fork, and In-Process
resource types. The job JDL is inspected by the Agent to handle staging and
registering of input or output files. The Agent monitors the progress of the job and
sends status updates to the Monitoring Service.

The design consists of a set of pluggable Agent Modules. The modules are

executed in sequence in a continuous loop. Typically a site runs several agents

3.5 DIRAC Grid Infrastructure 35

each having its own set of modules, for example job management modules or data
management modules. This feature makes the DIRAC Agent very flexible, since
new functionality can be added easily, and sites can choose which modules they
wish to have running. Further details are discussed in Section 3.6.2.

Agents can operate in a cycle-scavenging mode at the cluster level, where they
only request and execute jobs when the local resources are under-utilised. This
idea comes from global computing models, such as SETI@Home, BOINC, and dis-
tributed.net [59-61], which perform cycle-scavenging on home PCs.

3.5.8 OGSA and OGSI

The framework proposed by OGSA[49] and specified in detail by OGSI[62] was seen
as an opportunity to move toward increased interoperability between grid software
components. Several months of intensive work were invested in developing DIRAC
Services as OGSI Java components utilising Globus Toolkit 3, however this was aban-
doned shortly before Globus and IBM jointly announced their intent to discontinue
OGSI and in its place proposed WSRF (Web Services Resource Framework)[63].
In principal, the concept of dynamic, stateful, transient Grid Services, as com-
pared to Web Services which are static and stateless, is sound. A common standard
for security, lifecycle, service data, and publish/subscribe event notifications are all
required, however the realisation of those in OGSI was, in practice, unworkable for

the following reasons:

Heavyweight and complex Impossible to develop lightweight clients, difficult to
run as a regular user, and significant infrastructure required for deploying Grid

Service containers;
Not standards compatible Unable to leverage existing Web Services tools;
Poor documentation For installation, maintenance, debugging, and development;

Poor implementation Many bugs in GT3 and a constant flood of exceptions.

Together these made it difficult to develop, debug, deploy, and maintain OGSI
Grid Services. Similar experiences were recorded by others[64-68]. LHCb consid-
ered using a pure Python implementation of OGSI, pyGridWare, implemented by
Lawrence Berkley Laboratory (USA), but this was not sufficiently complete to be
practical. While it is understood that the more recent versions of GT3 and GT4
(for WSRF) have corrected many of the early technical problems, the combined

3.6 DIRAC: Key Features and Advances 36

facts that OGSI had no future, and the complexity of development under GT3
forced development of DIRAC to return to Python and XML-RPC.

While OGSA provided rich mechanisms for service description, interaction, and
management, the stability and simplicity of Python and XML-RPC were of greater
utility, given the complexity of available OGSA implementations and difficulty in
developing and deploying stable Grid Services.

3.6 DIRAC: Key Features and Advances

This section discusses four aspects which have been key to the success of DIRAC: the
pull scheduling paradigm, lightweight modular agents, the use of instant messaging,

and mechanisms to provide fault tolerance.

3.6.1 Pull Scheduling

DIRAC emphasises high throughput rather than high performance. This idea is cham-
pioned by the Condor project[13], from which DIRAC borrows heavily in terms of
philosophy for designing generic distributed computational systems[14]. It advo-
cates immediately using computing resources as they become available, rather than
attempting global optimisations of all jobs over all executors. In the Condor ap-
proach, which we will call the pull paradigm, executors request computing tasks by
announcing their availability. In contrast a push paradigm has a scheduler which
monitors the state of all queues and assigns jobs to queues as it wishes.

For push scheduling to work, all the information concerning the system needs to
be made available at one place and at one time. In a large, federated, grid envi-
ronment this is often impractical as information may be unavailable, incorrect, or
out of date. Even if it is available, job allocation complexity grows quadratically
with the number of jobs and resources, where every possible allocation combination
must be evaluated to select an optimal schedule. This is a classic NP-complete
problem. While there are efficient heuristic approaches that in practise come near
to an optimal solution, such algorithms generally require complete and up to date
information regarding system state, and are typically designed to operate on ho-
mogeneous computing resources with 102 — 10® queued jobs. Later in Section 3.8,
Figure 3.16 illustrates the poor performance of centralised push scheduling in the
LCG environment.

As a result of this, push scheduling in a grid environment has proven to be

problematic. By contrast, the DIRAC Central Services simply maintain queues

3.6 DIRAC: Key Features and Advances 37

of prioritised jobs (see Section 3.5.3) and allocate the highest priority job which
matches an executor’s job request. The Condor Matchmaking libraries facilitate
dynamic resource definitions, as opposed to the traditional batch system which
contain queues consisting of static characteristics[21]. This is the only aspect of
Condor which is used directly by DIRAC. While Condor can operate across sites
and in a federated fashion, these are not its strengths. It has trouble coping with
several thousand active jobs, hundreds or thousands of users, not to mention that
the same version of Condor must be installed on all systems by a super user and a
single security domain must be maintained[69-73]. This is highlighted by accounts
of an eight user and one thousand CPU system being termed a “very large Condor
pool” which resulted in a “melt-down” when the single scheduler had 3000 to 4000
queued jobs[69]. Condor has grown out of a distributed batch system with a small
set of high availability central services, and has an architecture catered for this
environment|73]. LHCb required a decoupled system which could handle tens of
thousands of active jobs across hundreds of sites and be very fault tolerant. The

DIRAC design attempts to address these requirements.

With a pull paradigm, the previously difficult task of determining where free
computing resources exist is now distributed to the remote Agents (see Section
3.5.7) which have an up-to-date view of their sites’ state. Since jobs are grouped
into queues based on common requirements, the worst case is that each job request
from an Agent will be compared against each queue once, where typically the number

of queues is much less than the total number of queued jobs.

Both long matching time and the risk of job starvation can be avoided through
the use of an appropriate Optimiser to move “best fit”, “starving”, or “high-priority”
jobs to the front of the appropriate queue. As reported elsewhere[74], this allows a

mixture of standard and custom scheduling algorithms.

Figure 3.8 shows the match times for jobs during LHCb DC04. 85% of the time
this operation takes less than two seconds even with tens of thousands of queued
jobs, thousands of running jobs, and dozens of sites requesting jobs concurrently.
This is 30 times faster than the mean scheduling time of the LCG Resource Broker
in performing essentially the same task. Performance of LCG will be discussed at
length in Section 3.8.2, including a comparative histogram of LCG matching time

in Figure 3.16.

3.6 DIRAC: Key Features and Advances 38

52636

mean: 1.04
mode: 0.40
plotted evts: 219404

overflow >10: 4260
o/f mean: 61.91

jobs

0.2 2 4 6 8 10
match time (s)

Figure 3.8: DIRAC match time distribution for 223,000 jobs during DC04

3.6.2 Lightweight Modular Agents

By providing simple abstractions of Computing Elements (CE or ezecutor) and Stor-
age Elements (SE), and exposing simple APIs to the Core Services, it was possible
to implement lightweight Agents (see Section 3.5.7) which can be installed and run
entirely in unprivileged user space on any executor. This allows the rapid utilisation
of heterogeneous systems in a federated manner — the most general objective of
computational grids. Collaborators with normal access to the remote systems sim-

ply install a one megabyte self-contained package with all the custom software for
the DIRAC Agent.

The configuration allows local policies on queue usage to be applied, and selection
of which Agent modules to run. This modularity gives local Agent administrators

great flexibility and control, and makes it easy to write custom modules.

The only pre-requisites are a recent version of the Python interpreter and out-
bound Internet connectivity, in order to contact the DIRAC Services. This allows
the Agent to run under virtually any computing and network environment, includ-
ing behind firewalls and private networks utilising Network Address Translation
(NAT) to reach the Internet. Installation entirely in regular user space mitigates
the security risks present in software which requires “root” access and system wide
installation, and accommodates LHCb members who administer a DIRAC Agent at

their local computing centre but do not have privileged access.

3.6 DIRAC: Key Features and Advances 39

3.6.3 Instant Messaging for Grid Services

Instant messaging can provide a mechanism to connect grid components and users
in a peer-to-peer fashion, transcending firewall and NAT issues, and providing a
level of indirection to the physical site and node the data or processes reside on
via a portable instant messaging address. Certain instant messaging infrastructures
also provide message buffering, thereby protecting communications from network
outages, overloads, and service restarts. These features drew the LHCb grid software
group to investigate the potential of using instant messaging in DIRAC.

Instant messaging has since been incorporated into all the DIRAC components:
Services, Agents, Jobs and User Interface, providing reliable, asynchronous, light-
weight and high speed messaging between components. Public demand for instant
messaging has led to highly optimised packages which utilise well defined standards,
and are proven to support thousands to tens-of-thousands of simultaneous connec-
tions. While these have primarily been for person-to-person communication, it is
clear that machine-to-machine and person-to-machine applications are possible, and
it is in these areas DIRAC has demonstrated a novel application of the technology.

While XML-RPC was appropriate for DIRAC Services to use to expose their
APIs, this protocol is not as well suited for the Agents and Jobs which also must
be reachable by the Services, or by Users. In this environment, instant messaging
provided a useful access channel. No a priori information is available about where
or when an Agent or Job will run, and for security reasons local networks often will
not allow Agents or Jobs to start an XML-RPC server that is widely accessible.
Firewalls are typically configured to block inbound network connections to worker
nodes. This suggests a client-initiated dynamic and asynchronous communications
framework is required.

The Extensible Messaging and Presence Protocol (XMPP), now an IETF Inter-
net Draft[75], is currently used in DIRAC. This has grown out of the open-source,
non-proprietary, XML based Jabber instant messaging standard[76]. XMPP pro-
vides standard instant messaging functionality, such as one-to-one messaging, group
messaging (“chat”), and broadcast messaging. An RPC-like mechanism exists called
Information/Query, (IQ) which can be used to expose an API to any XMPP entity.
The roster mechanism facilitates automatic, real-time monitoring of XMPP entities
via their presence.

The DIRAC Services use XMPP in places where fault tolerant, asynchronous
messaging is important. For example, the Job Receiver Service uses XMPP to

notify the Optimiser Service when it receives a new job. When the Optimiser gets

3.6 DIRAC: Key Features and Advances 40

this message, it will then sort the new job into the appropriate queues. The 1Q
functionality has the potential to allow users to retrieve real-time information about
running jobs, something which is critical for interactive tasks, or for job steering. It

also greatly facilitates debugging and possible recovery of stuck jobs.

XMPP is specifically designed to have extremely lightweight clients, and grace-
fully handles dynamic availability of entities, buffering all messages until an entity
is available to retrieve them. By matching the XMPP 1Q functionality to standard
XMPP messages, it is possible for users with a standard XMPP client to locate and
communicate with Agents, Jobs and Services from anywhere. This has already been

put to good use in DC04 for controlling and monitoring the state of Agents.

The basic structure of XMPP consists of Servers, Clients, Users, Entities, and
Connections. As mentioned earlier, XMPP utilises “thin-clients”, leaving all long-
term state information to the server. In this sense it is not truly a peer-to-peer
system, but a multi-hub and spoke instant messaging server. The Client man-
ages the connection to a Server, implements the client side protocol handling, and
stores any state information regarding the current session. A user (identified by
an email-like URI (e.g. xmpp://ijstokes@dirac.cern.ch) can connect multiple
times to a Server, with each Connection creating a separate XMPP Entity, uniquely
identified by a Resource Name (e.g. home, office, laptop). The unique En-
tity end-point name is formed by concatenating the Resource Name onto the User
Name (e.g. ijstokes@dirac.cern.ch/home, ijstokes@dirac.cern.ch/office,
ijstokes@dirac.cern.ch/laptop). In this way a single authentication credential
can be used to create multiple simultaneous Entities, each with a unique address,

possibly existing at different network locations.

Once the Client negotiates an Entity Connection to a Server, the Server will
provide the Client with all user account information stored by the Server. This
primarily consists of the user’s roster, which is an address list of other XMPP users
(messaging end-points). A key difference between the roster and a typical address
list, as found in electronic mail systems, is the addition of dynamic state information
for each entry. This information describes what state each user is in (e.g. “online”,
“offline”, “away”, “do-not-disturb”, etc.), and a customisable status field. The roster
acts as a publish/subscribe mechanism, where any changes in the local user’s state
is broadcast to all online roster members, and any changes in the state of a remote
user who is on the roster list is sent to the local user. XMPP roster management

and messages are handled through <presence> messages.

The original application of Instant Messaging within DIRAC was to provide asyn-

3.6 DIRAC: Key Features and Advances 41

chronous, buffered messaging between Services. Each Service Class was assigned a
single authentication credential (User account), and each Service instance utilised
a unique Resource name to provide a single unique address for that instance. This
mechanism decoupled Services from each other and allowed them to be stopped,
restarted, and even moved to different hosts during live operation. This was critical
for robustness of the overall system and maintenance of individual services. Given
the number of Services was small (5-20), and the communication between the Ser-
vices limited, there were no problems with bottlenecks at the central XMPP server

seen with this approach.

The next step was to introduce Instant Messaging for state monitoring of Agents.
By using the “chat room” functionality of Instant Messaging, an ad hoc messaging
hub could be created. Agents could connect to an “Agent Chat Room” and publish
progress information as chat room messages, and the room roster list acted as an
inventory of online Agents. By using custom status fields the roster also provided
information regarding where the Agent was running, including host name, directory,
and process number. This was critical when misbehaving Agents were discovered.
Again, given the number of Agents was initially low (10-100), this operated well and
allowed a system administrator to use a standard XMPP GUI Client to connect to

the same Chat Room and monitor Agent status.

This naturally led to the question of introducing Instant Messaging to each Job.
The intention was to provide job-level live monitoring. Due to the fact that the
number of active jobs was two orders of magnitude greater than the number of
Agents (1000-10,000 active jobs), it was discovered that thousands of automated
Instant Messaging clients connecting to a single XMPP server or chat room resulted
in a Distributed Denial of Service (DDoS) attack. The messaging load saturated
the network connection, caused the server to consume all available memory, and
overloaded the server processor. The XMPP server software was running on the
same server as the other DIRAC software services and therefore paralysed the entire
system. On the Client side, the XMPP connection was not done in a separate

process or thread, so the blocking