
A REST Model for High Throughput Scheduling in

Computational Grids

Ian James Stokes-Rees

Linacre College, Oxford

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy at the University of Oxford

Michaelmas Term, 2006

C
E

R
N

-T
H

E
SI

S-
20

07
-0

39
28

/
11

/
20

06

Abstract

Current grid computing architectures have been based on cluster management and

batch queuing systems, extended to a distributed, federated domain. These have

shown shortcomings in terms of scalability, stability, and modularity. To address

these problems, this dissertation applies architectural styles from the Internet and

Web to the domain of generic computational grids. Using the REST style, a flexible

model for grid resource interaction is developed which removes the need for any

centralised services or specific protocols, thereby allowing a range of implementa-

tions and layering of further functionality. The context for resource interaction is a

generalisation and formalisation of the Condor ClassAd match-making mechanism.

This set theoretic model is described in depth, including the advantages and features

which it realises. This RESTful style is also motivated by operational experience

with existing grid infrastructures, and the design, operation, and performance of a

proto-RESTful grid middleware package named DIRAC. This package was designed

to provide for the LHCb particle physics experiment’s “off-line” computational in-

frastructure, and was first exercised during a 6 month data challenge which utilised

over 670 years of CPU time and produced 98 TB of data through 300,000 tasks

executed at computing centres around the world. The design of DIRAC and per-

formance measures from the data challenge are reported. The main contribution

of this work is the development of a REST model for grid resource interaction. In

particular, it allows resource templating for scheduling queues which provide a novel

distributed and scalable approach to resource scheduling on the grid.

I dedicate this work to Emily and Maggie,
who have made it possible, and made it purposeful.

9 What has been will be again,
what has been done will be done again;
there is nothing new under the sun.

10 Is there anything of which one can say,
Look! This is something new?
It was here already, long ago;
it was here before our time.

11 There is no remembrance of men of old,
and even those who are yet to come
will not be remembered by those who follow.

Ecclesiastes 1:9-11

i

Acknowledgements

There are numerous groups of people who have, each in their own way, contributed

to the four years of work you are now (in part) reading about. My supervisors Ian

McArthur and Steve McKeever I thank for their constant encouragement and direc-

tion. Thank you for letting me pick the direction three years ago and then standing

each side of me to keep it all on course. Within the rest of the Oxford Physics

Grid group, this work has been improved by the camaraderie of Alexander Soroko,

Carmine Cioffi, Matt Leslie, Stefan Stonjek, Chris Dennis, and Rhys Newman. Jeff

Tseng’s time and experience with physics computing has been invaluable, and I

thank him for corralling us software-types. For an incredible and life changing year

in Marseille, I have to thank Frank Harris for befriending me and introducing me

to Andrei Tsaregorodtsev and the LHCb computing group based at CPPM. Great

thanks to my partner in crime Vincent Garonne for all the time spent developing

DIRAC and watching Sopranos at CERN. As well, thanks to everyone on the LHCb

Computing Team. It was great to work so well together making “the grid” a reality

for LHCb and particle physics.

These have been several exciting years for grid computing. The time spent

with the various Oxford e-Science projects, our monthly lunches at St. Hugh’s

(not fish again!), and the Software Engineering seminar series provided an informal

environment that deeply affected my thinking on grid computing. The results were

additional insight into the broader challenges of the field, inspiration for new ideas,

and much hilarity as we repeatedly discovered everyone was finding it pretty hard

to make grid computing really “work”.

Much of this work was developed on experimental kit rigged together and con-

nected to the department network with the kind permission and even support of

Pete Gronbech, Chris Hunter, and John Harris. Thank you for your patience and

allowing me to keep turtle-pace Pentium’s with Red Hat 7 running for so long.

I must also thank the patient readers of the various mailing lists I spent endless

hours writing to, in search of solutions to the problems of grid computing. In

ii

particular, thanks to tb-support, lcg-rollout, lhcb-paste, and globus-discuss.

Contributing in less concrete ways I also must thank the MER team at the FSA

for the good times over the final 8 months (and for paying my rent), the time during

which the bulk of this was actually written, for the many early morning walks and

talks with Robin Mayfield along the canal, and for the Oxford Vineyard Church staff

team, who have been incredible to work with and grow along side. In particular, my

thanks to Andrew Myatt for patience, leadership, high expectations, and believing

in my ability to do more and be more than I ever thought possible.

I have come to realise the importance of family in the last few years and must

acknowledge the incredible influence my parents, Mary and Jim Stokes-Rees have

had on my life. Thank you for putting in me the values and priorities which I

have today. Thank you to Andrew, my brother, for constantly challenging me to

remember how big and exciting the world is, the need to find balance, and the

importance of life long learning.

Finally, thanks to the most important people in my life. Emily, for encouraging

me and supporting me in every possible way over the past four years, Maggie, for

giving me the world’s best thesis break wrestling matches, and of course to God for

the blessing of this opportunity and having a plan for my life. For everyone, I pray

I will be able to make the most of it.

iii

Statement of Authorship

The bulk of the work presented in this dissertation is solely my own. Conceptually,

the idea of Condor-style prioritised task queues and dynamic queue re-ordering is

attributed to Andrei Tsaregorodtsev, my supervisor while at the Centre de Physique

des Particules de Marseille and one of the lead scientists for the LHCb grid soft-

ware. These are core architectural aspect of the LHCb DIRAC grid infrastructure

described in Chapter 3. This chapter is largely taken from the journal paper [1],

where I was the primary author. Other sources of material in this chapter came

from these conference papers which I co-authored: [2–4].

Within this chapter, the LHCb computing requirements (Section 3.5.1) are, as

referenced, a summary of the salient points from the LHCb Computing Model [5].

The overall DIRAC Architecture was conceived by Andrei Tsaregorodtsev (Section

3.5.2). He also had full responsibility for the Data Management Service and the

DIRAC Agent aspects (Sections 3.5.4 and 3.5.7, respectively). The Job Management

Service described in Section 3.5.3 was implemented by Vincent Garonne, who also

created Figure 3.5. The Monitoring and Accounting Services (Section 3.5.6) were

conceived and implemented by Ricardo Graciani, Manuel Sanchez, and Vincent

Garonne.

My involvement with the work described in Chapter 3 was implementing the

DIRAC Agent (Section 3.5.7), the XMPP Instant Messaging infrastructure (Section

3.6.3), the service fault tolerance strategies (Section 3.6.4), the Configuration Service

(Section 3.5.5), and prototyping the OGSI implementation of DIRAC (Section 3.5.8).

The actual LHCb Data Challenge 2004 was, as described in Section 3.7, conducted by

a team of 6-8 people, of which I was one. Vincent Garonne, Andrei Tsaregorodtsev,

and myself had primary responsibility for the continuous operation of the DIRAC

Services over the 6 month period of DC04. I had primary responsibility for the

interface between DIRAC and the LHC Computing Grid (LCG), both in terms of

the software interface within DIRAC, and operationally monitoring and managing

these jobs. Towards the end of DC04 this task management responsibility was

iv

shifted to Ricardo Graciani. All of the discussion, metrics, plots, and analysis found

in Sections 3.7 and 3.8 are entirely mine, based on work I did to merge task-level

logs, DIRAC logs, and LCG logs over 6 months and 330,000 tasks (this work is

briefly described in Section 3.8.2).

The work in the remaining chapters is exclusively my own.

v

Contents

1 Scalable Computational Grids 1

1.1 The RESTful Grid Vision . 2

1.2 Key Goals . 4

1.3 Single Task Particle Physics Use Case 5

1.4 Contributions . 6

2 Terminology 8

2.1 Elements, Form, Rationale . 8

2.2 Resources and Representations . 9

2.3 Representational State Transfer . 11

2.4 Identities and Delegation . 12

2.5 Hosts, Executors and Storage . 13

2.6 Services and Agents . 14

2.7 Users . 15

2.8 Grid Task . 15

2.9 Computational Grids . 16

3 Grid Computing for Particle Physics 18

3.1 Introduction . 18

3.2 The CERN Large Hadron Collider . 20

3.3 Typical Particle Physics Computing Model 22

3.4 LHC Computing Grid . 25

3.5 DIRAC Grid Infrastructure . 26

3.5.1 LHCb Computing Requirements 26

3.5.2 Architecture . 28

3.5.3 Job Management Services . 29

3.5.4 Data Management Services 29

3.5.5 Configuration Service . 30

vi

3.5.6 Monitoring and Accounting Services 34

3.5.7 Agent . 34

3.5.8 OGSA and OGSI . 35

3.6 DIRAC: Key Features and Advances 36

3.6.1 Pull Scheduling . 36

3.6.2 Lightweight Modular Agents 38

3.6.3 Instant Messaging for Grid Services 39

3.6.4 Fault Tolerance . 43

3.7 LHCb 2004 Data Challenge . 43

3.7.1 Historical Background . 44

3.7.2 Experience . 45

3.7.3 Faults and Major System Failures 46

3.7.4 LCG Integration . 49

3.7.5 Development and Deployment Environment 52

3.8 DC04 Performance Results . 52

3.8.1 Challenges presented by LCG 55

3.8.2 LCG Performance . 57

3.9 Summary of LHCb Computing . 65

3.10 Summary . 67

4 Cluster and Grid Task Management 69

4.1 Operating Systems and Computational Grids 70

4.2 Traditional Task Scheduling and

Resource Management . 73

4.3 Existing Description Mechanisms . 75

4.3.1 Job Control Language . 76

4.3.2 PBS and Torque . 77

4.3.3 ClassAds . 79

4.3.4 Grid Laboratory Uniform Environment Schema 81

4.3.5 Job Description Language . 83

4.3.6 Resource Specification Language 84

4.3.7 Job Submission Description Language 85

4.3.8 Configuration Description, Deployment, and Lifecycle Man-

agement . 87

4.4 Summary . 88

vii

5 A REST Model for Resource Matching 90

5.1 Resource Model Overview . 92

5.2 Resource Characteristics . 94

5.2.1 Value Types . 97

5.2.2 Examples of Resource Characteristic Sets 98

5.3 Comparability . 100

5.4 Comparators . 101

5.4.1 Basic Pairwise Comparator 102

5.4.2 Equivalence . 102

5.4.3 Ordering . 104

5.5 Transforming Comparators . 106

5.5.1 Type Transforming Pairwise Comparator 107

5.5.2 Dimension and Type Transforming Pairwise Comparator . . . 108

5.6 Set Comparison . 111

5.7 Summary . 113

6 Resource Requirements 114

6.1 Requirements . 115

6.2 Requirement Sets . 118

6.2.1 Requirement Space . 120

6.2.2 Multiple Requirements Within the Same Dimension 121

6.2.3 Multi-dimensional Requirement Sets 121

6.3 Matching Semantics . 123

6.3.1 Symmetric Matching . 126

6.3.2 Transitive Properties . 126

6.3.3 Partial Match . 127

6.3.4 Matching Examples . 128

6.4 Interpretation of Unspecified Values 130

6.5 Complete Set Requirements . 134

6.6 Matchers . 135

6.6.1 One-Way Pair Match . 136

6.6.2 Hierarchical Match . 137

6.6.3 Peer Pair Match . 138

6.6.4 Multi-Resource Peer Match 139

6.6.5 Aggregated Match . 141

6.7 Summary . 144

viii

7 Resource Preferences 146

7.1 Sub-selection of Resource Composition Alternatives 146

7.2 Preference Semantics . 148

7.2.1 Ranking Algorithm . 149

7.2.2 Preference Ordering Operators 149

7.3 Preference Comparisons . 152

7.4 Consistency of Preference Set Ordering 154

7.5 Multilateral Ranking . 154

7.6 Task and Executor Batch Pair Matching and Ranking 157

7.7 Summary . 161

8 Applications of the Grid Resource Description Language 162

8.1 Composition Profiles and Contracts 163

8.2 Matching Transitivity and Templates for Resource Composition . . . 166

8.2.1 Transitivity of the Matching Operation 168

8.2.2 Match-Equivalent Templates 169

8.2.3 Shared-Composition Templates 169

8.2.4 Template Preferences . 170

8.3 XML Schema Validation of GRDL 171

8.4 Consuming Characteristics . 174

8.5 Block Reservation . 174

8.6 Priority Queues . 174

8.7 Security . 176

8.8 Summary . 177

9 Future Work and Conclusions 178

9.1 A Scalable Computational Grid Architecture 178

9.2 Examination of Key Goals . 182

9.3 Future Work . 182

A Task and Executor Description Languages 186

A.1 Globus Resource Specification Language 186

A.2 Job Description Language . 188

A.3 GLUE Resource Description Schema 191

A.4 Outline of JSDL . 192

A.5 Comparison of JSDL, JDL, GLUE and RSL 194

A.6 GLUE SE properties . 200

ix

A.7 Summary of CDDLM State Machine and API 201

B Grid Resource Description Language 202

B.1 GRDL Property and Type List Schema 202

B.2 GRDL Dimensions Schema . 209

B.3 GRDL Base Schema . 213

B.4 GRDL Namespace Wrapping Schema 213

B.5 GRDL DTD Schema . 214

C Haskell Descriptions of the GRDL Model and Operations 216

C.1 Core GRDL Components . 216

C.2 Dimension Functions . 218

C.3 Type Definitions and Mapping Functions 218

C.4 Boolean Operations . 222

C.5 Basic Pairwise Comparator . 223

C.6 Type Transforming Pairwise Comparator 223

C.7 Dimension and Type Transforming Pairwise Comparator 224

C.8 Example Comparators . 225

C.9 Boolean Conversion . 225

C.10 Characteristic Subsets . 226

C.11 Requirement Subsets . 226

C.12 Resource Matching . 227

C.13 Sorting by Ranked Preferences . 228

C.14 Preference Equivalence . 229

C.15 Resource Templates . 229

Bibliography 230

x

Chapter 1

Scalable Computational Grids

One of the main goals of computational grids is to facilitate the interorganisational

sharing of data and computing resources in a ubiquitous manner, similar to the way

in which the World Wide Web has facilitated global information sharing, and the

Internet global networking. While the inherent complexity of remote task execution

and a multitude of strategies for work-flow management and data replication may

preclude a single “Global Grid” from emerging, it is still of great value to consider

combining the strategies which have contributed to the success of the Internet and

the Web into a grid architecture which could operate on an Internet-scale.

The primary motivation for this work is the present lack of a stable, scalable

computational grid infrastructure. Existing systems are largely based on extending

distributed computing paradigms and single-site/single-organisation batch comput-

ing systems. These approaches have failed to demonstrate scalability, usability, and

manageability, therefore it is necessary to consider if fundamentally different ap-

proaches are required. The underlying usage scenario for this work is drawn from

simulation and analysis tasks typical of a particle physics experimental environment.

In particular, this research has been funded through the United Kingdom Particle

Physics and Astronomy Research Council (PPARC)1 and the author has been affil-

iated with the LHCb experiment2 based at CERN3, in Geneva, Switzerland.

This dissertation considers architectural aspects from the Internet and Web and

proposes a model for distributed, scalable grid computing. Five major areas are

covered: a report on the DIRAC grid infrastructure developed by the author for the

CERN LHCb project; analysis of a 6 month particle physics grid computing run; a

1See http://www.pparc.ac.uk/
2See http://lhcb.cern.ch/
3See http://www.cern.ch/

1

1.1 The RESTful Grid Vision 2

survey of grid task and resource description languages; a RESTful (Representational

State Transfer) model for grid resource interaction; and scheduling and resource

management properties derived from the RESTful grid model. REST is the name

given to the architectural style used to guide the development of the Web, and

was coined by Roy Fielding, one of the original architects of the World Wide Web,

and who wrote the httpd server and co-authored the HTTP[6] and URI[7] IETF

specifications.

This is one part design report and operational experience, and one part theoret-

ical model. Chapter 3 covers the DIRAC design and operational experience, while

Chapters 5, 6, and 7 introduce a set-theory based grid resource description model

which follows the REST architectural style. Chapter 8 then explores, among other

things, the scheduling properties of this model, showing how it enables an effective

scalable distributed scheduling strategy while avoiding attempts at finding an opti-

mal schedule, which is an NP-complete problem (and therefore intractable in a grid

environment)[8]. Chapter 4 provides the bridge between the DIRAC operational

experience sections and the theoretical sections by detailing the characteristics of

existing grid resource description strategies prior to presenting a new model which

is partially novel, and partially a synthesis of the best of the existing models. The

overall vision, which is only just begun in the work presented here, is a RESTful

grid. For that reason, Chapter 2 is found at the start of the work in order to set

the scene by describing the components of the RESTful grid, and defining the ter-

minology used in the remainder of the dissertation. As the theoretical portion of

this work is limited to the initial representation, composition, and scheduling of grid

resources, Chapter 9 provides a summary of conclusions and discussion of the future

work required to more fully realise a RESTful grid.

1.1 The RESTful Grid Vision

This dissertation presents the first steps towards an architecture for large computa-

tional grids based on the REST[9] principles which guided the development of the

Web and HTTP. As Fielding puts it, the Web consists of “communicating large-

grain data objects across high-latency networks and multiple trust boundaries”[9] –

just one of many properties also shared by a grid. Computational grids draw closer

similarity to the Web than they do to distributed applications or batch systems, the

latter two being the more common influences for grid architectures. Consider the

following which are common to grids and the Web, but typically not found in tra-

1.1 The RESTful Grid Vision 3

ditional distributed systems or batch systems: heterogeneity, dynamism, federated

or untrusted interconnected systems, high fault rate, and a multiplicity of security

domains. The central contribution of this work is to re-phrase a computational grid

using a REST architecture, focusing on describing all elements of the system as

“resources” using a common description language, and restating interaction of these

resources as “compositions”, using set theory and set comprehensions, while leav-

ing the architecture sufficiently open (under or unspecified) to allow independent

client “rendering” (interpretation) of resource representations and the realisation of

resource compositions formed within the framework presented here.

The REST architectural style consists of a stateless, layered, cacheable, client/

server model, where the “visible” components of the system consist of resource rep-

resentations, accessed via a uniform resource naming scheme. REST emphasises a

simple scalable resource-centred distributed architecture rather than common soft-

ware interfaces (e.g. libraries, protocols, APIs) as the basis of a large scale federated

computing environment. This is sometimes described as the REST style emphasis-

ing a plethora of “nouns” (named object classes, or “resources”) within the system,

and a limited or constrained set of “verbs” (actions which can be carried out on

the “nouns”), where these “verbs” can be applied universally to the “nouns” (i.e.

providing a limited but universal interface to the unconstrained set of object classes

within the system)[10]. This, and other aspects of the REST architectural style, are

clearly in stark contrast to the more common Service Oriented Architecture (SOA)

or Object Oriented Design which emphasise service or object interfaces and data

hiding (i.e. the importance and richness of many well defined “verbs”, specific to

each particular “noun”).

The RESTful grid design described here is inspired by successful Internet stan-

dards – HTTP[6], DNS[11], and the Web[12] – and an approach to“cycle-scavenging”

championed by the highly successful Condor Project[13], namely High Throughput

Computing (HTC)[14]. The RESTful approach is conducive to simplicity and repli-

cation which are seen as essential properties for robustness and scalability. A REST

approach naturally avoids the monolithic and homogeneous nature of existing grid

systems by decoupling descriptors (resource representations) from services which

act on those descriptors. Federations of heterogeneous computing resources on an

Internet scale require different approaches from those currently being developed or

adopted[15]. This argument in favour of a different design paradigm and fundamen-

tally different software architecture for Internet-scale computing has been presented

by Rosenblum [16] and Fielding [9], and is suggested in “Architectural Principles of

1.2 Key Goals 4

the Internet”[17].

Preliminary verification of this strategy can be found in the LHCb particle

physics experiment which has developed a proto-RESTful grid infrastructure. Fur-

ther application of a RESTful approach to grid computing shown in the grid model

presented later in this dissertation also reveal attractive properties not found in

existing systems. It is argued that priority must be given to descriptions of compu-

tational tasks and resources which succinctly capture their salient features, yet also

allow for extensibility. An emphasis of this proposed architecture is to recognise

the duality which exists between resources and tasks, to abstract that commonal-

ity, and allow task/resource matching to be driven equivalently by the task owner,

the resource owner, a third party, or some combination of all three. This builds

on the concept of symmetric matchmaking developed by the Condor Project[13],

where computing resources can constrain the tasks they will accept, and tasks can

constrain the set of computing resources they are prepared to run on. By developing

a model for this based in set theory it is then possible to derive valuable properties

which greatly facilitate scheduling in a grid environment. This is also abstracted to

general pair-wise and n-way resource composition.

1.2 Key Goals

The key underlying goals for a generic computational grid are enumerated below

and will be referred to repeatedly throughout this work:

KG1 Scalability The grid architecture must be able to operate on a scale the size

of the Internet in terms of hosts, users, files, and domains.

KG2 Reliability The grid architecture must be fault tolerant. Failure of any one

component or area of the grid must have little or no effect on other areas.

KG3 Usability Users must be able to interact easily with the grid.

KG4 Extensibility It must be possible for developers to extend, replace, and in-

terface with the grid infrastructure. This is associated with modularity and

replaceability of grid components.

KG5 Manageability Administrators must be able to easily deploy, monitor, and

maintain aspects of the grid under their authority.

1.3 Single Task Particle Physics Use Case 5

KG6 Security Users, hosts, and resources must have a flexible but secure mecha-

nism for controlling access. Delegation of authority is also critical.

From an engineering perspective, both DIRAC and the REST model which ex-

tends DIRAC, are of particular value because they directly address Key Goals 1

to 5 in a realisable way. Key Goal 6, Security, has not fully been incorporated

into DIRAC, however the REST model provides a number of avenues for identity

management, access control policies, and delegation to be developed on top of the

RESTful grid architecture presented here.

1.3 Single Task Particle Physics Use Case

While consideration has been made not to preclude advanced features of computa-

tional grids such as work flows, parallel processing, resource coordination, account-

ing, multiway resource composition and advanced reservation, this dissertation only

discusses the simple use case of self-contained remote task execution. As will be de-

scribed, this base case has yet to be satisfactorily addressed in what will be defined,

for the purposes of this dissertation, as a computational grid (see Section 2.9).

The particle physics community, in particular, has an impending demand for a

reliable computational grid that will handle exactly this simple use case. By the

end of 2007 the four Large Hadron Collider (LHC) experiments based at CERN will

require a global computational grid of 140,000 of today’s fastest CPUs operating 24

hours a day, 365 days of the year, and accessing 47 PB of data[5, 18–20]. These

CPUs will be spread across hundreds of sites around the world, and also often be

shared with other non-physics users local to those sites. Furthermore, the data

access will, in general, be random and high volume, meaning the transfer of data

from its storage location to an executing process could require significant time and

bandwidth. This consideration must be factored in when task scheduling occurs.

The combined LHC computing load will be a significant test of the most basic

objective of grid computing: large-scale sharing of federated computing resources

and distributed data over a long time period across a diverse collection of ad hoc

user groups. Addressing this successfully will provide a platform for many other

applications and a stepping stone to the more advanced functionality mentioned

above.

DIRAC, implemented for use by the LHCb experiment in 2004, was utilised for

the execution of 300,000 tasks consuming 670 CPU years and producing 98 TB of

data at dozens of sites located around the world. The performance of this system

1.4 Contributions 6

and operational experience led to the refinement of the RESTful grid architecture

presented herein through a better understanding of failure modes, bottlenecks, and

functional requirements. Furthermore, DIRAC operated in parallel with the LHC

Computing Grid, providing numerous points of comparison with another grid in-

frastructure.

1.4 Contributions

This dissertation makes the following contributions to the field of computational

grid research:

1. Presentation of the DIRAC grid infrastructure, developed for the CERN LHCb

experiment. This service oriented architecture has been developed to meet the

Key Goals described in Section 1.2 and address the needs of particle physics

computing, which it has done successfully.

2. A study of a large grid computing run. The results from over 300,000 long-

running jobs executed over 200 days on a global network of sites provided

invaluable insight into real grid computing issues[1]. Operational issues, ar-

chitectural issues, and overall performance were all examined. This grid com-

puting infrastructure incorporated early implementations of the architecture

proposed by this dissertation[3], thus providing an opportunity to validate the

model, and resulted in an improved understanding of the system requirements.

3. A survey and critique of existing batch system and grid description languages.

This covers nine different task and computing resource descriptors, drawing

out those properties which facilitate the Key Goals, and those which obstruct

it. An analogy of a grid task to an operating system process is also made, in

order to highlight key features and complexities of describing and managing

grid task state throughout its lifetime.

4. The observations from the survey form the basis for the proposed RESTful

Grid Resource Description Language. This focuses on the aspects for initial

description leading towards matching and scheduling of resources, and support

for grid process description throughout the full task life-cycle. Well defined

properties of this model are developed by utilising a set theory approach. This

is a refinement and extension of the Condor ClassAd language, and avoids the

need for tri-state logic (true, false and undefined states, and the consequent

1.4 Contributions 7

3 × 3 truth tables), thereby significantly simplifying comprehensibility and

implementation.

5. A distributed grid scheduling architecture. This extends and generalises the

concept of “matchmaking”, originating from the Condor project[21]. Push,

pull, and third party scheduling mechanisms for grid tasks are proposed. Sup-

port for hierarchical matchmaking via templates, gang scheduling, and priority

pools are all discussed. It is shown how this strategy avoids the NP-complete

problem of finding an optimal schedule while still efficiently providing an ef-

fective schedule.

The emphasis of this work is on laying a foundation for a practical architecture

for task management in scalable, generic, computational grids. Issues around se-

curity, data management and networking are only touched on briefly, as this work

has focused on the REST representation of grid resources, rather than interactions

(beyond composition and scheduling) between those resources.

Chapter 2

Terminology

This chapter defines important terms used throughout this dissertation. It lays a

conceptual foundation for the idea of a RESTful computational grid by describing

the constituent aspects and their interrelationships.

2.1 Elements, Form, Rationale

Specific terms regarding the proposed architecture are taken primarily from Perry

and Wolf[22] and Fielding[9].

Perry and Wolf propose that software architecture consists of elements, form,

and rationale[22]. The elements are further broken down into three different classes:

processing elements, data elements, and connecting elements. The form refers to

how the elements are structured, while the rationale presents the motivation.

Fielding chooses to use the terms components, data, and connectors for Perry

and Wolf’s three classes of elements and configuration in place of form[9]. This dis-

sertation will use Fielding’s terms. For completeness we reproduce their definitions

here:

Component An abstract unit of software instructions and internal state that pro-

vides a transformation of data via its interface.

Datum An element of information that is transferred from a component, or received

by a component, via a connector.

Connector An abstract mechanism that mediates communication, coordination,

or cooperation among components.

8

Chapter 2. Terminology 9

Configuration The structure of architectural relationships among components,

connectors, and data during a period of system run-time.

Figure 2.1 illustrates the relationships of this terminology. The system architecture

is made up of a rationale, which describes the motivation and objectives of the

overall architecture, the elements which are the components which make up the

architecture, and a configuration which describes how the components relate to each

other. The elements can further be broken down into components, containing the

processing rules or intelligence of the system (e.g. the software), data, which contain

the information on which the components operate, and the connectors, which provide

the interfaces, connections, filters, and buffers over which the components interact

and the data items are transmitted.

system
architecture

������������

HHHHHHHHHHHH

rationale element

������

HHHHHH

component
processing
element

data
data

element

connector
connecting
element

configuration
form

Figure 2.1: Hierarchy of system architecture terminology (italics indicate original
terms used by Perry and Wolf[22])

2.2 Resources and Representations

In the REST architecture components and data are resources with corresponding

identifiers. Resources are hidden entities which are only observed through their

representations, and operations on resources are done by sending the representation

and representation meta-data (that is, what to do with that representation) to a

particular resource[9]. For example, a web server may provide English or German

language representations of a particular web-page resource dependent upon the re-

quest or request meta-data. One or more identifiers are associated with a single

resource, and access to a resource is achieved via one of these identifiers. The infor-

mation which is available concerning a particular resource is contained within the

Chapter 2. Terminology 10

resource representation, which may be only a sub-set of the entire resource’s state

and may be interpreted (or rendered) in any way by the receiver.

A key aspect of a RESTful style is to phrase the entities within the system as

resources, emphasising a common representation of those resources’ state, and de-

emphasising an architecturally asserted behaviour, protocol, or interface on those

resources. Figure 2.2 illustrates the ontological decomposition of resource classes

within the RESTful grid model. Behavioural inter-relationships (e.g. user resource

creates and submits task resource which runs on executor resource), and compo-

sitional relationships (e.g. data resources associated with a particular storage re-

source) are explicitly unspecified in a RESTful architecture and are left to user

communities or applications to assert on top of the underlying RESTful architec-

ture. The first division of resource classes is into host, user, task and data resources,

where hosts represent physical hardware, users are the people who interact with

the system, tasks which represent actions or work-flows initiated by users, and data

which is created or used by user tasks. Hosts are further divided into executors and

storage, the former representing systems focussed on data processing, and the latter

data storage. Service and agent resource classes are discussed in a later section.

resource

������������

�
�

�
�

@
@

@
@

PPPPPPPPPPPP

host

����

HHHH

executor

��� HHH

service agent

user agent

task agent

storage

user task data

Figure 2.2: Resource class relationships

It is important to note that in a REST context the term “resource” takes on a

much broader meaning than is commonly used within the grid computing domain.

A grid resource is usually considered only to be a computing resource: either a single

CPU, a node, a task queue, or a computing cluster. This work will refer to such a

resource as an “executor” or a “computing resource”. The more general definition

of “resource” was deemed appropriate as a key position of this dissertation is the

similarity between tasks and executors from the perspective of symmetric scheduling,

Chapter 2. Terminology 11

and the desire to model a computational grid in a RESTful way, where the primary

entities are all “resources”.

2.3 Representational State Transfer

The Representational State Transfer (REST) architectural style presented by Field-

ing forms the foundation for the architecture described in this dissertation. REST is

a retrospective description of the principles which led to the design of the Web and

HTTP, which in turn were built on the “end-to-end argument”[23] which formed the

basis for the early Internet protocols and architecture evolutionary process[17, 24].

Fielding writes:

REST is defined by four interface constraints: identification of resources;

manipulation of resources through representations; self descriptive mes-

sages; and hypermedia as the engine of applications state.[9]

REST emphasises representation of system state over operational interfaces, leav-

ing interpretation and manipulation of that state under (or un-) specified. In REST,

units of system state are representations of resources and first class objects. This

is in stark contrast to an Object Oriented paradigm which emphasises exactly the

opposite, with state encapsulated and hidden inside objects with strict interface

definitions. They key REST properties relevant to a RESTful grid are:

1. Stateless services and interaction, allowing for service replication/parallelism

and caching.

2. Communication and interaction conducted (primarily) through the transfer of

resource representations.

3. “Hypermedia as the engine of application state”[9], meaning system state and

state transition alternatives are contained within persistent resources, rather

than executing applications or services.

4. Dynamic, unspecified, and “hidden” resource and service component topology,

thus alleviating the problem of brittleness, as the topology can continuously

change. This is facilitated by a consistent, uniform, and loosely bound resource

identification mechanism.

5. Uniform resource naming (e.g. URIs for the Web).

Chapter 2. Terminology 12

6. Hidden resource state, exposed resource representation.

7. Consumer-driven interpretation of resource state (i.e. client-side rendering of

representation).

8. Decoupling and flexibility due to loose binding of references to resources (i.e.

references to non-existent resources are permitted).

9. Dynamism through late binding of references to representations (i.e. repre-

sentation of a particular resource is realised as late as possible “at run-time”).

10. Content negotiation, returning a resource representation customised to a par-

ticular resource request or the preferences of the client.

11. Client-side and server-side cacheable representations.

The main observation is that a large, federated, dynamic, and generic distributed

system requires flexibility in utilisation to allow different communities to develop in-

teraction patterns suitable to their needs, while still having design constraints which

allow an underlying common infrastructure to be put in place. REST constrains a

system by asserting stateless, connectionless, cacheable client/server interactions

with a uniform entity naming system, while providing design freedom (for higher

layers) in terms of interpretation of resource representations and operations (ac-

tions) on those representations. The RESTful grid model, therefore, does not assert

any behavioural constraints on grid resources and instead constrains resources in

terms of how they are described and that the first “stage” of resource interaction

is understood through resource composition, based on a strong set theoretic model

describing resource properties.

2.4 Identities and Delegation

In this work, the term identity will use a broad definition that may contain verifiable

properties regarding a resource. In this sense, an identity is also a resource.

Resources may delegate part of their identity to another resource, providing that

second resource with a mechanism to act on behalf of the first resource. Instantiation

and identity management of a particular resource or its delegate is the responsibil-

ity of the instantiator, within an identification namespace delegated from another

resource. This means there may legally be multiple instances of the same resource

within the system, each with multiple identifiers. Four examples of this are files,

Chapter 2. Terminology 13

tasks, users, and executors. For each one of these it is possible to imagine a single

“abstract” or “true” instance of the resource, with multiple “actual” instantiations

within a grid system, and each one of those instances having multiple identifiers

associated with it. Of course in practice such replication, if permitted at all by a

particular implementation, must be carefully managed in order to manage consis-

tency and equivalence of resources.

REST describes identifiers simply as pointers to a resource representation. In

the Web context, these identifiers are URIs. Here, there is no restriction given to

the mechanism for resource identifiers, although URIs would be suitable in many

cases. Identifiers and identities are quite independent of each other.

This dissertation does not attempt to specify any particular mechanism of iden-

tity exchange, delegation, verification, or use. Suffice it to say that various mech-

anisms exist to do this to different degrees of functionality, secrecy, and security

(e.g. PERMIS[25], X.509[26–28], Globus proxy certificates[29], and LCG Virtual

Organisation Management System[30, 31]). Furthermore, analogous to the Web, a

large computational grid infrastructure could reasonably be expected to support a

range of different approaches to security. Although the RESTful grid architecture

presented here does not presume to use URIs and HTTP, one of the experimental

systems developed does utilise URIs to reference resources accessed over HTTP and

representations realised in XML. In this scenario, all interactions could be subject

to any one of: X.509-based certificate authentication, HTTPS-encrypted username/

password, plain username/password, or client-side cookies. Expanding the range

of protocols beyond HTTP, a single work-flow could be envisioned to include data

access via the Secure Shell protocol (ssh)[32] using DSA keys[33], OpenPGP[34] to

sign an SMTP email message, one X.509 certificate to submit a sub-task to one

cluster, and another X.509 proxy certificate to make a data base query to a remote

service. The point of this illustration is to emphasise the importance of decoupling a

particular security strategy from the underlying computational grid infrastructure,

thereby allowing a range of different security strategies to be layered on top. In this

domain, the objective is to avoid precluding any particular security strategy of a

higher architectural layer.

2.5 Hosts, Executors and Storage

This architecture describes four autonomous types of resources: executors, storage,

services and agents. In Unified Modelling Language (UML) parlance, these would be

Chapter 2. Terminology 14

considered actors which initiate and respond to change within the system. A meta-

class of resource is the host which provides the underlying system for an executor or

storage resource.

Hosts represent abstractions of hardware – for example, a particular CPU or

operating system instance – or a system acting as a gateway to a collection of

hardware resources. A host will typically have full control (e.g. “root” access) over

the resource it represents and all its subordinate resources, and may encapsulate the

various “core” processing components which make up that resource (e.g. storage,

operating system, and associated utilities).

Executor resources, or executors for brevity, represent the computational re-

sources within the system. An executor may contain and manage a set of subordinate

services and agents.

Storage resources provide the infrastructure which manage data resources. This

is included for completeness, however a system for data management is not an em-

phasis of this research, therefore is not covered in any depth. In the particle physics

use case, efficient data management is a critical aspect of the computational infras-

tructure, given the volume of data which is produced, processed, and queried. As

such, data catalogues, meta-data, access control, staging and replication are all areas

where extensive work has been done. In a fashion similar to the discussion earlier

on security, data management services must be layered on top of an underlying grid

architecture. The RESTful architecture presented here allows a range of different

data management techniques to be used without prejudice for one or another.

2.6 Services and Agents

Services represent processing components which are “externally” accessible (mean-

ing accessible beyond the context of the immediate component which started them).

These may operate on behalf of a host or user and hold delegated identities, or have

their own identities. Service entities typically are reactive (rather than proactive),

long lived, stateless, and instantiated by a host, although none of these are essential

properties. Services may instantiate agents in order to monitor or carry out some

request.

Agents are similar to services, but instead are typically proactive (goal oriented),

have a limited life time (until the goal is achieved), are stateful, and are instantiated

by users, services, or other agents. They accept and delegate identities and may

have their own identities. They are not necessarily externally accessible.

Chapter 2. Terminology 15

2.7 Users

Users are human beings with a set of identities available to them. Users are also

considered a type of resource. They utilise “interactive” processing components

to interact with the system. A user may create a delegate which will operate au-

tonomously (without user interaction) on behalf of the user. The delegate may

appear as a service or agent. A typical form of user agent is a task agent which

operates on a task resource (via its representation) to execute the task.

2.8 Grid Task

A self-contained piece of work to take place “on the grid” will be termed a grid task

or simply task. In the general sense a task can have dependencies with other tasks,

or can itself consist of a sequence of sub-tasks. In many ways it closely parallels the

concept of a “process” in an operating system, with the key difference being that a

grid task may not be actively executing. This allows for a task to be a template prior

to execution, and to continue to exist after the execution of the task has completed.

A grid task is synonymous with a “grid job” (although it should be noted that the

GGF Grid Scheduling Dictionary[35] makes a subtle distinction between the two).

The overhead and latencies involved in cross-site communication is such that

a grid task is taken to be fairly coarse grained, typically requiring on the order

of minutes to hours to execute, and an overall lifetime of months or even years.

Finer grained tasks will suffer from a high overhead to computation ratio (OCR),

and would more suitably be batched together as a coarser grained single grid task.

Furthermore, task-external communication performance in a grid environment is

expected to be relatively slow, unreliable, and unpredictable, meaning that a low

communication to computation ratio (CCR) is expected. This does not preclude a

single grid task from encapsulating a parallel execution involving a large number of

co-located processors.

A task consists of some combination of: processing operations, data operations,

constraints, characteristics, configuration, security policy, accounts, and an identity

set.

2.9 Computational Grids 16

2.9 Computational Grids

The definition for a computational grid is taken from the context of particle physics

computing. It consists of 100 or more computing sites each consisting of 1-10,000

independent nodes. A computing site is an autonomous computing centre, typically

located at a single physical location (for example, a university, a research centre,

or a company). Each site is assumed to have complete authority over their own

resources. A node is the smallest managed computing resource, which is typically a

dual or quad processor rack mounted computer. The total number of nodes provided

by all sites is 100,000 or more, and the sites are interconnected via the Internet. The

user base consists of 1000-1,000,000 users, arranged in dynamic autonomous virtual

organisations which can self-create, and utilising minimally or un-coordinated user

identity and accounting systems. The per-centre storage will typically be 1-1,000

TB, with 10-10,000 Mb/s bandwidth between nodes and between sites. The grid will

typically be loaded with computing tasks at 0.01 (low task contention) to 100 times

(high task contention) the available computing resources, with some “hot spots”

possibly having a TCR (Task Computing Power Ratio) of up to 1000 (that is, 1000

tasks queued per available CPU).

There is no assumed coordination between any two centres, and failures, net-

work topology changes, and dramatically varying resource demands are regular but

unpredictable. Furthermore network partitions, both intentional (nodes disconnect-

ing from the network) and accidental (power outages, network or equipment failure,

etc.) are a regular feature. The grid is also considered to be a hostile environment,

in that some nodes and users may attempt to corrupt data, interfere with execution,

and hijack identities or resources. The hardware and software which makes up the

grid is entirely heterogeneous, and the overall system state is hidden. That is to

say, there can be no expectation of discovering the complete and consistent system

state. From any point within the grid, only portions of the system can be expected

to be visible (i.e. have state information available), however it is likely that this

view will provide out of date and possibly erroneous information.

Table 2.1 lists typical ranges for some of these properties, and includes a col-

umn with reference values for a representative computational grid. The reference

values are rounded to the nearest order of magnitude typical for the combined LHC

experiments’ computational needs.

Use of the term grid refers to computational grids, unless the context suggests

otherwise.

2.9 Computational Grids 17

Characteristic Range Reference Value
Sites 100+ 100
CPUs/Site 1-10,000 1,000
Storage/Site 1-1,000 TB 100 TB
Total CPUs > 10,000 100,000
Users 1000-1,000,000 10,000
Task Load 0.01-100 10
Task Duration > 10s 10 hr
Intra-Site Bandwidth 100-1000 Mb/s 1,000 Mb/s
Inter-Site Bandwidth 10-10,000 Mb/s 100 Mb/s

Table 2.1: General quantitative characteristics of a computational grid.

Chapter 3

Grid Computing for Particle

Physics

Having introduced and defined the key aspects of a RESTful grid ar-
chitecture in the previous chapter, this chapter summarises experience
from within the LHCb experiment of designing, operating, and using a
large computational grid. It is composed of material from a number of
reports and papers which presented the work of the 2004 LHCb Data
Challenge[1], the design of the DIRAC grid software system[3], and a
study of the performance of the computational grid used for the Data
Challenge[36]. It provides an overview of the computational needs of
current particle physics research and considers experience with existing
grid architectures to meet those requirements. The DIRAC architecture
applied proto-RESTful grid principles in terms of decoupled, stateless
services, generic resource composition, and client-driven resource access
and resource interpretation, thereby serving as the basis for the work
developed in later chapters.

3.1 Introduction

The particle physics community is one of the strongest drivers for the development

of computational grids. Experimental particle physics is breaking new ground in

our understanding of the most basic laws of the universe and therefore receives

significant research funding around the world. The nature of experimental particle

physics is such that individual experiments will typically have a lifetime of fifteen to

twenty years, cost hundreds of millions of pounds, and involve thousands of people.

The collaborators for each experiment are distributed across institutions around the

world. In the past it was possible for the majority of experiment related computing

to take place at the experiment site with “local” storage of all data, however this will

not be possible with the newest generation of experiments. For example, the four

new CERN experiments estimate they will each require thousands of dedicated CPUs

18

3.1 Introduction 19

(by today’s computing power) on a continuous basis just for the reconstruction stage

which converts the raw data produced by the detectors into physics “events”[5, 18–

20]. This load must be distributed to national and institutional computing centres

as CERN is not in a position to provide this quantity of dedicated processors. In

fact, this initial reconstruction phase is only the tip of the iceberg, making up less

than 20% of the total computational demand of the four experiments. Other large

physics centres such as the Stanford Linear Accelerator (SLAC) and Fermi National

Laboratory (FNAL) in the United States have similar requirements to distribute

significant amounts of data and computing to remote sites.

The new generation of particle physics experiments have orders of magnitude

greater demands for data storage and data processing. While it would be conceiv-

able to centralise all data and processing at CERN, using a large but otherwise

traditional computing cluster providing a “batch farm”, this is undesirable from a

number of perspectives. As an organisation, CERN attempts to distribute as much

responsibility to member states and their respective physics institutes as possible.

This principle reduces administration and management at CERN, and provides a

better mechanism for responsibility, accountability, and dissemination of knowl-

edge by having CERN’s work completed by members within their home institutes.

Furthermore, a distributed model allows member states or individual institutes to

commit computing resources relative to their own priorities and capabilities. This

issue dovetails with the desire to have the large volume of data replicated and avail-

able “close” to the computing centres which will process it, thus providing increased

robustness, increased effective network bandwidth, and reduced latencies. Many of

these issues are common to data and compute intensive applications and scientific re-

search, especially given the increase in inter-organisation collaborative teams, where

each sub-team may be participating in numerous collaborations. In this environment

of Virtual Organisations, the importance of a robust framework for distribution of

data and dynamic sharing of computing resources towards a common goal becomes

clear. This scenario provides the motivation for Key Goals 1, 2 and 6 (Scalability,

Reliability, and Security).

This chapter will look at experience with existing grid computing infrastructures

for handling the requirements of particle physics computing. Based on these require-

ments and experience from deploying and utilising early grid systems, a new grid

computing architecture was developed in 2003 and 2004 for the LHCb experiment.

It followed many REST principles of atomicity and simplicity of services. In partic-

ular DIRAC featured stateless, connectionless services, a client-server model, and a

3.2 The CERN Large Hadron Collider 20

RESTful resource model for tasks and agents. The operation of this system led to

the largest known utilisation of a global generic computational grid, consuming 670

CPU years over 6 months and producing 98 TB of data from 300,000 tasks. This

experience led to key insights which have further refined the requirements definition

for particle physics computational grids. This system, the results of its use in 2004,

and the observations drawn from that experience are presented in later sections.

3.2 The CERN Large Hadron Collider

The four new CERN-based particle physics experiments – ATLAS, CMS, Alice,

and LHCb – will all utilise the Large Hadron Collider (LHC) once the collider

and detector construction is complete with a projected start date in 2007. As a

proton/proton collider it will have a centre of mass energy of 14 TeV, many times

greater than any existing collider, allowing it to examine high energy particles better

than ever before, and some, such as the anticipated Higgs Boson, hopefully for the

first time. The higher energy collisions will necessarily produce a larger number of

particles, and the short life time of the highest energy particles requires very precise

spatial, temporal, and energy measurements. This is now possible due to improved

electronics and the decrease in computing and storage cost but will result in the

production of unprecedented amounts of data which will then require analysis.

The detectors, while in operation, have particle collisions occurring at rates of

up to 1 MHz. A series of “triggers” are used to down-sample this to only select

collisions containing events of interest. This produces an output stream at a rate of

100-2000 Hz. Each “event” contains a picture of the particle collision as seen by the

entire detector assembly. It contains information taken directly from the online data

acquisition system. This includes for example, time stamps, signal pulse information

and channel information from which spatial and other information can be deduced.

Real-time calibration data concerning the configuration of the detector may also be

included. The detectors are in full operational mode for a 7 month period each year,

and during each operational day 14 hours are spent “filling” the particle ring, and

then 10 hours “draining”. The draining period is when the collisions occur and real

data is gathered.

Figure 3.1 shows the historical and estimated annual storage and computing

requirements for different particle physics experiments. It is compiled from [5, 18–

20, 37, 38]. The LHC experiments anticipate 140 million SPEC Int 2000[39] years of

processing power in 2008, which will be the first full year of normal operation of the

3.2 The CERN Large Hadron Collider 21

2003 2004 2005 2006 2007 2008 2009 2010
10

0

10
1

10
2

10
3

Computational requirements

year

M
S

I2
k

Alice

Atlas
CMS

LHCb

D0/CDF

2004 2005 2006 2007 2008 2009 2010
1

2

3

4

5
Disk storage requirements

year

T
B

Alice

Atlas
CMS

LHCb

D0

CAF

2004 2005 2006 2007 2008 2009 2010
10

2

10
3

10
4

10
5

Mass storage (tape) requirements

year

T
B

Alice
Atlas
CMS

LHCb

D0

CAF

Figure 3.1: Particle physics computing requirements. Processing, tape, and disk
storage requirements for a selection of current large experiments. 2007
and beyond are estimates.

LHC. This is approximately equivalent to 140,000 3GHz Intel Xeon CPUs operating

continuously for a year. At the same time 47 PB of tape storage and 64 PB of disk

storage are required[5, 18–20].

3.3 Typical Particle Physics Computing Model 22

3.3 Typical Particle Physics Computing Model

Modern particle physics experiments have come to adopt similar strategies for organ-

ising and executing their simulations and data analysis. It is this common approach

to mass data handling and processing which motivates the model described in later

chapters. Furthermore, the field of grid computing largely grew out of physics

computing requirements which were not met by existing cluster or supercomputer

systems. For this reason, many of the existing grid computing strategies have been

developed with physics computing requirements in mind. This section provides a

summary of the computing model used by the CERN-based experiments.

Tier 0
13 MSI2K

11%

Tier 1
56 MSI2K

47%

Tier 2
50 MSI2K

42%

Distribution of LCG computing power
between Tier 0, 1, and 2 sites totalling 118 MSI2K

Figure 3.2: Computing resource distribution for Tier 0, 1, and 2 sites committed to
LCG in 2008.

The CERN MONARC project[40] proposed a four tier system for distributing

the processing load and data across a global network of physics sites[41]. The sys-

tem is centred at CERN, called the Tier 0 site, where the data from the detector

originates. Subsequent tiers consist of increasing numbers of sites, but the comput-

ing and storage capacity at each site is successively smaller, and the reliability of

the site decreases. Tier 1 sites are typically large national computing centres with

high reliability systems, dedicated support staff, high bandwidth networks, and large

storage capacity. They are also termed “Regional Centres” and act as hubs for the

Tier 2 to 4 sites under their umbrella. Tier 2 sites represent institution or univer-

sity computing centres which are predominately dedicated to physics computing.

Tier 3 sites are small clusters typically belonging to individual working groups, and

Tier 4 represents individual computers, typically desktops or laptops belonging to

3.3 Typical Particle Physics Computing Model 23

Tier 0
1 PB
3%

Tier 1
27 PB
65%

Tier 2
14 PB
32%

Distribution of LCG disk storage
between Tier 0, 1, and 2 sites totalling 42 PB

Figure 3.3: Disk storage distribution for Tier 0, 1, and 2 sites committed to LCG
in 2008.

Tier 0
14 PB
32%

Tier 1
27 PB
64%

Tier 2
2 PB
5%

Distribution of LCG tape storage
between Tier 0, 1, and 2 sites totalling 43 PB

Figure 3.4: Tape storage distribution for Tier 0, 1, and 2 sites committed to LCG
in 2008.

experimental collaborators. The current LCG Memorandum of Understanding de-

tails commitments of Tier 0, 1, and 2 sites and describes Service Level Agreements,

expected operational environment, qualitative requirements, and quantitative char-

acteristics for computing power, disk storage, tape storage, and network bandwidth

committed by institutions involved with LCG[42]. Figures 3.2, 3.3, and 3.4 illustrate

the distribution of some of these quantities between the Tier 0, 1 and 2 sites. It

should be noted that there is a shortfall for all three of these, as the MoU commits

118 MSI2K computing resources, 42 PB of disk storage, and 43 PB of tape storage,

3.3 Typical Particle Physics Computing Model 24

while the experiments’ computing models require 140 MSI2K computing resources,

47 PB of disk storage, and 67 PB of tape storage. As the MoU is the most re-

cent document, it is possible this is due to the latest official experiment computing

models being out of date with the current computing requirements.

Within particle physics experiments grid computing is taken to mean the trans-

mission, processing, and storage of data once it is on commodity components. Every

experiment will contain custom hardware, electronics, sensors, and processing which

is “close” to the detector and part of the real-time “on-line” system which is not

considered part of the grid computing infrastructure. Grid computing provides facil-

ities for what is known within the particle physics domain as “off-line” computing.

There are three primary operating modes for particle physics grids: reconstruction,

simulation, and analysis.

Reconstruction is very predictable, as it must be completed as the raw detector

data is produced, during the annual 7 month operational period of the detector.

This utilises stable software with parameters describing the detector configuration

and calibration values. Reconstruction must take place in near-real time, meaning

the data produced by the detector each day must be reconstructed into physics

events within a day. The throughput of reconstruction must match the rate of

data generation, as the detector operates continually during the 7 month period

and anything less would lead to a permanent and growing backlog until either the

operational period came to an end or the disk storage buffers were saturated and

it became necessary to flush the data and later retrieve it from tape storage. It

also allows for data quality monitoring which feeds back into controlling the run

conditions. Beyond the annual operational window, the detector data may be re-

processed (that is, reconstructed a second or third time) based on improved software,

calibration data, or detector models. This reconstruction is planned in advance and

administered at the experiment level.

Simulation can be done by individuals, small working groups, or directed by

the experiment. The experiment-level simulations are well defined in advance and

typically consist of thousands of days of computing doing wide ranging simulation

of detector response. Simulations conducted by individuals or working groups are

much more chaotic, in terms of the data requirements, software requirements, and

computing load.

Analysis is the most chaotic and consists of individual physicists or small working

groups making cross-cutting selections of reconstructed data in a search for interest-

ing physics. This will typically use locally customised software to analyse the data,

3.4 LHC Computing Grid 25

and will be even more unpredictable than the simulation work. These present some

of the greatest challenges to grid computing as the requirements of these jobs vary

widely.

3.4 LHC Computing Grid

In preparation for the computational demands of the LHC experiments, and in

acknowledgement of a new paradigm for computation in scientific research, the Eu-

ropean Data Grid (EDG) project was initiated in 2001 with the objective of de-

veloping a set of grid tools and an overall grid framework addressing security, data

management, task management, and system monitoring[43]. The specific goals and

use cases of this work were largely driven by the CERN LHC experiments, and

described in two reports HEPCAL I and HEPCAL II (High Energy Physics Com-

puting Application Layer)[44, 45], although consideration for other fields such as

bio-medical research, economic analysis, and climate modelling were also included.

The EDG project looked to build on and stabilise the Globus Toolkit, which had

been utilised successfully by many distributed computing applications, thereby pro-

viding a generic grid computing framework suitable for the full range of computing

applications required by particle physicists. The product of this work would ulti-

mately be delivered to the CERN-based computing group for the LHC which would

coordinate the distribution, deployment, and operation of the LHC Computing Grid

(LCG)[46]. Concerns with EDG in 2002 and 2003 led to the ARDA Report (Ar-

chitectural Road-map for Distributed Analysis)[47], prepared jointly by members of

the CERN experiments, which proposed a more decoupled and modular approach

to LCG than EDG was providing. This report motivated, in part, the direction of

the successor project to EDG, the Enabling Grids for e-Science in Europe (EGEE)

project[48]. This project operated in parallel with LCG and looked to re-engineer

the EDG software into a system named “gLite”.

It was at the point of transition when the ARDA Report was published and

LCG and EGEE were commencing their work with the inherited EDG software that

the work described in this dissertation was initiated. The LHCb experiment sought

to implement aspects of the services proposed by ARDA, given the difficulties of

working with EDG, in order to reduce the risk of relying completely on LCG for the

experiment’s computational infrastructure.

3.5 DIRAC Grid Infrastructure 26

3.5 DIRAC Grid Infrastructure

During 2003 and 2004 the CERN LHCb experiment developed the DIRAC comput-

ing infrastructure to support the transition from traditional batch farm computing

at large computing centres to distributed grid computing. In the Spring of 2004

this system was simultaneously deployed at 12 European physics computing centres

affiliated with the LHCb experiment and integrated with the LHC Computing Grid

(LCG). There were four objectives for the 2004 Data Challenge:

1. Test the LHCb software chain for physics simulation and analysis;

2. Simulate physics events for the LHCb detector using Monte-Carlo methods;

3. Validate the LHCb computing model;

4. Test the LCG (grid) computing infrastructure (software, hardware, and pro-

cesses).

The following sections describe the LHCb grid software which was developed to

support this initiative, and examines the results from the Data Challenge. Many

of the strategies and approaches espoused by this dissertation are motivated by the

LHCb computing requirements, the prior experience and philosophical approach

which led to the development of DIRAC, and the observations made and conclusions

drawn from the utilisation of a real grid infrastructure during the 2004 LHCb Data

Challenge.

The author’s primary contributions to the DIRAC infrastructure were around the

integration of OGSA [49] principles, exploring security options for DIRAC, interfac-

ing DIRAC with LCG, designing and implementing a novel instant-messaging based

monitoring system, designing and implementing a dynamic, distributed configura-

tion service, and putting in place fault tolerance mechanisms for Services, Agents,

and Tasks. In depth discussion is limited to these areas, however the other aspects

of DIRAC are presented for completeness.

3.5.1 LHCb Computing Requirements

The LHCb Computing Model [5] describes the approach taken by the experiment

for handling and processing data, outlining the storage and processing requirements

for the next several years. There are four main types of offline processing: initial

reconstruction of physics events from detector signals, stripping of detector data

3.5 DIRAC Grid Infrastructure 27

to select particular channels (groups of “interesting” events), data analysis, and

Monte Carlo simulation. There are also five main types of data produced by the

experiment: RAW data, which represents the response of the detector to collision

events after calibration adjustments have been applied; DST data, which are the

reconstructed events from the RAW data; rDST data, which are reduced versions of

the DST sufficient only for efficient pre-selection of full DST data sets; TAG data, for

quick reference to DST data “of interest”, which summarises event characteristics

and references the relevant DST data; and N-tuples which are specially selected sets

of events from DST data which contain comparable or groupable events.

Online processing takes place either within the detector assembly itself, or util-

ising computing resources co-located with the detector and are not relevant to this

discussion except in that the general purpose computing hardware which is part of

the online system can contribute to the grid environment when the detector is not

operational.

The remaining processing is done in the offline system. DIRAC is the grid com-

puting environment developed by LHCb to do this offline processing. It incorpo-

rates LCG computing resources and functionality while also, critically, allowing the

integration of non-LCG resources (see Figure 3.5). This section reports on the expe-

rience of developing DIRAC, integrating it into the LCG grid environment, making

use of existing middleware services and libraries, and advances from incorporating

new technology such as instant messaging into the architecture.

: DIRAC Sites

: DIRAC via LCG

: DIRAC and LCG Sites

Canada

Brazil

Taiwan

USA

Israel

Figure 3.5: Sites running DIRAC. This includes a mixture of grid-enabled sites and
conventional computing centres.

3.5 DIRAC Grid Infrastructure 28

3.5.2 Architecture

DIRAC is designed following a lightweight Agent/Service model, which emphasises

a service oriented architecture (SOA). It provides a scalable high throughput generic

grid computing environment for uncoupled or loosely coupled long running computa-

tional tasks, requiring significant input data and producing large volumes of output

data. The basic design objectives are to support 100,000 queued jobs, 10,000 running

jobs, and 100 sites.

AgentAgentAgent

Optimiser

Optimiser

ServiceData Mgmt Svc

Queue

Client
Job Submission

Job Receiver
Service

S
er

vi
ce

C
on

fig
ur

at
io

n

Matchmaker

reorder

requestrequestrequest

match

DIRAC Core Services

store

queue

submit

Job Database

Executor

File Catalogue

StorageStorage Executor

Executor

Figure 3.6: DIRAC Core Services.

The architecture is divided into five areas: Services, Agents, Executors, Storage,

and User Interface. The core of the system is a set of independent, stateless, dis-

tributed Services. The services are meant to be administered centrally and deployed

on a set of high availability machines. Executors and Storage are resources available

at remote sites, beyond the control of any central administration. Agents run on each

executor to monitor the resource availability, requesting jobs when possible from the

DIRAC services. Figure 3.6 illustrates these components and their relationships.

The User Interface API provides access to the Services, for control, retrieval,

3.5 DIRAC Grid Infrastructure 29

and monitoring of jobs and files. It has been incorporated into command line tools,

GUIs, and web sites. A complete GUI interface for managing LHCb jobs has been

produced by the Ganga project[50].

The general separation between Services and Agents is that Services are state-

less and reactive, whereas Agents are stateful and proactive. The Services can be

distributed across several machines, or run from a single server. This allows easy

replication for redundancy and load-balancing.

3.5.3 Job Management Services

Jobs are described using the text based ClassAd Job Description Language (JDL)

designed by the Condor project for use with the Condor Matchmaking scheduling

system[21]. A JDL file is submitted to the Job Receiver Service which registers the

job in the Job Database and notifies the Optimiser Service. The Optimiser Service

sorts jobs into different job queues and dynamically re-prioritises queue ordering.

Agents monitor availability of remote executors. When they detect “free slots”, they

submit a job request to the Matchmaker Service, which interrogates the various Job

Queues and returns a suitable job, based on the resource’s profile.

3.5.4 Data Management Services

The DIRAC Data Management Services provide fault tolerant transfers, replication,

registration, and meta-data access for files both at DIRAC computing centres and

long term mass storage sites.

A Storage Element (SE) is an abstracted interface to Internet-accessible storage.

It is defined entirely by a host, a protocol, and a path. This definition is stored

in the Configuration Service (see Section 3.5.5), and can be used by any Agent,

Job, Service or User, either for retrieving or uploading files. Protocols currently

supported by the SE include: gridftp, bbftp, sftp, ftp, http, rfio or local disk access.

The File Catalogue Service provides a simple interface for locating physical files

from aliases and universal file identifiers. This has made it possible to utilise two in-

dependent File Catalogues, one from the already existing LHCb Bookkeeping Data-

base, and another using the AliEn File Catalogue from the Alice experiment[51].

In the recent LHCb Data Challenge they were both filled with replica information

in order to provide redundancy to this vital component of the data management

system, and to allow performance comparisons to be made.

Within a running job, all outgoing data transfers are registered as Transfer

3.5 DIRAC Grid Infrastructure 30

Requests in a transfer database local to each Agent. The requests contain all the

necessary instructions to move a set of files in between the local storage and any

of the SEs defined in the DIRAC system. Different replication, retry, and fail-over

mechanisms exist to maximise the possibility of successfully transferring the data

(see Section 3.6.4). This system decouples the data transfer from the job execution

in a manner similar to that done by Condor Stork[52]. This also allows pipelining

of execution and data transfer. It recognises that data placement is a significant,

but under appreciated, part of a computational grid infrastructure.

3.5.5 Configuration Service

When working with large numbers of dynamic collaborating components, possibly

with replication either on the same host or across a set of hosts, coordinating the

configuration and information access for each of these components and between

components is a difficult task. This is closely related to the classic Name Service

problem, addressed in other contexts by DNS (Domain Name Service)[11], LDAP

(Lightweight Directory Access Protocol)[53], UDDI (Universal Description, Discov-

ery, and Integration)[54, 55], MDS (Monitoring and Discovering System)[56], and

R-GMA (Relational Grid Monitoring Architecture) [57, 58], to name a few[2]. Of

these alternatives, DNS came the closest to providing a simple, de-centralised sys-

tem that did not require the installation and configuration of a central information

server, or have particular preconceptions concerning the information contained by

the service or the method of service access. DNS, however, still presented a suffi-

cient level of complexity from both the implementation and end user perspective to

warrant the development of a new service. The other approaches were all powerful,

yet complex, and required significant infrastructure to utilise. Many design ideas

for the DIRAC Configuration Service are taken from the DNS architecture, such as

iterative navigation, hierarchical information, replication, and caching. The DIRAC

Configuration Service featured a simple interface, with a conceptually simple design,

replicating the concept of a configuration file.

The specific requirements were that every DIRAC Service, Agent, and Client

required a uniform API which would provide:

• Local configuration and information;

• Global (system wide) configuration and information;

• Remote component configuration and information;

• Configuration and information sharing;

3.5 DIRAC Grid Infrastructure 31

[ServiceA]

ServiceName = DIRAC Job Matcher

[AgentConfig]

Modules = JobAgent TransferAgent

[JobAgent]

CEUniqueIds = in2p3.fr/pbs -short

AgentName = TestModularAgent

[InfoService]

List = /etc/site -config.ini \

http:// lbnts2.cern.ch \

http:// marsanne.in2p3.fr

Listing 3.1: Example configuration file.

void set (section , option , value , [source])

value = get (section , option , [source])

list = options (section , [source])

list = sections([source])

Listing 3.2: Configuration Service API.

• Overriding of global settings;

• Ease of deployment;

• Ease of updates;

• Robustness;

• Simplicity.

As such, and in keeping with the principles of simplicity and lightweight imple-

mentation, a network-enabled categorised name/value pair system was implemented,

which overloads the Python ConfigParser API and utilises the Microsoft Windows

“INI” file format. An example is shown in Listing 3.1. Components which use the

Configuration Service do so via a Local Configuration Service (LCS). This retrieves

information from a local file, from a remote service, or via a combination of the two.

The simplicity of this format means non-expert users can easily modify config-

uration files. As well, it presents an information data model which is conceptually

easy to grasp. The goal was to present information to a software component as if it

had come from a single local INI file. The basic interface is borrowed directly from

the ConfigParser module and is shown in Listing 3.2.

To clarify the distinction between the local object which exposes this API and a

remotely accessible service, two distinct classes were created: LocalConfiguration-

3.5 DIRAC Grid Infrastructure 32

Service and ConfigurationService, respectively. The intention was that on a

semantic level the APIs to these two objects will be identical, although syntactically,

and due to particularities of the RPC mechanism, it is possible the API may vary.

A LocalConfigurationService object can be passed a number of information

sources when it is created. This ordered list represents the hierarchy of sources

which will be queried in order, either until a requested item is found or an exception

returned once all sources have been attempted, thus indicating the item does not

exist. This list of sources can be composed of a mixture of local files and remote

sources. Local files are read directly into memory and not referenced again, while

remote sources are queried only when necessary. This approach implies file based

information is static and a snapshot is taken at object creation time, while remote

information can be dynamic and subsequent requests may return different results.

A mechanism exists to copy results from remote sources, placing a snapshot of those

requested items in memory in the local object, avoiding subsequent calls to the

remote service, but sacrificing the ability to catch changes to remote information.

There is also the option to create a LocalConfigurationService without any

information sources, and simply add information to the object during program ex-

ecution, or add a list of sources at a later point. Similarly it is possible to change

the list of remote sources, meaning a single LocalConfigurationService object

can act as an interface to request information dynamically from any remote source.

This functionality explains the use of the optional source parameter in the API,

which makes the object a stateless adapter for interfacing to a remote information

source exposing the Configuration Service API.

The following lists the primary strategies for utilising the Configuration Service.

• A list of service access points which expose their local configuration via the

Configuration Service API can be registered with a LocalConfigurationService

object, which will iterate through them to acquire required information from

the first source which can provide it. Copy-on-read can be specified to avoid

future requests for the same information being made to remote sources.

• A service exposing the Configuration Service API may provide recursive fetch-

ing of information such that when it receives a request for information, rather

than simply checking the local in-memory information, it may forward the

request to its own set of remote or alternate sources. In this way the service

acts as an intermediate proxy for queries.

• An object which requires information from multiple sources can either be

3.5 DIRAC Grid Infrastructure 33

passed the location of the sources “directly” (via local initialisation files, start-

up parameters, or hard-coding), or can refer to a Configuration Service which

acts as a directory, and returns the location of a particular service given, for

example, its canonical name. With this list of sources, the LocalConfigura-

tionService object within the component in question can then fetch necessary

information from the relevant remote components directly.

For DIRAC, the central Configuration Service is implemented using an Internet

accessible multi-threaded XML-RPC interface, over HTTP. The actual information

is contained in a database for persistency, making use of (section, option, value)

tuples where (section, option) form a joint key. This service is supported by a

multi-threaded database connection pool which allows a pre-defined number of si-

multaneous queries to be supported.

During DC04, it was found that using a single central Configuration Service and

a set of local INI files for each component allowed the efficient distribution and

management of system information. In this way, the central Configuration Service

provided system-wide “global” information, such as the location of other services,

grid-enabled storage nodes, or configuration parameters. At each site a site-wide

configuration file was used, coupled with a component specific configuration file.

These three sources (component, site, and global) allowed Clients, Agents, and

Services to self-configure and inter-operate, and provided the flexibility to override

information if necessary (e.g. by utilising a local value in preference to a global

value).

Due to the importance of this information-sharing network, it was found that net-

work outages, system failures, and overloading of the central Configuration Service

could result in failure of active jobs, therefore to address this several complementary

techniques were used to minimise the chance of failed information queries:

• Replication of the central Configuration Service at multiple sites;

• Timeout, retry, and fail-over settings;

• Caching of information to eliminate multiple queries;

• Block queries to return values for an entire section at once;

• “last-ditch” information source from a local INI file.

These combined techniques resulted in a robust grid information infrastructure

which could handle the load of thousands of jobs executing simultaneously. Figure

3.5 DIRAC Grid Infrastructure 34

3.7 illustrates the load placed on the Configuration Service during DC04, show-

ing peaks of 300 requests per minute. Load testing showed that the system lost

responsiveness when more than 40 requests per second were made.

0 3 6 9 12 15 18 21 24
0

50

100

150

200

250

300

hour

re
qu

es
ts

 (
#)

Figure 3.7: Configuration Service queries per minute over 24 hour period.

3.5.6 Monitoring and Accounting Services

The Job Monitoring Service provides an interface for Agents and Jobs to update job

state and for other Services or Users to query job state. This only retains information

for jobs which are active in the system. Jobs which have completed or failed are

eventually cleared to the Job Accounting Service. There are three access modes to

the Monitoring Services: an API, a web-interface, and command line tools.

3.5.7 Agent

The Agent handles DIRAC jobs at a computing site by submitting them to the

Local Resource Management System (LRMS). The current system supports PBS,

LSF, BQS, Sun Grid Engine, Condor, Globus, EDG/LCG, Fork, and In-Process

resource types. The job JDL is inspected by the Agent to handle staging and

registering of input or output files. The Agent monitors the progress of the job and

sends status updates to the Monitoring Service.

The design consists of a set of pluggable Agent Modules. The modules are

executed in sequence in a continuous loop. Typically a site runs several agents

3.5 DIRAC Grid Infrastructure 35

each having its own set of modules, for example job management modules or data

management modules. This feature makes the DIRAC Agent very flexible, since

new functionality can be added easily, and sites can choose which modules they

wish to have running. Further details are discussed in Section 3.6.2.

Agents can operate in a cycle-scavenging mode at the cluster level, where they

only request and execute jobs when the local resources are under-utilised. This

idea comes from global computing models, such as SETI@Home, BOINC, and dis-

tributed.net [59–61], which perform cycle-scavenging on home PCs.

3.5.8 OGSA and OGSI

The framework proposed by OGSA[49] and specified in detail by OGSI[62] was seen

as an opportunity to move toward increased interoperability between grid software

components. Several months of intensive work were invested in developing DIRAC

Services as OGSI Java components utilising Globus Toolkit 3, however this was aban-

doned shortly before Globus and IBM jointly announced their intent to discontinue

OGSI and in its place proposed WSRF (Web Services Resource Framework)[63].

In principal, the concept of dynamic, stateful, transient Grid Services, as com-

pared to Web Services which are static and stateless, is sound. A common standard

for security, lifecycle, service data, and publish/subscribe event notifications are all

required, however the realisation of those in OGSI was, in practice, unworkable for

the following reasons:

Heavyweight and complex Impossible to develop lightweight clients, difficult to

run as a regular user, and significant infrastructure required for deploying Grid

Service containers;

Not standards compatible Unable to leverage existing Web Services tools;

Poor documentation For installation, maintenance, debugging, and development;

Poor implementation Many bugs in GT3 and a constant flood of exceptions.

Together these made it difficult to develop, debug, deploy, and maintain OGSI

Grid Services. Similar experiences were recorded by others[64–68]. LHCb consid-

ered using a pure Python implementation of OGSI, pyGridWare, implemented by

Lawrence Berkley Laboratory (USA), but this was not sufficiently complete to be

practical. While it is understood that the more recent versions of GT3 and GT4

(for WSRF) have corrected many of the early technical problems, the combined

3.6 DIRAC: Key Features and Advances 36

facts that OGSI had no future, and the complexity of development under GT3

forced development of DIRAC to return to Python and XML-RPC.

While OGSA provided rich mechanisms for service description, interaction, and

management, the stability and simplicity of Python and XML-RPC were of greater

utility, given the complexity of available OGSA implementations and difficulty in

developing and deploying stable Grid Services.

3.6 DIRAC: Key Features and Advances

This section discusses four aspects which have been key to the success of DIRAC: the

pull scheduling paradigm, lightweight modular agents, the use of instant messaging,

and mechanisms to provide fault tolerance.

3.6.1 Pull Scheduling

DIRAC emphasises high throughput rather than high performance. This idea is cham-

pioned by the Condor project[13], from which DIRAC borrows heavily in terms of

philosophy for designing generic distributed computational systems[14]. It advo-

cates immediately using computing resources as they become available, rather than

attempting global optimisations of all jobs over all executors. In the Condor ap-

proach, which we will call the pull paradigm, executors request computing tasks by

announcing their availability. In contrast a push paradigm has a scheduler which

monitors the state of all queues and assigns jobs to queues as it wishes.

For push scheduling to work, all the information concerning the system needs to

be made available at one place and at one time. In a large, federated, grid envi-

ronment this is often impractical as information may be unavailable, incorrect, or

out of date. Even if it is available, job allocation complexity grows quadratically

with the number of jobs and resources, where every possible allocation combination

must be evaluated to select an optimal schedule. This is a classic NP-complete

problem. While there are efficient heuristic approaches that in practise come near

to an optimal solution, such algorithms generally require complete and up to date

information regarding system state, and are typically designed to operate on ho-

mogeneous computing resources with 102 − 103 queued jobs. Later in Section 3.8,

Figure 3.16 illustrates the poor performance of centralised push scheduling in the

LCG environment.

As a result of this, push scheduling in a grid environment has proven to be

problematic. By contrast, the DIRAC Central Services simply maintain queues

3.6 DIRAC: Key Features and Advances 37

of prioritised jobs (see Section 3.5.3) and allocate the highest priority job which

matches an executor’s job request. The Condor Matchmaking libraries facilitate

dynamic resource definitions, as opposed to the traditional batch system which

contain queues consisting of static characteristics[21]. This is the only aspect of

Condor which is used directly by DIRAC. While Condor can operate across sites

and in a federated fashion, these are not its strengths. It has trouble coping with

several thousand active jobs, hundreds or thousands of users, not to mention that

the same version of Condor must be installed on all systems by a super user and a

single security domain must be maintained[69–73]. This is highlighted by accounts

of an eight user and one thousand CPU system being termed a “very large Condor

pool” which resulted in a “melt-down” when the single scheduler had 3000 to 4000

queued jobs[69]. Condor has grown out of a distributed batch system with a small

set of high availability central services, and has an architecture catered for this

environment[73]. LHCb required a decoupled system which could handle tens of

thousands of active jobs across hundreds of sites and be very fault tolerant. The

DIRAC design attempts to address these requirements.

With a pull paradigm, the previously difficult task of determining where free

computing resources exist is now distributed to the remote Agents (see Section

3.5.7) which have an up-to-date view of their sites’ state. Since jobs are grouped

into queues based on common requirements, the worst case is that each job request

from an Agent will be compared against each queue once, where typically the number

of queues is much less than the total number of queued jobs.

Both long matching time and the risk of job starvation can be avoided through

the use of an appropriate Optimiser to move “best fit”, “starving”, or “high-priority”

jobs to the front of the appropriate queue. As reported elsewhere[74], this allows a

mixture of standard and custom scheduling algorithms.

Figure 3.8 shows the match times for jobs during LHCb DC04. 85% of the time

this operation takes less than two seconds even with tens of thousands of queued

jobs, thousands of running jobs, and dozens of sites requesting jobs concurrently.

This is 30 times faster than the mean scheduling time of the LCG Resource Broker

in performing essentially the same task. Performance of LCG will be discussed at

length in Section 3.8.2, including a comparative histogram of LCG matching time

in Figure 3.16.

3.6 DIRAC: Key Features and Advances 38

0.2 2 4 6 8 10
0

52636

mean: 1.04
mode: 0.40
plotted evts: 219404

overflow >10: 4260
o/f mean: 61.91

match time (s)

jo
bs

Figure 3.8: DIRAC match time distribution for 223,000 jobs during DC04

3.6.2 Lightweight Modular Agents

By providing simple abstractions of Computing Elements (CE or executor) and Stor-

age Elements (SE), and exposing simple APIs to the Core Services, it was possible

to implement lightweight Agents (see Section 3.5.7) which can be installed and run

entirely in unprivileged user space on any executor. This allows the rapid utilisation

of heterogeneous systems in a federated manner — the most general objective of

computational grids. Collaborators with normal access to the remote systems sim-

ply install a one megabyte self-contained package with all the custom software for

the DIRAC Agent.

The configuration allows local policies on queue usage to be applied, and selection

of which Agent modules to run. This modularity gives local Agent administrators

great flexibility and control, and makes it easy to write custom modules.

The only pre-requisites are a recent version of the Python interpreter and out-

bound Internet connectivity, in order to contact the DIRAC Services. This allows

the Agent to run under virtually any computing and network environment, includ-

ing behind firewalls and private networks utilising Network Address Translation

(NAT) to reach the Internet. Installation entirely in regular user space mitigates

the security risks present in software which requires “root” access and system wide

installation, and accommodates LHCb members who administer a DIRAC Agent at

their local computing centre but do not have privileged access.

3.6 DIRAC: Key Features and Advances 39

3.6.3 Instant Messaging for Grid Services

Instant messaging can provide a mechanism to connect grid components and users

in a peer-to-peer fashion, transcending firewall and NAT issues, and providing a

level of indirection to the physical site and node the data or processes reside on

via a portable instant messaging address. Certain instant messaging infrastructures

also provide message buffering, thereby protecting communications from network

outages, overloads, and service restarts. These features drew the LHCb grid software

group to investigate the potential of using instant messaging in DIRAC.

Instant messaging has since been incorporated into all the DIRAC components:

Services, Agents, Jobs and User Interface, providing reliable, asynchronous, light-

weight and high speed messaging between components. Public demand for instant

messaging has led to highly optimised packages which utilise well defined standards,

and are proven to support thousands to tens-of-thousands of simultaneous connec-

tions. While these have primarily been for person-to-person communication, it is

clear that machine-to-machine and person-to-machine applications are possible, and

it is in these areas DIRAC has demonstrated a novel application of the technology.

While XML-RPC was appropriate for DIRAC Services to use to expose their

APIs, this protocol is not as well suited for the Agents and Jobs which also must

be reachable by the Services, or by Users. In this environment, instant messaging

provided a useful access channel. No a priori information is available about where

or when an Agent or Job will run, and for security reasons local networks often will

not allow Agents or Jobs to start an XML-RPC server that is widely accessible.

Firewalls are typically configured to block inbound network connections to worker

nodes. This suggests a client-initiated dynamic and asynchronous communications

framework is required.

The Extensible Messaging and Presence Protocol (XMPP), now an IETF Inter-

net Draft[75], is currently used in DIRAC. This has grown out of the open-source,

non-proprietary, XML based Jabber instant messaging standard[76]. XMPP pro-

vides standard instant messaging functionality, such as one-to-one messaging, group

messaging (“chat”), and broadcast messaging. An RPC-like mechanism exists called

Information/Query, (IQ) which can be used to expose an API to any XMPP entity.

The roster mechanism facilitates automatic, real-time monitoring of XMPP entities

via their presence.

The DIRAC Services use XMPP in places where fault tolerant, asynchronous

messaging is important. For example, the Job Receiver Service uses XMPP to

notify the Optimiser Service when it receives a new job. When the Optimiser gets

3.6 DIRAC: Key Features and Advances 40

this message, it will then sort the new job into the appropriate queues. The IQ

functionality has the potential to allow users to retrieve real-time information about

running jobs, something which is critical for interactive tasks, or for job steering. It

also greatly facilitates debugging and possible recovery of stuck jobs.

XMPP is specifically designed to have extremely lightweight clients, and grace-

fully handles dynamic availability of entities, buffering all messages until an entity

is available to retrieve them. By matching the XMPP IQ functionality to standard

XMPP messages, it is possible for users with a standard XMPP client to locate and

communicate with Agents, Jobs and Services from anywhere. This has already been

put to good use in DC04 for controlling and monitoring the state of Agents.

The basic structure of XMPP consists of Servers, Clients, Users, Entities, and

Connections. As mentioned earlier, XMPP utilises “thin-clients”, leaving all long-

term state information to the server. In this sense it is not truly a peer-to-peer

system, but a multi-hub and spoke instant messaging server. The Client man-

ages the connection to a Server, implements the client side protocol handling, and

stores any state information regarding the current session. A user (identified by

an email-like URI (e.g. xmpp://ijstokes@dirac.cern.ch) can connect multiple

times to a Server, with each Connection creating a separate XMPP Entity, uniquely

identified by a Resource Name (e.g. home, office, laptop). The unique En-

tity end-point name is formed by concatenating the Resource Name onto the User

Name (e.g. ijstokes@dirac.cern.ch/home, ijstokes@dirac.cern.ch/office,

ijstokes@dirac.cern.ch/laptop). In this way a single authentication credential

can be used to create multiple simultaneous Entities, each with a unique address,

possibly existing at different network locations.

Once the Client negotiates an Entity Connection to a Server, the Server will

provide the Client with all user account information stored by the Server. This

primarily consists of the user’s roster, which is an address list of other XMPP users

(messaging end-points). A key difference between the roster and a typical address

list, as found in electronic mail systems, is the addition of dynamic state information

for each entry. This information describes what state each user is in (e.g. “online”,

“offline”, “away”, “do-not-disturb”, etc.), and a customisable status field. The roster

acts as a publish/subscribe mechanism, where any changes in the local user’s state

is broadcast to all online roster members, and any changes in the state of a remote

user who is on the roster list is sent to the local user. XMPP roster management

and messages are handled through <presence> messages.

The original application of Instant Messaging within DIRAC was to provide asyn-

3.6 DIRAC: Key Features and Advances 41

chronous, buffered messaging between Services. Each Service Class was assigned a

single authentication credential (User account), and each Service instance utilised

a unique Resource name to provide a single unique address for that instance. This

mechanism decoupled Services from each other and allowed them to be stopped,

restarted, and even moved to different hosts during live operation. This was critical

for robustness of the overall system and maintenance of individual services. Given

the number of Services was small (5-20), and the communication between the Ser-

vices limited, there were no problems with bottlenecks at the central XMPP server

seen with this approach.

The next step was to introduce Instant Messaging for state monitoring of Agents.

By using the “chat room” functionality of Instant Messaging, an ad hoc messaging

hub could be created. Agents could connect to an “Agent Chat Room” and publish

progress information as chat room messages, and the room roster list acted as an

inventory of online Agents. By using custom status fields the roster also provided

information regarding where the Agent was running, including host name, directory,

and process number. This was critical when misbehaving Agents were discovered.

Again, given the number of Agents was initially low (10-100), this operated well and

allowed a system administrator to use a standard XMPP GUI Client to connect to

the same Chat Room and monitor Agent status.

This naturally led to the question of introducing Instant Messaging to each Job.

The intention was to provide job-level live monitoring. Due to the fact that the

number of active jobs was two orders of magnitude greater than the number of

Agents (1000-10,000 active jobs), it was discovered that thousands of automated

Instant Messaging clients connecting to a single XMPP server or chat room resulted

in a Distributed Denial of Service (DDoS) attack. The messaging load saturated

the network connection, caused the server to consume all available memory, and

overloaded the server processor. The XMPP server software was running on the

same server as the other DIRAC software services and therefore paralysed the entire

system. On the Client side, the XMPP connection was not done in a separate

process or thread, so the blocking resulted in stalled processes.

This experience indicated that the XMPP server had to be independent or sand-

boxed so as to not overwhelm other services on the same host, and that any DIRAC

components making use of XMPP client-side connections had to do so in a non-

blocking manner – that is, either in a separate thread or fork, and with appropriate

timeouts. A memory leak in the JabberD2 server software meant that above 1000

simultaneous connections the process would grow exponentially in size and eventu-

3.6 DIRAC: Key Features and Advances 42

ally crash. This has since been fixed, but at the time the integration of DIRAC with

the LHC Computing Grid made it necessary to operate one Agent per Job, meaning

that even limiting Instant Messaging usage to Services and Agents would result in

excessive connections.

Within the development branch of DIRAC, another application of interest has

been implemented. This is to make use of the XMPP <iq> messages to provide RPC

functionality through to Agents and Jobs, allowing them to be remotely controlled,

and to provide access to data local to a Job. The initial implementation provides

just basic process control and small file transfer, however in principle a much richer

level of RPC interactivity is possible. Utilisation of the standard <message> mes-

sages would also allow interaction with Services, Agents, and Jobs using standard

Jabber/XMPP GUI clients, however this has not yet been investigated in depth.

The two main outstanding issues for the use of Instant Messaging are the secu-

rity and authentication implications of a “tunnelled” control channel into remote

computing sites, and the scalability to tens of thousands of XMPP entities com-

municating across the same instant messaging network. For the first, a group at

Lawrence Berkley Laboratory (USA), have developed an XMPP server which ac-

cepts Globus X.509 GSI certificates for authentication. This is a positive step and

collaborative work is underway to investigate how this can be used for end-to-end

security and authentication, however this has not yet been released for general use.

For the second, many high performance commercial XMPP servers are available,

however the freely available open source servers still demonstrate some robustness

and scalability issues which have created problems when XMPP is used heavily, for

example by thousands of jobs broadcasting status updates (see Section 3.8). Existing

XMPP clients and servers have limited support for digital certificates, therefore it

is necessary to either create a new account for every autonomous client (i.e. XMPP

clients representing Jobs or Agents), or for insecure accounts to share passwords in

plain text. The latter is undesirable but not unthinkable in a purely monitoring

environment, where it is conceivable a monitoring mechanism with no authentica-

tion could be acceptable. The former is equivalent to trusting the secure placement

of proxy certificates on remote nodes, provided the temporary account and inse-

cure shared passwords have equivalent lifetimes to proxy certificates. In any case, a

better mechanism is certainly the implementation of end-to-end security, probably

utilising some form of PKI. A current Jabber extension proposes exactly this[77],

however it has yet to be widely implemented. Some commercial Jabber client/server

environments do support the use of X.509 digital certificates for client-server and

3.7 LHCb 2004 Data Challenge 43

client-client authentication, however these were not available for our work.

3.6.4 Fault Tolerance

In a distributed computing environment it is impossible to assume that the network,

remote storage, and remote services will constantly be available. The result is that

any remote operation may fail in one of three ways: failure to connect to the remote

resource; stall during the remote operation; or exit with a failure.

These failures are often not permanent, so a retry at a later time or to an alternate

equivalent resource may be successful and allow the parent operation to complete,

albeit with a delay incurred due to the retry. In order to cope with these failure

modes the following mechanisms were used in DIRAC:

Retry Many commands retry with a time delay in order to overcome any network

outages, service request saturation, or service failure and restart.

Replication Numerous services have a duplicate backup service available at all

times.

Fail-Over When contacting critical services, after the retry limit is reached, a re-

quest to an alternate service is attempted.

Caching In the Local Configuration Service, the remotely fetched data can be

cached locally for future retrieval.

Watchdog Monitors components to ensure continuous availability and restart on

failures.

All Services and Agents are run under the runit watchdog[78]. It ensures that the

component will be restarted if it fails, or if the machine reboots. It also has advanced

process management features which limit memory consumption and file handles, so

one service cannot incapacitate an entire system. Automatic time-stamping and

rotation of log files facilitates debugging, and components can be paused, restarted,

or temporarily disabled. Furthermore, none of this requires privileged access to

setup.

3.7 LHCb 2004 Data Challenge

DIRAC has been developed by a core team of four developers, with extensive input,

contributions, testing, and deployment feedback from the LHCb Data Management

3.7 LHCb 2004 Data Challenge 44

Group, and computing centre administrators. It has aimed to bridge the computing

requirements of LHCb with the capabilities available at the collaborating computing

centres, and to provide a basis for evaluating grid computing approaches, particularly

the functionality offered by the LCG environment.

3.7.1 Historical Background

The initial system developed in 2002-2003 was exclusively for performing LHCb

physics simulation where Agents pulled simulation parameters from a database[79].

For 2003-2004 the emphasis shifted to providing a generic computational grid sys-

tem which could incorporate new developments at that time around the Open Grid

Services Architecture (OGSA)[49], and the Globus Toolkit 3 (GT3) implementation

of the Open Grid Services Infrastructure (OGSI)[62].

At the same time the EDG project[43] was in the process of delivering the soft-

ware from its three year development phase to the LCG project[46] which was meant

to deploy and stabilise the EDG software. Due to performance issues with the EDG

software, a refactoring of the EDG architecture was proposed under the auspices of

the ARDA-RTAG (Architecture Road-map for Distributed Analysis — Requirement

Technical Assessment Group)[47]. This refactoring was to take the form of a service

decomposition with clearly specified interfaces. This was done to improve the con-

ceptual organisation of the architecture, decrease dependencies between components,

facilitate the incorporation of new services, and make possible the substitution of

customised or alternative services.

The early version of DIRAC had already followed a service oriented architecture,

so it was hoped this could then be refactored into a Python based set of OGSI Grid

Services, implementing the ARDA-defined interfaces. The ARDA refactoring pro-

posal was then handed over to the EGEE (Enabling Grids for E-science in Europe)

project[48], which is the successor to the EDG project, in order to implement a pro-

totype. Rather than specify service interfaces and utilise short release cycles for the

new ARDA/EGEE grid services in order to gain rapid feedback, EGEE focused on

the implementation of the gLite service oriented architecture. This approach made

it impossible for LHCb to collaborate or incrementally integrate gLite into (or in

place of) DIRAC. LHCb was thus left to integrate DIRAC with the LCG software

and implement a service oriented architecture “in the spirit of ARDA”, providing

independent, simple services which fit into the core aspects of ARDA required im-

mediately by LHCb for DC04.

3.7 LHCb 2004 Data Challenge 45

3.7.2 Experience

The DIRAC system has been used for the LHCb Data Challenge 2004 (DC04),

held from May to October 2004. DC04 had three goals: to validate the LHCb

distributed computing model based on the combined use of LCG and conventional

computing centres, to verify LHCb physics software, and to generate simulation

data for analysis. 300,000 jobs were run, consuming over 670 processor-years of

CPU power, and producing 98 terabytes of data. This data was redistributed across

the centres for both organised (i.e. planned and predictable) and chaotic analysis

of the results.

The system operated smoothly with a sustained level of over 3500 running jobs,

and 600 gigabytes of data generated and replicated daily. Figure 3.5 shows the par-

ticipating sites, and Figure 3.10 shows a snapshot of the running job distribution.

Once installed, the DIRAC Agents ran autonomously and restarted after failures or

reboots. A central team watched the monitoring system and alerted site administra-

tors when problems were detected with the local resources. As shown in Figure 3.9,

the jobs were CPU-bound therefore any jobs which did not seem to be executing

were almost certainly stalled either due to an internal bug, a node or site problem,

or a network problem connecting to central services or network storage elements.

wall−clock time (h)

C
P

U
 ti

m
e

(h
)

CPU time vs. wall−clock time for 74044 jobs (smoothed)

0 10 20 30 40 50 60
0

10

20

30

40

2

4

8

16

32

64

128

256

512

1024

Figure 3.9: CPU time vs. wall-clock time, showing near-100% CPU Utilisation with
only a small number of jobs exhibiting delays due to stalled or blocked
transfers.

The twenty sites with direct involvement in LHCb varied enormously in size,

from 20 CPU clusters shared heavily with other users to large 500+ CPU clusters

3.7 LHCb 2004 Data Challenge 46

dedicated to LHCb. A mailing list and weekly phone conferences allowed the DIRAC

software developers, site administrators, and data challenge managers to discuss

progress and solve problems.

41 LCG.Roma.it

51 DIRAC.Santiago.es

55 DIRAC.Imperial.uk

65 LCG.Imperial.uk

76 LCG.KFKI.hu

99 LCG.PIC.es

106 DIRAC.Lyon.fr

111 DIRAC.ITEP−Moscow.ru

125 LCG.NIKHEF.nl

164 LCG.Toronto.ca
204 LCG.FZK.de

207 DIRAC.ScotGrid.uk

243 DIRAC.Bologna.it

298 LCG.CNAF.it

363 DIRAC.CERN.ch

Figure 3.10: Representative snapshot of running jobs per site during DC04. Notice
a mixture of “standard” sites (prefixed DIRAC), and LCG grid sites.
Numbers indicate running jobs at that site.

Another 40 sites were accessed via LCG, and are discussed in Section 3.8. In

total, these 40 sites provided almost 3000 worker nodes. For example, more than

40,000 jobs were completed in the month of May with an average duration of 20

hours, running on average at 93% load, the remaining 7% being I/O operations or

waiting for external resources to come available. Each job produced on average 400

megabytes, which was replicated to several sites for redundancy and to facilitate

later data analysis.

3.7.3 Faults and Major System Failures

There were four major outages in the DIRAC core services availability which resulted

in jobs failing, jobs stalling, or sites failing to get new jobs:

Deleted Database One of the high availability core servers, which is monitored 24

hours a day by CERN IT staff, reached 90% full on the local hard drive. This

was due to a large and very actively used database on the server. The IT staff

intervened by stopping MySQL and deleting part of the database, resulting in

the loss of all queued jobs.

3.7 LHCb 2004 Data Challenge 47

Distributed Denial of Service Early efforts to incorporate instant messaging into

all aspects of DIRAC resulted in very effective distributed denial of service at-

tack on the server hosting DIRAC and the instant messaging hub. Thousands

of jobs were simultaneously sending status information, and in many cases

were (unnecessarily) sharing this information with each other, resulting in an

extremely high, and unmanageable, message volume which compromised the

performance of other services running on the same server.

Network Failure CERN experienced a site wide network failure for approximately

one day due to efforts required to isolate an internally compromised machine.

All services were unavailable during this time, and it was proposed that a

fail-over system be prepared at an external site. This was not completed due

to the infrequency of extended total network failure at CERN and the effort

required to configure and manage a second DIRAC system.

MySQL Connection Limit MySQL has a default limit of 100 simultaneous data-

base connections. The multi-threaded XML-RPC Services take their DB con-

nection handles from a connection pool local to each Service. If the pool is

emptied, the Service creates more connection handles. At a point of high load,

due to the ramp up of LCG sites in DC04, one Service repeatedly emptied its

connection pool and claimed all 100 available connections, thereby blocking all

other Services from communication with the DB. Until the MySQL connection

limit was increased and the Services set a pool limit, the DIRAC Services were

effectively unavailable. This occurred over the weekend and resulted in a day

of lost job matching, although running jobs continued.

Only a few significant bugs were identified in the DIRAC software. These ap-

peared early in the data challenge and were quickly resolved. They generally centred

around service scalability and availability, requiring the implementation of opera-

tion buffering, timeouts, and fail-over mechanisms on both the client and server

sides (see Section 3.6.4). Once these early bugs were resolved, “classic” computing

sites (i.e. batch queues on computing clusters with local administrators) observed

stable performance. Experience with LCG is discussed in Section 3.8.

The small size of DIRAC, buffering of transfer requests, use of a local job data-

base, and independence from the local batch system, all meant that it was possible

to stop the Agent, even while jobs were still running on the site, perform a software

update, and restart the Agent without loosing existing jobs or transfers. This greatly

facilitated rapid resolution of bugs, and was even extended to a prototype Update

3.7 LHCb 2004 Data Challenge 48

Agent module which would perform automatic Agent software updates. These as-

pects supported Key Goals 2 and 5, Reliability and Manageability. By keeping

DIRAC small (clients consisted of a 1 MB archive) it was possible to easily under-

stand how it operated, configure it, and make any changes to correct problems. It

also left a small footprint and was quick and easy to install.

Data Management presented the greatest overall challenge. A number of sites

experienced significant data transfer delays or failures, resulting in transfer back-

logs. Large sites would quickly fill their queues with hundreds of jobs, producing, for

example, 40 GB of data and all finishing at approximately the same time, therefore

saturating the site’s outbound bandwidth or the target Storage Element’s inbound

bandwidth. Although DIRAC supports a wide range of transfer protocols (see Sec-

tion 3.5.4), difficulties in using every one of these were encountered at some point

during DC04. In particular we note the lack of a simple user-level installation of

a grid-ftp client as a major stumbling block towards its adoption. From a global

view the system has difficulty in identifying fatally failed transfers (i.e. those that

will never be retried) and transfers which are outstanding but queued. There are

plans to use the XMPP interface to Agents to resolve this. The Transfer Request

mechanism performed well and eventually flushed data backlogs.

It has always been identified that managing the volume of data produced by

the LHC experiments would be one of the greatest challenges. LHCb made use

of multiple File Catalogues to provide a degree of redundancy in registering files

which are created and exported to the two primary data stores: CERN’s dCache,

and the LCG Storage Elements. This proved crucial in identifying errors based on

inconsistencies between the two catalogues. It also became clear during DC04 that

a decoupling of data staging and task execution was required. Queuing data trans-

fers into worker nodes in advance of task commencement and then allowing tasks to

complete before final data transfer/registration from the worker node onto the grid

file system would have alleviated many jobs which failed only at the final step due

to their inability to export the simulation data they generated before their reserva-

tion time expired. The difficulty of the flat and effectively un-searchable file naming

URIs used within LCG Storage Elements also made it difficult to locate physical

files when doing “post-mortem” analysis of tasks with failed or erroneous File Cata-

logue entries. These experiences suggest a more developed task management model

is required, including “pipelined” data staging and execution, decoupling of data

staging and execution, and a structured hierarchical grid file naming strategy.

3.7 LHCb 2004 Data Challenge 49

3.7.4 LCG Integration

LCG is required to make possible the storage and processing of the vast quantities

of data produced by the LHC experiments. It brings together dozens of comput-

ing centres around the world and eventually will provide an aggregated computing

power equivalent to over 140,000 of today’s fastest processors. One of the broad

objectives for DIRAC is to provide a smooth transition from cluster-based to grid-

based computing for the LHCb experiment and to integrate LHCb computing with

the LCG resources.

Initially DIRAC considered LCG as “just another batch system”, with the LCG

Resource Broker (RB) subsequently submitting jobs to grid nodes. This revealed

a number of problems due to instabilities in the Resource Broker, missing software

or faults in the site configuration. This made it necessary to find a better way to

approach LCG. Furthermore, the extremely high level of failures (close to 50%) for

jobs submitted to LCG required that special checking be performed to increase the

likelihood of successful job completion. Figure 3.11 shows the jobs submitted to

LCG and a breakdown of the outcome of those jobs.

3
.7

L
H

C
b

2
0
0
4

D
a
ta

C
h
a
lle

n
g
e

50

0 10 20 30 40 50 60 70 80 90 100
0

2000

4000

6000

8000

10000

day

jo
bs

256812 DC04 Jobs Submitted to LCG from 16 July to 27 Oct 2004

123.9k Completed
95.7k Aborted
32.1k Cancelled
5.1k Lost

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

day

%

48.3% Completed
37.3% Aborted
12.5% Cancelled
2.0% Lost

Figure 3.11: Results of jobs submitted to LCG during DC04

3.7 LHCb 2004 Data Challenge 51

The next option was to access the LCG Computing Elements directly, bypassing

the Resource Broker step. This would require the use of Globus commands. This

was impractical both for technical reasons (the Globus API was too low level, so

implementation was difficult), and policy reasons (LCG Resource Brokers are the

basis of fair share and usage accounting).

The approach that was eventually utilised to good success was to submit DIRAC

Agent installer jobs to LCG. These were called pilot jobs, and utilise an approach

similar to Condor Glide-In[80]. The pilot jobs would specify generic characteristics

of a typical LHCb job in order to be matched appropriately. Once they started to be

executed on a grid node they would perform a set of checks to determine available

storage space, node performance (via a short benchmark), memory, queue limit, and

proxy lifetime. If these tests suggested an LHCb job could be run, then the DIRAC

Agent would be installed in a “local run-once” mode via the LCG RB. The Agent

would request a DIRAC job, taking into account a combination of the properties

specified with the “Agent installer” LCG job and the real-time characteristics of the

node on which the Agent was executing. This mode was designed to fetch at most

one LHCb job from the DIRAC Services, run it to completion, and then transfer the

output data to a DIRAC SE. All the retry benefits of the Agent were in place, and

the testing, installation and auto-configuration procedure took less than a minute.

Figure 3.12 shows the transition from traditional batch systems at computing

centres to utilisation of the LCG grid-based job execution. This will be discussed

further in the following section. Overall, 54% of DC04 jobs have been completed

using LCG.

0 20 40 60 80 100 120 140 160 180
0

500

1000

1500

2000

2500

Transition from batch system to grid jobs
Period 06−May−2004 to 19−Nov−2004, 212971 jobs

day

jo
bs

phase 1 phase 2 phase 3 phase 4

Batch Systems
Grid
Total

Figure 3.12: Transition from classic batch systems to grid-based job execution (suc-
cessful jobs only) (smoothed).

3.8 DC04 Performance Results 52

3.7.5 Development and Deployment Environment

DIRAC development has been supervised by the LHCb Production and Analysis

Software Group through weekly phone conferences and mailing list correspondence.

This group represents the LHCb stakeholders of DIRAC who require the system to

meet the experiment’s distributed computing goals. This group advises on develop-

ment priorities and provides feedback on operational issues. Members of this group

also input to the LCG planning, and therefore are able share the LHCb experience

of DIRAC and LCG with the LCG management team.

The DIRAC team has utilised CVS and Savannah for software management.

Both have proved to be invaluable. Savannah, which is a branch from the popular

SourceForge project management environment, is available at CERN and integrated

with the CERN CVS repository, and CERN AFS file system. Both users and de-

velopers have made extensive use of Savannah for bug reporting, task prioritisation,

support requests, software documentation, and software releases. Use of Savannah

also allows easy migration of bugs from DIRAC to other software groups, such as

LCG or physics software teams.

The Core Services for the initial test deployment were installed on two servers at

the Centre de Physique des Particules de Marseille (CPPM). When the production

deployment was installed on high availability servers at CERN, the test deployment

became an emergency fail-over system and also moved to CERN. At times during de-

velopment the services were spread across servers in Oxford, Marseille, and CERN,

demonstrating the effective distribution of a single DIRAC “installation” with dif-

ferent services installed at different sites. Batch system integration was developed

using PBS on the Oxford Physics cluster, Condor and Globus using the Oxford e-

Science Centre NGS clusters, BQS at the IN2P3 Computing Centre in Lyon, and

LSF at CERN.

3.8 DC04 Performance Results

This Section presents detailed results of the performance of the LHCb applications,

DIRAC, LCG grid sites and nodes, and the central LCG services. During DC04

there were four distinct phases to the utilisation of the LCG. These are shown in

Figure 3.12 and described below.

Phase 1 Here the DIRAC interface to LCG was exercised for the first time. After

a month of operation it was agreed to halt using LCG in order to resolve a set

3.8 DC04 Performance Results 53

of significant issues which had been discovered with LCG, surrounding loss of

data, stalled jobs, failed jobs, and lost jobs.

Phase 2 During this phase LHCb worked closely with the LCG deployment team

to test new developments in the LCG architecture which aimed at resolving

the issues identified in Phase 1. No “real” jobs were submitted, but a test

system was heavily utilised.

Phase 3 With the major issues resolved, it was then possible to significantly ramp

up grid utilisation. During this period LCG was regularly saturated with

LHCb jobs. LHCb computing sites which also ran LCG software transitioned

their resources to LCG, thus realising one of the key goals of grid computing:

allowing the management of computing tasks to be delegated to remote users

who are the task owners.

Phase 4 This phase aimed to provide the physics simulations required by LHCb,

rather than focus on exercising the grid computing infrastructure. It followed

a short break to evaluate the system and then operated at a low but constant

level for several months.

day

no
de

 in
de

x

101513 jobs run over 107 days during LHCb DC04 on 2945 nodes
Between 06−Jul−2004 and 20−Oct−2004

0 20 40 60 80 100
0

200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000

2

4

8

16

32

Figure 3.13: Overview of LCG (grid) job density during DC04. This illustrates
where the jobs were running and when. Grouped by site then country.
Darkness represents higher job density.

Figure 3.13 illustrates every node at every site over the duration of DC04, with

the shade representing the number of jobs being run at that time. The dark region

3.8 DC04 Performance Results 54

at the bottom left represents CERN which, as the centre of LCG, provided the

largest and most consistent volume of grid resources. It is possible to see both sites

drop out (white squares) and periods when either DIRAC was not providing jobs

(the job pools had run dry) or submission to LCG had been stopped, which appear

as vertical white bars.

Daily LCG submission rate and outcome is shown in the histogram in Figure

3.11. The largest cause of aborted jobs was due to hitting the retry limit (usually

set to 3). Under certain circumstances if a job failed it would be returned to the LCG

Resource Broker and resubmitted to a new site. It was found to be the case that if

a job failed once it was unlikely to succeed on subsequent automated resubmission.

More detailed discussion of LCG performance can be found in Section 3.8.2.

Success 70%

Results of 114963 LCG jobs with no LCG errors

No Job 14%

Data 4%

Exception 4%

Other <1%

Install Error 4%

Init Error 1%

No Space <1%

Physics Software 2%

Figure 3.14: Results of DC04 jobs which had no LCG problems.

Jobs which executed successfully from an LCG point of view still may have had

errors due to either the LHCb grid infrastructure, the physics software, or the data

management. The distribution of these results is shown in Figure 3.14. Discounting

the “No Job” condition, there was a 16% error rate over all LHCb jobs which began

executing on LCG resources. “No Job” occurred when the DIRAC job pools were

empty and a DIRAC pilot job running on an LCG node made a DIRAC job request

which could not be fulfilled.

No Job (14%): This indicates that when LCG started an LHCb pilot job no DC04

work was available;

Exception (4%): The LHCb grid software or services failed, either due to a bug

3.8 DC04 Performance Results 55

or service unavailability;

Data (4%): The LHCb job executed to completion but failed either during data

transfer or data registration;

Install Error (4%): The LHCb grid software failed to install the necessary physics

software to execute the job. This was often due to lack of available disk space;

Physics Software (2%): The physics software itself reported an error;

Init Error (1%): The LHCb grid software failed to self-configure properly;

No Space (<1%): The worker node ran out of drive space during execution of the

job.

time (h)

be
nc

hm
ar

k

Benchmark vs. wall−clock job time
48747 sub−500MB jobs (smoothed)

0 10 20 30 40
0

1

2

3

1

2

4

8

16

32

64

128

256

512

1024

Figure 3.15: LHCb benchmark vs. wall-clock time to completion for jobs producing
400MB data. This shows a near linear match for the majority of jobs,
validating the benchmark prediction.

As described earlier, LHCb jobs submitted to LCG performed a quick check

of node suitability before commencing to execute. Part of that check consisted of

a performance benchmark. Figure 3.15 shows the good correlation between high

benchmark and low overall execution time.

3.8.1 Challenges presented by LCG

The following are the primary challenges LHCb has faced in trying to use LCG for

DC04 and during integration with DIRAC:

3.8 DC04 Performance Results 56

Computing power and queue normalisation Job submissions to LCG include

a job duration. This only makes sense in some sort of normalised time units

(for CPU-bound jobs), however there was no good mechanism to do this. Some

sites internally normalised their queue times, resulting in LHCb jobs running

with less time than expected. Some sites overload the processors or use Hyper-

Threading, similarly throwing off the expected execution time. This resulted

in thousands of jobs being terminated by unexpectedly short queue time limits.

Job working space LHCb jobs required 500 MB to 1.5 GB of working space, on

top of 2 GB of installed software. NFS mounted job working directories re-

sulted in overwhelming NFS. Other sites did not provide sufficient space for

LHCb jobs to complete. Even cases of dual CPU nodes with local job space

were problematic, as two jobs could arrive close together, both see sufficient

available storage space for job output at the start of execution but data cre-

ation by both jobs could exceed this and both jobs subsequently fail for lack

of drive space.

Availability of output files after failure LCG jobs run in a “sandbox” which

is erased when a job completes, is cancelled, or aborts. Output files are often

required to diagnose the cause of failures, but these are not available if the job

is cancelled or aborted. LCG only provides limited insight into the cause for

an aborted job, with labels such as “Retry Limit”, “Count Not Plan”, “Proxy

Expired”, and “No JDL”.

Security certificates The X.509 GSI certificates do not allow sharing of job details

with others within the VO. This makes collaborative work difficult. There were

also bugs found in the handling of proxy certificates which would result in the

use of almost-expired certificates in preference over new proxy certificates and

the subsequent failure of jobs. Jobs classified as “cancelled” in Figure 3.11 have

been stopped manually just before their certificate is due to expire in order to

avoid an LCG bug of re-submitting failed jobs with expired certificates.

Operating on large volumes of jobs None of the LCG tools are responsive or

easy to use with large numbers of jobs. During DC04 hundreds or thousands

of jobs would be submitted to LCG each day. Monitoring and managing these

jobs was extremely difficult. Efforts are now underway to address this.

Poor job scheduling It was difficult to evenly spread DC04 jobs across the avail-

able LCG resources due to problems with the Ranking algorithm and Esti-

3.8 DC04 Performance Results 57

mated Response Time values. At times all jobs submitted to LCG would end

up queued at a single overloaded site.

Lack of API documentation The LCG command line tools are largely written

in Python, the same language as DIRAC. It would be preferable for DIRAC

to use the same APIs as utilised in these tools, however the lack of useful

documentation made this difficult.

3.8.2 LCG Performance

The 123,000 jobs submitted to LCG provide a rich set of performance metrics, based

on the logging of 46 details for every job, as shown in Table 3.1. The relatively ho-

mogeneous nature of the LHCb jobs also facilitate consistent performance analysis.

The efficiency of the DIRAC system allowed the saturation of all available LCG

computing resources, usually with 90-99% of all executing jobs at a grid site being

LHCb DC04 jobs due to under-utilisation by other experiments and virtual organi-

sations. Between days 20 and 60 of DC04 Figure 3.11 is representative of the state

of the entire LCG.

Node Details
Site name
Worker node name
Number of CPUs
CPU type
CPU speed
RAM
Benchmark

DIRAC Timestamps
Submit
Ready
Wait
Match
Schedule
Queue
Run
Done execution
Done data transfer

Job Details
LCG job ID
DIRAC job ID
Pilot timestamp
Execute timestamp
Transfer timestamp
Transfer time
Transfer size
Data registration time
Log transfer error flag
Data transfer error flag
Data registration error flag
Load average
Memory usage (average)
Cache usage (average)
CPU Time
Execution Time

Flags
Install DIRAC
No Work flag
Not Allowed flag
Got Job flag
Rescheduled flag

Resource Broker
Timestamps
Submit
Wait
Ready
Schedule
Run
Finished
Clear
Abort
Cancel

Table 3.1: The 46 characteristics recorded for each job in DC04.

3.8 DC04 Performance Results 58

2 10 20 30 40 50 60 70 80 90
0

19609

mean: 14.46
mode: 10.00
plotted evts: 79001

overflow >90: 17460
o/f mean: 613.96

time (s)

nu
m

be
r

of
 jo

bs

Time to submit job to LCG Resource Broker

2 10 20 30 40 50 60 70 80 90
0

11913

mean: 32.15
mode: 30.00
plotted evts: 92321

overflow >90: 4139
o/f mean: 1845.59

time (s)

nu
m

be
r

of
 jo

bs

Time to schedule job on LCG Resource Broker

Figure 3.16: Distribution of job submit and schedule time of LCG Resource Broker
for 100k jobs during DC04

2 4 8 12 16 20 24 28 30
0

22051

mean: 5.63
mode: 4.00
plotted evts: 38523

overflow >30: 57695
o/f mean: 485.88

time (m)

nu
m

be
r

of
 jo

bs

Job queue time for LCG jobs (<30m)

60 150 270 390 510 630 750 870 990 1080
0

4021

mean: 407.14
mode: 60.00
plotted evts: 53092

overflow >1080: 4605
o/f mean: 1393.49

underflow <30: 38521
u/f mean: 5.63

time (m)

nu
m

be
r

of
 jo

bs
Job queue time for LCG jobs (>30m)

Figure 3.17: Distribution of job queue time at site once scheduled.

Scheduling and Queuing

With the rich logging information collected by the DIRAC Services, the Agents,

the jobs themselves, and the LCG interfacing software it is possible to reconstruct

a good picture of the state of the grid during LHCb DC04. Figure 3.16 shows the

performance of the LCG Resource Broker for processing job submissions and doing

job matching. Figure 3.17 shows the distribution of job waiting times, which is the

time between a job being queued and its arrival at a worker node to commence

execution.

Jobs were submitted in batches, usually 500-2000 at a time. The 12 second

average submission time shown in Figure 3.16 puts a daily limit of 7200 jobs sent

to the Resource Broker. The 31 second scheduling time puts a daily limit of 3000

jobs scheduled by a Resource Broker. LCG addressed these limitations by deploying

multiple RBs, however this complicated job management as jobs managed by one

3.8 DC04 Performance Results 59

RB were not visible from other RBs.

Job Results

Figure 3.11 shows the daily LCG submitted job results, which are described in more

detail below.

Completed (48%): These jobs ran to completion on LCG.

Lost (2%): A small portion of all submitted jobs were lost without record of the

result.

Cancelled (12%): Jobs were cancelled by an LHCb operator if they were not

scheduled by LCG within 24-36 hours. This was to avoid the job being run

with an expired proxy certificate.

3
.8

D
C

0
4

P
e
rfo

rm
a
n
c
e

R
e
su

lts
60

0 10 20 30 40 50 60 70 80 90 100
0

2000

4000

6000

8000

day

jo
bs

95664 DC04 Jobs Aborted by LCG, 16 July to 27 Oct 2004

79341 Retry Limit
13839 Could Not Plan
2074 Proxy Expired
396 No JDL
14 Condor Failure

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

day

%

82.94% Retry Limit
14.47% Could Not Plan
2.17% Proxy Expired
0.41% No JDL
0.01% Condor Failure

Figure 3.18: LCG distribution of causes of aborted job

3.8 DC04 Performance Results 61

Aborted (37%): There were five types of LCG-internal errors which resulted in

jobs being aborted. The distribution of these is illustrated in Figure 3.18 and

described below:

Retry Limit (83%): Jobs which failed to successfully transit from LCG to a

Worker Node to begin execution would be resubmitted. Typically the cause

of the fault was within LCG itself, therefore the fault recurred on subsequent

retries until the limit was reached.

Could Not Plan (14%): The Resource Broker encountered an error resulting in

an inability to schedule the job to any site.

Proxy Expired (2%): By the time the job commenced the proxy certificate used

to submit it had expired leaving the executor with no authorization to proceed.

This low error rate conceals the fact that 12.5% of all submitted jobs were

cancelled in order to avoid this situation. A job whose proxy expires in mid-

execution will typically be unable to register or transfer any data or to report

any results, therefore this is a critical error.

No JDL (0.41%): This error was concentrated on three days during DC04, and

corresponded to a failure in the Resource Broker where it lost access to the

original JDL.

Condor Failure (0.01%): This error only occurred 14 times during all of DC04

and was attributed to a failure of the LCG interaction with the Condor sched-

uler, or a failure of the Condor scheduler itself.

Unfortunately, due to the limited logging information supplied by LCG, the 37%

of tasks which were aborted by LCG cannot easily be diagnosed, beyond the five

failure categories listed above. In particular, the common “Retry Limit” failure,

which occurred in 30% of all submitted jobs, cannot be diagnosed further. From

working with the LCG Resource Broker developers it was reported that this would

often occur when the Resource Broker contained either corrupted or out of date

information regarding available computing resources, resulting in assignment of a

task to a computing resource which was either unavailable or unable to accept the

task when the Resource Broker attempted to route it there. Due to a quirk in the

Resource Broker allocation strategy, when this routing failed it would restart the task

allocation process from scratch, usually making the same decision and consequently

resulting in the same failure, until the submission retry limit was reached. The

other source of “Retry Limit” failures was a situation which would arise where the

submitted job description (a JDL file) would be lost on the Resource Broker, leading

to a failure at a later stage in the task management process.

3.8 DC04 Performance Results 62

Worker Node Characteristics

4883 AMD jobs

jo
b

tim
e

(h
)

500 1000 1500 2000 2500 3000 3500
0

10

20

30

40

6708 Pentium 3 jobs

500 1000 1500 2000 2500 3000 3500
0

10

20

30

40

2809 Pentium 4 jobs

MHz

jo
b

tim
e

(h
)

500 1000 1500 2000 2500 3000 3500
0

10

20

30

40

33719 Xeon jobs

MHz
500 1000 1500 2000 2500 3000 3500
0

10

20

30

40

Figure 3.19: Job CPU time vs. CPU speed sorted by processor type. Only jobs which
produced 500MB of output or less are shown. Illustrates variation in
CPU processing time for different processor types and speeds.

0.60.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5
0

975

mean: 2.35
mode: 2.40
plotted evts: 3272

speed (GHz)

nu
m

be
r

of
 n

od
es

LCG Processor Speed Distribution

Figure 3.20: CPU Speed of LCG nodes used by DC04 jobs.

DC04 provided an opportunity to observe the degree of heterogeneity of comput-

ing systems within a grid environment. Figure 3.19 illustrates the execution time

vs. processor speed for four different classes of processor (AMD, Pentium 3, Pen-

tium 4, and Xeon). This covers all LCG jobs which completed successfully and is

a picture of what the jobs “saw” rather than a description of the grid itself. Hyper

Threading, or processor overloading (more than one active job on the processor)

was difficult or impossible to identify at run-time, however this figure reveals these

3.8 DC04 Performance Results 63

256 512 1024 1536 2048 2560 3072 3584 4096
0

1647

mean: 1507.18
mode: 1024.00
plotted evts: 3273

memory (MB)

nu
m

be
r

of
 n

od
es

LCG Node Physical Memory Distribution

Figure 3.21: Physical memory of LCG nodes used by DC04 jobs.

dual 80%

LCG Processor Count Distribution

quad 18%

single 2%

Figure 3.22: CPU count of LCG nodes used by DC04 jobs.

conditions with bimodal job densities for a given processor speed. It also reveals

the relative performance of the AMD processors is better than the Intel processors

based on processor speed. In terms of an overview of the actual nodes within LCG,

the DC04 jobs ran on 3272 unique nodes, and their processor speeds and physical

memory distributions are shown in Figures 3.20 and 3.21 respectively. Figure 3.22

shows the distribution of processors per node.

3.8 DC04 Performance Results 64

50 100 200 300 400 500 600 700 800 900 1000
0

22806

mean: 407.19
mode: 450.00
plotted jobs: 57956

overflow >1000: 6
o/f mean: 1270.60

data transfer (MB)

nu
m

be
r

of
 jo

bs

LCG Data Transfer Distribution

Figure 3.23: Histogram of data generated by DC04 jobs.

5 10 20 30 40 50 60 70 80 90 100
0

6302

mean: 41.66
mode: 40.00
plotted jobs: 57893

overflow >100: 69
o/f mean: 261.09

bandwidth (Mb/sec)

nu
m

be
r

of
 jo

bs

LCG Data Transfer Bandwidth

Figure 3.24: Bandwidth of data transfer stage at end of each DC04 job. Typical
transfer volume was 400 MB.

Data Transfer Bandwidth

As the DC04 jobs produced relatively large amounts of data and transferred these

to remote sites on job completion, it was possible to observe the sustained network

bandwidth. Figure 3.23 illustrates the distribution of generated data over almost 58

thousands jobs, while Figure 3.24 shows the sustained transfer bandwidth. Although

there were problems with the data management mechanisms within DIRAC and

provided by LCG (as discussed in Section 3.7.3), LHCb was encouraged to see

sustained transfer rates of 40 Mb/s were achieved during DC04.

3.9 Summary of LHCb Computing 65

3.9 Summary of LHCb Computing

The 2004 Data Challenge was extremely successful in proving the viability of grid

computing for particle physics. It revealed a number of operational issues with the

LCG infrastructure, most of which have since been resolved. It was possible for a

team consisting of a handful of people to execute and manage an extremely large

volume of computational tasks over several months distributed at over 60 computing

centres around the world. It was the first time LCG, or any large grid, had been

saturated with computing tasks for an extended period time, measured in months,

rather than days or weeks.

The physics software worked exceptionally well, with very low failure rates. This

was seen as a significant achievement, given the wide variety of systems the jobs were

run on. This can partially be attributed to the homogeneity of LCG nodes in terms

of software installation and configuration. In the long term, and for the broader

vision of grid computing, this is not sustainable. In many ways LCG reflects a

large scale distributed cluster management system, rather than a federated network

of heterogeneous computing resources. LCG is federated, but the software stack

on each LCG node was essentially identical. In any case, DIRAC managed both

“classic” computing centres which had variations in software configuration and LCG-

based computing equally well, due to the modular software packaging techniques

which were used and the ability of jobs to download and install any missing software

to the local job-space using unprivileged accounts. Up to 2 GB of software could be

downloaded, installed, and configured, typically in under 15 minutes.

The general success of DIRAC has been attributed to the modular and simple

design philosophy. By encapsulating functionality into independent services with

basic interfaces it has been possible to focus on correctness of behaviour. Sim-

ple decoupled services are also easier to replicate, addressing Key Goals 1 and 2

(Scalability and Reliability). Simple services facilitate the creation of multiple im-

plementations, possibly with extended functionality, thus addressing Key Goal 4

(Extensibility). The stability of the DIRAC infrastructure was achieved through

many channels, key among them being service replication, asynchronous decoupled

messaging between services, and retry/fail-over mechanisms. The pull scheduling

paradigm worked extremely well for the class of simulation tasks which were being

executed. Preliminary evaluation of the system for the more chaotic and widely

varying analysis jobs suggests the Optimisers and pull paradigm will provide good

responsiveness, however this is in the process of being confirmed. Pooling of tasks

into job queues and utilising pull scheduling to overcome the tractability problem

3.9 Summary of LHCb Computing 66

of optimal task assignment was shown to be a significant improvement on the LCG

push scheduling approach. Later sections will develop the concept used in DIRAC

with a more formal model which extends the Condor Match Making system. Instant

messaging in this domain certainly could provide significant advantages which need

to be explored further. Furthermore, with an XMPP interface to Agents, a peer-

to-peer network of directly interacting Agents is envisioned. This would reduce,

and possibly even eliminate, the reliance on the Central Services, as Agents could

dynamically load-balance by taking extra jobs from overloaded sites.

During DC04 DIRAC operated in a trusted environment, and therefore has had

only a minimal emphasis on security. Common access passwords were circulated

within the operational team, and task activity was constantly monitored for misbe-

having tasks. A more comprehensive strategy is required for managing authentica-

tion and authorisation of Agents, Users, Jobs, and Services. It is hoped that a TLS

based mechanism can be put in place with encrypted and authenticated XML-RPC

calls using a combination of the GridSite project[81], and the Clarens Grid Enabled

Web Services Framework, from the CERN CMS project. It is essential that DIRAC

comes to properly incorporate X.509 certificates which are the basis for identity

management and trust within LCG. In this sense, Key Goal 6, Security, is only

minimally addressed within DIRAC.

The operational goals, Useability and Manageability, were less of an emphasis for

DC04. It was essential to accurately track task state, and this was done via the Job

Monitoring Service, and the logging website. As discussed in Section 3.6.3, XMPP

provided powerful tools for live monitoring of agents and services via instant mes-

saging. For Key Goal 5 (Manageability) to be more satisfactorily achieved aspects

such as Role Based Access Control (RBAC) and task-level instant messaging clients

are necessary. A more integrated and interactive web-based monitoring and control

mechanism is also desirable. For Key Goal 3 (Usability), there was not a sufficiently

large user base to evaluate this aspect of DIRAC. The GANGA user interface has

been developed in conjunction with the ATLAS experiment and provides a graphi-

cal interface for job creation, submission, and management. The nature of the work

during DC04 was such that it did not warrant the use of GANGA, and instead

command line tools were utilised by the DC04 team for job creation, submission,

and management of all tasks, with Services deployed manually and Agents deployed

either through LCG “pilot” tasks or manually.

DIRAC showed itself to provide a complete grid computing infrastructure. The

modular services approach allowed it to integrate with LCG to layer on top of

3.10 Summary 67

another computing grid, while simultaneously utilising individual workstations on

a cycle scavenging basis, and other traditional computing clusters using the same

Agent-based model. LHCb expects further integration of DIRAC with LCG, espe-

cially in terms of storage resources which will be critical.

DIRAC will follow with interest the Web Service-Resource Framework (WSRF),

the successor to OGSI, with the hopes that the ease of use, language neutrality, tool

availability, and complexity level will make it suitable for future versions of DIRAC.

It is hoped that computational grids can benefit from the maturing technologies

in peer-to-peer file sharing, instant messaging, and global computing which benefit

from economies of scale. It is felt that a convergence and integration of these areas

will provide solutions to many outstanding issues in grid computing.

3.10 Summary

The main observation which can be drawn from the work described in this chapter

is that existing grid computing infrastructures continue to fall short of the early

promises of “The Grid”. Interestingly, since these early promises were made, many

high performance computing users have found they require a computing infrastruc-

ture which, once successfully implemented, will provide a computational grid. In

this way, “promises for the future” have collided with “requirements for today”,

and this is especially true for the global network of collaborating particle physicists.

While HEPCAL I[44] and HEPCAL II[45] provide a very thorough description of the

common computing requirements for the new CERN particle physics experiments,

an unavoidable conclusion is that it is first necessary to get the basics working cor-

rectly before the rich set of requirements described in the HEPCAL reports can be

addressed. The early expectation of the CERN-centred grid computing work was

that these issues had already been satisfied, or that they would be trivial extensions

to the existing systems. On many fronts this has not been the case. Data man-

agement, security, software deployment, and task management have all presented

significant challenges which the current middleware is only beginning to overcome.

The position of the LHCb computing group that simple, decoupled services are nec-

essary for successful grid computing, rather than a single monolithic system, appear

to have been validated by the success of DIRAC in providing a robust computing

infrastructure even when faced with an unreliable underlying system (LCG).

This chapter reports on the first comprehensive quantitative description of an

operational computational grid utilising dozens of sites over several months and

3.10 Summary 68

capturing details of worker nodes, system configuration, data transfer, task perfor-

mance, and grid middleware performance[1]. This illustrates the degree of dynamism

and heterogeneity within a grid, and underlines the need for fault tolerance – faults

and failures are a constant in the grid.

This work exposed four avenues for further investigation: security, data man-

agement, physics analysis environments, and improved workload management. The

first two have been addressed directly by the LHCb computing group. The third

has been the topic of other PhD research[82], with many of these developments

already incorporated into the most recent version of DIRAC. The final area has

been pursued in two different directions. Firstly in [83] which extends, formally

describes, and then simulates the DIRAC workload management system illustrat-

ing its performance in a dynamic, heterogenous grid environment. Secondly, the

DIRAC workload management system was remodelled by the author, focusing on

refinements of the Condor ClassAds/Matchmaking system, creating a formal model

for task queues and resource symmetry, applying a RESTful design philosophy, and

considering the overall lifecycle of a “grid process”. That is the work presented in

later chapters, following a survey of the main task management approaches which

are currently available.

Chapter 4

Cluster and Grid Task

Management

This chapter considers the most popular cluster and grid task manage-
ment mechanisms, specifically from a REST perspective. It starts by
discussing the features of a modern preemptive operating system, high-
lighting those features which must be translated to a grid domain and
discussing the difficulties in doing so. A brief summary of traditional
process scheduling strategies and grid resource management systems dis-
cusses the difficulties of applying these techniques to a large computa-
tional grid. This leads to the proposal for RESTful resource manage-
ment, with a starting point of resource representation. Nine popular
grid resource management systems are reviewed. Through a REST lens,
the focus of the discussion is on grid resource representations, identi-
fying strengths and weaknesses of the various approaches, and finally
concluding with observations which guide the proposed Grid Resource
Description Language, presented in the following chapter.

The operation of a computational grid can be broadly divided into three stages:

knowledge of present system state, description of desired future state, and a mecha-

nism to transform the current system state into the desired state. These are typically

handled by independent systems: the first by monitoring of physical resources (for

example executors, storage, and network), the second through task descriptions,

and the third via resource management policies and services. This chapter consid-

ers existing mechanisms for the first two of these problems: gathering of information

regarding physical systems, and task descriptions. The objective is to identify prop-

erties for a RESTful grid task management system. This is done in the context

of particle physics computing with the objective of providing a large scale generic

computational grid.

In the context of the conclusions of the previous chapter, the heterogeneous feder-

ated nature of computational grids demands a simple architecture which facilitates

69

4.1 Operating Systems and Computational Grids 70

multiple implementations, and a decomposition of the architecture into multiple

components to enable a service oriented approach where individual grid sites can

choose which services are available, and which implementations are utilised. In this

context, while something like WSDL and Web Services can provide a lingua franca

for the services, a REST approach requires an equivalent to describe the resources

within the grid. As described in Section 2.3, the REST approach of common re-

source descriptions eliminates the necessity of common service APIs, although, of

course, any implementation would need to be aware of these to enable service inter-

action. Furthermore, it is argued that the resource scheduling problem, which is a

focus of this work, requires a distributed symmetric matching mechanism, similar to

Condor ClassAds. In order to discuss the development of these ideas in later chap-

ters it is first necessary to consider what is provided by existing resource description

languages.

This chapter begins by considering modern operating systems and the mechanism

by which they provide reliable, consistent process execution and management. This

is followed by a summary of process scheduling strategies and their application to

the grid domain. It continues with an analysis of existing description languages

for tasks and executors and then outlines the requirements deemed necessary for

symmetric matchmaking in computational grids.

4.1 Operating Systems and Computational Grids

Ultimately much of the work in clusters, batch systems, and computational grids

is an attempt to expand the behaviour of a single computer preemptive operating

system. While it is not appropriate to enter into a detailed consideration of modern

operating systems, it is valuable to consider the key features which enable reliable

program execution, data and process security, process management, and software

portability. These systems and approaches have been developed and refined over

decades, and therefore offer great insight into features which are also likely to be

necessary in computational grids. Detailed descriptions of modern operating system

architectures can be found in reference works such as [84], [85], and [86]. Three

characteristics of operating systems are considered:

1. An omnipotent and omniscient kernel (or equivalent);

2. Stable and homogeneous system;

3. Security layer for data and processes.

4.1 Operating Systems and Computational Grids 71

The first characteristic is that modern operating systems utilise a kernel, whether

that is a micro-kernel or a monolithic kernel. This kernel has the ability to preempt

any “user-level” process and suspend it indefinitely. This omnipotent and omniscient

control allows the kernel to provide atomic operations both on data and processes.

Atomic operations and the omnipotent kernel provide a high degree of assurance

that system-level operations will be completed in a consistent and timely fashion.

At the very least the kernel provides a process management system which keeps

track of all “live” processes, typically in a process table. This contains aspects such as

process ancestry and progeny, memory usage, file access, environment settings (i.e.

basic global variables), ownership, current state, program counter, and performance

or usage metrics. A well defined kernel API provides user-level processes operations

for querying or changing their process state, or, if authorised, other processes’ state.

The second characteristic is a relatively fixed, stable, and homogeneous base

system. Almost any hardware change will require a restart, and user level processes

(as opposed to long-running and automatically started services, which technically

may also be user-level processes) rarely expect or manage process state continuity

across a restart. Similarly software is expected to utilise the system configuration

found at installation time. If available software, services, or libraries change, there is

usually no expectation that dependent software will dynamically adjust. Backwards

compatible services or libraries may be the exception to this, however the assumption

is still that if the software installation process was successful (that is, if the software

ran once) then it will run successfully at any point in the future. A violation of this

through changing system configuration will not automatically be accommodated or

even detected and the software in question will likely fail in an unpredictable way.

The third characteristic is a security infrastructure which manages process and

data access. The common paradigm is the use of user and group access policies

attached to all data and processes, along with a user authentication system which

binds a real user to a single user identity and a set of group identities. Users can then

interact with data or processes provided they possess the suitable identity given that

resource’s access policy. Again, kernel level services act as the omnipotent arbiter

of data and process access control. Typically users have limited ability to delegate

user or group ownership of data and processes, but are able to change the access

policy for those resources they own.

These characteristics are contrasted against large-scale computational grids which

are federated, dynamic, heterogeneous, have no single information authority, and

require rich identity and authorisation management for data and tasks (the grid

4.1 Operating Systems and Computational Grids 72

analogue of an operating system process). There is no omnipotent “hand of God”

which can mediate interactions, nor omniscient “eye of God” which can simultane-

ously know a complete, accurate, and up-to-date picture of the state of the compu-

tational grid. This requires that tasks in a computational grid provide a complete

description of their dependencies and configuration such that this can be transferred

to remote resources. Conversely, capabilities and restrictions of executors must be

sufficiently described to provide reasonable confidence that assigned tasks will suc-

cessfully execute.

The key characteristics which map from operating system process management to

computational grids are the data management, process management, configuration,

and ownership properties.

Grid tasks will require data input, data output, and data modification. Operat-

ing systems provide mechanisms to control data access and provide file creation and

file pinning. The nature of data access on the grid requires that, wherever possible,

data requirements are specified a priori as dynamic grid data access may be slow,

expensive, or impossible.

Grid tasks will have a life cycle, and encapsulating the current process state and

providing an interface for operating on that state is essential. Operations analogous

to suspend, kill, query, wait, and continue are all required. The distributed nature

of a computational grid will make a central grid process table difficult to maintain

and is unlikely to be scalable. While an operating system kernel tracks process life

cycle through a program counter, its environment, file handles, and open memory

regions, a grid process cannot expect process management at such a fine grained

level. A concept of execution stages and state for each stage provides a coarse grain

mechanism for process-internal workflow.

Configuration comes in a number of forms. In an operating system context, a new

process inherits the environment settings from its parent and then starts executing

a programme with specific arguments and a set of open file handles. Ultimately a

grid process will execute in an operating system context, therefore a mechanism is

required to specify the environment, arguments, and file set. Parametrisation and

the use of variables is also an important aspect of configuration management.

From another perspective, grid process configuration consists of specifying a

software set required by the process. In an operating system context, as mentioned

above, it is assumed that all necessary libraries and software for process execution

are available. In a grid environment it is necessary to specify the software which

is required, whether that be implicitly via a tag for a software set, or explicitly via

4.2 Traditional Task Scheduling and Resource Management 73

naming individual packages. Furthermore, specification of specific software versions

is an important consideration in a federated computing environment, where there

may be considerable version skew between sites.

Finally the concepts of ownership, access, delegation, and identity management

must be addressed. Operating systems have an effective mechanism for separating

data and process access through the use of user, group, and “global” (within the

scope of the system security domain) access policies. This same separation is neces-

sary in a grid context, however a much richer set of access and identity operations

are also necessary. It is necessary to specify access control beyond the scope of the

operating system security domain. The set of grid data read and write operations re-

quired for a single grid process may require the use of a range of identities. Similarly

process execution or service access may make use of numerous different identities for

access, and require delegation of identities to those services or processes to complete

aspects of the grid process. A computational grid environment is characterised by

groups of collaborating users working across organisational boundaries and thus se-

curity domains. Managing access correctly so the appropriate set of users (and no

more) can manage the grid process and its artifacts (i.e. data) is essential.

4.2 Traditional Task Scheduling and

Resource Management

The classic theory for task scheduling on a set of machines was first presented in 1967

in [87], which defined scheduling problem classes, metrics, and algorithms. While

this work was focused on the problem of scheduling people, tasks, and machines in

an industrial or operational research context, the same principles apply to compute

clusters and grids. In the 1970s and 1980s, extensive work was been done to ad-

dress the problem of process scheduling on single processor so-called “time-sharing”

systems, as the previous section discussed, and for SPMD parallel super computer

applications with hundreds or thousands of processors, and [88] provides a thorough

survey and taxonomy classification of this work. These same principles were refined

and applied through the 1990s to cluster computing, with the EASY (Extensible

Argonne Scheduler System) backfill scheduling algorithm gaining prominence[89],

amidst other scheduling strategies which aimed to improve on First-Come-First-

Serve (FCFS) “naive” task scheduling.

In an online, non-preemptive scheduling environment (i.e. where task schedul-

ing occurs dynamically as new tasks arrive, and where running tasks cannot be

4.2 Traditional Task Scheduling and Resource Management 74

preempted), it is well known that optimal scheduling is a difficult, NP-complete

problem[90]. As a result, most systems, such as Torque or Maui[91], and Platform

LSF[92], use heuristic methods, aiming for a balance between users’ desire for fast

response time, and system administrators’ desire for efficient resource usage and

fair-share.

With the advent of grid computing, scheduling in a federated environment is

complicated by the addition of multiple administrative domains, in contrast to sin-

gle site, single scheduler systems which have full authority to assert a schedule on the

subordinate resources. [93] shows that the same “single site” strategies are utilised

in a grid domain, however [94] discusses the difficulties of applying cluster schedul-

ing to the grid domain. While it may be appropriate for traditional task scheduling

and resource management to be applied at the local cluster level (although even this

strategy is challenged by Condor[13] and BOINC[60]), it can be seen that the feder-

ated nature, heterogeneity, and dynamism of grids make it difficult to extend these

strategies to grids. In this circumstance, “grid scheduling” effectively has become

a matter of grid system architecture or the result of a particular implementation.

Regarding the latter, a particular implementation is not feasible for a large scale

grid, as it implies a common, homogeneous software system. Regarding the former,

[94] shows that existing computational grid “architectures” are extensions of tra-

ditional cluster management systems into a distributed environment. They require

coordination between all sites, universal information sources, and often a centralised

workload management system for task scheduling and allocation. They also exclu-

sively (again, with the exception of Condor) deal with the allocation of tasks to

computing resources, and consider all other entities within the system second class

objects.

These architectural paradigms contradict the philosophy presented in [17, 95]

and are not seen to be realistic for an Internet-scale computational grid. This strat-

egy can be seen in the LCG Workload Management System[96] and the CREAM

interface deployed at sites[97]. It is unclear how many of the shortcomings re-

ported in [98] have been resolved by this revision of the LCG WMS architecture.

Instead, a strategy based on the REST principles described in Section 2.3 is pre-

sented later in this work as an alternative starting point for grid resource interaction.

All entities are abstracted to grid resources and numerous interaction patterns are

possible, falling within a common RESTful framework. This framework requires a

common descriptive approach to enable the representation aspect of RESTful grid

resources. The rest of this chapter will consider existing mechanisms for describing

4.3 Existing Description Mechanisms 75

entities within a grid, critiquing them and building a list of desirable properties for

a RESTful resource description strategy. This approach sidesteps the issue of which

scheduling strategy to use, leaving that to either be a site-specific decision (i.e. for

local task management), or a domain-specific implementation, operating within the

boundaries of the RESTful resource interaction constraints. The RESTful model,

then, rephrases the task scheduling problem as a resource interaction and composi-

tion problem. Subsequent chapters will develop this model, the constraints it applies

to resource composition (which very much borrows from the Condor Matchmaking-

style interaction), the dimensions of freedom available for implementation design,

the foundation of this model in set theory (in order to provide strong mathematical

properties to resource compositions), and an introduction to some of the valuable

properties which result from this RESTful model.

4.3 Existing Description Mechanisms

The nature of computational grids is such that it is rarely possible to simply name

a programme, its arguments, and a set of inputs in order to perform the desired

computational task. In a standard time sharing system (i.e. on a typical workstation

or server) such operations are possible because:

1. they are synchronous and block until the operation completes;

2. they can utilise the underlying locally accessible data store;

3. any user environment settings or configuration is directly available;

4. the capabilities and configuration of the local system are generally known and

relatively static;

5. the system is assumed to be stable – any failure or restart will invalidate all

active processes.

Batch systems and computing clusters have required a more detailed description

of the task in order to prioritise it properly, provide the appropriate configuration

and data, and correctly match varying task requirements to computing resource

characteristics. Prior to the advent of grid computing, it was possible to leave

many requirements as implicit or encapsulated in the properties of a particular

job queue. Grid computing has introduced the complexity of externally-controlled

heterogeneous computing resources and widely distributed data sets which make it

4.3 Existing Description Mechanisms 76

//JOB1 JOB (034D),’RAMESH ’,CLASS=’A’,

// PRTY=6,TYPRUN=HOLD ,NOTIFY=ERT54

//stepname EXEC MINISORT ,TIME=60

//SORTIN DD DSN=input.dataset ,DISP=SHR

//SORTOUT DD DSN=output.dataset ,

// RETPD=____ ,DISP=(NEW ,CATLG ,DELETE),

// SPACE=____ ,DCB=____

//SYSIN DD *

Listing 4.1: Sample JCL executing the minisort algorithm.

necessary to explicitly define all capabilities and requirements. It is also necessary to

carefully consider the mixture of security domains requiring different authorisations.

Existing description languages have typically been for specific software packages

(RSL, JCL, JDL)[99–101] or so generic as to lack any semantic structure allowing

checking and validation (ClassAds)[21]. Efforts to develop generic languages have

not addressed the duality of tasks and resources, and have had a high degree of

complexity (JSDL, CDDLM)[102, 103].

This section looks at existing approaches and comments on their suitability for

large scale computational grids, with the specific goal of identifying features neces-

sary for an abstract computational grid task model that supports symmetric resource

matching, as will bepresented in Chapter 5.

4.3.1 Job Control Language

Many batch and grid job description languages trace their roots back to the Job

Control Language which was developed by IBM for the OS/3xx series mainframes in

the 1970s. This is a suitable starting point, as it pre-dates modern preemptive multi-

user time-sharing operating systems while still addressing many of the issues relevant

in computational grids. JCL contains aspects which are necessary in all scheduled

task description languages: program to execute, conditionals, input and output data

requirements, program class, notification mechanisms, accounting details, and time

limits and estimates. Listing 4.1 shows an example of JCL.

This language is notorious for its opaqueness and terse syntactical structure,

thus emphasizing the importance of an intuitive and simple syntax. While JCL is

considered primarily for historical reasons, we can see in Listing 4.1 the following

key features:

4.3 Existing Description Mechanisms 77

1. accounting (034D identifies the task)

2. class (CLASS=’A’)

3. data staging (DD accesses or creates a file)

4. data access control (DISP=SHR states that the data is shared with other jobs)

5. naming (JOB1 provides a human-readable name for the job)

6. ownership (RAMESH is the user who owns the job)

7. priority (PRTY=6)

8. timing (TIME=60 limits the job to 60 minutes)

9. program details (EXEC MINISORT is the program to run)

JCL does not address executor requirements as these are assumed to be known

by the users as JCL is typically intended for execution on a particular system (the

system on which the JCL is composed and submitted).

4.3.2 PBS and Torque

The Portable Batch System (PBS)[104] was originally developed by NASA in the

1990s. It is representative of a class of batch system/cluster management packages

such as Sun Grid Engine (SGE) 1, OpenPBS and PBSPro by Altair 2, Torque, by

Cluster Resources 3, LSF[92], by Platform 4, and LoadLeveler by IBM 5. Torque is

the most recent open source branch of the original PBS software, and both OpenPBS

and Torque are widely used within the particle physics community, hence its selection

as the representative example.

This class of batch system software typically consists of three types of hardware

nodes, and requires three different sorts of configuration. The three hardware nodes

are submit, head, and worker. The submit nodes have user interface tools in-

stalled and allow registered users to authenticate to the batch system then create,

submit, monitor, and retrieve tasks. These tasks are submitted to the batch system

head nodes (also sometimes called the gatekeeper nodes) which manage the pool

1http://gridengine.sunsource.net/
2http://www.altair.com/
3http://www.clusterresources.com/
4http://www.platform.com/
5http://www.redbooks.ibm.com/abstracts/sg246038.html

4.3 Existing Description Mechanisms 78

Property Description
arch architecture
cput maximum CPU time used by all processes in the task
file maximum disk space consumed by the task
mem maximum physical memory used by the task
vmem maximum virtual memory used by the task
nodes number of nodes required by the task
pcput maximum CPU time used by any given process in the task
pmem maximum physical memory used by any given process in the task
pvmem maximum virtual memory used by any given process in the task
software any software required by the task
walltime maxmum wall clock time the task can be in the running state

Table 4.1: Main task description properties in Torque

of worker nodes in the cluster. The head nodes maintain a number of different task

queues and a combination of user task parameters and administrative policy assign

each submitted task to an appropriate queue. The head node monitors the worker

nodes and submits tasks from the various queues to available worker nodes based on

a combination of the queue policy and a global policy. The three configuration items

are task definitions, queue definitions, and load balancing policy. Users con-

trol the first, while administrators control the latter two. As an example, Table 4.1

lists the main properties a user may utilise in describing the requirements of their

task when submitting it to Torque.

Queue definitions in Torque effectively use the same set of properties for each

queue and then match the tasks to the appropriate queues via a matching algorithm

and a defined priority on each queue. If the task limits, such as walltime, cputime,

file, mem, are exceeded then the task is aborted. The load balancing policy in

Torque is very basic, and in most cases the Maui scheduler (a separate module, also

from Cluster Resources, which interfaces to Torque) is used instead. This manages

advanced policies to allocate tasks to queues and select which tasks are run on

the worker nodes. Similarly, in other batch systems the scheduler component takes

responsibility for prioritisation of task execution and queue management based on

defined usage policies.

These systems already provide robust, mature solutions for managing single-

site, (relatively) homogeneous and static hardware clusters with shared data storage

space. Their shortcomings, however, are that they do not translate into a grid

domain. The task queue definitions are fixed. The head nodes typically require

complete control over the slave worker nodes, a shared file system is often necessary,

and task submission utilises combinations of proprietary arguments, environment

4.3 Existing Description Mechanisms 79

variables, and shell script extensions. None of these are acceptable in a dynamic,

federated, heterogenous grid environment. Furthermore, the scheduling strategies

utilised by most assume a maximum aggregate queued task size of thousands of tasks

on hundreds or perhaps a few thousand worker nodes as the scheduler will attempt

to maintain a current, complete, and correct view of the entire sysetm state. An

Internet scale grid cannot operate under these conditions. It therefore becomes

necessary to develop new approaches which prioritise the features of a batch system

and keeps only those which can be realised, possibly in a dramatically different way,

in a grid environment.

4.3.3 ClassAds

The Condor Project[13], which has developed a distributed batch scheduling system,

developed the concept of Classified Advertisements [21, 105], whereby any entity

could express arbitrary characteristics of itself as a seller and assert requirements

on its buyer. This duality does not differentiate between tasks and executors. It

allows a task to specify restrictions on the executor it will accept, and an executor

to specify restrictions on the tasks it will accept. In this way a Matchmaker is used

to build candidate sets of matching task/executor pairs, and via a ranking policy the

Matchmaker can chose the best match. The matchmaking can be done at the point

of submission (push-scheduling), by the executor (pull-scheduling), or by a third-

party independent matchmaker. This system allows a high degree of dynamism in

the executor characteristics, rather than simply having static characteristics implied

by a queue definition.

The ClassAds Matchmaker does not, itself, have any policy mechanism for assert-

ing ClassAd structure, mandatory attributes, matching requirements, or ranking. It

does handle the Requirements (or Constraint) and Rank attributes specially, using

them as keys to form a match set and then rank that set, however the ClassAds

themselves specify the policy. The language is formally defined[105] and has both

C++ and Java implementations, with wrappers for several other languages. This

makes it possible to implement policies through the manipulation of ClassAds at

the matchmaker. Extensions have been developed to facilitate matching a job to a

set of executors (set matching)[106] and for heterogeneous resource matching (gang

matching)[107].

Listing 4.2 shows a sample ClassAd describing a computing resource, while List-

ing 4.3 and 4.4 show a generic ClassAd in both the classic and XML representations.

4.3 Existing Description Mechanisms 80

[

Type = "Machine";

Disk = 700000;

Memory = 128;

State = "Unclaimed";

Name = "grid.physics.ox.ac.uk";

ResearchGroup = { "grid", "physics" };

Friends = { "cioffi", "soroko" };

Untrusted = { "mckeever", "mcarthur" };

Rank = member(other.Owner , ResearchGroup);

Constraint = !member(other.Owner , Untrusted) and

other.Type == "Task";

]

Listing 4.2: Sample resource ClassAd for an executor (Machine) in native syntax
[21].

[

w = 1;

x = w + 1.5;

y = { w, "ABC" };

z = y[1];

]

Listing 4.3: Sample ClassAd

in native syntax

<c>

<i>1</i>

<e>w+1.5</e>

<l>

<e>w<e>

<s>ABC</s>

</l>

<e>y[1]</e>

</c>

Listing 4.4: Sample ClassAd

in XML syntax

Besides the generic, semi-structured ClassAd syntax, ClassAds also provide sup-

port for:

1. variables and variable referencing;

2. sets, and set operations;

4.3 Existing Description Mechanisms 81

3. arithmetic operations;

4. functions and boolean operators;

5. four scalar data types: strings, booleans, integers, and floating point numbers;

6. nesting and scoping of ClassAds.

ClassAds and Matchmaking have been adopted in several grid computing projects,

and motivate much of the work presented later in this dissertation. ClassAds present

the fundamental concepts of generic resource descriptions and arbitrary resource

pairing, however these are only addressed to a degree suitable for pre-execution

matching, rather than enabling a resource description throughout a resource’s life

cycle. ClassAds also lack semantic structure which complicates validation and pro-

cessing. Aspects such as authentication and authorisation, accounting details, com-

plex requirements (such as software dependencies), and interrelationships between

characteristics cannot be specified easily, if at all. The complexity of the ClassAds

specification strongly suggests that the Condor implementation will continue to be

the only one available, and this is tied to an unintuitive syntax which is only suitable

for describing scheduling properties of resources.

4.3.4 Grid Laboratory Uniform Environment Schema

Within the LCG project, the Grid Laboratory Uniform Environment (GLUE) Schema

[108] has been adopted to provide consistent definitions of computing and storage

resource attributes for use by owners (publishers) and users (consumers). GLUE pro-

vides both an abstract hierarchical model of entities, attributes, and relationships,

as well as specific semantic definitions of attributes for use by various information

and monitoring systems. The most prevalent use of GLUE to date is within the the

LDAP information system of LCG. In this instance, the GLUE schema is mapped

to a flat name/value pairing, where the hierarchical information is merged into the

attribute name. Listing 4.5 provides a sample LDAP entry for a storage resource.

GLUE provides a carefully thought out abstract description model for storage

and computing resources, as well as physical computing centres (sites), clusters

within that site, task queues, individual computing nodes, and services. Within

LCG, the GLUE information for task queues is translated from LDAP into ClassAd

4.3 Existing Description Mechanisms 82

dn: GlueSALocalID=dteam ,GlueSEUniqueID=se.cern.ch,

Mds -Vo-name=local ,o=grid

objectClass: GlueSATop

objectClass: GlueSA

objectClass: GlueSAPolicy

objectClass: GlueSAState

objectClass: GlueSAAccessControlBase

objectClass: GlueKey

objectClass: GlueSchemaVersion

GlueSALocalID: dteam

GlueSAAccessControlBaseRule: dteam

GlueSARoot: /storage/dteam

GlueSAPath: /storage/dteam

GlueSAType: permanent

GlueSAPolicyMaxFileSize: 10000

GlueSAPolicyMinFileSize: 1

GlueSAPolicyMaxData: 100

GlueSAPolicyMaxNumFiles: 999999

GlueSAPolicyMaxPinDuration: 10

GlueSAPolicyQuota: 0

GlueSAStateAvailableSpace: 69924040

GlueSAStateUsedSpace: 2008660

GlueSAPolicyFileLifeTime: permanent

GlueChunkKey: GlueSEUniqueID=se.cern.ch

GlueSchemaVersionMajor: 1

GlueSchemaVersionMinor: 2

Listing 4.5: Sample LDIF (LDAP) representation of GLUE information for a grid
storage resource

4.3 Existing Description Mechanisms 83

format to be used for matchmaking. This process is done internal to the Resource

Broker which performs all matchmaking.

Appendix A.3 summarises the key resource attributes defined in version 1.2 of

the GLUE schema. GLUE has been invaluable to the grid community by providing

a pool of common terms for describing storage and executor resources. It has been

adopted by numerous resource providers (iVDGL6, CrossGRID7, PPDG8, Ninf/Ap-

GRID9, EDG10, GriPhyN11, IN2P312, DataTAG13, INFN14, LCG15), and is in use

by the projects and experiments which utilise those resources.

The specific usage of GLUE in LDAP, however, has been problematic as LDAP

was designed for relatively static information, with an emphasis on read operations

over write operations. Centralising many resource descriptions (hundreds to thou-

sands) into a single LDAP directory and updating them regularly (tens to hundreds

of entry updates per second) overwhelms current LDAP servers, not to mention

the read query load. Finally, LDAP relies on a fixed schema to describe the data.

Insertion of arbitrary resource descriptions is difficult and not easily handled.

The Relational Grid Monitoring Architecture (R-GMA)[58] was developed in

response to these problems and meant to provide a distributed, dynamic resource

information service which handled reads and writes to an information database.

R-GMA utilises a SQL-like syntax for database queries, and returns tabular infor-

mation.

4.3.5 Job Description Language

The Job Description Language developed by the European Data Grid project [109]

, and now being extended by the EGEE project [101] is based on the Condor Clas-

sAds language. A particular schema is asserted which sets known attributes with

semantics and defined processing behaviour, while still allowing user-defined or ex-

tended attributes. Many attributes utilise default values if not specified. The spe-

cial Requirements and Rank attributes are handled differently as the Matchmaker

6http://www.ivdgl.org/ International Virtual Data Grid Laboratory
7http://www.crossgrid.org/
8http://www.ppdg.net/ Particle Physics Data Grid (US)
9http://ninf.apgrid.org/ Asia Pacific Grid

10http://eu-datagrid.web.cern.ch/eu-datagrid/ European Data Grid
11http://www.griphyn.org/ Grid Physics Network (US)
12http://www.in2p3.fr/ Institut national de physique nuclaire et de physique des particules

(France)
13http://datatag.web.cern.ch/datatag/ Data Trans Atlantic Grid
14http://www.infn.it/ Istituto Nazionale di Fisica Nucleare
15http://lcg.web.cern.ch/LCG/ LHC Computing Grid

4.3 Existing Description Mechanisms 84

[

Executable = "script.sh";

Arguments = "60";

StdOutput = "sim.out";

StdError = "sim.err";

OutputSandbox = { "sim.err", "sim.out" };

InputSandbox = { "script.sh" };

Requirements =

other. GlueCEStateStatus == "Production" ;

]

Listing 4.6: Sample Job Descripton Language (JDL)

is wrapped by a Workload Management System which takes responsibility for task

management and integrates grid monitoring information into the process. This

allows Requirements and Rank to refer to monitoring properties specified by the

GLUE Schema for the target resource. These properties are maintained via the grid

monitoring system, for example via MDS LDAP entries or R-GMA databases. In

these cases, dynamic information can be queried directly from a live source during

the scheduling process.

By utilising new features of the Condor ClassAd Matchmaker, JDL now supports

the specification of gang-matching requirements (n-way matching instead of only

bilateral matching), job work-flows via Directed Acyclic Graphs (DAGs), and job

partitioning. In total, 41 attributes are defined[101]. These are listed in Appendix

A.2. Listing 4.6 shows a basic JDL file.

The latest revision of JDL provides a very rich grid task description language.

The enhancements beyond basic ClassAds provide structure necessary for a grid

environment and definitions of the semantic behaviour of the attributes. It does

continue to suffer from the problems of an awkward syntactic structure, difficult JDL

validation, inconsistencies in case handling, and is also specific to task descriptions,

rather than allowing the original genericity of ClassAds which supported executor

descriptions equally well.

4.3.6 Resource Specification Language

The Resource Specification Language (RSL)[99] has been developed by the Globus

Project as part of the GRAM16 workload management system. It allows the user

16http://www.globus.org/toolkit/docs/4.0/execution/

4.3 Existing Description Mechanisms 85

(* Run the compiled program*)

& (executable = a.out)

(directory = /home/nobody)

(arguments = 42 "Header String")

(count = 1)

Listing 4.7: Sample Resource Specification (RSL) Language

to specify a set of quasi-arbitrary statements, the relationships between those state-

ments, and a mechanism for defining and referencing variables. The semantics for

RSL statements are asserted by the consuming application, therefore RSL is sim-

ilar to ClassAds in that it is a meta-syntax for resource description. GRAM, for

instance, understands approximately 25 attributes, which are listed in Appendix

A.1. The NorduGrid project has extended RSL to support additional attributes in

a fashion similar to the JDL extensions to ClassAds[110]. This is called xRSL and

is listed in Appendix A.5.

Listing 4.7 shows a sample of RSL with the conjunction of four statements via the

AND clause with the & (ampersand) operator, termed a conjunct request. Disjunctions

are represented by the | (pipe) operator, termed a disjunct request. Multi requests

form a parallel set of statements by utilising the + (plus) operator. Compound

statements are possible which join together multiple operators and statements. This

allows for rich logic expressions.

The RSL syntax provides variables, literals, and lists. The multi-request con-

struct allows for the specification of parallel jobs. All current implementations have

a fixed attribute set, and the syntax requires a custom parser. Furthermore, it has

been developed from the perspective of task submission and scheduling, rather than

providing for the full task life cycle or being compatible with executor descriptions

and symmetric matchmaking.

4.3.7 Job Submission Description Language

Work by the GGF has led to the XML-based Job Submission Description Language

(JSDL)[102]. It contains a rich language for describing grid jobs, however many key

areas for scheduling and job management were deemed to be out of scope and are

not addressed. Furthermore, it does not address the issue of resource description.

Between the core attributes and those from the POSIX-Application extension ap-

4.3 Existing Description Mechanisms 86

<JobDefinition

xmlns ="http: // schemas .ggf.org /jsdl /2005/06/ jsdl"

xmlns:jp ="http: // schemas .ggf.org /jsdl /2005/06/ jsdl -posix "

xmlns:ex ="http: //www.example .org /">

<JobDescription>

<JobIdentification >

<JobName > My Gnuplot invocation </JobName >

<Description > Simple application invocation of gnuplot .

</Description >

</ JobIdentification >

</JobDescription>

<Application >

<ApplicationName> gnuplot </ApplicationName>

<jp:POSIXApplication >

<jp:Executable> /usr/local /bin/gnuplot </jp:Executable>

<jp:Argument > options </jp:Argument >

<jp:Input > input.date </jp:Input >

<jp:Output > output1 .png </jp:Output >

</jp:POSIXApplication >

</Application >

<Resources >

<IndividualPhysicalMemory >

<LowerBoundedRange > 2097152.0 </LowerBoundedRange >

</ IndividualPhysicalMemory >

<TotalCPUCount>

<Exact > 1.0 </Exact >

</TotalCPUCount>

</Resources >

<DataStaging >

<FileName > input .dat </FileName >

<CreationFlag> overwrite </CreationFlag>

<DeleteOnTermination > true </DeleteOnTermination >

<Source >

<URI > http: // example .com /~me/input .dat </URI >

</Source >

</DataStaging >

</JobDefinition>

Listing 4.8: Sample Job Submission Description Language file (adapted from [102])

proximately 50 attributes are supported. These are summarised in Appendix A.4.

A sample of JSDL can be seen in Listing 4.8.

JSDL specifically does not attempt to describe inter-job relationships, or to

model the entire job life cycle. It refers to yet-to-be-defined specifications such

as Resource Requirement, Scheduling Description, Job Lifetime Management, and

Job Policy to cover many of these unaddressed areas. This means issues such as soft-

ware requirements or wall-clock time limits for execution are not specified by JSDL.

Furthermore, identity token binding is not addressed, leaving open the question of

how to select the appropriate credential for file access, service access, execution, or

accounting.

The verbosity and high degree of structuring found in JSDL limits its flexibil-

ity and complicates implementation. This is likely to reduce its ease of use and

4.3 Existing Description Mechanisms 87

subsequent adoption. Nonetheless, it does provide a standardised vocabulary for

describing tasks.

4.3.8 Configuration Description, Deployment, and Lifecycle

Management

Another GGF specification nearing its first release is that for Grid Services Config-

uration Description, Deployment, and Lifecycle Management (CDDLM)[103]. Al-

though this specifically concerns itself with Grid Services, now under the framework

of WSRF, the concepts presented are applicable to both software deployment in a

grid environment and the execution of a single grid task. Two of the objectives of

the specification are to define a Configuration Description Language (CDL) and a

Service Deployment API.

Instantiated

Initialized

Running

Terminated

Failed

Undefined

Figure 4.1: State machine for CDDLM components.

The CDDLM Working Group explicitly lists a number of key non-functional

requirements for their proposed architecture: scalability, high availability, self heal-

ing, disaster recovery, full automation, and useability. An architecture which can

achieve these aims for grid service deployment will provide valuable insights into

mechanisms for grid task management. Unfortunately, CDDLM is still in its early

stages which makes it difficult to evaluate its success at meeting those objectives.

Listing 4.9 shows an example of CDL for a system composed of five components.

Figure 4.2 illustrates their relationship. A, B, and C are peers and operate concur-

rently, although they are initialised serially. D and E are sub-components of B and

are started serially, only after B is successfully running.

4.4 Summary 88

<cdl:system>

<cmp:sequence lifecycle="initialization"/>

<cmp:flow lifecycle="execution"/>

<cmp:reverse lifecycle="termination"/>

<ComponentA/>

<ComponentB>

<cmp:sequence lifecycle="execution"/>

<ComponentD/>

<cmp:wait lifecycle="initialization"

duration="10"/>

<ComponentE/>

<OnFailed process="notify"

target="/ComponentA"/>

</ComponentB>

<ComponentC/>

</cdl:system>

Listing 4.9: CDDLM Component Description Language example illustrating deploy-
ment of 5 components A-E

Sys

A B C

D E

Figure 4.2: Five component system deployed by CDDLM, matching Listing 4.9.

CDDLM provides a basic life cycle state-machine, as shown in Figure 4.1, and

mechanisms for the composition of components into a complete system. This com-

position is targetted entirely towards the deployment of a set of Web Services, rather

than composing generic resources.

4.4 Summary

ClassAds provide the most generic resource description mechanism, as it is really a

meta-syntax which can be used in arbitrary ways by different systems, and is capa-

4.4 Summary 89

ble of describing both tasks and executors. RSL similarly provides a meta-syntax

however, in practice, a fixed attribute set is defined with a particular implementa-

tion, and the syntax requires custom parsers to be utilised. The GLUE Schema has

become a de facto standard for describing executors, and JSDL is positioned to do

the same for many aspects of task descriptions.

To approach resource description in a RESTful way, and considering the full

resource life cycle, it is necessary to have an implementation independent way of

describing both task and executor resources (and other resource classes) which can

be easily generated by a publisher and utilised by a consumer. As was illustrated in

Section 3.8, symmetric matchmaking is essential for flexibility and scalability in a

grid environment. This combination of requirements suggests an XML-based meta-

syntax with the properties of ClassAds, and provision for expressing the concepts

found in GLUE, JSDL, JDL, CDDLM and the more traditional batch job description

features of JCL and PBS. The format needs to be simple to allow ease of implemen-

tation and extensible to provide flexibility and expressiveness. The format should

not assert a particular usage style or be tied to a particular implementation, and

it must allow encapsulation of grid resource state throughout the entire resource’s

life cycle. Similar to the goals of HTML and HTTP[9], it should be cacheable and

replicable. These observations are the motivation for the Grid Resource Descrip-

tion Language, presented in the following chapter. It presents an abstract model

for generic grid resource description and an XML-representation for that model. It

combines the best features of the approaches described in this chapter, while con-

sidering the features of an operating system process which are relevant for a grid

process. In particular, ClassAds is generalised and extended, providing a detailed

set theoretic model for RESTful representation of grid resources and resource com-

position strategy. This model captures a full life cycle description of a grid resource,

rather than being limited to the pre-scheduling description, and focuses on a for-

mal model, rather than providing a single specific implementation. The subsequent

chapters will present this resource model, and describe a RESTful interaction via

resource composition, and show how this lends itself to powerful features such as

resource validation, templates, resource queues.

Chapter 5

A REST Model for Resource

Matching

This chapter introduces a model for RESTful resource descriptions from
the perspective of the scheduling properties required for large scale com-
putational grids. This model consists, in part, of resource characteris-
tics, requirements, and preferences. Specifically, it discusses the model
for resource characteristics which forms the foundation for describing a
grid resource and is used as a “base class” for requirements and pref-
erences, presented in later chapters. Set theory is applied to define
relationships between resource descriptions, such as equivalence, partial
ordering, comparability, and composability. Three specific classes of re-
source comparators are presented, each containing a different degree of
intelligence to facilitate resource comparison.

Unlike most other task and resource description languages which focus on the

specific meanings of descriptors and bind these tightly to a particular process model

and cluster or grid management system, the approach proposed here abstracts the

concept of a “resource” and presents a framework for extensible resource descrip-

tions. In the context of a large computational grid, with thousands of sites, hundreds

of thousands of CPUs, and millions of tasks, it is inconceivable to require a single

integrated software system. This same problem faced the developers of the early

Web, and was addressed by separating the description of Web-accessible resources

(HTML, to name just one) from the protocol for transacting them (HTTP), and

allowed multiple implementations of both client side Web browsers and server side

HTTP servers. Simplicity and extensibility have also been key to the success of

the Web, and are therefore incorporated into the model proposed here [95]. The

philosophy behind this design was described by Fielding as Representational State

Transfer (REST)[9]. Most popular grid architectures are extensions of traditional

batch processing systems and make assumptions which do not hold in a grid envi-

90

Chapter 5. A REST Model for Resource Matching 91

ronment. This work argues that the Web paradigm is a more useful basis for a grid

architecture and presents a RESTful model of grid resources as a parallel for HTML

in the Web domain.

The objective is to provide a common framework for grid systems to describe

their various resources with well defined properties for the composition of those

resources (e.g. assigning tasks to compute clusters, or finding storage space for

files). In this domain interoperability between grid systems is largely encapsulated

into a common interpretation of the resource descriptions.

A fundamental principle of federated grid environments is the autonomy of users

and grid sites. For this reason, once a resource description has been accessed by a

remote system that system may act in any way with the information. The resource

owner at most has the ability to control access to its resources and resource de-

scriptions and perhaps any billing/payment system which is associated with actions

which follow from the resource description. In the application domain which this

work is motivated by, namely particle physics computing, this situation is borne out

by the reality of hundreds of independent research centres sharing the computational

load of a large collaborative experiment. If administrators of a computing centre

do not trust certain users they will either block them from submitting tasks or not

fetch tasks from those users. Similarly users who do not trust a particular comput-

ing centre will block that centre from executing their tasks either by not submitting

to them or not making their task pools available to the centre’s task fetcher.

The model proposed here allows all parties to utilise a common grid resource

description framework with the details of the resource description left for the col-

laborating groups to agree upon. The simplicity of the common framework allows

different implementations to be realised, each suited to the needs of the owners. It

focuses on the problem of composing grid resources, which is a more general form of

the task scheduling problem in batch systems, however it is recognised this is only

one aspect of the task and resource lifecycle. The model fits into a larger concept

of stateful representations of resources and lays a foundation for transacting these

representations and invoking operations on the resources which are not limited to

any particular protocol or service API. This is fundamental to creating a RESTful

grid architecture.

This chapter introduces the resource model and discusses the first aspect of it:

characteristics. A set theory approach is taken, and the properties are explored. Set

theory provides valuable properties for characteristic comparison which are discussed

at length.

5.1 Resource Model Overview 92

5.1 Resource Model Overview

The resource properties consist of three categories: characteristics, require-

ments, and preferences. Characteristics refer to properties intrinsic to the re-

source. Requirements refer to properties of other resources with which the current

resource may be composed. Preferences provide a mechanism to select from a pool

of resources which are valid for composition. Utilising the language of the GGF

Grid Scheduling Architecture Research Group (GSA-RG) 1, the requirements al-

low a candidate set of compositional resources to be formed, and from that set the

preferences allow resource selection.

In this model, requirements are a sub-class of characteristics, and preferences a

sub-class of requirements, thus providing a hierarchical conceptual model of these

different categories of resource properties. A formal description in Haskell of these

properties can be found in Appendix C.1. This work describes relations between

resources utilising these properties and discusses the features of the model in allowing

various resource composition strategies. It remains largely an abstract model and

emphasises a RESTful approach where the resource description is independent of

the resource itself, explicitly allowing consumers of the representation full freedom

of interpretation and subsequent action.

Set Theory Notation

Conventions and definitions for set theory notation are taken from [111]. Table 5.1

summarises the definitions of custom and uncommon symbols.

1https://forge.gridforum.org/projects/gsa-rg

5.1 Resource Model Overview 93

Symbol Definition
∧ conjunction (and)
∨ disjunction (or)

, definition
≡ equivalence
≡bool boolean equivalence, where given set S, if S = ∅, false, otherwise

S 6= ∅, so true
∼ operands are comparable (of same “type”)
� operand A precedes operand B according to some partial ordering

relation
⊆char subset relation only operates on characteristic sets within

operands
⊆part partial subset, considering only shared dimensions
⇒ one-way match of operand A to operand B
⇒p one-way partial match subset, across dimensions shared between

the two operands
⇔ two-way match of operand A and B
⊆req requirement subset, where the set of requirements in operand A

are a subset and within the subspace range of the requirements in
operand B

⊆rs requirement space, where the set of requirements in operand A
define a smaller (more restrictive) subspace than the requirements
in operand B

⊆m matching subset, equivalent to ⇒
Dpref operand A implies a resource ordering consistent with operand B
⊣ operand A is a template of operand B
⊲ start of comment (in algorithms)

Table 5.1: Description of custom and uncommon symbols.

5.2 Resource Characteristics 94

5.2 Resource Characteristics

A resource R can be described with an arbitrary set of characteristics CharsR. Each

characteristic ci (where i is the characteristic index) consists of a (dimension, value)

pair, defining a unique characteristic of that resource. The components of a pair

can be referred to individually as ci.dimension and ci.value respectively. It should

be noted that ci.value may be unspecified. The interpretation of this special case

will be discussed in later sections. The set of characteristic dimensions in a resource

defines the dimensions over which the resource is described, and is denoted DR. This

is expressed more formally in Equation 5.1. The total dimensional universe of a set

of resources is denoted D, and is defined by Equation 5.2. It is clear that Equation

5.3 holds, stating that the dimensions DR of a particular resource R are a subset of

the dimensional universe D. A more formal definition of this is given in Haskell in

Appendix C.2.

DR ,







set of characteristic dimensions in resource R

{c.dimension|c ∈ R.chars}
(5.1)

D ,







set of characteristic dimensions from all known resources
⋃

iDRi

(5.2)

DR ⊆ D (5.3)

The characteristic pairs for a resource form discrete points along an arbitrary set

of dimensions therefore a resource’s characteristics can be thought of as a discrete

subset of a multi-dimensional value space. Equation 5.4 provides a definition for

the set of all characteristics in R, and Equation 5.5 lists the various equivalent

notations, with one or the other used depending on the situation. An indexed set of

characteristics {ci} can also exist without any association to a particular resource

R.

CharsR ,







set of all characteristics in resource R

{c|c ∈ R.chars}
(5.4)

CharsR ≡ R.chars (5.5)

CharsR is a view (or representation) of the resource R over a set of dimensions.

5.2 Resource Characteristics 95

This presents state information concerning the resource R. Figure 5.1 provides a

graphical illustration of a single characteristic value cx1
in a single dimension x.

cx1

dimension x

Figure 5.1: A single characteristic in a single dimension

A resource may have multiple characteristics in the same dimension meaning the

resource presents multiple possible values (states) in that dimension. Alternatively,

it may not specify a value for a particular dimension. This is interpreted as the

resource being defined along that dimension, but at an unspecified point. Figures

5.2 and 5.3 illustrate these cases.

dimension x

cx1
cx2

cx3

Figure 5.2: Multiple characteristics in a single dimension

������������������������������

cxunspec

dimension x

Figure 5.3: A characteristic with an unspecified value

It is often useful to talk about characteristics restricted to a particular set of

dimensions. We use the notation dimx to refer to the complete value space of

dimension x. Using the standard concept of set intersection, we can then describe

the characteristics of R restricted to those in the dimension x. This is expressed in

Equation 5.6. This can be generalised to a set of dimensions as shown in Equation

5.7. This is analogous to projections which reduce the dimensionality of an n-tuple

to an m-tuple, where m < n.

5.2 Resource Characteristics 96

It is also common to want to restrict the dimensions of resource R to the set of

dimensions found in resource S, or to the set of dimensions shared between resources

R and S. To express these, we use the shorthand notations shown in Equation 5.8.

The operator ∩D is a shorthand because sets of characteristics (e.g. CharsR) are not

comparable to sets of dimensions (e.g. DR).

CharsR ∩ dimx = {c|c ∈ CharsR ∧ c ∈ dimx} (5.6)

CharsR ∩ {dimx, dimy, dimz, ...} =

{c|c ∈ CharsR ∧ c ∈ ∪{dimx, dimy, dimz, ...}} (5.7)

CharsR ∩D DS , {c|c ∈ dimx ∧ dimx ∈ DS ∧ c ∈ CharsR} (5.8)

A particular characteristic dimension for a particular resource R can be in a

range of states:

undefined There are no characteristics defined for resource R in that dimension,

therefore nothing more can be said about R over that dimension.

unspecified All characteristics in the dimension have no value specified and are

therefore equivalent to a single null-valued characteristic. This is appropriate

for characteristics which are “flags”, or in cases where the resource possesses

the characteristic dimension, but the value is unknown or not publicly avail-

able. This is not the same as undefined. It is a special case of a normal

characteristic declaration.

Single definition There is exactly one characteristic defined in that dimension and

it possesses a defined (specified) value.

Multiple definition There are multiple characteristics in the same dimension.

Over that dimension the resource is defined by multiple values.

Figure 5.4 provides a simple model of a characteristic and its compositional rela-

tionship with a resource using standard UML notation. The type attribute will be

discussed in the following section. The formal model of a Characteristic is described

in Haskell in Appendix C.1.

5.2 Resource Characteristics 97

*

Resource

−name:str

Characteristic

−dimension:str

−value:str

−type:str

Figure 5.4: Object model of a Characteristic and its composition relationship with a
Resource.

5.2.1 Value Types

A characteristic may have a type associated with its value. Type resolution is

dependent upon the consumer of the characteristic, however the characteristic may

suggest a type through a “hint” found in c.type. The consumer is not obligated to

utilise this hint. Other possible sources of type information may be:

1. type inference from the characteristic name c.name

2. type guessing from the characteristic value c.value

3. a default specified by the resource R

4. a default built-in to the consumer

5. inferred by the nature of the operation carried out by the consumer

The consumer may utilise its understanding of the characteristic’s type to per-

form transformations on the characteristic. For example, types may provide infor-

mation regarding units, thereby allowing conversion of minutes to hours, or kilobytes

to megabytes. Appendix C.3 provides Haskell definitions of a number of types, type

categories, and type conversion functions. The types described are categorised into

metric, binary, speed, and time. Section 5.4 discusses this in more depth.

5.2 Resource Characteristics 98

<task name="testjob1">

<chars>

<norm_cpu type="hr" > 2 </norm_cpu>

<mem type="MB" > 180 </mem>

<disk type="MB" > 500 </disk>

</chars>

</task>

Listing 5.1: Characteristics for a task resource

5.2.2 Examples of Resource Characteristic Sets

The following listings are examples of characteristic sets for different types of re-

sources. They utilise a simple XML syntax which will be described in this and

subsequent chapters. A high level description of it would be a categorised set of

name/value pairs, with typing information for each pair. These examples will be

referred to in later sections either by their listing reference number or the name

attribute on the root element.

Listing 5.1 illustrates the characteristics for a simple task. The details of the

task itself are ignored for the time being. This task has only three dimensions:

{norm cpu, mem, disk}, with a single specified value for each dimension. Each

dimension provides type hints for the consumer of the resource description.

Listing 5.2 illustrates the characteristics for two simple executors (compute nodes).

The first, pentium, is defined across eight dimensions: {cpu type, mhz, os, software,

bench, ram, vram, scratch}, while the second, amd, is defined across six dimensions:

{cpu type, mhz, os, bench, ram, net bw}. For pentium, one dimension, software,

has two points defined: {openssl, python}, and one, hyperthreading, has none. For

the hyperthreading dimension, pentium is in the unspecified state, as described ear-

lier. As an example of a characteristic which is in the undefined state, consider the

dimension net bw. This dimension is not listed in the characteristic set for the ex-

ecutor pentium in Listing 5.2, therefore it is in the state undefined, whereas for amd

it has a value of 1 Gbit/s. The two resources pentium and amd have overlapping

characteristics and can be compared.

Listing 5.3 illustrates some characteristics of a cricket player, expressed as a

resource. It is defined across seven dimensions, and has no type hints. This example

will be expanded upon in later sections to illustrate multi-way composition and the

genericity of this approach to resource description.

5.2 Resource Characteristics 99

<executor name="pentium">

<chars>

<cpu_type> pentium </cpu_type>

<mhz> 2800 </mhz>

<os> linux </os>

<software> openssl </software>

<software> python </software>

<hyperthreading/>

<bench type="SI2K" > 0.9 </bench>

<ram type="MB" > 512 </ram>

<vram type="MB" > 1024 </vram>

<scratch type="MB" > 100 </scratch>

</chars>

</executor>

<executor name="amd">

<chars>

<cpu_type> AMD </cpu_type>

<mhz> 2500 </mhz>

<os> linux </os>

<bench type="SI2K" > 1.1 </bench>

<ram type="GB" > 1 </ram>

<net_bw type="Gbit/s" > 1 </net_bw >

</chars>

</executor>

Listing 5.2: Two executor resources with different characteristic sets.

<person name="James">

<chars>

<name> James </name>

<gender > male </gender >

<age> 27 </age>

<weight > 85 </weight >

<height > 175 </height >

<sport> cricket </sport>

<pos> batsman </pos>

</chars>

</person >

Listing 5.3: Characteristics describing a cricket player

5.3 Comparability 100

5.3 Comparability

Having defined the structure of a characteristic, characteristic dimensions, and the

set of characteristics describing a resource, it is necessary to define common opera-

tions on, and relationships between, characteristics, dimensions, and resources. This

starts with defining the concept of characteristic comparability. Ultimately this

is the foundation of the compositional model for resource scheduling. Resources

are described by characteristics, and compositions consist of comparing characteris-

tics using standard set theory concepts. Briefly, a resource composes with another

resource if the first resource’s characteristics are found within the set of require-

ments defined for the second resource. This and future sections will develop this set

theoretic compositional scheduling strategy.

Comparability is based on a (dimension,type) pair. A set of characteristics in the

same dimension are only comparable if their types are the same. If the dimension

is the same, but types differ, the set of characteristics can be thought of as forming

an un-ordered set of sub-sets within the dimension, where each sub-set consists of

characteristics with comparable (dimension,type) pairs. Characteristic comparabil-

ity in this model is distinct from the formal definition of comparability, which is

based on items being related by a partial order relation. Characteristic ordering

will be discussed in the following section. The symbol ∼ will be used to indicate

comparable characteristics. Specifically, if ci and cj are two characteristics, then

ci ∼ cj indicates that ci is comparable to cj, and that ci and cj are in the same

dimension and have the same type. This is clearly a symmetric relation, therefore

ci ∼ cj implies cj ∼ ci.

Figure 5.5 illustrates this concept graphically. Listing 5.4 provides an example of

a set of characteristics in the same dimension with types which are not comparable.

INT95 and INT2k represent two integer benchmarks with a mapping function be-

tween them (i.e. they are comparable after transformation) while FP95 and FP2k are

two floating point bench marks, similarly with a transformation to a common base

making them comparable, and Alpha7 is a fictitious application specific benchmark.

These form three distinct sub-sets within the bench dimension. Characteristic trans-

formations that change dimensions, types, and values will be discussed in detail in

Section 5.5. Without some form of transformation, same dimension characteristics

with different types are not comparable.

5.4 Comparators 101

Resource R

cx7
cx8

cx9

cx4
cx5

cx6

subset C of comparable common types

subset A of comparable common types

subset B of comparable common types

dimension z

dimension y

cx3
cx2

cx1

dimension x

..
..
.

..
..
.

Figure 5.5: A set of characteristics in a single dimension, but lacking a single com-
mon comparable type

<bench type="INT95" > 112 </bench>

<bench type="INT2k" > 0.98 </bench>

<bench type="FP95" > 49 </bench>

<bench type="FP2k" > 20.1 </bench>

<bench type="Alpha7"> 32 </bench>

Listing 5.4: Sub-sets of incomparable characteristics within a single dimension.

5.4 Comparators

The first class of relations to define are those between characteristics using com-

parators. Comparators are relations on pairs or sets of characteristics which return

a boolean value. Characteristics are comparable if they are in the same dimension

and of the same type. This indicates whether or not the characteristics are in the

relation’s tuple set, which is to say that the relation holds for the set of character-

istics in question. Put more formally for binary relations, if ci and cj are in the

set of characteristics S, and R is a relation on elements of S (i.e. characteristics in

S), then the comparator relation R is defined as the ordered pairs of characteristics

where ciRcj holds. This is shown in Equation 5.9. The relation R has two closely

related meanings, depending on the context. The first is that R is a set of pairs

(ci, cj), wherever the relation holds. The second is in the case of ciRcj , where R is

the actual relation to evaluate between the operands. A constraint on these relations

are that they are transitive such that aRb ∧ bRc → aRc. The following discussion

5.4 Comparators 102

focuses on binary relations, but the results in all cases are generalisable to n-ary

relations. For a given relation, comparable characteristics either agree with the re-

lation (i.e. are found within the relation set), or don’t. These results correspond

with a true or false value for the result of the comparator operation. In the event

the characteristics are incomparable, the result of the comparison is always false.

R ≡ {(ci, cj)|ci, cj ∈ S ∧ ciRcj} (5.9)

The specific operation the relation R performs is defined by the individual compara-

tor. When (ca, cb) ∈ R, then the comparator will return true, otherwise it returns

false.

A class of comparator called the Basic Pairwise Comparator (bpc) is introduced

below. This defines a framework for concrete characteristic comparison operations.

In object oriented design terminology, the bpc is an abstract base class for com-

parators which operate on two characteristics. Later sections will introduce specific

comparators, followed by further comparator classes (specifically those that perform

transformations in an attempt to make characteristics comparable).

5.4.1 Basic Pairwise Comparator

The bpc is a class of binary relation comparator which accepts two characteristics

and does not perform any transformations on them before carrying out the actual

operation. If either the type or dimension differ, the result of the comparison is

false. Its behaviour is described and illustrated in Algorithm 5.1 and Figure 5.6.

The specific concrete operation is identified as operation() in Algorithm 5.1, and for

notational reasons is shown as a parameter of the bpc() function. The first two con-

ditional branches in Algorithm 5.1 implement this guard, checking for comparability.

Appendix C.5 describes this algorithm formally in Haskell.

It is important to note that one comparator may find a set of same-dimension

characteristics entirely comparable while another does not. This is due to the fact

that the comparator is responsible for characteristic type identification, so two differ-

ent comparators may identify the same characteristic as having two different types.

5.4.2 Equivalence

The most basic comparator operation is equivalent. This operation allows for

selection of characteristics from a set, and for testing if one set is a sub-set of

another. Algorithm 5.2 defines this operation, as well as in Haskell in Appendix

5.4 Comparators 103

Algorithm 5.1 Basic Pairwise Comparator

Require: ca, cb characteristics
Require: operation() the comparison operation to perform, accepting two charac-

teristics as arguments
Ensure: result is boolean {true, false}

function bpc(ca, cb, operation())
if ca.dimension 6= cb.dimension then ⊲ Dimensions are not the same

result ← false
else if ca.type 6= cb.type then ⊲ Types are not the same

result ← false
else ⊲ Apply the operation

result ← operation(ca, cb)
end if
return result

end function

comparisonguard

false if ca ≁ cb

bpc(ca,cb, operation())

ca

cb
result

ca ∼ cb operation(ca, cb)

Figure 5.6: Block diagram for a Basic Pairwise Comparator (bpc)

C.8. Using the syntax from the bpc, this would be called as bpc(ca, cb, equivalent())

which would first check that the two characteristics ca and cb were comparable before

carrying out the comparator operation equivalent(ca,cb).

The condition where ca ≁ cb (i.e. the characteristics are not comparable) is

handled by the “guard” operation in the bpc and would return false. Later sections

will present the option for guard stages in the comparator to attempt to transform

the characteristics to make them comparable. The concept of equivalence is still not

strictly defined here, and is left to the equivalence comparator to determine on the

basis of the characteristics’ values. For example, a given equivalence comparator

may consider “3.00” and “3” to be equivalent, while another does not. A similar

5.4 Comparators 104

Algorithm 5.2 Equivalence comparator.

Require: ca, cb comparable characteristics
Ensure: result is boolean {true, false}

function equivalent(ca, cb)
if ca.value is equivalent to cb.value then

result ← true
else ⊲ ca.value is not equivalent to cb.value

result ← false
end if
return result

end function

example would be the strings “STOKES-REES” and “Stokes-Rees”. An equivalence

comparator is bound by the usual constraint that it must be reflexive ((a, a) ∈ R),

symmetric (aRb→ bRa), and transitive (aRb ∧ bRc→ aRc).

Algorithm 5.3 describes an equivalence binary comparator which tests for an

exact match between the values of the two characteristics, while the negation of

that is expressed in Equation 5.10.

Algorithm 5.3 Equal comparator (=).

Require: ca, cb comparable characteristics
Ensure: result is boolean {true, false}

function equal(ca, cb)
if ca.value = cb.value then

result ← true
else ⊲ ca.value 6= cb.value

result ← false
end if
return result

end function

notequal(ca, cb) , not equal(ca, cb) (5.10)

5.4.3 Ordering

Ordered sets of characteristics can only be formed if a comparator provides a total

ordering relation O of all possible (type, value) pairs within a dimension. That

is, the total ordering of the dimension’s value space. Based on this total order it is

possible to evaluate the relative ordering of characteristic sets. Where ca and cb are

characteristics from the set S, caOcb indicates that (ca, cb) ∈ O and that ca.value 4

5.4 Comparators 105

cb.value. For simplicity, this relation will be expressed as ca 4 cb. This means

there is a total order on S defined by O and that ca precedes cb according to this

relation. The name ordered is given to this abstract comparator and it is described

by Algorithm 5.4. As with equivalent, ordered is guarded by the bpc to ensure the

characteristics are comparable. As this is an abstract comparator, it is not strictly

defined. Different ordering relations will produce different orders on the same set of

characteristics. For example, given a set of characteristics describing the available

storage space for a set of executors, the ordering relations “<=” and “>=” would,

in general, be expected to produce two different results. A characterisitic ordering

relation is bound by the usual constraint that it must be reflexive ((a, a) ∈ R) and

anti-symmetric (if aRb and bRa then a = b). Algorithm 5.5 describes the concrete

ordering relation “<=”, while Equation 5.11 expresses the ordering relation “>=”

in terms of the “<=” relation. Appendix C.8 provides a definition in Haskell.

Algorithm 5.4 Abstract ordering comparator (4).

Require: ca, cb comparable characteristics
Ensure: result is boolean {true, false}

function ordered(ca, cb)
if ca.value 4 cb.value then

result ← true
else ⊲ ca.value � cb.value

result ← false
end if
return result

end function

Algorithm 5.5 Concrete lte ordering comparator (<=).

Require: ca, cb comparable characteristics
Ensure: result is boolean {true, false}

function lte(ca, cb)
if ca.value ≤ cb.value then

result ← true
else ⊲ ca.value � cb.value

result ← false
end if
return result

end function

gte(ca, cb) , lte(cb, ca) (5.11)

5.5 Transforming Comparators 106

Algorithm 5.6 Less than comparator (<).

Require: ca, cb comparable characteristics
Ensure: result is boolean {true, false}

function lt(ca, cb)
if ca.value < cb.value then

result ← true
else ⊲ ca.value ≮ cb.value

result ← false
end if
return result

end function

Comparator Name Relation Function Equation
equivalent equivalent(chara.value, charb.value) Alg. 5.2
equal = equal(chara.value, charb.value) Alg. 5.3
not equal = not equal(chara.value, charb.value) Eq. 5.10
less than < lt(chara.value, charb.value) Alg. 5.6
greater than > gt(chara.value, charb.value) Eq. 5.12
less than or equal ≤ lte(chara.value, charb.value) Alg. 5.5
greater than or equal ≥ gte(chara.value, charb.value) Eq. 5.11
ordered � ordered(chara.value, charb.value) Alg. 5.4

Table 5.2: Base set of characteristic comparators

gt(ca, cb) , lt(cb, ca) (5.12)

In summary, the base set of characteristic comparators is listed in Table 5.2.

These are also defined formally in Haskell in Appendix C.4.

5.5 Transforming Comparators

As was mentioned earlier, a further class of comparators will attempt dimension

and/or type transformations to make characteristics comparable before the com-

parator operation is performed. Two variations of this class of comparator, called

transforming comparators, are presented below. The first attempts only type

transformations and requires that dimensions are the same, while the second at-

tempts both dimension and type transformations.

5.5 Transforming Comparators 107

5.5.1 Type Transforming Pairwise Comparator

A Type Transforming Pairwise Comparator (ttpc) adds a type transformation

stage to the comparator’s processing chain. If the dimensions are different, no

transformation is attempted and the dimension guard stage will return false. If

the characteristics are in the same dimension but have different types, the ttpc

attempts to transform the characteristics into the same type. It may also be that

type transformation is impossible, in which case the result will be false. Its logical

behaviour is illustrated in Figure 5.7 and Algorithm 5.7. A formal definition can be

found in Appendix C.6.

Algorithm 5.7 Type Transforming Pairwise Comparator

Require: ca, cb characteristics
Require: operation() the comparison operation to perform, accepting two charac-

teristics as arguments
Require: transtype() a built-in function which transforms characteristic values to

the same type. Throws TransformFailed exception if the type transformation is
not possible.

Ensure: result is boolean {true, false}
function ttpc(ca, cb, operation())

if ca.dimension 6= cb.dimension then
⊲ ttpc does not handle mis-matched dimensions

result ← false
else if ca.type 6= cb.type then

⊲ Attempt a type transformation

try
(ċa, ċb)← transtype(ca, cb)
result ← operation(ċa, ċb)

except TransformFailed
result ← false

end except
else

⊲ Simply pass to the operation

result ← operation(ca, cb)
end if
return result

end function

5.5 Transforming Comparators 108

transformation
dimension comparison
guard

type

operation(ċa, ċb)

ca.dim

cb.dim
∼

ca

cb
result

transtype(ca, cb)

ttpc(ca,cb, operation())

false if ca ≁ cb false if transtype() fails

ċb

ċa

Figure 5.7: Block diagram for a Type Transforming Pairwise Comparator (ttpc)

dimension comparisontype
transformationtransformation

ca

cb

dttpc(ca,cb, operation())

result

c̈a

c̈b

ċa

ċb

false if transtype() failsfalse if transdim() fails

transdim(ca, cb) transtype(ċa, ċb) operation(c̈a, c̈b)

Figure 5.8: Block diagram for a Dimension and Type Transforming Pairwise Com-
parator (dttpc).

5.5.2 Dimension and Type Transforming Pairwise Compara-

tor

A Dimension and Type Transforming Pairwise Comparator (dttpc) adds a di-

mension transformation stage to the ttpc processing chain. If the dimensions are

different, the dttpc attempts to transform the characteristics into the same di-

mension. It may be that dimension transformation is impossible, in which case the

result will be false. If dimensions are the same, the behaviour is identical to a ttpc.

Its behaviour is illustrated in Figure 5.8. It is worth noting that an implementation

of a dttpc may jointly consider the two (dimension,type) pairs in order to make

5.5 Transforming Comparators 109

a transformation decision, rather than considering dimension and type sequentially.

Algorithm 5.8 describes this class of comparator, and a formal definition can be

found in Appendix C.7 in Haskell.

5.5 Transforming Comparators 110

Algorithm 5.8 Dimension and Type Transforming Pairwise Comparator

Require: ca, cb characteristics
Require: operation() the comparison operation to perform, accepting two charac-

teristics as arguments
Require: transdimension() a built-in function which transforms characteristic dimen-

sions to the same dimension. Throws TransformFailed exception if the dimension
transformation is not possible.

Require: transtype() a built-in function which transforms characteristic values to
the same type. Throws TransformFailed exception if the type transformation is
not possible.

Ensure: result is boolean {true, false}
function dttpc(ca, cb, operation())

if ca.dimension 6= cb.dimension then
⊲ Attempt a dimension transformation

try
(ċa, ċb)← transdimension(ca, cb)
(c̈a, c̈b)← transtype(ċa, ċb)
result ← operation(c̈a, c̈b)

except TransformFailed
result ← false

end except
else if ca.type 6= cb.type then

⊲ Attempt a type transformation

try
(ċa, ċb)← transtype(ca, cb)
result ← operation(ċa, ċb)

except TransformFailed
result ← false

end except
else

⊲ Simply pass to the operation

result ← operation(ca, cb)
end if
return result

end function

5.6 Set Comparison 111

5.6 Set Comparison

The next class of relation are those between sets of characteristics. Set compara-

tors determine if one characteristic set is a subset of another characteristic set, and

provides a basis for comparing resources. Set CharsA is a subset of set CharsB if

and only if all the dimensions of set CharsA are found in set CharsB and if each

discrete value of the characteristics in each dimension of set CharsA are found in

the characteristics of set CharsB. The symbol ⊆ has its normal interpretation here,

and characteristics can be thought of as triples of (dimension,type,value), there-

fore CharsA is the set of characteristic triples in resource A. As a shorthand for

RA.chars ⊆ RB.chars we use the operator⊆chars on the resources as in RA ⊆ chars RB.

Equations 5.13 and 5.14 more formally define this relation, and Equation 5.15 ex-

presses it as a boolean function, where ≡bool is the boolean equivalent of the set

operation, with true indicating the set relation holds, and false indicating that it

does not. It is also described formally in Appendix C.10. In evaluating set member-

ship, the set comparator may utilise a ttpc or dttpc and perform transformations

on the characteristics. Figure 5.9 illustrates two characteristic sets, A1 and B1,

where A1 is a subset of B1.

CharsA ⊆ CharsB , {ci|∀ci ∈ CharsA∃ci ∈ CharsB} (5.13)

RA ⊆char RB , RA.chars ⊆ RB.chars (5.14)

subset(CharsA,CharsB) ≡bool CharsA ⊆ CharsB (5.15)

A partial subset relaxes the condition of all dimensions in CharsA existing

in CharsB, and instead uses CharsA ∩ DA∩B which is the subset of characteristics

in A along the dimensions shared with B (DA∩B). The symbol ⊆part will be used

for partial subsets. Equation 5.16 more formally defines this relation, and Equation

5.17 expresses it in functional notation. Figure 5.10 illustrates this. This can also

be found in Appendix C.10.

CharsA ⊆part CharsB , {ci|∀ci ∈ CharsA ∩ DA∩B∃ci ∈ CharsB} (5.16)

partsubset(CharsA,CharsB) ≡bool CharsA ⊆part CharsB (5.17)

5.6 Set Comparison 112

dim z

z2z1

y1

w1

z3

y2y1

z1 z2

⊆

dim z

dim y

x2x1

dim x

set A1

dim w

dim x

x1 x2

set B1

dim y

Figure 5.9: Set A1 is a subset of B1

dim w

y3y2y1

z1 z2

y1 y2

w1
⊆part set B2

set A2

dim x

x1

dim y

dim z

dim y

x1

dim x

Figure 5.10: Set A2 is a partial subset of B2 (over the shared dimensions x and y)

The concept of partial subsets is important from two perspectives. The first

is that it is often the case that only certain resource characteristic dimensions are

of interest, and as such set comparisons which are restricted to those dimensions

are valuable. The second is when considering resource templates. By utilising

the transitive properties of the subset operator it is possible to significantly reduce

the number of resource-pair comparisons which make optimal scheduling an NP-

complete problem and therefore intractable for large numbers of resources, as is

5.7 Summary 113

common in a computational grid environment. This will be presented fully in Section

8.2.

5.7 Summary

This chapter has provided an overview of the Grid Resource Description Language,

and discussed in depth the model for resource characteristics. The relationships

between dimensions, types, values, and comparability have all been presented. This

model will be extended in the subsequent chapters when looking at requirements

and preferences. Different strategies for transformation of characteristics were in-

vestigated, with two broad classes of transforming comparators defined: the ttpc

and the dttpc. A number of abstract and concrete characteristic comparators

were also defined. This provided a foundation for considering characteristic sets

and set comparison. Examples have been used to illustrate the generic nature of

this model for describing any entity as a “resource”. In effect, this provides an

enhanced name/value pair mechanism for describing resources, with “types” pro-

viding some flexibility for transformation and equivalence. This has captured the

core features of the ClassAd model in a more abstract way, while also providing a

more rigourous description of the properties of characteristics and characteristic sets.

This then leads to the work in the next two chapters which cover requirements and

preferences respectively, where requirements define the compositional constraints a

resource asserts on other resources with which it may be composed, and preferences

allow for ranking and sub-selection in the presence of multiple possible overlapping

compositions.

Chapter 6

Resource Requirements

This chapter extends the concept of resource characteristics into re-
source requirements. The concept of a resource’s “requirement space” is
presented, along with a formal definition of resource matching. This def-
inition avoids the need for tri-state logic which is required by Condor’s
ClassAd mechanism. A variety of matching strategies are described. In
particular, the model enables, but does not force, symmetric matching.

In a grid environment, having now described our resources in a RESTful man-

ner using the model for resource characteristics presented in the previous chapter,

attention must now be turned to the essential task of marrying sets of compatible

resources. This task of composing resources can take on many forms, with the most

common being the pair-wise composition of a single user task to an available and

compatible CPU in order to execute the task. This chapter will present a general

symmetric multi-way resource composition model which can be easily replicated and

distributed. It will be argued that this is realisable on an Internet scale, in contrast

to the centralised scheduling approaches currently in use.

In a traditional batch computing environment, clusters of CPUs would be as-

signed to different queues, with each queue containing the same profile/properties.

The user would be expected to know which queue met their task’s requirements and

submit it accordingly, or perhaps an auto-submitter would select a queue from a

small set of parameters the user may specify along with the task. Most current grid

systems are the same, either with users manually submitting to remote queues of

which they are aware, or via “auto-submitters”. Manual submission is unreasonable

in a large grid environment as a user will be unable or unwilling to track the list of all

queues within the system, while grid “auto-submitters” build on the master/slave

model used in batch systems where a master head node has full control and full

knowledge of the slave nodes and queues within the system – also unreasonable or

even impossible in a large grid environment. A single task manager cannot be ex-

114

6.1 Requirements 115

pected to know the state of tens of thousands of worker nodes, or even of hundreds

of queues, with each possibly servicing thousands of tasks and queueing thousands

more. This model, which was discussed in Section 3.8.2, is not scalable. It suffers

from the classic NP-complete problem of allocating optimally thousands of tasks to

hundreds or thousands of queues, and attempting to centralise management of a

massive computational system as defined in Section 2.9. The solution within LCG

of utilising multiple Resource Brokers led to two further problems: multiplicative

increase in the distribution (or at least replication) of monitoring information to the

new Resource Brokers, and users needing to remember which Resource Broker was

managing which set of tasks.

One of the goals of this chapter is to present a generalisation of the symmet-

ric resource matching strategy pioneered by the Condor Project. The intention is

to enable resource descriptions to be replicated and cached, thus allowing them to

be distributed to multiple locations. Once this has been done, Users, Agents, or

Services can then browse or fetch these descriptions and attempt to form resource

compositions utilising the resource representations. Sequential fetching of resource

characteristics or characteristic sets allows for static characteristics to be fetched in

advance of dynamic characteristics. In the event static characteristics do not sat-

isfy the requirements of a composition, the dynamic characteristics can be ignored.

This is in preparation for a later stage, not discussed in this work, of composition

realisation, which is reserving or claiming resources and then utilising them. Fur-

thermore, the requirements model eliminates the tri-state logic of Condor ClassAds,

which significantly complicates comprehension and implementation.

6.1 Requirements

The next aspect of the resource model adds the concept of requirements and require-

ment sets. A resource R may specify an arbitrary set of requirements ReqsR which

constrain the resources with which it may be composed. This is defined in Equation

6.1. Alternative notations are shown in Equation 6.2. This set allows the resource

to specify that composition is only permissible if all the specified requirements are

met by the characteristics of the resources with which it is being composed. The

resource supplying the requirement set will be called the base resource and the re-

source(s) with with which it is being composed, based on its characteristic set(s),

will be called the candidate resource(s).

The requirement model is a sub-class of characteristic, and inherits all properties

6.1 Requirements 116

of a characteristic. The rest of this section will describe how requirements define

a range within a dimension, a multi-dimensional value space, specify the relevant

comparison operation, and how candidate compositions can be formed. The concept

of a matcher, which is the analogue of a comparator, is introduced.

ReqsR ,







set of all requirements in resource R

{r|r ∈ R.reqs}
(6.1)

ReqsR ≡ R.reqs (6.2)

Requirements extend characteristics by adding a match property which specifies

a comparator. For example, if match is =, the requirement is specifying the need

for a characteristic with the same value, using the equal comparator. If match

is >=, then the requirement is specifying a value space of all values greater than

or equal to the requirement’s value which will be checked via the gte comparator.

Any characteristic which falls inside this value space will satisfy the requirement.

In this way, requirements are specifying a value range in a dimension, with the

requirement that a characteristic of a composed resource exists within this value

range. The notation range(ri) will be used to describe this value range of a particular

requirement ri, where “range” has the traditional set theory meaning (e.g. from

[111], p. 113).

The relation between the requirement value and the characteristic value can be

expressed either as a relation char comparator req or as a function: comparator(char,

req). Because a requirement can be interpreted in a characteristic context, the rela-

tion comparators shown in Table 5.2, which take two characteristics as operands, are

all valid, with the second operand replaced by the requirement in question. Require-

ments test if (chara.value, reqb.value) ∈ R, which is to say “is the (characteristic,

requirement) pair found in the relation’s set”. The relation is the comparator spec-

ified by the match property of the requirement. As a function, the requirement

tests if a characteristic is a subset of the requirement’s value space, defined by the

requirement’s (dimension, type, match, value) tuple, returning true if so, and false

otherwise. These two interpretations are exactly equivalent.

We can define a set relationship between a characteristic and a requirement, as

specified in Equation 6.3, and with the Haskell function isChReqSubset found in

Appendix C.11. This states that a characteristic is a member of a requirement if the

value of that characteristic is a subset of the value space (range) of the requirement.

Discussion of the special cases where the characteristic or requirement values are

6.1 Requirements 117

unspecified is left until Section 6.4.

ci ⊆ rj , ci.value ⊆ range(rj) (6.3)

Figure 6.1 illustrates the requirement match cx1
< rx2

in the dimension x, where

rx2
has a value of x2 and the comparator is <. This means rx2

has an acceptable

value space of all values less than x2. The characteristic cx1
satisfies this requirement

since x1 < x2.

��
��
��
��
��
��
��

��
��
��
��
��
��
��

dimension x

cx1

rx2

x2

Figure 6.1: A single requirement rx2
which defines a value space, and a characteristic

cx1
which satisfies it.

Because a single requirement can refer to a range of values in a dimension, it is

possible to do comparisons of one requirement to another, based on their respective

value spaces. Equation 6.4 defines the condition when one requirement is a subset of

another. That is, ri ⊆ rj if and only if the range of ri is entirely within the range of

rj. From this it can be observed that any characteristic which satisfied ri would also

satisfy rj. These requirement subset relations are described formally in Appendix

C.11, specifically with the function isReqSubset.

ri ⊆ rj , range(ri) ⊆ range(rj) (6.4)

Finally, it is necessary to define the range of requirements with unspecified val-

ues. Such a requirement has a range of the entire value space of the requirement

dimension. This is stated in Equation 6.5. Requirements with unspecified values

are discussed in more detail in Section 6.4.

if ri.value = ∅ and ri.dimension = x then range(ri) = dimx (6.5)

6.2 Requirement Sets 118

6.2 Requirement Sets

It is possible to describe relationships between requirement sets in a fashion similar

to characteristics (Section 5.6). If each requirement in ReqsA is a subset of at least

one requirement in ReqsB, then ReqsA ⊆ ReqsB. This is expressed in Equation 6.6,

and also as the Haskell function isReqSetSubset in Appendix C.11.

ReqsA ⊆ ReqsB , ∀ri ∈ ReqsA∃rj ∈ ReqsB ∧ ri ⊆ rj (6.6)

A ⊆req B , A.reqs ⊆ B. reqs (6.7)

DB/A ReqsB

ReqsA

RA ⊆req RB

Figure 6.2: Overlapping requirement spaces for RA and RB where RA ⊆req RB.

In practice, however, this definition is not useful. This is based on the fact that

a dimension with no requirements is equivalent to a requirement for that dimension

which will compose with any resource, regardless of whether or not that resource is

defined over that dimension. It is worth noting this is in contrast to an unspecified

value requirement which requires any characteristic in the dimension, but forbids a

candidate resource with no characteristics in that dimension. The effect of this is

that a resource A with a subset of the requirements in B, as defined by Equation 6.6,

may define a subset of acceptable values over the dimensions shared with B, however

it will accept any values over all undefined dimensions. If B contains requirement

dimensions not found in A then B may be more restrictive, meaning over these

dimensions A defines a superset of acceptable values (noted as DB/A in Figure 6.2).

As Figure 6.2 illustrates, knowing a candidate resource satisfies the requirements

of A provides no knowledge as to whether it satisfies the requirements of B (given

A ⊆ req B), and vice versa.

A simple example of this is shown in Listing 6.1, where A ⊆req B. This example

shows how the relation ⊆req provides no insight into the matching of candidate

6.2 Requirement Sets 119

<A>

<reqs>

<mhz match=" >="> 2000 </mhz>

<ram match=" >="> 512 </ram>

</reqs>

<reqs>

<mhz match=" >="> 1500 </mhz>

<ram match=" >="> 256 </ram>

<storage match=" >="> 500 </storage>

</reqs>

<C>

<chars>

<mhz > 3200 </mhz>

<ram > 1024 </ram>

<storage > 200 </storage>

</chars>

</C>

<D>

<chars>

<mhz > 1500 </mhz>

<ram > 256 </ram>

<storage > 1000 </storage>

</chars>

</D>

Listing 6.1: The shortcoming of the ⊆req relation is shown by this example. A ⊆req

B however this provides no additional information about A or B’s abil-
ity to match resources which the other has matched.

6.2 Requirement Sets 120

resources C and D, where C satisfies A but not B, and D satisfies B but not A, so

there is no transitivity of the ⊆req relation.

It is exactly this issue of undefined values which introduces the significant com-

plexity of tri-state logic into the Condor ClassAds Matchmaking mechanism. All

logical operators relating characteristics within the “self” ClassAd (equivalent to

the base resource in the RESTful model) to the “other” ClassAd (equivalent to the

target or candidate resource in the RESTful model) must cater for the condition of

the “other” ClassAd not defining that attribute (i.e. characteristic), and the inter-

pretation of that condition. It results in the creation of new logical operators is

and isnt and a correspondingly more complicated set of truth tables for what are

otherwise well known logic operations. Furthermore, given the user constructs the

logic statement for the requirements, it is necessary to add a fourth condition to the

result of all logical operations: error.

6.2.1 Requirement Space

A variation in the requirement subset definition can address this shortcoming by

introducing the concept of requirement spaces. Equation 6.8 defines the relationship

A ⊆rs B which specifies that resource A has a smaller (i.e. more restrictive) require-

ment space than B, meaning DA.reqs ⊇ DB.reqs (A has the same or more requirement

dimensions compared to B) and over every shared dimension DA∩B (which is equiv-

alent to DB) the requirement value space is the same or smaller for the requirements

from A compared to those from B. Figure 6.3 illustrates this, showing the require-

ment space of RA as a subset of RB. Under this condition, any resources with

characteristics which satisfied ReqsA would also satisfy ReqsB, therefore it can be

inferred that any resource which composes (one-way) with A would also compose

with B. This is described formally in the Haskell function isReqSetRSSubset found

in Appendix C.11.

ReqsA ⊆rs ReqsB , ∀rj ∈ ReqsB∃ri ∈ ReqsB

∧ ri ⊆ rj ∧ DA.reqs ⊇ DB.reqs (6.8)

RA ⊆rs RB , RA.reqs ⊆rs RB.reqs (6.9)

6.2 Requirement Sets 121

RA ⊆rs RB

ReqsBReqsA

Figure 6.3: Nested requirement spaces for RA and RB where RA ⊆rs RB.

6.2.2 Multiple Requirements Within the Same Dimension

It is possible to have multiple requirements on the same dimension. Figure 6.4

illustrates this. In this case it is possible that one characteristic will satisfy multiple

requirements, or that each requirement in the same dimension will be satisfied by

different characteristics. Figures 6.5, 6.6 and 6.7 illustrate some of these cases. For

the requirement set to be satisfied, it is simply necessary that each requirement

be satisfied by at least one characteristic, rather than every characteristic in that

dimension having to satisfy all in-scope (i.e. same dimension) requirements.

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

dimension x
x1

rx1
rx3

x3

cx4
cx2

Figure 6.4: Two requirements in the same dimensions, collectively defining a fixed
range of acceptable characteristics, and therefore each satisfied by the
same characteristic cx2

. Also, cx4
satisfies rx1

but not rx3
.

6.2.3 Multi-dimensional Requirement Sets

The union of all requirements defines the overall acceptable multi-dimensional value

space for a compositional candidate resource. Figure 6.8 illustrates two requirements

in two dimensions. The requirement rx3
in dimension x (interpreted as “char < x3”)

6.2 Requirement Sets 122

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

cx3

x4
dimension x

cx5

rx4

x2

rx2

cx1

Figure 6.5: Two requirements in the same dimensions, defining mutually exclusive
ranges, however each is satisfied by a different characteristic. rx2

by cx1
,

and rx4
by cx5

. cx3
does not satisfy either of the requirements.

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

cx4

x3

rx3

x3
dimension x

x1

rx1

cx2

Figure 6.6: Two requirements in the same dimensions, with overlapping value
spaces. rx1

is satisfied by {cx2
, cx4
} and rx3

is satisfied only by cx4
.

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

rx1

x3

rx3

x3
dimension x

x1

cx2

Figure 6.7: Two requirements in the same dimensions, with overlapping value
spaces, but only one requirement, rx1

is satisfied by cx2
, while rx3

is
unsatisfied.

is satisfied by {cx1
, cx2
} but not by cx4

, and the requirement ry2
in dimension y (in-

terpreted as “char > y2”) is satisfied by {cy3
, cy4
} but not by cy1

. Note that the

intersection of these two dimension axes is for illustrative purposes only, commu-

nicating the concept of orthogonality of dimensions. There is no fixed intersection

point, and, in this context, no concept that characteristics in dimension x are related

6.3 Matching Semantics 123

to the value space of requirements in dimension y (although, of course, transform-

ers may map characteristics from x to y). For example, it does not make sense

to state whether or not characteristics {cx1
, cx2

, cx4
} are “inside” the value space

of ry2
, although the figure suggests this is possible. Requirements can only be ap-

plied to characteristics with which they are comparable – that is, based on their

(dimension,type) pair, possibly after transformations by the comparator. As dis-

cussed earlier in Section 5.4 any comparison operation with values which are not

comparable must return false.

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

���������������
���������������
���������������
���������������

cx1

ry2

rx3

x3

cx4
cx2

dimension x

dimension y
cy1

y2

cy3

cy4

Figure 6.8: Two requirements in different dimensions, collectively defining a multi-
dimensional value space.

6.3 Matching Semantics

The semantics of composing Ra with Rb are that every requirement in resource Rb

must be matched (satisfied) by at least one characteristic in resource Ra. The de-

fault match operation is equality (i.e. the comparator equal() or operator “=”). As

before, the matching operation will utilise comparators which may perform transfor-

mations on either the requirement or characteristic as part of the matching process.

The operator ⇒ is used to express this resource matching relationship. The equiv-

alent in the functional form is asymatch(Ra, Rb), as shown in Equation 6.10, where

≡bool represents boolean equivalence, meaning asymatch() returns true when the⇒

relation holds and false otherwise. This will be discussed further in Section 6.6.1.

Appendix C.12 also provides a formal definition of this and the other matching

functions in Haskell.

6.3 Matching Semantics 124

Ra.chars⇒ Rb.reqs ≡bool asymatch(Ra, Rb) (6.10)

Matching is a special form of set comparison (see Section 5.6) where the super-set

of characteristics (the second operand) is replaced with a requirement set from the

base resource Rb. It is acceptable to have characteristics in the candidate resource

Ra outside of the value space of this set, so long as at least one candidate resource

characteristic is found for each base resource requirement. This is described formally

in Equation 6.11 and can be expressed more succinctly as Ra ⇒ Rb, as shown

in Equation 6.12. Ra.charsRb
is the set of characteristics in Ra that satisfy the

requirements of Rb. The universal quantifier ∀ in Equation 6.11 is essential. If it is

not satisfied (i.e. if any requirement is not satisfied) then the matching characteristic

set is empty. The idea is that the match set for a candidate composition contains the

selection of characteristics from one resource which have satisfied the requirements of

another resource. If the set of requirements have not been satisfied, then there is no

match, and the match set must be empty. Partial match sets, which will be discussed

in more detail later, provide a mechanism for capturing the set of characteristics

which partially match a set of requirements. It is important to observe that a single

requirement may define a range of acceptable values, while each characteristic defines

at most a single value (unspecified characteristics are an exception to this).

Ra.chars⇒ Rb.reqs ,







{ci|∀rj ∈ Rb.reqs ∃ci ∈ Ra. chars such that ci ⊆ rj}

Ra.charsRb

(6.11)

Ra.chars⇒ Rb.reqs ≡































Ra ⇒ Rb

CharsRa
⇒ ReqsRb

Ra.chars ⊆m Rb.reqs

asymatch(Ra, Rb)

(6.12)

The semantics of a requirement are that any single characteristic in its value

space will satisfy it, therefore a candidate resource with characteristics outside the

base resource’s requirements set may be acceptable. Figure 6.9 illustrates this,

showing CharsA1
to have additional characteristics in dimensions x and z, but for

all requirements in ReqsB1
, there is a characteristic in CharsA1

. These same two

resources are shown in Listing 6.2. At first appearance it seems the concept of

6.3 Matching Semantics 125

<A>

<chars>

<x>1</x>

<x>2</x>

<y>1</y>

<z>1</z>

<z>2</z>

</chars>

<reqs>

<x>1</x>

<y>1</y>

<z>1</z>

</reqs>

Listing 6.2: Two resources A and B which satisfy A⇒ B.

“subset”, as presented in Equation 6.3, has been reversed. However, if another

requirement set ReqsB2
is considered which includes a requirement w1 in addition to

those in ReqsB1
, then it can be seen that CharsA1

does not satisfy this requirements

set. CharsA1
has no characteristics in the dimension w and therefore cannot satisfy

the new requirement. This is illustrated in Figure 6.10. For this reason, the relation

⇒ is synonymous with the relation ⊆m (indicating a matching subset), where the

subset symbol clearly indicates that – at least some of – the characteristics form a

non-null subset of the collective value space of the requirement set. This property

is essential when the issue of transitivity of the matching relation ⇒ is discussed.

CharsA1

z1

y1y1

z1 z2

⇒

dim z

dim y

x1

dim xdim x

x1 x2

dim y

dim z

ReqsB1

Figure 6.9: Characteristic set CharsA1
is a matching subset of requirements set

ReqsB1

6.3 Matching Semantics 126

CharsA1

z1

y1y1

z1 z2

; ReqsB2

x1

dim x

w1

dim w

dim z

dim y

dim x

x1 x2

dim y

dim z

Figure 6.10: Characteristic set CharsA1
is not a matching subset of requirements

set ReqsB2
because it cannot satisfy the requirement rw1

.

6.3.1 Symmetric Matching

Given that both resources in a match operation may have characteristics and re-

quirements, the concept of symmetric matching is defined in Equation 6.13. This is

where Ra is matched to Rb (i.e. Ra satisfies Rb’s requirements) and Rb is matched to

Ra. This will be discussed in more detail later in Section 6.6. The symmetric match

operator ⇔ is used to indicate this, and the equivalent function is peermatch2() as

shown in Equation 6.14.

Ra ⇔ Rb , Ra ⇒ Rb ∧Rb ⇒ Ra (6.13)

Ra ⇔ Rb ≡bool peermatch2(Ra, Rb) (6.14)

6.3.2 Transitive Properties

Combining Equation 6.11 with the earlier discussion on characteristic and require-

ment subsets (Sections 5.6 and 6.1), there are two important observations which will

be used later in the discussion of resource templates in Section 8.2. These are the

foundation of an efficient resource matching mechanism. The first concerns charac-

teristic supersets. If Ra ⊆char Rb, then the characteristics of Rb are a superset of

those in Ra. If Ra ⇒ Rx then the set of characteristics in Ra satisfies the require-

ments of Rx. It is clear that a superset of those characteristics (namely those in Rb)

6.3 Matching Semantics 127

will also satisfy Rx, therefore Rb ⇒ Rx also holds. This is expressed in Theorem

6.3.1.

Theorem 6.3.1. If Ra ⊆char Rb and Ra ⇒ Rx then Rb ⇒ Rx

Proof.

Ra ⊆char Rb ≡ Ra.chars ⊆ Rb.chars by equivalence (Eq. 5.14)

Ra ⇒ Rx ≡ Ra.chars ⊆m Rx.reqs by equivalence (Eq. 6.12)

= Rb.chars ⊆m Rx.reqs by definition (Eq. 6.11)

≡ Rb ⇒ Rx by equivalence (Eq. 6.12)

The second observation is the requirement analog of this. If Rx ⊆rs Ry, then the

requirements of Rx are more restrictive than those in Ry. If Ra ⇒ Rx, then the set

of requirements in Rx are satisfied by the characteristics of Ra, then it is clear that

a less restrictive set of those requirements (namely those in Ry) will also be satisfied

by Ra, therefore Ra ⇒ Ry also holds. This is expressed in Theorem 6.3.2.

Theorem 6.3.2. If Ra ⇒ Rx and Rx ⊆rs Ry then Ra ⇒ Ry

Proof.

Ra ⇒ Rx ≡ Ra.chars ⊆m Rx.reqs by equivalence (Eq. 6.12)

Ra.chars ⊆m Ry.reqs by definition of Rx ⊆rs Ry(equation6.8)

Ra ⇒ Ry by equivalence (Eq. 6.12)

6.3.3 Partial Match

The idea of a partial subset, introduced in Section 5.6, has an analogue in the con-

text of matching: a partial matcher. This is relevant when seeking to compose

resources selected from a large pool, where the composition will possibly follow a

two stage strategy, with the first stage evaluating compositions based on a limited

set of dimensions, and a subsequent stage which evaluates the full set of dimensions

or the remainder of the dimensions. Two examples of this are in the presence of

dynamic properties, where the initial partial match considers only the static prop-

erties and subsequent match operation utilises the dynamic dimensions, and with

6.3 Matching Semantics 128

resource templates where an initial partial match is done against a representative

resource template which does not contain the full set of dimensions of the final

“actual” resource. The partial matching operation only operates on the set of di-

mensions shared with both resources. This is indicated by⇒p or in functional form

as pmatch(). It is defined in Equation 6.15 where ReqsB/DA∩B indicates the dimen-

sions not shared with A are hidden from B before the match is done (that is, the

dimensions DA∩B are temporarily removed). Hiding these dimensions leaves only

the desired requirements in B.

CharsA ⇒p ReqsB , CharsA ⇒ ReqsB/DA∩B (6.15)

CharsA ⇒p ReqsB ≡



















pmatch(CharsA,ReqsB)

Rb.chars⇒p Ra.reqs

Rb ⇒p Ra

(6.16)

6.3.4 Matching Examples

Listing 6.3 shows two abstract resources C and D where C ⇒ D. This is illustrated

in Figure 6.11. Here some of the requirements specify a range. Note that cx3
and

cz4
in resource C are not part of the matching set, but other characteristics in those

dimensions satisfy the requirements.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

y2

z1 z3

⇒

dim z

dim y

x1

dim x dim x

dim y

dim z

RC .chars

x3

RD.reqs

x2

z2 z4

y2

Figure 6.11: Characteristic set RC .chars is a matching subset of requirements set
RD.reqs

Listings 6.4 and 6.5 augment the example task and executor descriptions shown

earlier in Listings 5.1 and 5.2 respectively. They add requirements to the resource

descriptions. Here pentium ⇒ testjob1, meaning the executor pentium satisfies

6.3 Matching Semantics 129

<C>

<chars>

<x> 1 </x>

<x> 3 </x>

<y> 2 </y>

<z> 2 </z>

<z> 4 </z>

</chars>

</C>

<D>

<reqs>

<x match="<" > 2 </x>

<y > 2 </y>

<z match=">" > 1 </z>

<z match="<" > 3 </z>

</reqs>

</D>

Listing 6.3: Two resources C and D which satisfy C ⇒ D.

<task name="testjob1">

<chars>

<norm_cpu type="hr" > 2 </norm_cpu>

<mem type="MB" > 180 </mem>

<disk type="MB" > 500 </disk>

</chars >

<reqs>

<os> linux </os>

<software> python </software>

<mhz match=" >=" > 2500 </mhz>

</reqs>

</task>

Listing 6.4: Requirements for a task resource

the requirements of task testjob1, however testjob1 ; pentium. This example

will be discussed in the following sections.

6.4 Interpretation of Unspecified Values 130

<executor name="pentium">

<chars>

<cpu_type> pentium </cpu_type>

<mhz> 2800 </mhz>

<os> linux </os>

<software> openssl </software>

<software> python </software>

<hyperthreading/>

<bench type="SI2K" > 0.9 </bench>

<ram type="MB" > 512 </ram>

<vram type="MB" > 1024 </vram>

<scratch type="MB" > 100 </scratch>

</chars >

<reqs>

<norm_cpu match=" <=" type="min" > 60 </norm_cpu>

<norm_cpu match=" >=" type="min" > 5 </norm_cpu>

<mem match=" <=" type="MB" > 256 </mhz>

</reqs>

</executor>

Listing 6.5: Requirements for an executor resource

6.4 Interpretation of Unspecified Values

An unspecified requirement value is interpreted as any point in the (dimension,type)

value space. This is quite different from a non-existent (i.e. undefined) requirement

for a particular dimension. Of the base comparators for the match property on the

requirement, only “=” and “!=” are open to sensible definitions when the requirement

value is unspecified. Equals (“=”, the default) means any characteristic in the same

(dimension,type) value space will satisfy the requirement. Figure 6.12 illustrates

this case.

Listing 6.6 shows an example of this where the task encrypt requires the openssl

characteristic, with no specified value (i.e. unspecified), and the resources standard-

server and crypto-engine both satisfy the requirement, the first with a unspecified

value for openssl and the second with an explicit version number.

The match comparator “!=” would imply that no characteristic in that (di-

mension,type) value space can be present. Notice that rather than an operation

which acts on each characteristic in isolation, with the requirement that at least one

characteristic in the candidate resource matches the requirement (an “any” rela-

tionship), this operation is across the entire set of characteristics, requiring that no

characteristics of this sort exist (an “all” relationship). To establish this, it is nec-

essary to perform and remember every comparison between the requirement and all

6.4 Interpretation of Unspecified Values 131

������������������������������

������������������������������

dimension x

rxany
cx1

cx1

rxany

Figure 6.12: A requirement with an unspecified value is specifying the entire value
space of the dimension, therefore any particular characteristic within
that dimension will satisfy the requirement.

characteristics within the dimension. Because this changes the basic requirements

matching model, the “!=” operation in conjunction with an unspecified value may

not be accepted by comparators. Only comparators which are prepared to perform

complete set operations (see Section 6.5) may accept this condition. Many of the

derivations presented in this work would be invalidated by this sort of operation,

for instance those in Sections 6.3, 6.2 and 8.2. In general, then, unspecified value

requirements would only be associated with the “=” comparison.

A characteristic with an unspecified value will only match a requirement (in the

same dimension) which similarly has an unspecified value. This is interpreted as the

characteristic existing at some unspecified point in the dimension’s value space, and

the requirement specifying any value from the full value space of the dimension (that

is, the requirement will accept any characteristic within the dimension), therefore

the characteristic is a subset of the requirement. Figure 6.13 illustrates this.

If the characteristic has an unspecified valued and the requirement has a fixed

value, then the characteristic’s value space is not necessarily a subset of the require-

ment’s. Figure 6.14 illustrates this.

Returning to the example in Listing 6.6, if the encrypt task were to specify the

requirement <openssl> 0.9.8a </openssl> then only the crypto-engine execu-

tor would match (compose) with it, and the unspecified-valued standard-server

would not.

6.4 Interpretation of Unspecified Values 132

<task name="encrypt">

<reqs>

<openssl/>

</reqs>

</task>

<executor name="standard -server">

<chars>

<os> linux </os>

<mhz> 3500 </mhz>

<openssl/>

</chars >

</executor>

<executor name="crypto -engine">

<chars>

<os> linux </os>

<mhz> 1500 </mhz>

<cpus> 8 </cpus>

<openssl> 0.9.8a </openssl>

</chars >

</executor>

Listing 6.6: An example task with an unspecified valued requirement

������������������������������

������������������������������

������������������������������

cxunspec
rxany

rxany

cxunspec
dimension x

Figure 6.13: An unspecified value characteristic with a corresponding unspecified
value requirement in the same dimension. This illustrates how the
characteristic’s value space is a subset of the requirement’s.

6.4 Interpretation of Unspecified Values 133

������������������������������
�
�
�
�

�
�
�
�

������������������������������

�
�
�

�
�
�

cxunspec
rx1

rx1

dimension x
cxunspec

Figure 6.14: A specific requirement matched against an unspecified value character-
istic. Since the characteristic value may be outside of the acceptable
range of the requirement, this characteristic does not satisfy the re-
quirement.

6.5 Complete Set Requirements 134

6.5 Complete Set Requirements

The semantics of the base comparators (see Table 5.2) for guiding compositional

decisions assume that all requirements must be met by at least one characteris-

tic within the candidate compositional resource. This concept facilitates efficient

implementation of resource matchers and is essential for the concept of resource

templates, discussed later. In fact, this raises the same problem as interpreting an

unspecified value requirement with the “!=” comparator, as discussed in Section

6.4. Much of the matching semantics described in earlier sections, as well as the

transitive properties and templates discussed elsewhere, fundamentally rely on this

assumption. Any behaviour which violates this will invalidate many of the resource

composition properties described here.

Even with that consideration, there may be conditions when it is required that

all characteristics are satisfied by the set of requirements within a given dimension,

rather than simply “at least one”. There are two approaches for doing this. The first

is to use special matchers which will interpret requirements and the standard oper-

ators in this fashion. The second is to define new comparator operations. Matchers

or comparators will only be able to operate on these requirements if they understand

the operator. Table 6.1 provides the set analogues of the basic comparators listed in

Table 5.2. As an example, consider a task which requires 10 CPUs all with over 2 GB

of RAM. An executor resource may represent an entire cluster, with an assortment

of system configurations, perhaps containing multiple RAM characteristics, some for

512 MB, some for 1 GB, and some for 2 GB. In general a task requirement stating

<ram match=’>=’ type=’GB’> 2 <ram> would be satisfied by this executor. In con-

trast, when using set-wise requirements such as <ram match=’set ge’ type=’GB’> 2

<ram> would require all <ram> executor characteristics to be greater than or equal to

2 GB, so it would not accept an executor publishing any characteristics with values

less than 2 GB. While this is an interesting and important area for grid resource

composition, further discussion is beyond the scope of this work and left as a future

research topic.

6.6 Matchers 135

Comparator Name Operation Meaning
set equality set eq All characteristics in the set equal the require-

ment value
set negation set ne No characteristics in the set equal the require-

ment value
set greater than set gt All characteristics in the set are greater than the

requirement value
set less than set lt All characteristics in the set are less than the

requirement value
set greater than or equal set ge All characteristics in the set are greater than or

equal to the requirement value
set less than or equal set le All characteristics in the set are less than or equal

to the requirement value

Table 6.1: Comparators for set-wise requirements

6.6 Matchers

Matchers operate on sets of resources and have custom internal algorithms which

determine what sorts of compositions they are attempting to form, and how to form

those compositions. Control information may be supplied to guide the composition

algorithm. Matchers do not actually compose the resources, but rather propose

candidate compositions. For simplicity, the following discussion will generally use

the word “compose” to mean “evaluate a candidate composition”. Basic matchers

will take the form described in the following sections and operate exclusively on the

input resources’ requirements and characteristics.

Single matchers, which are the most basic matchers, take a set of resource de-

scriptions as input and attempt to compose a single composite resource, possibly

with an ordered list of alternative compositions from the set. The alternatives may

not be mutually exclusive. If one proposed composition is realised it may utilise

resources in such a way as to invalidate other alternative compositions proposed

by the single matcher. Multi matchers propose up to a fixed number of mutually

exclusive composite resources from the input set. These compositions can all, by

definition, be concurrently realised. The matching function may fail to produce any

candidate compositions, or to reach the desired number in the case of multi matchers

– this is to say, there is, of course, no guarantee that an arbitrary set of resources

will produce a specific number of compositions of a particular form.

By way of example, consider a set of eight resources {Ri|i ∈ [1, 8]}. A single

matcher may propose the list of five overlapping pair compositions in Listing 6.7,

while a multi matcher may propose the three mutually exclusive pairs in Listing

6.8. The first list contains multiple compositions which contain the same resources,

6.6 Matchers 136

[

(R1,R3),

(R1,R4),

(R3,R5),

(R3,R8),

(R7,R8)

]

Listing 6.7: A list of candidate compositions from a single matcher. Notice the
matches are not mutually exclusive.

[

(R1,R4),

(R3,R5),

(R7,R8)

]

Listing 6.8: A list of candidate compositions from a multi matcher. Notice the
matches are mutually exclusive.

while the second contains each resource at most once. Some resources are not found

in any composition.

If the same matching algorithm is used for both approaches, the input set of

resources is the same, and the single matcher proposes all possible pair-wise resource

compositions, then the inequality in Equation 6.18 holds. This states that the set

of matches proposed by a multi-matcher will always be a subset of that proposed

by a single matcher, which will in turn be a subset of the cartesian product of the

requirement set (that is, a subset of all possible combinations of resources).

R , {R1, R2, . . . , Ri|Ri ∈ set of resources under consideration}

S , {(Ri, Rj)|Ri, Rj ∈ R ∧ singlematch(Ri, Rj) = true}

M , {(Ri, Rj)|Ri, Rj ∈ R ∧multimatch(Ri, Rj) = true}

(6.17)

M⊆ S ⊆ R×R (6.18)

6.6.1 One-Way Pair Match

An asymmetric match between two resources asymatch(Ra,Rb) tests if the require-

ments of resource Rb are met by the characteristics of resource Ra. If this condition

holds, then a one-way composition of Ra with Rb is possible. This could also be

called one-way pair composition, hierarchical composition, or master/slave composi-

tion. It is illustrated in Figure 6.15.

6.6 Matchers 137

Charsa

ResourcebResourcea

Charsb

Reqsb

ResourcebResourcea

Reqsa

Figure 6.15: Graphical representation of an asymmetric (one way) match between
Resourcea characteristics and Resourceb requirements

For example, referring back to Listings 6.4 and 6.5, the operation

asymatch(pentium,testjob1) will attempt to compose the pentium resource with the

testjob1 resource, comparing the requirements of testjob1 to the characteristics

of pentium. The three requirements are satisfied: i) the operating system is “linux”,

ii) the software “python” is available, and iii) the processor speed “mhz” is greater

than or equal to 2500. On this basis, the one way composition of pentium with

testjob1 is permitted.

6.6.2 Hierarchical Match

The extension of this to more than two resources has a single master resource and

a set of slave resources. Only the requirements of the master resource are compared

against the characteristics of the slave resources. Equation 6.19 describes this, and

it is illustrated in Figure 6.16. A hierarchical match is made if every slave resource

has a one way match to the master resource.

hiermatch({Rslave}, Rmaster) ,

and [asymatch(Ri, Rmaster)|∀Ri ∈ {Rslave}] (6.19)

6.6 Matchers 138

Rmaster

Rslave2
Rslave4

Rslave3
Rslave1

Figure 6.16: Hierarchical matching of five resources. The master resource applies
its requirements to the four slave resources’ characteristics. The slaves’
requirements are ignored.

6.6.3 Peer Pair Match

Conceptually, one-way and hierarchical matching are valuable to define, especially

as they describe the mechanism utilised by many existing task management systems.

Unfortunately, in a grid environment it is unlikely that a resource (or the resource

manager) which has specified a set of requirements will be satisfied with it being

composed without regard to these requirements. More likely it will reject the so-

called “master” resource when the match is realised, or the composition will fail

during its lifetime due to the violation of some requirement specified (but ignored)

by the “slave” resource (for example, disk, memory, or CPU utilisation). This makes

it important to define resource composition mechanisms which consider all resources’

requirements. This is what the Condor Project terms symmetric matchmaking and

is a key aspect to the success of the ClassAd matchmaking strategy developed by

Raman, and now used independently in many grid computing projects.

For peer (or symmetric) matching, both sets of requirements must be satisfied by

the other resource’s characteristics. Equation 6.20 describes this, and it is illustrated

in Figure 6.17. This is the resource matching policy which is always in effect with

the Condor ClassAd Matchmaker.

peermatch2(Ra, Rb) , asymatch(Ra, Rb) ∧ asymatch(Rb, Ra) (6.20)

As an example, considering Listings 6.4 and 6.5 it can be seen that the executor

pentium has a requirement for a normalised CPU time between 5 and 60 minutes.

The task testjob1 has a normalised CPU time of 2 hours, or 120 minutes, therefore

peer composition of these two resources is not possible (even though all the require-

ments of testjob1 are met by the characteristics of pentium). If pentium changed

6.6 Matchers 139

Charsb

Resourcea Resourceb

Charsa

Reqsa

Resourcea Resourceb

Reqsb

Figure 6.17: Symmetric (peer) matching of resources. Each resource’s requirements
are matched against the other’s characteristics.

its upper limit to 480 minutes (8 hours), then all its requirements would be met by

testjob1 and the composition would be allowed.

6.6.4 Multi-Resource Peer Match

This concept can be extended to the matching of an arbitrary number of peer re-

sources simply by including all combinations of resource pairs (except those contain-

ing the same resource twice) in symmetric matches. Equation 6.21 describes this

and it is illustrated in Figure 6.18.

peermatchn({R}) ,

and [asymatch(Rx, Ry)|∀Rx, Ry ∈ {R}, Rx 6= Ry] (6.21)

Listing 6.9 expands on Listing 5.3 by describing four cricket players and their

requirements for team-mates. The players (resources) James, Stephen, and Harry

can form a 3-way peer-match (i.e. team) as they all satisfy each others compositional

requirements. While Susan could team up with Stephen, she could not form a team

with James or Harry as they have specified they will only play (compose) with male

6.6 Matchers 140

Re

Rd

Rc

RbRa

Figure 6.18: Five resources each matching all their requirements against each of the
other resources characteristics.

players, and she has specified she will only play with those under 26, which neither

Harry nor James are.

<person name="James">

<chars>

<name> James </name>

<gender > male </gender >

<age> 27 </age>

<weight > 85 </weight >

<height > 175 </height >

<sport> cricket </sport>

<pos> batsman </pos>

</chars >

<reqs>

<gender > male </gender >

<sport> cricket </sport>

<age match=" <=" > 45 </age>

</reqs>

</person >

<person name="Stephen">

<chars>

<name> Stephen </name>

<gender > male </gender >

<age> 22 </age>

<weight > 72 </weight >

<height > 183 </height >

<sport> cricket </sport>

<pos> bowler </pos>

</chars >

<reqs>

<sport> cricket </sport>

<age match=" <=" > 45 </age>

</reqs>

</person >

6.6 Matchers 141

<person name="Harry">

<chars>

<name> Harry </name>

<gender > male </gender >

<age> 31 </age>

<weight > 80 </weight >

<height > 185 </height >

<sport> cricket </sport>

<pos> wicketkeeper </pos>

</chars >

<reqs>

<gender > male </gender >

<sport> cricket </sport>

<age match=" <=" > 45 </age>

</reqs>

</person >

<person name="Susan">

<chars>

<name> Susan </name>

<gender > female </gender >

<age> 19 </age>

<weight > 58 </weight >

<height > 165 </height >

<sport> cricket </sport>

<pos> bowler </pos>

</chars >

<reqs>

<sport> cricket </sport>

<age match=" <=" > 25 </age>

</reqs>

</person >

Listing 6.9: Resource descriptions of cricket players illustrating requirements for
team mates

6.6.5 Aggregated Match

An aggregator is a particular type of matcher which may compose a set of resources

in a piecewise fashion. Given a set of resources, the aggregator will select a subset

of them to compose. Once composed, the aggregator may then merge the composed

resource descriptions in such a way that further compositions with the remaining

uncomposed resources are now possible. The aggregator is free to choose the mech-

anism by which it selects resource subsets for composition, and how it produces the

description of the composed resource from the composite resource descriptions (that

is, how to merge the characteristic and requirement sets). Figure 6.19 illustrates

the aggregated composition of five resources via three piecewise aggregation steps,

resulting in a final peer pair composition.

6.6 Matchers 142

X

X

X

X

X

X

X

X

R(d·e)·c

Rb

Rd

Re

Ra Rb

Rc

Rb

Rd·e

R((d·e)·c)·a

R(((d·e)·c)·a)·b

Rc

Ra

Ra Rb

Figure 6.19: Five resources which cannot initially compose undergo three aggrega-
tion steps followed by a peer pair composition. “X”s indicate some of
the failed matches. The dashed circles represent the piecewise aggre-
gated resource compositions.

For example, consider Listing 6.10 which specifies that the task requires two

CPUs with at least an SI2K benchmark value of 1.5. An aggregator which was

aware of resources described in Listing 5.2 may be able to unify these into an aggre-

gated resource description as shown in Listing 6.11. While neither of the resources

in Listing 5.2 could satisfy the requirements of testjob2, aggregated-executor,

formed from pentium and amd, is able to.

Another common example for multi-lateral resource composition (or “gang match-

ing”) is the shared software license problem. A task needs to be composed with a

computational resource and simultaneously acquire a floating software license for

a particular application. A simple aggregator which was able to perform multiple

partial subset matches (see Section 6.3) with different resources may be able to ag-

gregate resources. This aggregated resource would then match the full requirements

of the task. Listing 6.12 illustrates this case. The matlab-license resource forms a

6.6 Matchers 143

<task name="testjob2">

<chars>

<norm_cpu type="hr" > 2 </norm_cpu>

<mem type="MB" > 180 </mem>

<disk type="MB" > 500 </disk>

</chars>

<reqs>

<cpus> 2 </cpus>

<bench match=">=" type="SI2K" > 1.5 </bench>

</reqs>

</task>

Listing 6.10: A task requiring multiple CPUs for parallel processing

<executor name="aggregated -executor">

<chars>

<os> linux </os>

<cpus> 2 </cpus>

<bench type="SI2K" > 2.0 </bench>

</chars >

</executor>

Listing 6.11: Aggregated executor resource

partial subset match of the task resource licensejob1 over the license dimension,

while the pentium3ghz resource forms a partial subset match with the task over the

mflops dimension. The union of these two dimensions provides full coverage of the

requirement dimensions of the task, therefore by simply merging their characteristics

an aggregated resource which will compose with the task can be formed.

6.7 Summary 144

<task name="licensejob1">

<reqs>

<mflops match=">=" > 4000 </mflops >

<license> matlab </license>

</reqs>

</task>

<license name="matlab -license">

<chars>

<license> matlab </license>

</chars >

</license>

<executor name="pentium3ghz">

<chars>

<mflops > 6000 </mflops >

</chars >

</executor>

Listing 6.12: Task license and executor resource descriptions for multi-lateral com-
position of the license management problem.

6.7 Summary

This chapter has formalised the concept of ClassAd matching from the Condor

project and presented an abstract model which avoids implementation details, along

with an XML-based syntax for expressing it. Rather than overload a single property,

as ClassAds do with the Requirements attribute, this has been done by extending

(sub-classing) the model for characteristics presented in the last chapter. A further

improvement over ClassAds is the elimination of tri-state logic, however the flexible

construction of ClassAd Requirements with arbitrarily nested full boolean expres-

sions is lost. GRDL Requirements only currently support conjunction, meaning all

requirements must be satisfied for the requirement set to be satisfied. More advanced

relations between requirements within a requirement set are theoretically possible,

but left as an area for future work. The important concept of requirement space has

been introduced. A mechanism for specifying compositional requirements of a re-

source must be accompanied by mechanisms for resolving whether a set of resources

are, in fact, composable. This is handled by matchers, and a number of match-

ing approaches have been presented, along with examples illustrating the matching

process. This model has been implemented in Haskell (see Appendix C), and in

Python, in order to validate the operational properties. The matcher concept has

similarities to the optimisers implemented in the DIRAC system[3], however they

are formalised to use exclusively a set theoretic selection mechanism. Overall, this

6.7 Summary 145

model for resource description is a meta-model of those described in Chapter 4, such

that each of them could be expressed in GRDL, with the exception of any arbitrary

boolean expressions. The final aspect related to the scheduling properties of the

resource description is the ranking mechanism used to select from multiple possible

resource compositions. This is the topic of the following chapter.

Chapter 7

Resource Preferences

This chapter extends the concept of resource requirements into resource
preferences. The difficulties of applying preferences are discussed, and
a ranking algorithm is presented, along with a concept of preference set
equivalence. Two multi-lateral ranking algorithms are presented, and a
small multi-lateral ranking scenario is explored.

It is now necessary to consider the situation where a single composition must be

selected from a set of alternatives. This may arise in our distributed REST envi-

ronment by a User, Agent, or Service querying multiple resource pools for potential

compositional resources, or from a single resource set providing multiple possible

matches. In some cases, it may be that M compositions must be selected from N

candidates, where M < N . This chapter will develop GRDL and the REST model

to include preferences which accommodate this.

7.1 Sub-selection of Resource Composition Alter-

natives

It is usually the case that multiple possible resource compositions may be formed,

either from single matchers or multi matchers. In general the ranking and selection

algorithm can be arbitrarily complex and therefore would often be left to a custom

matcher to implement as it chooses. It is, however, possible to specify a simple

hierarchical selection algorithm using preferences following in the model of charac-

teristics and requirements. A preference is a sub-class of a requirement, adding the

attribute rank. Figure 7.1 illustrates this. A resource R can have a set of preferences

PrefsR associated with it. Equation 7.1 defines this, while Equation 7.2 shows the

different ways preference sets can be referred to.

146

7.1 Sub-selection of Resource Composition Alternatives 147

PrefsR ,







set of all preferences in resource R

{p|p ∈ R.prefs}
(7.1)

PrefsR ≡ R.prefs (7.2)

Matchers are not obligated to consider preferences. For example, a specific

matcher may select randomly from the matching set, return all matches, only the

first, or only the last. Similarly, a matcher may utilise heuristics or some built-in

ranking policy to select from a set of candidate matches. Compositional preferences

may be completely independent of compositional requirements, so there is no need

for the preference set to be associated with the requirements set, although in prac-

tice it likely would be. Conceptually, if preferences are supported by a particular

matcher, their objective is to provide guidance on selection from multiple possible

compositions. The rank attribute on each preference is used to determine the order

in which preferences are applied to sorting a set of compositions. Ordering begins

with the highest-ranked preference being applied. Where that results in ties be-

tween candidate compositions or resources, the next lower-ranked preference may

be considered to order this tied set. This will be developed in detail in later sections.

This section describes the semantics of preferences, the algorithm for applying

them, and the interpretation of the match attribute and preference values.

7.2 Preference Semantics 148

Preference

−rank:float

Characteristic

−dimension:str

−value:str

−type:str

Resource

−name:str

*

Requirement

−match:str

*

 *

Figure 7.1: Resource object model. A resource consists of characteristics, require-
ments, and preferences. Requirements are a sub-class of characteristics,
and preferences are a sub-class of requirements.

7.2 Preference Semantics

While requirements allow a decision on a possible composition through matching,

preferences allow a process of ranking alternative valid compositions. The matcher

supplies the ranker with a set of resources and the preferences to base the ranking on.

It may also specify how many resource compositions need to be returned, allowing

the ranker to stop once that has been achieved, although this discussion will not

dwell on such implementation optimisations. An alternative use of a ranker is to

screen resources prior to matching, then feed the “most preferred” resources from a

pool to the matcher. This is an area for future research and is not discussed further

here. In any case, preferences are applied to resources and resource compositions

independently of requirements – only resource characteristics are considered when

ranking based on preferences.

All preferences must have a rank attribute with a numeric value. Lower values

indicate a higher rank. Preferences are processed in rank order, and applied to

the characteristics of the initial resource set. For any tied preference ranks, the

ranker may make an arbitrary and possibly random choice of order between tied

preferences. The preference name specifies the characteristic dimension to which

the preference applies. As with characteristics and requirements, the ranker is free

to apply transformations to the dimensions of preferences or characteristics and their

7.2 Preference Semantics 149

values when performing the ranking operation.

7.2.1 Ranking Algorithm

The first iteration of the ranking algorithm operates on the full set of resources

supplied to the ranker, and considers only the single highest rank preference. Sub-

sequent recursive iterations use lower rank (or “next-tied-rank”) preferences in order,

and are only applied to sub-sets of resources which were ranked identically by the

earlier iterations. If there remain tied resources after all preference ranking has been

applied, the ranker may arbitrarily or randomly order the tied resources. Algorithm

7.1 describes the Ranking procedure, although ignoring the “top-N” optimisation

parameter which allows early termination once N “best” resources are found.

Listing 7.1 illustrates a single task resource and five executor resources. For

simplicity, there are no requirements (meaning all executors will match the task),

and only the task specifies selection preferences. It can be seen that the first priority

is to order the executors by cost, from low to high (i.e. preferring lower cost

executors). The second priority is to order the executors by mhz (which, in this

example, represents processor speed and is a rough measure of relative performance),

from high to low (i.e. preferring faster CPUs). The first preference based on cost

will result in a resource ordering of: 〈{B, C}tied, E, A, D〉. Only executors B and

C tied, therefore the next ordering based on mhz will only be applied to them.

This results in the sub-ranking of: 〈C, B〉, and therefore the final executor resource

ordering would be: 〉C, B, E, A, D〈. D comes last as it is not ranked by either of the

two task preferences.

7.2.2 Preference Ordering Operators

The match attribute, which is mandatory for preferences, specifies the ordering of

resources, while the optional preference value (and associated type attribute) act

as a modifier on that ordering. Note that “ordering” may only be evaluating set

membership of a resource (e.g. “prefer resources located in France”). Table 7.1

describes a base set of preference operators and their interpretation both with and

without a value.

The ranking operators are very similar to the requirements matching compara-

tors of Table 5.2, however with different interpretations of specified and unspecified

values. In addition, two distance operators close and far are added. Most of these

operators require the ranker to have a concept of ordering in the value space (<, >=,

7.2 Preference Semantics 150

Algorithm 7.1 Resource ranking algorithm, using a hierarchical preference set.

Require: {R} resource set
Require: {p} preference set
Ensure: 〈R〉ranked is ordered according to the preference set

function Rank({R}, {p})
if {R}.length <= 1 then

⊲ One or fewer resources in set, therefore no need to rank

〈R〉ranked ← {R}
else if {p} = ∅ then

⊲ No preferences, therefore nothing to base ranking on

〈R〉ranked ← {R}
else

⊲ Ranked result set of resources is initially empty

〈R〉ranked ← ∅
⊲ Sort preferences {p} in ascending order according to their rank

〈p〉sorted ← Sort({p}, key=p.rank, order=“<”)
⊲ Sort resources according to top preference (may produce tied resource sets)

ptop ← 〈p〉sorted.head
〈{Rtie}i〉 ← Sort({R}, key=ptop.dimension, order=ptop.match)
assert ∪i〈{Rtie}i〉 = {R} ⊲ This is a partition of {R}

assert ∩i〈{Rtie}i〉 = ∅ ⊲ All resources in {R} are in exactly one {Rtie}i set

foreach {Rtie}i in 〈{Rtie}i〉
⊲ Recursively rank tied subset {Rtie}i
⊲ based on remaining preferences 〈p〉sorted.tail

〈Ri〉ranked ← Rank({Rtie}i, 〈p〉sorted.tail)
⊲ Append ranked list {Ri}ranked onto final result

{R}ranked ← 〈R〉ranked.append(〈Ri〉ranked)
end foreach

end if
return 〈R〉ranked

end function

7.2 Preference Semantics 151

<task name="prefjob">

<prefs>

<cost rank="1" match="<" />

<mhz rank="2" match=">" />

</prefs >

</task>

<executor name="A">

<chars>

<cost> 15 </cost>

<mhz> 3800 </mhz>

</chars >

</executor>

<executor name="B">

<chars>

<cost> 10 </cost>

<mhz> 2400 </mhz>

</chars >

</executor>

<executor name="C">

<chars>

<cost> 10 </cost>

<mhz> 3000 </mhz>

</chars >

</executor>

<executor name="D">

<chars>

<si2k> 2.0 </si2k>

</chars >

</executor>

<executor name="E">

<chars>

<cost> 12 </cost>

</chars >

</executor>

Listing 7.1: A task specifying a set of preferences to sub-select from a group matched
executors.

7.3 Preference Comparisons 152

Comparator Sym. Meaning Meaning
(value unspecified) (value specified)

less than < prefer lower prefer resources closer but less than
preference value, then any resources
with equal or higher values

less than <= prefer lower prefer resources closer but less than
or equal or equal to preference value, then

those with higher values
greater than > prefer higher prefer resources closer but

but greater than preference value, then
those with equal or lower values

greater than >= prefer higher prefer resources closer but greater
or equal than or equal to preference value,

then those with lower values
equal = prefer resources prefer value

with dimension
not equal = prefer resources prefer any other value

without dimension
close >< n/a prefer resource values closer to

preference value
far <> n/a prefer resource values further from

preference value

Table 7.1: The base set of preference operators for resource ranking, and their interpre-
tation with specified and unspecified values.

> and >=), or a measure of distance (<> and ><). Two (= and !=) only require the

ability to evaluate set membership. It is left to the specific implementation to de-

termine a definition of ordering and distance, as well as behaviour in the event that

the ranker, for a particular dimension, cannot order or determine distance between

characteristics.

7.3 Preference Comparisons

Unlike characteristics and requirements, which lead themselves easily to definitions

of individual and set comparison, preferences pose a difficulty in defining comparison

operations. An individual preference can be compared with another preference as

either the same or not the same. Other than dimension and type transformations,

as discussed earlier, two preferences are the same only if their match operators and

rank are identical, and their dimension, type, and value are equivalent (possibly

after transformations). If the dimension and value are the same, but rank or match

operator differ, then there is no general way of quantifying this difference beyond

stating “the preferences are different”.

7.3 Preference Comparisons 153

r1 : <mhz match=" >=" > 3000 </mhz>

r2 : <mhz match=" >=" > 2000 </mhz>

Listing 7.2: Two comparable requirements.

p1 : <mhz match="==" rank="1" > 3400 </mhz>

p2 : <mhz match=" >=" rank="1" > 3400 </mhz>

p3 : <mhz match=" >=" rank="2" > 3400 </mhz>

p4 : <ghz match="==" rank="1" > 3.4 </ghz>

Listing 7.3: Four preferences illustrating the difficulty of preference comparison.

This is best illustrated by an example. Consider two requirements on the clock

speed of a processor, as shown in Listing 7.2. Requirement r1 specifies a need for a

CPU speed greater than or equal to 3 GHz. Requirement r2 specifies a need for a

CPU speed greater than or equal to 2 GHz. Clearly the requirement space of r1 is

a subset of r2, meaning r1 is more restrictive than r2 or r1 ⊆rs r2.

In Listing 7.3 preference p1 will select resources with a CPU speed of 3.4 GHz

first. Preference p2 will select resources with a CPU speed of 3.4 GHz or greater

first, preferring those closer to 3.4 GHz, then anything below 3.4 GHz. At first,

it may seem that p1 ⊂ p2 thereby providing some means of comparing different

preferences, however this is not the case. Preference p1 ranks resources with mhz

= 3400 first, and then all other resources are tied. The next highest rank preference

will be applied to this binary partition of the resouce set: first to the tied resources

with mhz = 3400, then to all others. In contrast, preference p2 ranks all resources

with mhz >= 3400 in order, and all lower valued resources (mhz < 3400) are tied.

Resources with mhz >= 3400 with the same mhz value are, of course, also tied. The

next highest rank preference is then used to break these ties.

Preferences p2 and p3 are the same only on the condition that 1 is the highest

ranked preference for the resource containing p2 and 2 is the highest in the resource

with p3. In any other circumstance, intervening preferences may result in different

orderings of resources.

Finally, preference p4 may be evaluated as the same as preference p1, on the

condition that 1 is the highest ranked preference in the resources containing p1 and

p4, and if the ranker is able to equate the dimensions mhz and ghz via a value trans-

formation on the preference. This again reinforces the idea that the only comparison

possible for preferences are either same or not the same.

7.4 Consistency of Preference Set Ordering 154

7.4 Consistency of Preference Set Ordering

In the context of preference sets, A will produce a resource order consistent with B

if A has equivalent preferences for all those in B and in the same order, possibly

with additional preferences, but only of relatively lower rank. This means A will

order resources based on preferences in the same way as B, and possibly assert

additional order from preferences on any resources which B would leave as tied.

This relation is described using the symbol Dpref and shown in Equation 7.3, where

the function order() returns the canonical order of the preferences in the set and

min/maxrank() returns the canonical minimum (or maximum) rank of the preference

set. Canonical ordering is the relative ordering of preferences within a set. A more

formal definition in Haskell found in Appendix C.14. This is an anti-symmetric

relation, so A Dpref B ∧ B Dpref A→ A = B.

PrefsA Dpref PrefsB , ∀pj ∈ PrefsB ∃pi ∈ PrefsA, pi ≡ pj ,

order(PrefsB) ≡ order(PrefsA ∩ PrefsB),

maxrank(PrefsB) <= minrank(PrefsA/ PrefsB)

(7.3)

7.5 Multilateral Ranking

The discussion of ranking has so far focused exclusively on unilateral ranking for pair

composition, where only one resource applies preferences to select from alternatives.

When considering multiple matches (from single or multi matchers), multi-resource

matching (three or more resources in a single composition), and multilateral ranking

(preferences from all resources in a composition contribute to the ranking procedure),

it is appropriate to return to the initial observation that this can be arbitrarily

complex and therefore best left to specific matcher/ranker implementations to handle

in a manner suitable to their environment.

Multilateral ranking is only relevant in the presence of two or more resources

on each “side” of the match. If there is only a single resource on one side then

this is effectively unilateral ranking, as the resources on the opposing side(s) have

no choice over which to apply their preferences – they must always choose the

single resource “first”. Figure 7.2 illustrates this, with resource t ranking composi-

tions with resources x, y, z in the order specified on the t-side of the joining edge:

{(t, y), (t, x), (t, z)}. Resources x, y, z have no choice but to rank t first in all cases.

The complexity of ranking multiple resource matches can be illustrated by a

7.5 Multilateral Ranking 155

2

1

3

1

1

1

t

x

y

z

compa

compb

compc

Figure 7.2: Unilateral ranking with resources on two sides. Notice x, y, z have no
ability to specify preferences as there is only one resource t to choose
from.

simple example consisting of only two tasks, t1, t2, and two executors, x1, x2 as

shown in Figure 7.2. The connecting lines illustrate valid matches (compositions).

t1

t2

x1

x2

Figure 7.3: Example of multilateral ranking complexity

Notice that t1 can compose with both x1 and x2, and that x2 can compose with

both t1 and t2. t2 cannot compose with x1. In this circumstance, there are two pos-

sible overall composition results: {(t1, x1), (t2, x2)} or {(t1, x2)}. There is no general

a priori way to determine which is preferable. In essence, there is no clear way to

combine multilateral preferences. It may be that while the first is possible, and has

the “benefit” of matching both tasks to both executors, the contrasting benefit of

the alternative composition of executing task t1 on executor x2 outweighs this. The

“preference” in this context is a heuristic which cannot be captured in a generic

way by the preference ranking model described here. Figure 7.3 did not include

any ranking preferences, in order to highlight the general problem. Considering the

four possible rankings which could appear in this circumstance, Figure 7.4 shows

thick edges in all cases where both sides of the composition chooses the opposite

side “first”. The thin solid edges then represent the remaining compositions, while

the thin dashed edges represent the compositions which will not be possible after

the preferences have been applied.

Three of the ranking orders result in the same composition set {(t1, x1), (t2, x2)},

while one ranking results in {(t1, x2)}. This provides insight that the sum or average

of the ranking orders may be used to guide the multilateral ranking decision, with

7.5 Multilateral Ranking 156

1121

21

11

1212

1121

21

22

1111
t1

t1

x2

x1

t2 t2

x1

x2

t1

t1

x2

x1

t2t2

x1

x2

A

B

C

D

Figure 7.4: The four ranking combinations for a simple example illustrating the com-
plexity of multilateral ranking.

minimums being preferable. In general, this is only possible when the preferences

of all resources are considered equally important. If this is not the case, it is neces-

sary to apply a bias, however there is no straight forward way to do this. Biasing

preferences will, therefore, not be discussed further. These observations suggest two

simple multilateral ranking algorithms:

MinSum: Sum the preferences for each side of every match, and select matches

in order from lowest to highest sum. This emphasises matching according to

preferences, possibly at the expense of leaving resources un-matched. Lower

sum matches may invalidate higher sum matches.

Singles: Select matches which contain resources which participate in only a sin-

gle match. This emphasises maximising the number or resources which are

matched, possibly at the expense of “sub-optimal” matches, based on the

preferences.

The MinSum algorithm does not necessarily avoid ties. A simple example of this

is Figure 7.5 where all four composition orderings sum to 3. The ranker would then

either decide arbitrarily or randomly between the the options. It is also unspec-

ified how this algorithm would handle lower-sum matches invalidating higher-sum

matches. There is the option to re-calculate preferences after each “top-ranked”

match is removed from the set to be ranked.

The Singles algorithm is also not complete, in that it may not select all re-

source pairs. Instead, Singles could be repeated until no compositions containing

a resource in only one composition remained, then an alternate algorithm such as

MinSum could be applied once, and then back to Singles. Furthermore, Singles

7.6 Task and Executor Batch Pair Matching and Ranking 157

12

21

21

12

t2

t1

x2

x1

Figure 7.5: Four possible compositions, all with the same MinSum score of 3.

may need to choose between multiple compositions which all contain a “single”

matching resource. Figure 7.2 is an example of this, where there are three possible

compositions containing resources which can only be in one composition. Selecting

any one of these will invalidate the other two. Again, it is beyond the scope of this

work to discuss specific strategies for anything but the most basic ranking scenarios.

These different ranking strategies need to be evaluated in the context of real grid

computing work loads. To date they have only been developed in theory.

7.6 Task and Executor Batch Pair Matching and

Ranking

It is now possible to discuss a small real world example of M tasks matched to N

executors, each specifying characteristics, requirements, and preferences. Listing

7.4 lists the tasks, and Listing 7.5 lists the executors. The “type” modifier on the

value is omitted and some common base type for each dimension is assumed. Figure

7.6 illustrates the batch pair matching, with directed dotted lines indicating one-

way matches, solid lines indicating pair-wise matches, and numbers indicating the

preference order of a resource for the alternative pair-wise matches it can participate

in.

<task name="t1">

<chars>

<norm_cpu> 240 </norm_cpu>

<xfer_in> 2000 </xfer_in>

<xfer_out> 100 </xfer_out>



<exec> reco </exec>

</chars >

<reqs>

<vo> physics </vo>

<eta match="<"> 12 </eta>

<cost match="<"> 30 </cost>

<mhz match=">"> 3000 </mhz>

</reqs>

7.6 Task and Executor Batch Pair Matching and Ranking 158

<prefs>

<cost rank="1" match="<" />

<mhz rank="2" match=">" />

<dataset rank="3" match="==">

2008/03/22/00234.raw </dataset>

</prefs >

</task>

<task name="t2">

<chars>

<norm_cpu> 960 </norm_cpu>

<exec> reco </exec>



<threads> 6 </threads>

<xfer_in> 5000 </xfer_in>

<xfer_out> 1000 </xfer_out>

</chars >

<prefs>

<cost rank="1" match="<" />

<mhz rank="2" match=">" />

</prefs >

</task>

<task name="t3">

<chars>

<vo> genegrid </vo>

<norm_cpu> 60 </norm_cpu>

<xfer_in> 1000 </xfer_in>

<xfer_out> 400 </xfer_out>



</chars >

<prefs>

<storage rank="1" match=">" />

<eta rank="2" match="><" >

2008 -09 -30T12:00 </eta>

</prefs >

</task>

<task name="t4">

<chars>

<norm_cpu> 10 </norm_cpu>

<temp> 300 </image>

<exec> openssl </exec>

<xfer_in> 6000 </xfer_in>

</chars >

<reqs>

<openssl match=" >="> 0.9.7d </openssl>

<ram match=" >="> 1024 </ram>

</reqs>

<prefs>

<cost match="<" />

<ram match=">" />

</prefs >

</task>

7.6 Task and Executor Batch Pair Matching and Ranking 159

<task name="t5">

<chars>

<exec> rootkit </exec>

</chars >

<reqs>

<openssl />

</reqs>

</task>

Listing 7.4: A set of tasks seeking executors

<executor name="x1">

<chars>

<cost> 15 </cost>

<mhz> 3800 </mhz>

<temp> 10000 </temp>

<storage> 500 </storage>

<mem> 1024 </mem>

<eta> 2 </eta>

<host> grid.ox.ac.uk </host>

<vo> physics </vo>

</chars >

<reqs>

<xfer_in match="<"> 4000 </xfer_in>

<xfer_out match="<"> 1000 </xfer_out>

</reqs>

<prefs>

<vo rank="1" > physics </vo>

</prefs >

</executor>

<executor name="x2">

<chars>

<cost> 10 </cost>

<mhz> 3800 </mhz>

<ram> 2048 </ram>

<openssl> 0.9.8a </openssl>

<vo> physics </vo>

<eta> 10 </eta>

</chars >

<reqs>

<exec> openssl </exec>

</reqs>

</executor>

<executor name="x3">

<chars>

<cost> 5 </cost>

<cpus> 8 </cpus>

<mhz> 3200 </mhz>

</chars >

<reqs>

<threads match=" >="> 4 </threads>

7.6 Task and Executor Batch Pair Matching and Ranking 160

</reqs>

</executor>

<executor name="x4">

<chars>

<cost> 5 </cost>

<mhz> 1800 </mhz>

<ram> 1024 </ram>

<openssl> 0.9.7f </openssl>

</chars >

<prefs>

<xfer_in rank="1" match=">" />

<xfer_out rank="2" match=">" />

</prefs >

<SS/executor>

Listing 7.5: A set of executors seeking tasks

2

t5

4

2

1

t1

t2

t3

t4

x1

x2

x3

x4

1

2

3

1

Figure 7.6: An example of batched pair-wise matching, with 5 tasks and 4 executors.
The directed dotted lines indicate one-way matches, solid lines indicat-
ing pair-wise matches, and numbers indicating the preference order of a
resource for the alternative pair-wise matches it can participate in.

It is clear from this example that the matcher, even with the ranking information

provided by preferences, will require its own arbitrary policy regarding how to select

between t3 and t5 both of which have only x4 as their possible match pair. Nonethe-

less, this illustrates the flexibility and generic nature of resource descriptions and

scheduling properties provided by this framework.

7.7 Summary 161

7.7 Summary

This chapter has discussed one mechanism for sub-selection of compositions from a

set based on a preferences model which extends the characteristics and requirements

models presented in earlier chapters. It identifies the difficulties of doing this in a

general way and suggests that custom heuristics may often be used in practice in a

matcher in order to perform composition sub-selection and ranking. A ranking algo-

rithm is developed, as are two variations which accommodate multilateral ranking

(that is, merging preferences from all sides of a match). The motivation has been to

provide a REST mechanism by which candidate compositions can be gathered from

multiple sources, and then evaluated collectively to select the most appropriate. An

example of this may be a task allocation Agent which fetches executor descriptions

from the local system, the departmental computing cluster, the university comput-

ing cluster, and then from a selection of authorised external clusters. While all task

resources managed by the Agent may match to all the executors, the preferences

will provide a mechanism to identify the preferred assignment.

Having completed the description of the core features of GRDL, those being

the models for characteristics, requirements, and preferences, it is now possible to

consider some of the interesting features this model enables. This will be the topic

of the following chapter.

Chapter 8

Applications of the Grid Resource

Description Language

This chapter discusses various applications of GRDL and possible exten-
sions to the resource description facilities described in earlier chapters.
Composition contracts and resource templates are presented, which fa-
cilitate scheduling and task management. GRDL validation based on
XML Schema and DTDs is presented, as well as the mechanism for
extensions to GRDL.

One of the objectives of GRDL is to provide the basis for a RESTful model of

grid resources, allowing all resources within the grid infrastructure to make use of a

common model for describing their state (i.e. representation). Another objective is

to provide an efficient and effective mechanism for resource composition, specifically

for allocating tasks to executors. These are the two main areas of discussion in this

chapter, however other important topics around realising a RESTful grid are also

discussed.

The system of resource templates, described in this chapter, provides the foun-

dation for pooling of similar resources, based on a common template. This interacts

with the idea of partial matching and partial templates, and provides a significant

reduction in complexity of the otherwise NP-complete matching problem, given the

degree of heterogeneity in computational grids, from a scheduling perspective, is

small and “clumpy”. Tasks, in particular, follow this pattern, with groups of tasks

all looking similar to each other, but inter-group variation being enormous. This

results from users or VOs submitting numerous similar tasks, while different user

groups have distinctly different usage patterns. On the executor side, ClassAd-style

resource descriptions for the same physical hardware, which are generated each

time the resource enters the “available” state, will largely appear the same. For

example, over time small variations in available storage space or, in systems with

162

8.1 Composition Profiles and Contracts 163

advanced reservation, the size of the execution time slot may change, or the number

of available nodes on a cluster, however other properties will likely remain fixed.

The commonality of resources is captured by templates such that resource repre-

sentations are then registered in those pools which are “headed” by a compatible

template. Composition can then be carried out via pool templates, rather than with

each individual resource. As experience with DIRAC for LHCb established, there

are many cases where the number of template pools M is much smaller than the

number of resources N which need to be composed (M ≪ N), thus making the

matching task computationally feasible.

8.1 Composition Profiles and Contracts

This section discusses a mechanism by which information concerning a particular

composition of resources can be captured in a standard manner and utilised at

later stages in the life cycle of the composition. In a batch system such a level of

detail can be entirely implementation specific, as a single task manager will retain

“live” stateful information concerning active tasks and the policies which led to a

particular utilisation of a resource. Within a grid environment, however, resource

compositions transition between many independent systems through their life cycle

so that information is not necessarily available or discernable by Services acting

on the composition “down-stream” of the stage at which the composition decision

was made. This is also true from the perspective that matchers have liberty to

interpret dimensions, types, values, preferences, and transformations in their own

ways. Users and system administrators often wonder why a particular task has not

been scheduled to a particular computing resource, particularly when that resource

has free “slots”. It is also a specific criticism of Condor that it is often unclear

why a particular composition (match) has or has not been made, although this also

stems from the complexity of the “Rank” expressions used within ClassAds (and

the recent addition of the “analyzer” mode to Condor now provides more details

of the matching decision). To address this in the RESTful model the results of an

attempted composition can be reported using profiles.

This provides a richer level of detail concerning the composition than is given

by a boolean result of success or failure for a given composition attempt. Profiles

are formed from tuples of characteristic and resource sets from the resources in-

volved in a composition. This requires introducing two new sets: Charsmatch and

Reqsunsatisfied. The first, Charsmatch, contains those characteristics from Ra which

8.1 Composition Profiles and Contracts 164

match requirements in Rb, as defined in Equation 8.1. This set of characteristics is

possibly only a partial match for the requirements of Rb, and can be compared to

Equation 6.11 which, by contrast, describes a complete resource match. The second,

Reqsunsatisfied, contains those requirements in Rb which are unsatisfied by Ra – that

is, Ra contains no characteristics which satisfy the subset of Rb’s requirements in

Reqsunsatisfied. This is defined in Equation 8.2. Described in this way, a resource

match of Ra to Rb is successful if and only if Reqsunsatisfied = ∅ (that is, there are no

unsatisfied requirements so the set is empty). These relations are also described in

Haskell in Appendix C.12.

Charsmatch , {ci|ci ∈ Ra.chars, rj ∈ Rb.reqs, ci ⊆ rj} (8.1)

Reqsunsatisfied , {rj|rj ∈ Rb.reqs, ∀ci ∈ Ra.chars, ci * rj} (8.2)

When considering a matcher implementation, the resource matching operation

is likely to terminate when the first unsatisfied requirement is found, therefore the

Charsmatch and Reqsunsatisfied sets may not be complete. From a profiling and per-

formance perspective, it is desirable to identify the requirements most likely to be

unsatisfied and to test for them first, allowing the match to be terminated with the

minimum number of resource/characteristic match tests. Clearly in all cases where

the resource match is successful all requirements will be evaluated. Similarly, it is

valuable to identify those characteristics which are most likely to satisfy require-

ments and check them first, again minimising the number of resource/characteristic

match tests.

With these two new sets, in addition to standard resource characteristic and

requirement sets, it is possible to define three types of profiles:

Pminimal (minimal profile): Characteristics which satisfied requirements in a suc-

cessful composition;

Pfull (full profile): Characteristics and requirements of all resources participating

in the composition;

Pfailure (failure profile): Requirements which were unsatisfied in the composition.

Profiles only make sense when discussing compositions which are going to be or

have already been realised, therefore preferences are not part of profiles.

The minimal profile Pminimal is valuable when the composition is realised and

utilised, informing resources what specific quantities of interest have been agreed,

8.1 Composition Profiles and Contracts 165

acting as a service contract. It only contains the matching characteristic sets

Charsmatch for the resources in a successful composition. It is defined for a pair

match in Equation 8.3.

Pminimal , (Charsmatcha
, Charsmatchb

)| match(Ra, Rb) = true (8.3)

Full profiles provide a record of the state of resources at the time of composition.

This is valuable if the resources need to change their properties, and allows the effect

of the change on the validity of the composition to be checked. The full profile may

also supply information regarding the resources in the composition to stages which

follow resource matching and scheduling. It consists of sub-tuples of characteristics

and requirements for each resource participating in the composition. It is defined in

Equation 8.4 for a pair composition. In both these cases the match() function is a

place holder for the actual matching operation.

Pfull , ((Charsa, Reqsa), (Charb, Reqsb))| match(Ra, Rb) = true (8.4)

Because a matcher has the freedom to transform and test requirements and

characteristics in different ways, it is possible that two different matchers may form

different compositions from a set of resources, or may utilise different characteristics

in satisfying the requirements of compositions. For this reason it may be desireable

to produce both a minimal profile, which captures the exact characteristics a par-

ticular matcher selected to satisfy requirements, and a full profile which records the

details of the resources in the composition. This is to say that a full profile does not

imply exactly the same minimal profile for a composition in all cases – the minimal

profile is dependent upon the behaviour of the matcher.

Failure profiles, Pfailure, provide information regarding which requirements are

not being satisfied, thus explaining the failure of a resource to form a particular

composition. Failure profiles can also be used to optimise the requirement checking

order. They are defined by Equation 8.5 for pair composition.

Pfailure , (Reqsunsatisfieda
, Reqsunsatisfiedb

)|match(Ra, Rb) = false (8.5)

8.2 Matching Transitivity and Templates for Resource Composition 166

8.2 Matching Transitivity and Templates for Re-

source Composition

One of the critical problems in large scale computational grids is the complexity of

task scheduling. Finding an optimal schedule is an NP-complete problem. In this

context of symmetric resource composition, the standard task scheduling problem

can be re-stated as the composition of task and executor resources. As previously

mentioned, the model proposed so far is, at a conceptual level, largely a formali-

sation of the ClassAd mechanism developed by Raman for the Condor Project[21].

This section will expand on Raman’s ideas of selective indexing and indexing op-

timisation of ClassAd attributes with a resource template model. It follows from

both the idea found in conventional batch queues which contain tasks with similar

characteristics (e.g. run time, architecture, memory usage), and from the task queue

model implemented in the DIRAC system (see Section 3.5). It will be shown that

under certain conditions matching operations are transitive. This will form the basis

of the two templating approaches: one based on a match-equivalent template, and

one on a shared-composition template.

A resource template defines a dimensional value space of characteristics, require-

ments, and preferences in exactly the same way as a resource description. Figure 8.1

illustrates the template T as representative of a queue of resources {Q}, and a can-

didate composition resource C. How T is representative of each Q, and subsequently

how the candidate C is evaluated against T varies between the two templating ap-

proaches. It should be noted that resource queues can be generalised to unordered

resource pools, the difference being queues will feed resources in a fixed order, while

resource pools will provide resources in a random order.

The use of templates and queues can significantly reduce the complexity of

matching resources. Rather than examining every set of resources for a match and

then ranking between the matched set (a problem which is infeasible in a large com-

putational grid), it rather becomes a matter of querying resource queue templates

for a possible composition. As queue templates are expected to be reasonably static,

these can be easily replicated and cached. While the total number of queues within

such a grid environment is unbounded, the matching process would be configured in

such a way as to refer to a (relatively) small set of queues either sequentially until a

match is found or all at once, and then select the best available alternative. There

are two arguments for why the number of resource queues would be much smaller

than the number of queued resources. The first is that many resources will look the

8.2 Matching Transitivity and Templates for Resource Composition 167

Candidate

Template

Queue

T

Q

C

Figure 8.1: The general template model, showing a queue of resources, a template,
and a compositional candidate.

same or sufficiently similar to be gathered into a single queue. The second is that

the use of queues to perform partial matching mean the degree of similarity between

a set of same-queue resources can be adapted to suit the desired properties, and

certainly means the degree of similarity between common queue resources can be

less than an exact match. Once template-based partial matching has successfully

been performed, a “real” resource (in fact, its representation) can be fetched from

the queue to confirm a full match is possible. Alternatively the queue may only con-

tain partial descriptions of resources, specifically the properties most common for

composition or those that are (relatively) static. Prior to realisation of a particular

composition, the most up to date resource representation, including full dynamic

information, can be fetched from the master resource representation source. In

any case, different implementations may utilise a hierarchy of resource queues and

queue templates to reduce the number of match comparisons substantially. As an

example of this, DIRAC queued tens of thousands of jobs in a handful of ten or so

task queues, each representing a “typical” LCG or Computing Centre task queue or

computing resource, therefore when Executor Agents made compositional requests

by sending an executor resource description to the DIRAC Workload Management

System it was only necessary to compare this resource description against (at most)

ten queues to determine if a match was possible. The remainder of this section will

formally develop this idea.

It should also be noted that queue optimisation is an interesting area of research,

however it is not covered by this work. Both DIRAC and the REST model described

here support the concept of “optimisers” which actively re-order resources in queues

in order to meet certain goals according to some heuristics policy. This concept has

8.2 Matching Transitivity and Templates for Resource Composition 168

been developed in [83].

8.2.1 Transitivity of the Matching Operation

Combining Equation 5.14 (characteristic subsets) and Equation 6.8 (requirement

space subsets) produces the concept of a resource template defined in Equation 8.6.

A is a template (⊣) of B if all characteristics in A are also found in B and the

requirement space of A is a subset of B (that is, A is more restrictive than B). A

two dimensional depiction of this is found in Figure 8.2 showing characteristic and

requirement value spaces for a resource and its template. If this relation on A and

B holds, it can be shown that given a third resource C, where A⇔ C, that B ⇔ C

also holds. This theorem and its proof are given in Theorem 8.2.1. This is defined

in Haskell in Appendix C.15.

A ⊣ B , A ⊆char B ∧ A ⊆rs B (8.6a)

= A.chars ⊆ B.chars ∧ A.reqs ⊆rs B.reqs (8.6b)

resource B

������������������������
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
����������������������

�����
�����
�����
�����

�
�
�
�
�
�

�
�
�
�
�
�

��������������
��
��
��
��
��

��
��
��
��
��
��

template A

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

Figure 8.2: Value spaces for a resource and its template over two dimensions, illus-
trating how the template has fewer characteristics and a more restrictive
requirements space.

Note that the template relation is not symmetric. From the definition, it can be

shown that if A ⊣ B and B ⊣ A then A = B, at least in terms of their characteristics

and requirements.

Theorem 8.2.1. If A ⊣ B and A⇔ C then B ⇔ C

8.2 Matching Transitivity and Templates for Resource Composition 169

Proof.

A⇔ C , A⇒ C ∧ C ⇒ A by definition (Eq. 6.13)

= A.chars ⊆m C.reqs ∧ C.chars ⊆m A.reqs by equivalence (Eq. 6.12)

= B.chars ⊆m C.reqs ∧ C.chars ⊆m B.reqs by definition (Eq. 8.6)

= B ⇒ C ∧ C ⇒ B by definition (Eq. 6.12)

, B ⇔ C by equivalence (Eq. 6.13)

8.2.2 Match-Equivalent Templates

Tme is used to denote a match-equivalent template. This category of template is

related to all resources in the queue by the relation Tme ⇔ Q. Here the template for

the queue represents a resource with which all the queue members could successfully

compose. A candidate resource C must be checked to see if it is template equivalent

to Tme, that is, if Tme ⊣ C. If this holds, then, by Theorem 8.2.1, C ⇔ Q is known

to hold and any resource from the queue may be composed with C.

Match-equivalent queues (i.e. those characterised by a template Tme) are similar

to traditional batch queues, where the template describes the properties of the sys-

tem (computing resource) on which the queued tasks will run. The queued resources

are tasks, and candidate resources are descriptions of available executors which are

fetching tasks.

8.2.3 Shared-Composition Templates

In contrast, Tsc is used to denote a shared-composition template. In this case Tsc ⊣ Q

describes the relation between the template and all the resources in the queue. Put

loosely, the template “is like” the resources in the queue. If Tsc ⇔ C holds for

a candidate resource, then by Theorem 8.2.1 Q ⇔ C is known to hold, and any

resource in the queue may be composed with the candidate resource.

Shared-composition queues (i.e. those characterised by a template Tsc) are useful

when multi-way compositions must be formed. The queue template can then be used

as a representative handle for the resources in the queue. Any multi-way composition

which involves the template will also be satisfied by the queued resources.

8.2 Matching Transitivity and Templates for Resource Composition 170

Q Queue

Template

CandidateC

Tme ⊣ C

Tme

Tme ⇔ Q

Figure 8.3: The match-equivalent template model.

Q Queue

Template

CandidateC

Tsc ⊣ Q

Tsc ⇔ C

Tsc

Figure 8.4: The shared-composition template model.

8.2.4 Template Preferences

Broadly, there are three strategies for handling preferences with templates:

1. No template preferences – Templates contain only characteristics and require-

ments. Preferences are evaluated between the queued resources and the can-

didate resource. Note that the candidate resource is free to apply preferences

to the template if trying to select between different queues.

2. No queued resource preferences – The templates’ preferences are used by queue

managers to select an optimal candidate resource. All queued resources accept

the preference ranking of the template.

8.3 XML Schema Validation of GRDL 171

3. Equivalent order – Since preferences are an extension of requirements, the same

templating rules as requirements can be applied, with the addition that the

ranking of the preferences must form an equivalent order of either the queued

resources (for shared-composition templates) or the candidate resource (for

match-equivalent templates). This is equivalent to adding the term B Dpref A

to Equation 8.6 (see Section 7.4).

Some out-of-band mechanism is required to describe which strategy a particular

queue expects to utilise, however this is not discussed further here.

8.3 XML Schema Validation of GRDL

Many of the examples of GRDL provided so far have used an XML syntax. The use

of XML, as compared to other syntaxes, has three clear advantages: wide spread

tool support, powerful schema validating parsers, and ease of extensibility. This

section describes the XML structure and schema.

GRDL is divided into modular XML Schema files, which are used in layers.

The first layer provides a common set of property types, unit abbreviations and

groupings, as shown in Listing B.1 of Appendix B. Table 8.1 summarises these

types.

The second layer defines the actual dimensions which are known by the sys-

tem. In general, these would be specific to a given system and would therefore

be customised. Listing B.2 of Appendix B provides a selection of possible resource

dimensions taken from a number of existing grid description languages. Each dimen-

sion is defined for each property class (i.e. characteristic, requirement, preference)

with a type category, which constrains its value space and its type attribute. For

example, a dimension cpu speed, which is in the Frequency type category would

have three element definitions, one for each type:

CharacteristicFrequencyType,

RequirementFrequencyType, and

PreferenceFrequencyType.

The dimension elements are defined within the context of their property class

element (i.e. <chars>, <reqs>, or <prefs>). The next layer is for extensions to

the resource model, and allows arbitrary XML structures and types to be created.

The fourth and final layer provides the overall resource description, composed of the

various components defined in the earlier layers. Listing B.3 in Appendix B shows

this construction for four resource types: {resource, executor, task, storage}.

8.3 XML Schema Validation of GRDL 172

This layered approach encapsulates changes to the model, with successively higher

layers expected to be changed more frequently. Figure 8.5 illustrates this layering.

Types

Resources

Extensions

Dimensions

Figure 8.5: Layered schema design for GRDL.

The base schemas do not make use of XML Namespaces. This is to simplify

the use of GRDL and for comprehension. In an environment where namespacing

was required, it is simply a matter of including the null-namespaced schema into a

namespaced schema, as is shown in Listing B.4 of Appendix B.

For completeness, a DTD XML definition for GRDL has also been created, how-

ever due to the limitations of DTDs it is only possible to create one property def-

inition for each dimension, namely that for the preference property, and then have

it as a matter of policy that the relevant attributes are not used for characteristics

or requirements. This can be found in Appendix B.5 Listing B.5.

8.3 XML Schema Validation of GRDL 173

Time
ns 1e-9
us 1e-6
ms 1e-3
s 1
min 60
h 60*60
hr 60*60
hour 60*60
d 60*60*24
day 60*60*24
w 60*60*24*7
week 60*60*24*7
month 60*60*24*7*30
mon 60*60*24*7*30
yr 60*60*24*365
year 60*60*24*365

Binary
B 2**0
KB 2**10
MB 2**20
GB 2**30
TB 2**40
PB 2**50

Frequency
Hz 1e0
KHz 1e3
MHz 1e6
GHz 1e9
THz 1e12

Metric
f 1e-15
p 1e-12
n 1e-9
u 1e-6
m 1e-3
base 1e0
K 1e3
M 1e6
G 1e9
T 1e12
P 1e15

Table 8.1: Categorised GRDL types (labels and values).

8.4 Consuming Characteristics 174

8.4 Consuming Characteristics

Characteristics are not “consumed” when they satisfy a requirement, although it

is clear that an advanced feature of resource matching would be able to consider

“consumable” characteristics, for example in the case of file storage space, memory,

or CPU power. This aspect is not discussed further here, as this work has focused

on the problem of resource description and resource composition. The act of con-

suming characteristics would only take place when resources were committed to a

composition, when a composition is realised, or at another later point in the lifecy-

cle of a resource. Whether or not a characteristic was consumed by a composition,

and how a composition affected the consumption of the characteristic would be very

dependent on the definition of particular dimensions. The model proposed here is

meant to support resource dynamism and “characteristic consumption”, but does

not attempt to propose any particular approach to these topics.

8.5 Block Reservation

The GRDL model easily supports advanced block reservation utilising characteristics

and requirements. Single node reservation can be handled by adding world clock

characteristics to resource representations, describing the start and end times when

they are available, or when they require the compositional resource to be available.

The common operation of executor advanced reservation can be handled by executor

representations defining a latest start and earliest finish time window through two

requirements, and a task having characteristics which fix a particular start and

end time for the reservation. An intelligent resource manager could then back-

fill or re-publish any unused time blocks for the node. In the case of multi-node

reservations, an aggregator could be utilised to gather a set of executor resources

together which will collectively satisfy the block reservation, or again the resource

manager may publish the availability of blocks of nodes and then intelligently re-

publish un-utilised sub-blocks if a particular reservation does not utilise all available

nodes.

8.6 Priority Queues

One of the key features of this RESTful model is the flexibility for creating different

resource queue hierarchies. It is usually the case that resource owners are biased

8.6 Priority Queues 175

towards who gains access to their resource, whether that resource is a task, an

executor, storage, or software. Although the concept of priority queues is common

in batch scheduling systems (e.g. Maui[91], IBM LoadLeveler[112], PBS[104], and

Platform LSF[92]), in all cases these are single system implementations of scheduling

policies for task queues entirely managed within a single operational domain. The

RESTful model facilitates a scenario where resource owners create a hierarchy of

resource queues, such that the most important users are given preferential access

while the wider community is considered last. This model also allows resource users

to hedge their bets by placing their resource usage requests into multiple queues, in

order to improve the chances they are successfully composed in a timely manner.

This concept of priority queues is fundamental to achieving Key Goals 1 and 2

(Scalability and Reliability).

Furthermore, the generality of the RESTful priority queue model decouples it

from either the execution resource manager (i.e. cluster management system, such

as PBS), or a client side task submitter or task pool. The first generally represents

a “push” style task management mechanism controlled by a compute centre, where

a cluster manager has complete control over slave nodes and selects tasks from a

queue to “push” them onto a particular compute node. The second is more typical

of “pull” style scheduling where tasks have “late-binding” to a particular compute

node (and possibly even physical computing site, in a grid domain), and instead

are held by users or a third party (e.g. the LCG Resource Broker) and allocated to

compute nodes “on demand” when a compute node makes a “pull” request. DIRAC

demonstrated the efficiency and benefits of “pull” scheduling (see Section 3.9), while

“push” scheduling has benefits in terms of the planned management of resources and

for advanced reservation. By decoupling and generalising the priority queue model

into this RESTful approach, “push”, “pull”, and third-party scheduling options are

all available.

This situation is best described by way of two examples. The first centres on

the manager of a University’s departmental computing cluster. The manager has a

requirement to prioritise access to a select group of individuals within the depart-

ment, and therefore sets up a task queue which only they can access and submit to.

Next comes other departmental users, then the wider university community, then a

selection of international “grid” communities with which the cluster is shared in the

event it is otherwise idle. The most direct priority round-robin approach would ex-

clusively select tasks from higher priority queues in a sequential manner until those

queues were empty. Once empty, the next lower priority queue would be considered.

8.7 Security 176

If the highest priority queues were constantly full, the lower priority queues would

never be serviced. This could be refined to provide a rolling percentage share of the

computing cluster to other queues, such that a limited number of tasks were selected

from lower priority queues even when higher priority queues contained tasks. By

judicious use of access control policies, this model would allow a cluster manager to

allocate their resources according to the desired usage policy.

The second example considers an experimental collaboration which has a large

number of computational tasks to be executed over an extended period of time.

Two strategies exist for these users. The first is to manage their own task queue

and then to notify various computing centres of its availability. Depending on the

relationship with the computing centre, and the centre’s other demands, the task

queue would be placed in a hierarchy or weighted round-robin for the computing

centre to fetch tasks from. The collaboration could control access to the task queue

to limit it to “authorised” computing centres. The alternative is to spread the tasks

to many different remote task queues to which the collaboration has access. The

tasks would be submitted to the highest priority queue possible at each computing

centre. This may rely on using privileged “local-user-only” queues which members of

the collaboration local to the site have access to. This maximises the likelihood tasks

will be executed in a timely manner while limiting them to “trusted” computing

centres. If a particular task is sent to multiple queues, then the first queue to claim it

“wins”, while the remainder will discover the queued task is “stale” and has expired

when they attempt to realise the composition. The collaborations task manager may

also choose to withdraw replica queued tasks once one has successfully been claimed

or begins executing. In fact, both these strategies can be used simultaneously, which

is an inherent feature of a RESTful model where the representation is meant to be

replicated and is not, itself, the “resource” in question.

8.7 Security

Security is a key issue in computational grids, where resource interaction passes

between different administrative regions over a federated and geographically dis-

tributed network. GRDL and the overall model presented here make no assumptions

or in any way limit the approach to resource security. Non-repudiation of GRDL

resource representations can be achieved through the use of digital signatures, and

in an XML context this is particularly convenient as the XML Digital Signature

standard allows different sections of GRDL to be signed by different identities. Ac-

8.8 Summary 177

cess control to queues is the other major point for security, and again this is left to

implementations to specify. No work has been done on approaches for specifying

interaction policies within GRDL, and only limited work (not reported here) on how

various identities can be specified, transported, and utilised via GRDL. This is part

of the larger work on an overall RESTful grid process model which remains in the

early stages. In this respect, security is the least satisfied Key Goal described in the

introduction.

8.8 Summary

This chapter has discussed a number of applications of GRDL and the REST model

for a computational grid. It has described the value of composition profiles, and

established the theoretical basis for resource queues and templating. The strategy

of priority queues and templating combine to overcome the NP-complete limitation

of optimal resource scheduling and centralised workload management, providing a

scalable distributed architecture for grid resource management. While discussion of

integrating many other desireable features of computational grids into the REST

model are possible, these are left as areas for future work.

Chapter 9

Future Work and Conclusions

9.1 A Scalable Computational Grid Architecture

As was described in the introduction, this dissertation is a work of two parts: one

part presenting the design and operational experience of a large computational grid

infrastructure, the other part presenting an abstract and general model for grid

resource descriptions as the basis for a RESTful grid, where this second part is

motivated by experience from the first.

The success of the DIRAC infrastructure and strategies employed in its imple-

mentation contrasted with the difficulties of utilising LCG thus revealing the need

to investigate alternative grid architectures. DIRAC was deemed to be successful

because it employed a simple, distributed, service oriented architecture which fol-

lowed a “high throughput” scheduling model utilising a “task-pull” approach rather

than the traditional “high performance” model which utilises “task-push”. A further

contributing factor to its success was the emphasis on robustness through various

mechanisms: asynchronous messaging between services, a light weight client, “pilot”

jobs, service watchdogs, dynamic configuration, dynamic software deployment, and

decoupled file transfer queues. It also provided insight into the use of instant mes-

saging as a light weight communications infrastructure for grid resources. Finally,

it served as a testing ground for real deployment of OGSI/GT3 Grid Services, and

established many short comings both with the OGSI approach and the available

implementations.

In contrast, it was shown that LCG could provide a usable distributed com-

putational infrastructure, albeit with a failure rate exceeding 30%. Even this was

only achieved through careful management and augmentation of the LCG system.

The centralised Resource Broker was a major bottle neck and source of failures,

178

9.1 A Scalable Computational Grid Architecture 179

while the overall infrastructure did not provide the level of control, programmatic

APIs, or logging to make it easily usable. It was a unanimous decision of the LHCb

computing team that the attempts to create an omnipotent and omniscient Re-

source Broker were impossible to realise, and an architecture which required this

could not be part of a long term, robust, grid solution. The distribution of state

information throughout a grid is such that it is impossible to maintain in a single

location complete, consistent, and timely details of all grid resources. Furthermore,

an architecture which apparently could only be realised by an opaque, monolithic,

homogeneous system was a very long way from the vision of a grid infrastructure of

heterogeneous hardware and software, with federated administrative domains and

a plethora of dynamic virtual organisations[15]. This redoubled the emphasis on

an ARDA-like services model[47] which facilitated multiple implementation, trans-

parency, and extensibility.

Analysis of the LHCb Data Challenge 2004 results confirmed the high degree

of heterogeneity in a grid across all dimensions, for example network bandwidth,

CPU architecture, processor loading, and memory distribution. It highlighted the

need for task logging throughout the task lifecycle and the need for a handle to the

executing task in order to debug or recover stalled tasks. It also demonstrated the

reality of a large computational grid with tens of thousands of queued tasks, tens of

thousands of executing tasks, hundreds of sites, and thousands of nodes. Contrary

to common distributed computing systems which focus on the management of a

single or small numbers of concurrent processes, a grid environment must support

operations on thousands of concurrent processes. Issues around security, roles, vir-

tual organisations, and delegation were also discovered. It is essential that users can

operate with a selection of identities and roles at different times or with respect to

different tasks. LCG did not make any of this easy, if it was possible at all.

The work on DIRAC and experience from DC04 motivated a number of further

refinements to the DIRAC architecture. This dissertation focused on one of them:

outlining a REST model for computational grids, which emphasised a common rep-

resentation of grid resources, and in particular refined the Condor ClassAd model

for symmetric resource matching. The REST approach was radical in that it em-

phasised the description of the resources within the system while saying little about

the operations on those descriptions (representations). This was in contrast to an

Object Oriented approach which hides the description and focuses on interface and

behaviour, or a Service Oriented Architecture which describes the system in terms of

interacting services. Both XML and HTTP/HTML have benefited from this REST-

9.1 A Scalable Computational Grid Architecture 180

ful approach. In a grid environment it is argued that resource consumers will wish

to act on a resource description in arbitrary ways, therefore the most effective aspect

to specify is a common resource description, rather than a common service interface.

While a sketch was provided of an overall RESTful grid architecture, the work here

was limited to the aspects concerning generic resource description and composition.

In particular, the REST principles described in Section 2.3 have guided the RESTful

grid model in the several ways:

1. All entities can be described in a common way as resources (GRDL).

2. All resources can interact in a common way, via the set theoretic compositional

model.

3. Grid resources have a hidden resource state, with a public representation of

that state.

4. Content negotiation to present a representation of a resource relevant to the

client or customised based on the client request.

5. Cacheable representations.

6. Dynamic representations.

7. Client-driven rendering or interpretation of resources.

8. Stateless services to transact representations.

9. Elimination of any specific services or “resource stores”, enabling decentrali-

sation and therefore scalability.

This built on DIRAC in a number of ways. While DIRAC contained the prin-

ciples of distributed services and flexible resource matching, it was, nonetheless, fo-

cused on a Service Oriented Architecture with a central task queue, and performed

explicit task/executor matching, as opposed to general resource composition. Fur-

thermore, the key entities within the system were the services and the architecture

consisted of the service configuration and service APIs. In contrast, the REST model

focuses on the description of resources within the system and making those resources

directly accessible. DIRAC’s proto-RESTful features were its stateless interactions,

replicable services, independent clients, and simple/light-weight API.

9.1 A Scalable Computational Grid Architecture 181

The model has been developed from a strong foundation in set theory in order

to benefit from the properties of sets. The model consisted of characteristics, re-

quirements, and preferences, with each inheriting the structure of the more basic

property, thus providing a generic basis for interaction between the different property

classes. The semantics of each of these properties was explored in depth. The model

eliminated the complexity of tri-state logic, used in ClassAds for requirements, and

generalised the concept of “type” and attribute comparability via equivalence classes

and a formal structure for the transformation of properties. The entire model was

also presented formally in Haskell in Appendix C.

One of the greatest features of the model was the ability to combine priority

queues with resource templates, thus allowing resource representations to be repli-

cated to multiple queues in order to maximise the likelihood of finding a “good”

match, and reducing the computational effort of evaluating candidate compositions

through the use of templates. This allows a relatively small number of distributed

resource queues to hold, in principle, an unlimited number of resources, and for

the scheduling problem to be rephrased as matching through resource composition

with queue templates. These concepts were not present in Condor, nor in any other

grid scheduling system, which generally struggle with more than 10e4 queued tasks

and rely on a single central scheduling engine, or a set of centralised schedulers.

This new strategy was initially investigated in DIRAC and have been formally pre-

sented in this work. The variations of asymmetric, symmetric, pair, multi-way, and

aggregated resource matching were all developed providing a comprehensive range

of resource composition alternatives. This fits into a framework of comparators,

matchers, and rankers which can be used to evaluate resource compositions and

select from valid alternatives.

Finally, a selection of applications of GRDL were discussed. These covered issues

such as composition contracts, validation, extension, reservation, and security. They

illustrated some of the properties which can be derived from the formal set theory

model of GRDL.

In total, the REST model presented here provided the foundation for RESTful

generic computational grids in a Condor ClassAds style, however with a signifi-

cantly more robust relationship between characteristics, requirements, and prefer-

ences. The simplicity and consistency of the model makes it easily realisable thus

facilitating multiple implementations. By decoupling resource descriptions from a

particular service interface or scheduling strategy, the REST paradigm allows re-

source representations to be replicated and cached which, when combined with pri-

9.2 Examination of Key Goals 182

ority queues and the transitive properties of templates, enables scalable distributed

resource scheduling. A complete implementation utilised in a production environ-

ment is required to fully validate this model, however the concept has been verified

both in practice via the DIRAC implementation and performance results from DC04,

and established in theory via the work presented in the later half of this dissertation.

9.2 Examination of Key Goals

Of the six Key Goals, only Security (Key Goal 6) has been minimally addressed,

however the model has made efforts to take an approach which will allow various

trust models to be utilised. By avoiding any centralised services the REST model is

inherently scalable (Key Goal 1), while replication of resource representations also

increases reliability (Key Goal 2). Within DIRAC, reliability was achieved through

various concrete mechanisms – replication, fail over, caching, and retries – as well as

a simple service oriented architecture, thus reducing the risk of bugs and complex

behaviour. Usability (Key Goal 3) is very subjective, however the fact that the

DIRAC infrastructure for DC04 was utilised by a handful of users who managed

to harness hundreds of years of computing power over a few months is testament

to the success of its approach. The REST model aims for usability via simplicity,

consistency, and comprehensibility of GRDL and the operations which are performed

by comparators, matchers, and rankers. Extensibility (Key Goal 4) is foundational

and in DIRAC is achieved through the modular service oriented architecture, while

in the REST model is enabled through the generic nature of GRDL and the implicit

extensibility of XML. Manageability (Key Goal 5), finally, has been achieved in

DIRAC through the use of instant messaging interfaces to services and agents, and a

small, simple, architecture. The Configuration Service also greatly facilitated service

discovery, configuration, and management. This Key Goal cannot be evaluated for

the REST model as no operational implementations exist, however the design of the

model has emphasised simplicity and comprehensibility which are key to achieving

ease of management.

9.3 Future Work

The objective of this work was to develop a RESTful grid model, starting with a

generic model for representing resources via GRDL. There remain many areas where

this can be more fully developed. The first step is the formalisation of a RESTful grid

9.3 Future Work 183

process model. Early work has begun on this and needs further development. The

objective is to enable GRDL to represent resource state throughout the resource’s

life cycle.

There have been many small points which have been touched on but not fully

developed. Each of these has potential for further exploration in contributing to

an effective RESTful grid model, or as optimisation points for implementations or

useability. Within the context of the work which has been described here, two clear

areas remain: simulation of the model in the context of a large dynamic compu-

tational grid, and performance evaluation of a full implementation. Simulation of

large dynamic generic computational grids is a difficult task, as it is not well sup-

ported by any of the available simulation tools. SimGrid[113] is the best available

tool, however it caters for simulation of a single fixed distributed algorithm with

well defined workflow/task properties throughout the simulation. Dynamic traces

of resource behaviour are possible, but creating such a model was beyond the scope

of what was achievable in this work. It is only on the scale of a large, long run-

ning time, heterogenous dynamic computational grid that the key characteristics

of the model’s performance can be observed. Realisable simulations are sufficiently

simplistic as to show the same results between the REST model and a traditional

batch management/scheduling system. In order to simulate a large computational

grid it is necessary to characterise the dynamic profiles of various aspects of a grid

over a long period: storage, network, processing power, and workload generation. It

is necessary to inject failures into all of those aspects, and represent the RESTful

model within the simulation.

As has been discussed at length, the concepts presented in the REST model

were motivated by the proto-REST implementation found in the DIRAC archi-

tecture, therefore there is some real-world validation for these concepts. The two

implementations of the REST scheduling model which were prepared in conjunction

with this work (one in Python and one in Haskell) were developed for exploring

the properties of the model, rather than as part of a complete grid resource man-

agement system. As such, they were unsuitable for performance benchmarking. A

full implementation would enable performance measures to be taken and provide

a comparison against DIRAC and LCG task management. The final aspect which

requires careful consideration is a security model. This ties in with both the GRDL

model, and an overall model for a RESTful grid process.

In the context of particle physics computing a RESTful grid implementation

would empower users to experiment with, extend, and improve the strategies for

9.3 Future Work 184

grid resource management. A staged grid process finite state machine model would

facilitate task management from creation, to scheduling, to staging, to execution, to

completion, to archiving. It is even conceivable a GRDL-like model, coupled with

a finite state machine, could allow checkpointing, recovery, and work flow manage-

ment. It is still necessary to focus on the basic objective of large scale distribution,

execution, and management of single grid tasks (i.e. embarrassingly parallel prob-

lems, or high volume decoupled tasks). To achieve this, greater degrees of resource

logging, experimentation, and simulation are required, with particular attention

given to translating the experience from preemptive operating systems to a grid do-

main. Added to that is the requirement for a comprehensible security infrastructure

with a strong emphasis on groups (Virtual Organisations) and roles. The experience

from DC04 suggests that a single identity approach such as basic X.509 certificates

is insufficient – the reality is that users have many different identity tokens all of

which need to be made accessible in a grid environment and which may form part of

an operation within a grid task. The complexity of current X.509 systems, security

policies, and role-based access control clearly indicate that a significant amount of

work remains to simplify this to a level which is usable by the ordinary user.

The principles which underlie improving computational grid architectures must

be independent of any particular technology or implementation approach, thinking

in particular of Web Services. While Web Services provide a strong foundation for

a service oriented grid architecture, their weaknesses in the grid domain quickly

became clear. Again, this focuses attention on the plethora of Internet standards

which manage to inter-operate or co-exist as part of a global computing infrastruc-

ture. Decoupling aspects of a grid architecture into simple, efficient, scalable, and

reliable services and protocols has the benefit of following a path which the Inter-

net has proven can lead to success. A REST approach for representing the entities

within the grid opens the way for different user groups to operate on grid entities in

their own way, and allows the best mechanisms and implementations to rise to the

top “organically”, rather than by asserting a priori a particular set of services, or

worse an entire grid infrastructure.

The experience and examples found in the successful Internet standards should

form the basis of future work in computational grids. While the model presented

here breaks from tradition in the distributed computing sense, it very much builds

on a long tradition of large scale computing as established through standards such

as DNS, HTTP, HTML, and XML. It is hoped that this RESTful approach will pro-

vide a new perspective on scheduling strategies and large grid architectures which

9.3 Future Work 185

will move grid computing closer to its desired goal of Internet-scale federated het-

erogenous dynamic distributed computing.

Appendix A

Task and Executor Description

Languages

A.1 Globus Resource Specification Language

The following table is a summary of the properties described in the RSL Specification

[99].

186

A.1 Globus Resource Specification Language 187

RSL description
directory specifies the path of the directory the jobmanager will use as the

default directory for the requested job.
executable The name of the executable file to run on the remote machine.
arguments The command line arguments for the executable.
stdin The name of the file to be used as standard input for the executable

on the remote machine.
stdout The name of the remote file to store the standard output from the

job.
stderr The name of the remote file to store the standard error from the job.
count The number of executions of the executable.
environment The environment variables that will be defined for the executable in

addition to default set that is given to the job by the jobmanager.
maxTime The maximum walltime or cputime for a single execution of the exe-

cutable.
maxWallTime Explicitly set the maximum walltime for a single execution of the

executable.
maxCpuTime Explicitly set the maximum cputime for a single execution of the

executable.
jobType This specifies how the jobmanager should start the job (single, mul-

tiple, mpi, condor).
gramMyJob This specifies how the gram myjob interface will behave in the started

processes.
queue Target the job to a queue (class) name as defined by the scheduler

at the defined (remote) resource.
project Target the job to be allocated to a project account as defined by the

scheduler at the defined (remote) resource.
hostCount Defines the number of nodes (”pizza boxes”) to distribute the

”count” processes across.
dryRun If dryrun = yes then the jobmanager will not submit the job for

execution and will return success.
minMemory Specify the minimum amount of memory required for this job.
maxMemory Specify the maximum amount of memory required for this job.
save state Causes the jobmanager to save job state/information to a persistent

file on disk.
two phase Implement a two-phase commit for job submission and completion.
restart Start a new jobmanager but instead of submitting a new job, start

watching over an existing job.
stdout position Specifies where in the file streaming should be restarted from for

streamed output.
stderr position Specifies where in the file streaming should be restarted from for

streamed error.
remote io url Provides the base URL prefix for remote IO operations.

Table A.1: Summary of RSL properties.

A.2 Job Description Language 188

A.2 Job Description Language

The following is a summary of the attributes provided by the latest published version

of the EGEE Project Job Description Language[101]. These attributes are utilised in

Condor ClassAd, and processed by the LCG Workload Management System (WMS).

This attribute set originated with the EDG project. Its purpose is to describe in

a standard way the pre-conditions and execution details for a task or task set to

be executed on a computational grid. Table A.2 provides an overview of the key

attributes in JDL. It is not definitive.

A
.2

J
o
b

D
e
sc

rip
tio

n
L
a
n
g
u
a
g
e

189

Table A.2: Job Description Language attributes

Item Example Description

Type Job,DAG Whether the JDL contains a single task or a DAG task graph

JobType Normal, Interactive,

MPICH, Checkpointable,

Partitionable

What type of job is to be executed

Executable /path/to/binary Command to execute

Arguments -s 1.2 input.dat Arguments to pass to executable

StdInput filename File to pass as input

StdOutput filename Where to send output

StdError filename Where to send errors

InputSandbox filenames Files to be sent from local system to remote system at start of task

OutputSandbox filenames Files to be sent from remote system to local system at end of task

ExpiryTime 1112339655 Latest start time for task (abort scheduling attempts past this time)

Environment JAVABIN=/usr/local/java Declare remote environment settings

InputData filenames Files to be sent from grid storage to remote system at start of task

OutputData filenames Files to be sent from remote system to grid storage at end of task

DataAccessProtocol file, gridftp A list of protocols which the application can use to access data

StorageIndex URL Which file catalog the WMS should use to resolve the location of

StorageIndex files listed in InputData

DataCatalog URL Which file catalog the WMS should use to resolve the location of

non-StorageIndex files listed in InputData

OutputSE URL The storage element to be used for OutputData files

VirtualOrganisation vo-name Which VO the task should be run as

RetryCount 3 Number of re-tries in the event of grid middleware failure

A
.2

J
o
b

D
e
sc

rip
tio

n
L
a
n
g
u
a
g
e

190

MyProxyServer URL Address of a MyProxy server which holds the user’s proxy certificate

for retrieval by various authorised services

NodeNumber 10 Number of independent CPUs (nodes) required for execution of an

MPICH job

JobSteps 100 Number of steps or checkpoints for completion of task

CurrentStep 5 Current step or checkpoint to utilise when starting the task

ListenerPort 44000 Port on UI (submit) node to which task sends interactive updates

Requirements Specify conditions for WMS to utilise in matching task to executor

Rank Specify ranking order for WMS candidate set

FuzzyRank true,false Enable some randmoness in rank selection process

UserTags Nested classad containing name/value pairs which are logged to fa-

cilitate task queries

max nodes running 10 Maximum number of nodes in a DAG which can be executing at any

given time

nodes Set of ClassAds describing a DAG of tasks

dependencies DAG relationship of a set of ClassAds

StepWeight Hint regarding relative computational complexity of steps in a parti-

tionable job

PreJob Task ClassAd which is executed before any steps or task partitions

are executed

PostJob Task ClassAd which is executed after all steps or task partitions have

been executed

A.3 GLUE Resource Description Schema 191

A.3 GLUE Resource Description Schema

In order to make scheduling decisions in a computational grid it is necessary for

computing resources to export information regarding their state. This is a combi-

nation of static and dynamic properties. While information and monitoring services

may provide generic interfaces for updating or querying items, it is still necessary to

define a common information model. The Grid Lab project developed the Grid Lab-

oratory Uniform Environment information schema (GLUE Schema) to address the

definition of a site, and the computing and storage resources available there. This

is an evolving schema. Initially it contained exclusively “flat” name/value pairs,

however it has recently incorporated structural relationships between through the

use of identifiers.

Table A.3: Categorised properties defined in the GLUE Schema.

Site

Name

Description

UserSupportContact (list of email addresses)

SysAdminContact (list of email addresses)

SecurityContact (list of email addresses)

Location (address)

Latitude (real)

Longitude (real)

Web (URL to webpage for site)

Sponsor (VO representation at site)

OtherInfo

Associations: Services, Computing Elements, Storage Elements.

Service

Name

Type

Version

Endpoint (URI)

Status ([OK, Warning, Critical, Unknown, Other])

StatusInfo (string)

WSDL (URI to WSDL file)

Semantics (URL to detailed service description)

StartTime (last start time of service)

Owner

ServiceData (list of name/value pairs)

Associations: Site, other Services

A.4 Outline of JSDL 192

Computing Resource

Name

InformationService (close or local to computing resource)

LRMSType

LRMSVersion

GRAMVersion

HostName

GatekeeperPort

JobManager

ContactString

TotalCPUs

ApplicationDir (path to install applications)

DataDir (path to shared application data)

DefaultSE (SE associated with this computing resource)

Job

LocalOwner

GlobalOwner

Status

SchedulerSpecific (catch all)

A.4 Outline of JSDL

The following provides an outline of the XML structure provided by JSDL, as spec-

ified in [102]. Cardinality is indicated by ’?’ for zero or one occurrence, and ’*’ for

zero or more occurrences.

JobDefinition

JobDescription ?

JobIdentification ?

JobName ?

Description ?

JobAnnotation *

JobProject *

Application name version ?

POSIXApplication name

Executable ?

Argument *

A.4 Outline of JSDL 193

Input ?

Output ?

Error ?

WorkingDirectory ?

Environment *

WallTimeLimit ?

FileSizeLimit ?

CoreDumpLimit ?

DataSegmentLimit ?

LockedMemoryLimit ?

MemoryLimit ?

OpenDescriptorsLimit ?

PipeSizeLimit ?

StackSizeLimit ?

CPUTimeLimit ?

ProcessCountLimit ?

VirtualMemoryLimit ?

ThreadCountLimit ?

UserName ?

GroupName ?

Resources ?

CandidateHosts ?

CPUArchitecture ?

ExlusiveExecution ?

FileSystem *

IndividualCPUCount ?

TotalCPUCount ?

IndividualCPUSpeed ?

IndividualCPUTime ?

TotalCPUTime ?

IndividualDiskSpace ?

TotalDiskSpace ?

IndividualNetworkBandwidth ?

IndividualPhysicalMemory ?

TotalPhysicalMemory ?

IndividualVirtualMemory ?

TotalVirtualMemory ?

TotalResourceCount ?

OperatingSystem name version ?

DataStaging *

FileName

FileSystemName ?

A.5 Comparison of JSDL, JDL, GLUE and RSL 194

CreationFlag

DeleteOnTermination ?

Source ?

Target ?

Listing A.1: Outline of JSDL with POSIX extensions

A.5 Comparison of JSDL, JDL, GLUE and RSL

A
.5

C
o
m

p
a
riso

n
o
f
J
S
D

L
,
J
D

L
,
G

L
U

E
a
n
d

R
S
L

195

Table A.4: Comparison of JSDL, JDL, GLUE and (x)RSL

Description JSDL JDL GLUE (x)RSL

Job Description

Resource type (e.g. Job, DAG,

Reservation, Co-allocation)

Type

Job type (e.g. Normal, Inter-

active, MPICH, Checkpointable,

Partionable)

JobType jobType

JobName LocalID, GlobalID jobName, jobid

Description label

JobAnnotation

JobProject project

MyProxyServer

Executable Description

ApplicationName

ApplicationVersion

POSIXApplication name

Executable Executable executable

Argument Arguments arguments

Environment Settings

Input StdInput stdin

Output StdOutput stdout

Error StdError stderr

WorkingDirectory DataDir directory

Set environment for task execu-

tion

Environment Environment environment

Assert a priori environment set-

tings

ApplicationSoftware::

RuntimeEnvironment

runTime Envi-

ronment, mid-

dleware

OperatingSystem@name OperatingSystemName

Continued on Next Page. . .

A
.5

C
o
m

p
a
riso

n
o
f
J
S
D

L
,
J
D

L
,
G

L
U

E
a
n
d

R
S
L

196

Table A.4 – Continued

Description JSDL JDL GLUE (x)RSL

OperatingSystem@version OperatingSystemRelease,

OperatingSystemVer-

sion

Job Requirements

Requirements

Rank

FuzzyRank

CandidateHosts HostName cluster, queue

ExlusiveExecution

Earliest start time of task startTime

Duration to save local data and

task details after task completes

lifeTime

JobSteps count

CurrentStep

RetryCount rerun

dryRun

gramMyJob

Memory and File Limits

FileSizeLimit MaxFileSize

CoreDumpLimit

DataSegmentLimit

LockedMemoryLimit

MemoryLimit memory

OpenDescriptorsLimit

PipeSizeLimit

StackSizeLimit

VirtualMemoryLimit

ThreadCountLimit

ProcessCountLimit

Continued on Next Page. . .

A
.5

C
o
m

p
a
riso

n
o
f
J
S
D

L
,
J
D

L
,
G

L
U

E
a
n
d

R
S
L

197

Table A.4 – Continued

Description JSDL JDL GLUE (x)RSL

IndividualPhysicalMemory MainMemory:: RAM-

Size, RAMAvailable

maxMemory

minMemory

cache

IndividualVirtualMemory MainMemory:: Virtual-

Size, VirtualAvailable

TotalPhysicalMemory

TotalVirtualMemory

Contact and Notification details

Task owner contact details LocalOwner, Glob-

alOwner

notify

Administrator contact details SysAdminContact resource Man-

agerContact

User Support contact details UserSupportContact

Security contact details SecurityContact

Home Location Register URL for

accounting

HLRLocation jobreport

Access Control

Specify user access control on

task

UserName AccessControlBaseRule acl

Specify group access control on

task

GroupName VirtualOrganisation AccessControlBaseRule acl

CPU Description and Limits

CPUTimeLimit maxTime maxCpuTime,

gridTime

WallTimeLimit maxWallTime

CPU Architecture CPUArchitecture Architecture:: Platform-

Type

architecture

Processor details Processor::Vendor

Continued on Next Page. . .

A
.5

C
o
m

p
a
riso

n
o
f
J
S
D

L
,
J
D

L
,
G

L
U

E
a
n
d

R
S
L

198

Table A.4 – Continued

Description JSDL JDL GLUE (x)RSL

Processor details Processor::Model

Processor details Processor::Version

Processor details Processor:: Instruction-

Set

Processor details Processor:: OtherPro-

cessorDescription

Processor details Processor::CacheL1

Processor details Processor::CacheL1I

Processor details Processor::CacheL1D

Processor details Processor::CacheL2

Actual CPUs per node IndividualCPUCount Architecture:: SMPSize

Virtual CPUs per node (hyper-

threading)

Architecture:: SMTSize

TotalCPUCount NodeNumber hostCount,

count

IndividualCPUSpeed ProcessorClockSpeed

IndividualCPUTime

TotalCPUTime cpuTime, grid-

Time

TotalResourceCount hostCount

Local Resource Management

System

LRMSType lrmstype

Benchmark::SI00

Benchmark::SF00

Load::Last1Min

Load::Last5Min

Load::Last15Min

Data Staging and File Requirements

FileSystem Name

MountPoint Root directory

DiskSpace System::Size

Continued on Next Page. . .

A
.5

C
o
m

p
a
riso

n
o
f
J
S
D

L
,
J
D

L
,
G

L
U

E
a
n
d

R
S
L

199

Table A.4 – Continued

Description JSDL JDL GLUE (x)RSL

FileSystemType Type

IndividualDiskSpace disk

TotalDiskSpace

FileName

FileSystemName

CreationFlag

DeleteOnTermination

Source InputSandbox, Input-

Data

inputFiles

Target OutputSandbox, Out-

putData

outputFiles

DataAccessProtocol

OutputSE

Networking Requirements

IndividualNetworkBandwidth

Name

MTU

InboundIP nodeAccess

OutboundIP nodeAccess

IPAddress

A.6 GLUE SE properties 200

A.6 GLUE SE properties

Table A.5: GLUE Storage Element properties

Storage Area

Path

Type

State::UsedSpace

State::AvailableSpace

Policy::Quota

Policy::MinFileSize

Policy::MaxFileSize

Policy::MaxData

Policy::MaxNumFiles

Policy::MaxPinDuration

AccessControlBase::Rule

Storage Element

SizeTotal

SizeFree

Architecture

InformationServiceURL

ControlProtocol::Endpoint

ControlProtocol::Type

ControlProtocol::Version

ControlProtocol::Capability

AccessProtocol::Endpoint

AccessProtocol::Type

AccessProtocol::Version

AccessProtocol::Capability

Storage Device

Name

Type

Size

TransferRate

Storage Partition

Name

Size

ReadRate

WriteRate

File System

AvailableSpace

ReadOnly

A.7 Summary of CDDLM State Machine and API 201

A.7 Summary of CDDLM State Machine and API

create() -> Instantiated

initialize() -> Initialized

run() -> Running

[fault] -> Failed

terminate() -> Terminated

destroy() -> Destroyed

AddFile()

Initialize()

Resolve()

Ping()

Run()

Terminate()

Create()

Resolve()

LookupSystem()

Appendix B

Grid Resource Description

Language

The examples of GRDL presented in this work have been done in XML. Nothing

in the GRDL model pre-supposes the use of XML as a representational language,

however it does provide the benefit of a widely supported and extensible meta-syntax

with which to construct GRDL. This appendix defines the XML Schema for GRDL

which gives both a description of GRDL and a mechanism by which GRDL may

be validated. For simplicity, the base GRDL language does not make use of XML

Namespaces, however these are easily applied by including the null namespaced

schema in a wrapping schema with a namespace. The namespace chosen for this

version of GRDL is urn:cern-ch:grid:GRDL:2006:1.0. A DTD definition is also

provided, however this defines a more limited subset of GRDL and provides a lower

level of syntactic validation.

B.1 GRDL Property and Type List Schema

Listing B.1: The no-namespaced GRDL schema GRDL-noNS-PropertyTypes-

v1.0.xsd. This provides the base types for the dimension definitions.

<x s : s chema xm ln s : x s=” h t t p : //www.w3 . org /2001/XMLSchema”>

<xs :complexType name=” Ch a r a c t e r i s t i cT yp e ”>

<x s : s imp l eCon t e n t>

<x s : e x t e n s i o n base=” x s : s t r i n g ”>

<x s : a t t r i b u t e name=” type ” type=” TypeL i s t ”/>

</ x s : e x t e n s i o n>

</ x s : s imp l eCon t e n t>

</ xs :complexType>

202

B.1 GRDL Property and Type List Schema 203

<xs :complexType name=”RequirementType ”>

<x s : s imp l eCon t e n t>

<x s : e x t e n s i o n base=” Ch a r a c t e r i s t i cT yp e ”>

<x s : a t t r i b u t e name=”match” type=”MatchLi s t ” d e f a u l t=”==”/>

</ x s : e x t e n s i o n>

</ x s : s imp l eCon t e n t>

</ xs :complexType>

<xs :complexType name=” Pre f e r enceType ”>

<x s : s imp l eCon t e n t>

<x s : e x t e n s i o n base=” Ch a r a c t e r i s t i cT yp e ”>

<x s : a t t r i b u t e name=”match” type=” RankL i s t ” d e f a u l t=”==”/>

<x s : a t t r i b u t e name=” rank ” type=” x s : f l o a t ” d e f a u l t=”1”/>

</ x s : e x t e n s i o n>

</ x s : s imp l eCon t e n t>

</ xs :complexType>

<xs :complexType name=” Charac te r i s t i cNoTypeType ”>

<x s : s imp l eCon t e n t>

<x s : e x t e n s i o n base=” x s : s t r i n g ”/>

</ x s : s imp l eCon t e n t>

</ xs :complexType>

<xs :complexType name=”RequirementNoTypeType ”>

<x s : s imp l eCon t e n t>

<x s : e x t e n s i o n base=” Charac te r i s t i cNoTypeType ”>

<x s : a t t r i b u t e name=”match” type=”MatchLi s t ” d e f a u l t=”==”/>

</ x s : e x t e n s i o n>

</ x s : s imp l eCon t e n t>

</ xs :complexType>

<xs :complexType name=”PreferenceNoTypeType ”>

<x s : s imp l eCon t e n t>

<x s : e x t e n s i o n base=” Charac te r i s t i cNoTypeType ”>

<x s : a t t r i b u t e name=”match” type=” RankL i s t ” d e f a u l t=”==”/>

<x s : a t t r i b u t e name=” rank ” type=” x s : f l o a t ” d e f a u l t=”1”/>

</ x s : e x t e n s i o n>

</ x s : s imp l eCon t e n t>

</ xs :complexType>

<xs :complexType name=” Ch a r a c t e r i s t i c I n t T y p e ”>

<x s : s imp l eCon t e n t>

<x s : e x t e n s i o n base=” x s : i n t e g e r ”>

<x s : a t t r i b u t e name=” type ” type=” TypeL i s t ”/>

</ x s : e x t e n s i o n>

</ x s : s imp l eCon t e n t>

</ xs :complexType>

<xs :complexType name=”Requi rement In tType ”>

<x s : s imp l eCon t e n t>

<x s : e x t e n s i o n base=” Ch a r a c t e r i s t i c I n t T y p e ”>

<x s : a t t r i b u t e name=”match” type=”MatchLi s t ” d e f a u l t=”==”/>

</ x s : e x t e n s i o n>

B.1 GRDL Property and Type List Schema 204

</ x s : s imp l eCon t e n t>

</ xs :complexType>

<xs :complexType name=” Pr e f e r enc e I n tType ”>

<x s : s imp l eCon t e n t>

<x s : e x t e n s i o n base=” Ch a r a c t e r i s t i c I n t T y p e ”>

<x s : a t t r i b u t e name=”match” type=” RankL i s t ” d e f a u l t=”==”/>

<x s : a t t r i b u t e name=” rank ” type=” x s : f l o a t ” d e f a u l t=”1”/>

</ x s : e x t e n s i o n>

</ x s : s imp l eCon t e n t>

</ xs :complexType>

<xs :complexType name=” Cha r a c t e r i s t i cNonNeg I n tType”>

<x s : s imp l eCon t e n t>

<x s : e x t e n s i o n base=” x s : n o nN eg a t i v e I n t e g e r ”>

<x s : a t t r i b u t e name=” type ” type=” TypeL i s t ”/>

</ x s : e x t e n s i o n>

</ x s : s imp l eCon t e n t>

</ xs :complexType>

<xs :complexType name=”RequirementNonNegIntType ”>

<x s : s imp l eCon t e n t>

<x s : e x t e n s i o n base=” Cha r a c t e r i s t i cNonNeg I n tType”>

<x s : a t t r i b u t e name=”match” type=”MatchLi s t ” d e f a u l t=”==”/>

</ x s : e x t e n s i o n>

</ x s : s imp l eCon t e n t>

</ xs :complexType>

<xs :complexType name=”PreferenceNonNegIntType ”>

<x s : s imp l eCon t e n t>

<x s : e x t e n s i o n base=” Cha r a c t e r i s t i cNonNeg I n tType”>

<x s : a t t r i b u t e name=”match” type=” RankL i s t ” d e f a u l t=”==”/>

<x s : a t t r i b u t e name=” rank ” type=” x s : f l o a t ” d e f a u l t=”1”/>

</ x s : e x t e n s i o n>

</ x s : s imp l eCon t e n t>

</ xs :complexType>

<xs :complexType name=” Ch a r a c t e r i s t i c F l o a tT yp e ”>

<x s : s imp l eCon t e n t>

<x s : e x t e n s i o n base=” x s : f l o a t ”>

<x s : a t t r i b u t e name=” type ” type=” TypeL i s t ”/>

</ x s : e x t e n s i o n>

</ x s : s imp l eCon t e n t>

</ xs :complexType>

<xs :complexType name=”Requi rementF loatType ”>

<x s : s imp l eCon t e n t>

<x s : e x t e n s i o n base=” C ha r a c t e r i s t i c F l o a tT y p e ”>

<x s : a t t r i b u t e name=”match” type=”MatchLi s t ” d e f a u l t=”==”/>

</ x s : e x t e n s i o n>

</ x s : s imp l eCon t e n t>

</ xs :complexType>

<xs :complexType name=” Pr e f e r enc eF l o a tType ”>

<x s : s imp l eCon t e n t>

B.1 GRDL Property and Type List Schema 205

<x s : e x t e n s i o n base=” C ha r a c t e r i s t i c F l o a tT y p e ”>

<x s : a t t r i b u t e name=”match” type=” RankL i s t ” d e f a u l t=”==”/>

<x s : a t t r i b u t e name=” rank ” type=” x s : f l o a t ” d e f a u l t=”1”/>

</ x s : e x t e n s i o n>

</ x s : s imp l eCon t e n t>

</ xs :complexType>

<xs :complexType name=” Charac te r i s t i cT ime s t ampType ”>

<x s : s imp l eCon t e n t>

<x s : e x t e n s i o n base=” x s : da teT ime ”>

<x s : a t t r i b u t e name=” type ” type=” TypeL i s t ”/>

</ x s : e x t e n s i o n>

</ x s : s imp l eCon t e n t>

</ xs :complexType>

<xs :complexType name=”RequirementTimestampType”>

<x s : s imp l eCon t e n t>

<x s : e x t e n s i o n base=” Charac te r i s t i cT imes tampType ”>

<x s : a t t r i b u t e name=”match” type=”MatchLi s t ” d e f a u l t=”==”/>

</ x s : e x t e n s i o n>

</ x s : s imp l eCon t e n t>

</ xs :complexType>

<xs :complexType name=”PreferenceTimestampType”>

<x s : s imp l eCon t e n t>

<x s : e x t e n s i o n base=” Charac te r i s t i cT imes tampType ”>

<x s : a t t r i b u t e name=”match” type=” RankL i s t ” d e f a u l t=”==”/>

<x s : a t t r i b u t e name=” rank ” type=” x s : f l o a t ” d e f a u l t=”1”/>

</ x s : e x t e n s i o n>

</ x s : s imp l eCon t e n t>

</ xs :complexType>

<xs :complexType name=” Cha r a c t e r i s t i cT imeType ”>

<x s : s imp l eCon t e n t>

<x s : e x t e n s i o n base=” x s : n o nN eg a t i v e I n t e g e r ”>

<x s : a t t r i b u t e name=” type ” type=”TimeTypeLi s t”/>

</ x s : e x t e n s i o n>

</ x s : s imp l eCon t e n t>

</ xs :complexType>

<xs :complexType name=”RequirementTimeType”>

<x s : s imp l eCon t e n t>

<x s : e x t e n s i o n base=” Cha r a c t e r i s t i cT imeType ”>

<x s : a t t r i b u t e name=”match” type=”MatchLi s t ” d e f a u l t=”==”/>

</ x s : e x t e n s i o n>

</ x s : s imp l eCon t e n t>

</ xs :complexType>

<xs :complexType name=”PreferenceTimeType ”>

<x s : s imp l eCon t e n t>

<x s : e x t e n s i o n base=” Cha r a c t e r i s t i cT imeType ”>

<x s : a t t r i b u t e name=”match” type=” RankL i s t ” d e f a u l t=”==”/>

<x s : a t t r i b u t e name=” rank ” type=” x s : f l o a t ” d e f a u l t=”1”/>

</ x s : e x t e n s i o n>

</ x s : s imp l eCon t e n t>

B.1 GRDL Property and Type List Schema 206

</ xs :complexType>

<xs :complexType name=” Cha r a c t e r i s t i cM e t r i cT y p e ”>

<x s : s imp l eCon t e n t>

<x s : e x t e n s i o n base=” x s : n o nN eg a t i v e I n t e g e r ”>

<x s : a t t r i b u t e name=” type ” type=” Met r i cTypeL i s t ”/>

</ x s : e x t e n s i o n>

</ x s : s imp l eCon t e n t>

</ xs :complexType>

<xs :complexType name=”Requi rementMetr i cType ”>

<x s : s imp l eCon t e n t>

<x s : e x t e n s i o n base=” Cha r a c t e r i s t i cM e t r i cT y p e ”>

<x s : a t t r i b u t e name=”match” type=”MatchLi s t ” d e f a u l t=”==”/>

</ x s : e x t e n s i o n>

</ x s : s imp l eCon t e n t>

</ xs :complexType>

<xs :complexType name=” Pre f e r enc eMet r i cType ”>

<x s : s imp l eCon t e n t>

<x s : e x t e n s i o n base=” Cha r a c t e r i s t i cM e t r i cT y p e ”>

<x s : a t t r i b u t e name=”match” type=” RankL i s t ” d e f a u l t=”==”/>

<x s : a t t r i b u t e name=” rank ” type=” x s : f l o a t ” d e f a u l t=”1”/>

</ x s : e x t e n s i o n>

</ x s : s imp l eCon t e n t>

</ xs :complexType>

<xs :complexType name=” Cha r a c t e r i s t i c F r e q u e nc yType ”>

<x s : s imp l eCon t e n t>

<x s : e x t e n s i o n base=” x s : n o nN eg a t i v e I n t e g e r ”>

<x s : a t t r i b u t e name=” type ” type=”FrequencyTypeL i s t ”/>

</ x s : e x t e n s i o n>

</ x s : s imp l eCon t e n t>

</ xs :complexType>

<xs :complexType name=”Requi rementFrequencyType ”>

<x s : s imp l eCon t e n t>

<x s : e x t e n s i o n base=” Cha r a c t e r i s t i c F r e q u e nc yType ”>

<x s : a t t r i b u t e name=”match” type=”MatchLi s t ” d e f a u l t=”==”/>

</ x s : e x t e n s i o n>

</ x s : s imp l eCon t e n t>

</ xs :complexType>

<xs :complexType name=” Pre f e r enceFrequencyType ”>

<x s : s imp l eCon t e n t>

<x s : e x t e n s i o n base=” Cha r a c t e r i s t i c F r e q u e nc yType ”>

<x s : a t t r i b u t e name=”match” type=” RankL i s t ” d e f a u l t=”==”/>

<x s : a t t r i b u t e name=” rank ” type=” x s : f l o a t ” d e f a u l t=”1”/>

</ x s : e x t e n s i o n>

</ x s : s imp l eCon t e n t>

</ xs :complexType>

<xs :complexType name=” Cha r a c t e r i s t i cB i n a r yT y p e ”>

<x s : s imp l eCon t e n t>

<x s : e x t e n s i o n base=” x s : n o nN eg a t i v e I n t e g e r ”>

B.1 GRDL Property and Type List Schema 207

<x s : a t t r i b u t e name=” type ” type=” B i na r yTypeL i s t ”/>

</ x s : e x t e n s i o n>

</ x s : s imp l eCon t e n t>

</ xs :complexType>

<xs :complexType name=”Requi rementBinaryType ”>

<x s : s imp l eCon t e n t>

<x s : e x t e n s i o n base=” Cha r a c t e r i s t i cB i n a r yT y p e ”>

<x s : a t t r i b u t e name=”match” type=”MatchLi s t ” d e f a u l t=”==”/>

</ x s : e x t e n s i o n>

</ x s : s imp l eCon t e n t>

</ xs :complexType>

<xs :complexType name=” Pre f e r enc eB ina ryType ”>

<x s : s imp l eCon t e n t>

<x s : e x t e n s i o n base=” Cha r a c t e r i s t i cB i n a r yT y p e ”>

<x s : a t t r i b u t e name=”match” type=” RankL i s t ” d e f a u l t=”==”/>

<x s : a t t r i b u t e name=” rank ” type=” x s : f l o a t ” d e f a u l t=”1”/>

</ x s : e x t e n s i o n>

</ x s : s imp l eCon t e n t>

</ xs :complexType>

<xs :complexType name=” Ch a r a c t e r i s t i cT r a n s f e rT y p e ”>

<x s : s imp l eCon t e n t>

<x s : e x t e n s i o n base=” x s : n o nN eg a t i v e I n t e g e r ”>

<x s : a t t r i b u t e name=” type ” type=” Tran s f e rTypeL i s t ”/>

</ x s : e x t e n s i o n>

</ x s : s imp l eCon t e n t>

</ xs :complexType>

<xs :complexType name=” Requ i r ementTrans f e rType”>

<x s : s imp l eCon t e n t>

<x s : e x t e n s i o n base=” Ch a r a c t e r i s t i cT r a n s f e r T y p e ”>

<x s : a t t r i b u t e name=”match” type=”MatchLi s t ” d e f a u l t=”==”/>

</ x s : e x t e n s i o n>

</ x s : s imp l eCon t e n t>

</ xs :complexType>

<xs :complexType name=” Pr e f e r enc eT r an s f e rType ”>

<x s : s imp l eCon t e n t>

<x s : e x t e n s i o n base=” Ch a r a c t e r i s t i cT r a n s f e r T y p e ”>

<x s : a t t r i b u t e name=”match” type=” RankL i s t ” d e f a u l t=”==”/>

<x s : a t t r i b u t e name=” rank ” type=” x s : f l o a t ” d e f a u l t=”1”/>

</ x s : e x t e n s i o n>

</ x s : s imp l eCon t e n t>

</ xs :complexType>

<x s : s imp l eType name=” TypeL i s t ”>

<x s : u n i o n memberTypes=”TimeTypeLi s t Me t r i cTypeL i s t

B i na r yTypeL i s t T r an s f e rTypeL i s t

F requencyTypeL i s t TimestampTypeLis t ”/>

</ x s : s imp l eType>

<x s : s imp l eType name=”TimestampTypeLis t ”>

B.1 GRDL Property and Type List Schema 208

< x s : r e s t r i c t i o n base=” x s : da teT ime ”/>

</ x s : s imp l eType>

<x s : s imp l eType name=”TimeTypeLi s t”>

< x s : r e s t r i c t i o n base=” x s : s t r i n g ”>

<x s : enume r a t i on v a l u e=” f s ”/>

<x s : enume r a t i on v a l u e=”ps ”/>

<x s : enume r a t i on v a l u e=”ns ”/>

<x s : enume r a t i on v a l u e=”us ”/>

<x s : enume r a t i on v a l u e=”ms”/>

<x s : enume r a t i on v a l u e=” s ”/>

<x s : enume r a t i on v a l u e=” sec ”/>

<x s : enume r a t i on v a l u e=” second ”/>

<x s : enume r a t i on v a l u e=”min”/>

<x s : enume r a t i on v a l u e=”minute ”/>

<x s : enume r a t i on v a l u e=”h”/>

<x s : enume r a t i on v a l u e=” hr ”/>

<x s : enume r a t i on v a l u e=”hour ”/>

<x s : enume r a t i on v a l u e=”d”/>

<x s : enume r a t i on v a l u e=”day ”/>

<x s : enume r a t i on v a l u e=”wk”/>

<x s : enume r a t i on v a l u e=”week”/>

<x s : enume r a t i on v a l u e=”mon”/>

<x s : enume r a t i on v a l u e=”month”/>

<x s : enume r a t i on v a l u e=” y r ”/>

<x s : enume r a t i on v a l u e=” yea r ”/>

</ x s : r e s t r i c t i o n>

</ x s : s imp l eType>

<x s : s imp l eType name=” Met r i cTypeL i s t ”>

< x s : r e s t r i c t i o n base=” x s : s t r i n g ”>

<x s : enume r a t i on v a l u e=” f ”/>

<x s : enume r a t i on v a l u e=”p”/>

<x s : enume r a t i on v a l u e=”n”/>

<x s : enume r a t i on v a l u e=”u”/>

<x s : enume r a t i on v a l u e=”m”/>

<x s : enume r a t i on v a l u e=”K”/>

<x s : enume r a t i on v a l u e=”M”/>

<x s : enume r a t i on v a l u e=”G”/>

<x s : enume r a t i on v a l u e=”T”/>

<x s : enume r a t i on v a l u e=”P”/>

</ x s : r e s t r i c t i o n>

</ x s : s imp l eType>

<x s : s imp l eType name=” FrequencyTypeL i s t ”>

< x s : r e s t r i c t i o n base=” x s : s t r i n g ”>

<x s : enume r a t i on v a l u e=”Hz”/>

<x s : enume r a t i on v a l u e=”KHz”/>

<x s : enume r a t i on v a l u e=”MHz”/>

<x s : enume r a t i on v a l u e=”GHz”/>

<x s : enume r a t i on v a l u e=”THz”/>

</ x s : r e s t r i c t i o n>

</ x s : s imp l eType>

<x s : s imp l eType name=” B i na r yTypeL i s t ”>

B.2 GRDL Dimensions Schema 209

< x s : r e s t r i c t i o n base=” x s : s t r i n g ”>

<x s : enume r a t i on v a l u e=”B”/>

<x s : enume r a t i on v a l u e=”KB”/>

<x s : enume r a t i on v a l u e=”MB”/>

<x s : enume r a t i on v a l u e=”GB”/>

<x s : enume r a t i on v a l u e=”TB”/>

<x s : enume r a t i on v a l u e=”PB”/>

</ x s : r e s t r i c t i o n>

</ x s : s imp l eType>

<x s : s imp l eType name=” Tran s f e rTypeL i s t ”>

< x s : r e s t r i c t i o n base=” x s : s t r i n g ”>

<x s : enume r a t i on v a l u e=”Kb/ s ”/>

<x s : enume r a t i on v a l u e=”Mb/ s ”/>

<x s : enume r a t i on v a l u e=”Gb/ s ”/>

<x s : enume r a t i on v a l u e=”Tb/ s ”/>

<x s : enume r a t i on v a l u e=”Pb/ s ”/>

</ x s : r e s t r i c t i o n>

</ x s : s imp l eType>

<x s : s imp l eType name=”MatchLi s t ”>

< x s : r e s t r i c t i o n base=” x s : s t r i n g ”>

<x s : enume r a t i on v a l u e=”==”/>

<x s : enume r a t i on v a l u e=”!=”/>

<x s : enume r a t i on v a l u e=”>”/>

<x s : enume r a t i on v a l u e=”&l t ; ”/>

<x s : enume r a t i on v a l u e=”>=”/>

<x s : enume r a t i on v a l u e=”&l t ;=”/>

</ x s : r e s t r i c t i o n>

</ x s : s imp l eType>

<x s : s imp l eType name=”RankL i s t ”>

<x s : u n i o n memberTypes=”MatchLi s t RankD i s t a nc eL i s t ”/>

</ x s : s imp l eType>

<x s : s imp l eType name=” RankD i s t a nc eL i s t ”>

< x s : r e s t r i c t i o n base=” x s : s t r i n g ”>

<x s : enume r a t i on v a l u e=”> ;& l t ; ”/>

<x s : enume r a t i on v a l u e=”&l t ;& gt ; ”/>

</ x s : r e s t r i c t i o n>

</ x s : s imp l eType>

</ x s : s chema>

B.2 GRDL Dimensions Schema

Listing B.2: The no-namespaced GRDL schema GRDL-noNS-Dimensions-v1.0.xsd.

This defines the dimensions which are understood. Every dimension

has three definitions one for each of Characteristics Requirements and

Preferences.

<x s : s chema xm ln s : x s=” h t t p : //www.w3 . org /2001/XMLSchema”>

B.2 GRDL Dimensions Schema 210

<x s : i n c l u d e schemaLocat ion=”GRDL−noNS−PropertyTypes−v1 . 0 . x sd”/>

<xs :complexType name=” A l l C h a r a c t e r i s t i c s ”>

<x s : c h o i c e minOccurs=”0” maxOccurs=”unbounded ”>

<!−− S e l e c t e d GLUE Schema P r o p e r t i e s −−>

<x s : e l emen t name=” La t i t ude ” type=” Ch a r a c t e r i s t i c F l o a tT yp e ”/>

<x s : e l emen t name=” Long i tude ” type=” C ha r a c t e r i s t i c F l o a tT y p e ”/>

<x s : e l emen t name=”TotalCPUs” type=” Ch a r a c t e r i s t i c I n t T y p e ”/>

<x s : e l emen t name=”StartTime ” type=” Cha r a c t e r i s t i cT imeType ”/>

<x s : e l emen t name=” Sta tus ” type=” Ch a r a c t e r i s t i cT yp e ”/>

<x s : e l emen t name=” De s c r i p t i o n ” type=” Cha r a c t e r i s t i cT y p e ”/>

<x s : e l emen t name=”Contact ” type=” C ha r a c t e r i s t i c T y p e ”/>

<x s : e l emen t name=”Load” type=” Ch a r a c t e r i s t i c F l o a tT y p e ”/>

<x s : e l emen t name=”Benchmark ” type=” C ha r a c t e r i s t i c F l o a tT y p e ”/>

<x s : e l emen t name=” Acce s sP r o to co l ” type=” Ch a r a c t e r i s t i cT y p e ”/>

<!−− S e l e c t e d JSDL P r o p e r t i e s −−>

<x s : e l emen t name=”Name” type=” C ha r a c t e r i s t i c T y p e ”/>

<x s : e l emen t name=” P r o j e c t ” type=” C ha r a c t e r i s t i c T y p e ”/>

<x s : e l emen t name=” Ex ecu tab l e ” type=” C ha r a c t e r i s t i c T y p e ”/>

<x s : e l emen t name=”Argument ” type=” Cha r a c t e r i s t i cT y p e ”/>

<x s : e l emen t name=”Wal lTimeLimit ” type=” Cha r a c t e r i s t i cT imeType ”/>

<x s : e l emen t name=”CPUTimeLimit” type=” Cha r a c t e r i s t i cT imeType ”/>

<x s : e l emen t name=” F i l e S i z e L i m i t ” type=” Cha r a c t e r i s t i cB i n a r yT y p e ”/>

<x s : e l emen t name=” Vi r tua lMemoryL im i t ” type=” Cha r a c t e r i s t i cB i n a r yT y p e ”/>

<x s : e l emen t name=” CPUArchi tec tu re ” type=” Ch a r a c t e r i s t i cT yp e ”/>

<x s : e l emen t name=” Ex c l u s i v eE x e c u t i o n ” type=” Ch a r a c t e r i s t i c T yp e ”/>

<x s : e l emen t name=” Ind i v i dua lCPUCount” type=” C h a r a c t e r i s t i c I n t T y p e ”/>

<x s : e l emen t name=”TotalCPUCount ” type=” C h a r a c t e r i s t i c I n t T y p e ”/>

<x s : e l emen t name=” Ind i v i dua lCPUSpeed ” type=” Cha r a c t e r i s t i cF r eq u e n cyTyp e ”/>

<x s : e l emen t name=” Indiv idua lCPUTime ” type=” Cha r a c t e r i s t i cT imeType ”/>

<x s : e l emen t name=”TotalCPUTime ” type=” Cha r a c t e r i s t i cT imeType ”/>

<x s : e l emen t name=” I n d i v i d u a lD i s k S p a c e ” type=” Cha r a c t e r i s t i cB i n a r yT y p e ”/>

<x s : e l emen t name=” Tota lD i skSpace ” type=” Cha r a c t e r i s t i cB i n a r yT y p e ”/>

<!−− S e l e c t e d xRSL P r o p e r t i e s −−>

<x s : e l emen t name=” d i s k ” type=” Cha r a c t e r i s t i cB i n a r yT y p e ”/>

<x s : e l emen t name=”cpuTime” type=” Cha r a c t e r i s t i cT imeType ”/>

<x s : e l emen t name=” gr idTime ” type=” Cha r a c t e r i s t i cT imeType ”/>

<x s : e l emen t name=” hostCount ” type=” Ch a r a c t e r i s t i c I n t T y p e ”/>

<x s : e l emen t name=” count ” type=” C h a r a c t e r i s t i c I n t T y p e ”/>

<x s : e l emen t name=”maxWallTime” type=” Cha r a c t e r i s t i cT imeType ”/>

<x s : e l emen t name=”maxCpuTime” type=” Cha r a c t e r i s t i cT imeType ”/>

<x s : e l emen t name=” a r c h i t e c t u r e ” type=” Ch a r a c t e r i s t i cT yp e ”/>

<x s : e l emen t name=” l i f e t i m e ” type=” Cha r a c t e r i s t i cT imeType ”/>

<x s : e l emen t name=”memory” type=” Cha r a c t e r i s t i cB i n a r yT y p e ”/>

<x s : e l emen t name=”maxMemory” type=” Cha r a c t e r i s t i cB i n a r yT y p e ”/>

<x s : e l emen t name=”minMemory” type=” Cha r a c t e r i s t i cB i n a r yT y p e ”/>

<!−− S e l e c t e d JDL P r o p e r t i e s −−>

<x s : e l emen t name=” Std Input ” type=” Cha r a c t e r i s t i cT y p e ”/>

<x s : e l emen t name=”StdOutput ” type=” Ch a r a c t e r i s t i cT yp e ”/>

<x s : e l emen t name=”JobType ” type=” C ha r a c t e r i s t i c T y p e ”/>

<x s : e l emen t name=” InputSandbox ” type=” Ch a r a c t e r i s t i cT yp e ”/>

<x s : e l emen t name=”OutputSandbox ” type=” Cha r a c t e r i s t i c T y p e ”/>

<x s : e l emen t name=”Expi ryTime” type=” Cha r a c t e r i s t i cT imeType ”/>

<x s : e l emen t name=”Env i ronment ” type=” Cha r a c t e r i s t i cT y p e ”/>

<x s : e l emen t name=” DataAcces sProtoco l ” type=” Ch a r a c t e r i s t i c T yp e ”/>

B.2 GRDL Dimensions Schema 211

<x s : e l emen t name=”OutputSE ” type=” Cha r a c t e r i s t i cT y p e ”/>

<x s : e l emen t name=” V i r t u a lO r g a n i s a t i o n ” type=” Cha r a c t e r i s t i c T y p e ”/>

</ x s : c h o i c e>

</ xs :complexType>

<xs :complexType name=” A l lR equ i r emen t s ”>

<x s : c h o i c e minOccurs=”0” maxOccurs=”unbounded ”>

<!−− S e l e c t e d GLUE Schema P r o p e r t i e s −−>

<x s : e l emen t name=” La t i t ude ” type=”Requi rementF loatType ”/>

<x s : e l emen t name=” Long i tude ” type=”Requi rementFloatType ”/>

<x s : e l emen t name=”TotalCPUs” type=” Requi rement In tType ”/>

<x s : e l emen t name=”StartTime ” type=”RequirementTimeType”/>

<x s : e l emen t name=” Sta tus ” type=”RequirementType ”/>

<x s : e l emen t name=” De s c r i p t i o n ” type=”RequirementType ”/>

<x s : e l emen t name=”Contact ” type=”RequirementType ”/>

<x s : e l emen t name=”Load” type=”Requi rementF loa tType ”/>

<x s : e l emen t name=”Benchmark ” type=”Requi rementFloatType ”/>

<x s : e l emen t name=” Acce s sP r o to co l ” type=”RequirementType ”/>

<!−− S e l e c t e d JSDL P r o p e r t i e s −−>

<x s : e l emen t name=”Name” type=”RequirementType ”/>

<x s : e l emen t name=” P r o j e c t ” type=”RequirementType ”/>

<x s : e l emen t name=” Ex ecu tab l e ” type=”RequirementType ”/>

<x s : e l emen t name=”Argument ” type=”RequirementType ”/>

<x s : e l emen t name=”Wal lTimeLimit ” type=”RequirementTimeType”/>

<x s : e l emen t name=”CPUTimeLimit” type=”RequirementTimeType”/>

<x s : e l emen t name=” F i l e S i z e L i m i t ” type=”Requi rementBinaryType ”/>

<x s : e l emen t name=” Vi r tua lMemoryL im i t ” type=”Requi rementBinaryType ”/>

<x s : e l emen t name=” CPUArchi tec tu re ” type=”RequirementType ”/>

<x s : e l emen t name=” Ex c l u s i v eE x e c u t i o n ” type=”RequirementType ”/>

<x s : e l emen t name=” Ind i v i dua lCPUCount” type=” Requi rement In tType ”/>

<x s : e l emen t name=”TotalCPUCount ” type=”Requi rement In tType ”/>

<x s : e l emen t name=” Ind i v i dua lCPUSpeed ” type=”Requi rementFrequencyType ”/>

<x s : e l emen t name=” Indiv idua lCPUTime ” type=”RequirementTimeType”/>

<x s : e l emen t name=”TotalCPUTime ” type=”RequirementTimeType”/>

<x s : e l emen t name=” I n d i v i d u a lD i s k S p a c e ” type=”Requi rementBinaryType ”/>

<x s : e l emen t name=” Tota lD i skSpace ” type=”Requi rementBinaryType ”/>

<!−− S e l e c t e d xRSL P r o p e r t i e s −−>

<x s : e l emen t name=” d i s k ” type=”Requi rementBinaryType ”/>

<x s : e l emen t name=”cpuTime” type=”RequirementTimeType”/>

<x s : e l emen t name=” gr idTime ” type=”RequirementTimeType”/>

<x s : e l emen t name=” hostCount ” type=” Requi rement In tType ”/>

<x s : e l emen t name=” count ” type=”Requi rement In tType ”/>

<x s : e l emen t name=”maxWallTime” type=”RequirementTimeType”/>

<x s : e l emen t name=”maxCpuTime” type=”RequirementTimeType”/>

<x s : e l emen t name=” a r c h i t e c t u r e ” type=”RequirementType ”/>

<x s : e l emen t name=” l i f e t i m e ” type=”RequirementTimeType”/>

<x s : e l emen t name=”memory” type=”Requi rementBinaryType ”/>

<x s : e l emen t name=”maxMemory” type=”Requi rementBinaryType ”/>

<x s : e l emen t name=”minMemory” type=”Requi rementBinaryType ”/>

<!−− S e l e c t e d JDL P r o p e r t i e s −−>

<x s : e l emen t name=” Std Input ” type=”RequirementType ”/>

<x s : e l emen t name=”StdOutput ” type=”RequirementType ”/>

<x s : e l emen t name=”JobType ” type=”RequirementType ”/>

<x s : e l emen t name=” InputSandbox ” type=”RequirementType ”/>

<x s : e l emen t name=”OutputSandbox ” type=”RequirementType ”/>

B.2 GRDL Dimensions Schema 212

<x s : e l emen t name=”Expi ryTime” type=”RequirementTimeType”/>

<x s : e l emen t name=”Env i ronment ” type=”RequirementType ”/>

<x s : e l emen t name=” DataAcces sProtoco l ” type=”RequirementType ”/>

<x s : e l emen t name=”OutputSE ” type=”RequirementType ”/>

<x s : e l emen t name=” V i r t u a lO r g a n i s a t i o n ” type=”RequirementType ”/>

</ x s : c h o i c e>

</ xs :complexType>

<xs :complexType name=” A l l P r e f e r e n c e s ”>

<x s : c h o i c e minOccurs=”0” maxOccurs=”unbounded ”>

<!−− S e l e c t e d GLUE Schema P r o p e r t i e s −−>

<x s : e l emen t name=” La t i t ude ” type=” Pr e f e r enc eF l o a tType ”/>

<x s : e l emen t name=” Long i tude ” type=” Pr e f e r enc eF l o a tType ”/>

<x s : e l emen t name=”TotalCPUs” type=” Pr e f e r enc e I n tType ”/>

<x s : e l emen t name=”StartTime ” type=”PreferenceTimeType ”/>

<x s : e l emen t name=” Sta tus ” type=” Pre f e r enceType ”/>

<x s : e l emen t name=” De s c r i p t i o n ” type=” Pre f e r enceType ”/>

<x s : e l emen t name=”Contact ” type=”Pre f e r enceType ”/>

<x s : e l emen t name=”Load” type=” Pr e f e r enc eF l o a tType ”/>

<x s : e l emen t name=”Benchmark ” type=” Pr e f e r enc eF l o a tType ”/>

<x s : e l emen t name=” Acce s sP r o to co l ” type=” Pre f e r enceType ”/>

<!−− S e l e c t e d JSDL P r o p e r t i e s −−>

<x s : e l emen t name=”Name” type=”Pre f e r enceType ”/>

<x s : e l emen t name=” P r o j e c t ” type=”Pre f e r enceType ”/>

<x s : e l emen t name=” Ex ecu tab l e ” type=” Pre f e r enceType ”/>

<x s : e l emen t name=”Argument ” type=” Pre f e r enceType ”/>

<x s : e l emen t name=”Wal lTimeLimit ” type=”PreferenceTimeType ”/>

<x s : e l emen t name=”CPUTimeLimit” type=”PreferenceTimeType ”/>

<x s : e l emen t name=” F i l e S i z e L i m i t ” type=” Pre f e r enceB ina r yType ”/>

<x s : e l emen t name=” Vi r tua lMemoryL im i t ” type=” Pre f e r enceB i na ryType ”/>

<x s : e l emen t name=” CPUArchi tec tu re ” type=” Pre f e r enceType ”/>

<x s : e l emen t name=” Ex c l u s i v eE x e c u t i o n ” type=” Pre f e r enceType ”/>

<x s : e l emen t name=” Ind i v i dua lCPUCount” type=” Pr e f e r enc e I n tType ”/>

<x s : e l emen t name=”TotalCPUCount ” type=” Pr e f e r enc e I n tType ”/>

<x s : e l emen t name=” Ind i v i dua lCPUSpeed ” type=” Pre f e r enceFrequencyType ”/>

<x s : e l emen t name=” Indiv idua lCPUTime ” type=”PreferenceTimeType ”/>

<x s : e l emen t name=”TotalCPUTime ” type=”PreferenceTimeType ”/>

<x s : e l emen t name=” I n d i v i d u a lD i s k S p a c e ” type=” Pre f e r enceB ina r yType ”/>

<x s : e l emen t name=” Tota lD i skSpace ” type=” Pre f e r enceB ina ryType ”/>

<!−− S e l e c t e d xRSL P r o p e r t i e s −−>

<x s : e l emen t name=” d i s k ” type=” Pre f e r enceB i na r yType ”/>

<x s : e l emen t name=”cpuTime” type=”PreferenceTimeType ”/>

<x s : e l emen t name=” gr idTime ” type=”PreferenceTimeType ”/>

<x s : e l emen t name=” hostCount ” type=” Pr e f e r enc e I n tType ”/>

<x s : e l emen t name=” count ” type=” Pr e f e r enc e I n tType ”/>

<x s : e l emen t name=”maxWallTime” type=”PreferenceTimeType ”/>

<x s : e l emen t name=”maxCpuTime” type=”PreferenceTimeType ”/>

<x s : e l emen t name=” a r c h i t e c t u r e ” type=” Pre f e r enceType ”/>

<x s : e l emen t name=” l i f e t i m e ” type=”PreferenceTimeType ”/>

<x s : e l emen t name=”memory” type=” Pre f e r enceB ina ryType ”/>

<x s : e l emen t name=”maxMemory” type=” Pre f e r enceB ina ryType ”/>

<x s : e l emen t name=”minMemory” type=” Pre f e r enceB ina ryType ”/>

<!−− S e l e c t e d JDL P r o p e r t i e s −−>

<x s : e l emen t name=” Std Input ” type=” Pre f e r enceType ”/>

<x s : e l emen t name=”StdOutput ” type=” Pre f e r enceType ”/>

B.3 GRDL Base Schema 213

<x s : e l emen t name=”JobType ” type=”Pre f e r enceType ”/>

<x s : e l emen t name=” InputSandbox ” type=” Pre f e r enceType ”/>

<x s : e l emen t name=”OutputSandbox ” type=” Pre f e r enceType ”/>

<x s : e l emen t name=”Expi ryTime” type=”PreferenceTimeType ”/>

<x s : e l emen t name=”Env i ronment ” type=” Pre f e r enceType ”/>

<x s : e l emen t name=” DataAcces sProtoco l ” type=” Pre f e r enceType ”/>

<x s : e l emen t name=”OutputSE ” type=” Pre f e r enceType ”/>

<x s : e l emen t name=” V i r t u a lO r g a n i s a t i o n ” type=” Pre f e r enceType ”/>

</ x s : c h o i c e>

</ xs :complexType>

</ x s : s chema>

B.3 GRDL Base Schema

Listing B.3: The no-namespaced GRDL schema GRDL-noNS-Base-v1.0.xsd. This

provides high level descriptions of resources.

<x s : s chema xm ln s : x s=” h t t p : //www.w3 . org /2001/XMLSchema”>

<x s : i n c l u d e schemaLocat ion=”GRDL−noNS−Dimensions−v1 . 0 . x sd”/>

<x s : e l emen t name=” r e s o u r c e ” type=”ResourceType ”/>

<x s : e l emen t name=” ta s k ” type=”ResourceType ”/>

<x s : e l emen t name=” ex e cu to r ” type=”ResourceType ”/>

<x s : e l emen t name=” s to r a g e ” type=”ResourceType ”/>

<xs :complexType name=”ResourceType ”>

<x s : c h o i c e minOccurs=”0” maxOccurs=”unbounded ”>

<x s : e l emen t name=” cha r s ” type=” A l l C h a r a c t e r i s t i c s ”/>

<x s : e l emen t name=” r eq s ” type=” A l lR equ i r emen t s ”/>

<x s : e l emen t name=” p r e f s ” type=” A l l P r e f e r e n c e s ”/>

</ x s : c h o i c e>

</ xs :complexType>

</ x s : s chema>

B.4 GRDL Namespace Wrapping Schema

Listing B.4: The wrapping schema which adds a namespace to GRDL GRDL-Base-

v1.0.xsd.

<x s : s chema xm ln s : x s=” h t t p : //www.w3 . org /2001/XMLSchema”

elementFormDefau l t=” q u a l i f i e d ” a t t r i bu t e F o rmDe f a u l t=” u n q u a l i f i e d ”

targetNamespace=” u rn : c e r n −ch : g r i d :GRDL:2006 : 1 . 0 ”

xmlns=” u rn : c e r n−ch : g r i d :GRDL:2006 : 1 . 0 ”

xm l n s : g r d l=” u rn : c e r n −ch : g r i d :GRDL:2006 : 1 . 0 ”

v e r s i o n=”2006 : 1 . 0 ” i d=”GRDL”>

<x s : i n c l u d e schemaLocat ion=”GRDL−noNS−Base−v1 . 0 . x sd”/>

B.5 GRDL DTD Schema 214

</ x s : s chema>

B.5 GRDL DTD Schema

Listing B.5: The GRDL-v1.0.dtd DTD for some of the JSDL dimensions expressed

as GRDL XML.

<!ELEMENT r e s o u r c e (cha r s ∗ , r e q s ∗ , p r e f s ∗) >

<!ELEMENT t a s k (cha r s ∗ , r e q s ∗ , p r e f s ∗) >

<!ELEMENT e x e cu to r (cha r s ∗ , r e q s ∗ , p r e f s ∗) >

<!ELEMENT cha r s (Ex e cu tab l e ∗ , Argument ∗ , Wal lTimeLimit ∗ , CPUTimeLimit ∗ ,

F i l e S i z e L i m i t ∗ , V i r tua lMemoryL im i t ∗ , CPUArchi tec tu re ∗) >

<!ELEMENT p r e f s (Ex e cu tab l e ∗ , Argument ∗ , Wal lTimeLimit ∗ , CPUTimeLimit ∗ ,

F i l e S i z e L i m i t ∗ , V i r tua lMemoryL im i t ∗ , CPUArchi tec tu re ∗) >

<!ELEMENT r e q s (Ex e cu tab l e ∗ , Argument ∗ , Wal lTimeLimit ∗ , CPUTimeLimit ∗ ,

F i l e S i z e L i m i t ∗ , V i r tua lMemoryL im i t ∗ , CPUArchi tec tu re ∗) >

<!ELEMENT Ex ecu tab l e (#PCDATA) >

<!ELEMENT Argument (#PCDATA) >

<!ELEMENT Wal lTimeLimit (#PCDATA) >

<!ELEMENT CPUTimeLimit (#PCDATA) >

<!ELEMENT F i l e S i z e L i m i t (#PCDATA) >

<!ELEMENT Vi r tua lMemoryL im i t (#PCDATA) >

<!ELEMENT CPUArchi tectu re (#PCDATA) >

<!ATTLIST Ex ecu tab l e

type CDATA #IMPLIED

match CDATA #IMPLIED

rank CDATA #IMPLIED

>

<!ATTLIST Argument

type CDATA #IMPLIED

match CDATA #IMPLIED

rank CDATA #IMPLIED

>

<!ATTLIST Wal lTimeLimit

type CDATA #IMPLIED

match CDATA #IMPLIED

rank CDATA #IMPLIED

>

<!ATTLIST CPUTimeLimit

type CDATA #IMPLIED

match CDATA #IMPLIED

rank CDATA #IMPLIED

>

<!ATTLIST F i l e S i z e L i m i t

type CDATA #IMPLIED

B.5 GRDL DTD Schema 215

match CDATA #IMPLIED

rank CDATA #IMPLIED

>

<!ATTLIST Vi r tua lMemoryL im i t

type CDATA #IMPLIED

match CDATA #IMPLIED

rank CDATA #IMPLIED

>

<!ATTLIST CPUArchi tectu re

type CDATA #IMPLIED

match CDATA #IMPLIED

rank CDATA #IMPLIED

>

Appendix C

Haskell Descriptions of the GRDL

Model and Operations

C.1 Core GRDL Components

Listing C.1: Characteristic Requirement Preference and Resource descriptions and

their accessor functions.

−−

−− Base Prope r ty Types

−−

type Dim = S t r i n g

type Type = S t r i n g −− a s e p a r a t e mapping f u n c t i o n maps

−− Type names to t r a n s f o rm f u n c t i o n s

type Va lue = Double −− f o r i l l u s t r a t i v e purposes ,

−− on l y ”Doubles ” a l l owed as Va lues

type Match = S t r i n g −− a s e p a r a t e mapping f u n c t i o n maps

−− Match names to match f u n c t i o n s

type Rank = Double

−−

−− C h a r a c t e r i s t i c Type and Opera t i ons

−−

type Ch = (Dim , Type , Va lue)

getChDim : : Ch −> Dim

getChType : : Ch −> Type

getChValue : : Ch −> Value

getChDim (d , t , v) = d

getChType (d , t , v) = t

getChValue (d , t , v) = v

−−

−− Requi rement Type and Opera t i ons

−−

type Req = (Dim , Type , Match , Va lue)

216

C.1 Core GRDL Components 217

getReqDim : : Req −> Dim

getReqType : : Req −> Type

getReqMatch : : Req −> Match

getReqValue : : Req −> Value

getReqDim (d , t ,m, v) = d

getReqType (d , t ,m, v) = t

getReqMatch (d , t ,m, v) = m

getReqValue (d , t ,m, v) = v

−−

−− Pr e f e r enc e Type and Opera t i on s

−−

type Pre f = (Dim , Type , Match , Value , Rank)

getPrefDim : : P re f −> Dim

getPre fType : : P re f −> Type

getPrefMatch : : P re f −> Match

ge tP r e fVa l u e : : P re f −> Value

getPrefRank : : P re f −> Rank

getPrefDim (d , t ,m, v , r) = d

getPre fType (d , t ,m, v , r) = t

getPrefMatch (d , t ,m, v , r) = m

ge tP r e fVa l u e (d , t ,m, v , r) = v

getPrefRank (d , t ,m, v , r) = r

−−

−− Resource Type and Opera t i ons

−−

type Resource = ([Ch] , [Req] , [P re f])

getResChSet : : Resource −> [Ch]

getResReqSet : : Resource −> [Req]

g e tR e sP r e f S e t : : Resource −> [P re f]

getResChSet (cs , r s , ps) = cs

getResReqSet (cs , r s , ps) = r s

g e tR e sP r e f S e t (cs , r s , ps) = ps

C.2 Dimension Functions 218

C.2 Dimension Functions

Listing C.2: Dimension operations.

−−

−− Dimension Func t i on s

−−

getResDims : : Resource −> Set Dim

getResDimsSet [] = empty

getResDimsSet (r e s : r e s s) = un ions [

getResDims re s ,

getResDimsSet r e s s

]

getResDims (chs , reqs , p r e f s) = un ions [

getChSetDims chs ,

getReqSetDims reqs ,

ge tPre fSe tD ims p r e f s

]

getChSetDims : : [Ch] −> Set Dim

getReqSetDims : : [Req] −> Set Dim

getPre fSe tD ims : : [P re f] −> Set Dim

f i l t e rChByDimSe t : : [Ch] −> Set Dim −> [Ch]

f i l t e rReqByDimSe t : : [Req] −> Set Dim −> [Req]

f i l t e r P r e f B yD imSe t : : [P re f] −> Set Dim −> [P re f]

f i l t e r C hR e s S u b s e t : : [Ch] −> Resource −> [Ch]

getChSetDims [] = empty

getChSetDims (c : c s) = i n s e r t (getChDim c) (getChSetDims cs)

getReqSetDims [] = empty

getReqSetDims (r : r s) = i n s e r t (getReqDim r) (getReqSetDims r s)

ge tPre fSe tD ims [] = empty

getPre fSe tD ims (p : p s) = i n s e r t (getPrefDim p) (getPre fSe tD ims ps)

f i l t e rChByDimSe t cs dimSet = [c | c <− cs , member (getChDim c) dimSet]

f i l t e rReqByDimSe t r s dimSet = [r | r <− r s , member (getReqDim r) dimSet]

f i l t e r P r e f B yD imSe t ps dimSet = [p | p <− ps , member (getPrefDim p) dimSet]

f i l t e r C hR e s S u b s e t c s r e s = f i l t e rChByDimSe t cs

(getChSetDims (getResChSet r e s))

C.3 Type Definitions and Mapping Functions

Listing C.3: Type definitions for GRDL Properties and mapping functions between

type names and type functions.

C.3 Type Definitions and Mapping Functions 219

−−

−− Proper ty Types and Compa r ab i l i t y

−−

type TypeConv = Value −> Value

type TypeMap = [(Type , TypeConv)]

u n i t : : TypeConv

un i t x = x

m f : : TypeConv

m p : : TypeConv

m n : : TypeConv

m u : : TypeConv

m m : : TypeConv

m K : : TypeConv

m base : : TypeConv

m M : : TypeConv

m G : : TypeConv

m T : : TypeConv

m P : : TypeConv

me t r i cUn i t s = [

” f ” , −− 1e−15,

”p” , −− 1e−12,

”n” , −− 1e−9,

”u” , −− 1e−6,

”m” , −− 1e−3,

” base ” , −− 1e0 ,

”K” , −− 1e3 ,

”M” , −− 1e6 ,

”G” , −− 1e9 ,

”T” , −− 1e12 ,

”P” −− 1e15

]

metricMap : : TypeMap

metricMap = [

(” f ” , m f) , −− 1e−15,

(”p” , m p) , −− 1e−12,

(”n” , m n) , −− 1e−9,

(”u” , m u) , −− 1e−6,

(”m” , m m) , −− 1e−3,

(” base ” , m base) , −− 1e0 ,

(”K” , m K) , −− 1e3 ,

(”M” , m M) , −− 1e6 ,

(”G” , m G) , −− 1e9 ,

(”T” , m T) , −− 1e12 ,

(”P” , m P) −− 1 e15

]

m f x = x ∗ 1e−15

m p x = x ∗ 1e−12

m n x = x ∗ 1e−9

m u x = x ∗ 1e−6

C.3 Type Definitions and Mapping Functions 220

m m x = x ∗ 1e−3

m base x = x ∗ 1e0

m K x = x ∗ 1e3

m M x = x ∗ 1e6

m G x = x ∗ 1e9

m T x = x ∗ 1e12

m P x = x ∗ 1e15

b B : : TypeConv

b KB : : TypeConv

b MB : : TypeConv

b GB : : TypeConv

b TB : : TypeConv

b PB : : TypeConv

b i n a r yUn i t s = [

”B” , −− 2∗∗0 ,

”KB” , −− 2∗∗10 ,

”MB” , −− 2∗∗20 ,

”GB” , −− 2∗∗30 ,

”TB” , −− 2∗∗40 ,

”PB” −− 2∗∗50

]

binaryMap : : TypeMap

binaryMap = [

(”B” , b B) , −− 2∗∗0 ,

(”KB” , b KB) , −− 2∗∗10 ,

(”MB” , b MB) , −− 2∗∗20 ,

(”GB” , b GB) , −− 2∗∗30 ,

(”TB” , b TB) , −− 2∗∗40 ,

(”PB” , b PB) −− 2∗∗50

]

b B x = x ∗ 2∗∗0

b KB x = x ∗ 2∗∗10

b MB x = x ∗ 2∗∗20

b GB x = x ∗ 2∗∗30

b TB x = x ∗ 2∗∗40

b PB x = x ∗ 2∗∗50

t n s : : TypeConv

t u s : : TypeConv

t ms : : TypeConv

t s : : TypeConv

t min : : TypeConv

t h : : TypeConv

t h r : : TypeConv

t hou r : : TypeConv

t d : : TypeConv

t da y : : TypeConv

t w : : TypeConv

t week : : TypeConv

t month : : TypeConv

t mon : : TypeConv

C.3 Type Definitions and Mapping Functions 221

t y r : : TypeConv

t y e a r : : TypeConv

t imeUn i t s = [

” ns ” , −− 1e−9,

” us ” , −− 1e−6,

”ms” , −− 1e−3,

” s ” , −− 1 ,

”min” , −− 60 ,

”h” , −− 60∗60 ,

” hr ” , −− 60∗60 ,

” hour ” , −− 60∗60 ,

”d” , −− 60∗60∗24 ,

”day ” , −− 60∗60∗24 ,

”w” , −− 60∗60∗24∗7 ,

”week” , −− 60∗60∗24∗7 ,

”month” , −− 60∗60∗24∗7∗30 ,

”mon” , −− 60∗60∗24∗7∗30 ,

” y r ” , −− 60∗60∗24∗365 ,

” yea r ” −− 60∗60∗24∗365

]

timeMap : : TypeMap

timeMap = [

(” ns ” , t n s) , −− 1e−9,

(” us ” , t u s) , −− 1e−6,

(”ms” , t ms) , −− 1e−3,

(” s ” , t s) , −− 1 ,

(”min” , t m in) , −− 60 ,

(”h” , t h) , −− 60∗60 ,

(” hr ” , t h r) , −− 60∗60 ,

(” hour ” , t hou r) , −− 60∗60 ,

(”d” , t d) , −− 60∗60∗24 ,

(”day” , t da y) , −− 60∗60∗24 ,

(”w” , t w) , −− 60∗60∗24∗7 ,

(”week” , t week) , −− 60∗60∗24∗7 ,

(”month” , t month) , −− 60∗60∗24∗7∗30 ,

(”mon” , t mon) , −− 60∗60∗24∗7∗30 ,

(” y r ” , t y r) , −− 60∗60∗24∗365 ,

(” yea r ” , t y e a r) −− 60∗60∗24∗365

]

t n s x = x ∗ 1e−9

t u s x = x ∗ 1e−6

t ms x = x ∗ 1e−3

t s x = x ∗ 1

t min x = x ∗ 60

t h x = x ∗ 60∗60

t h r x = x ∗ 60∗60

t hou r x = x ∗ 60∗60

t d x = x ∗ 60∗60∗24

t da y x = x ∗ 60∗60∗24

t w x = x ∗ 60∗60∗24∗7

t week x = x ∗ 60∗60∗24∗7

t month x = x ∗ 60∗60∗24∗7∗30

C.4 Boolean Operations 222

t mon x = x ∗ 60∗60∗24∗7∗30

t y r x = x ∗ 60∗60∗24∗365

t y e a r x = x ∗ 60∗60∗24∗365

s Hz : : TypeConv

s KHz : : TypeConv

s MHz : : TypeConv

s GHz : : TypeConv

s THz : : TypeConv

spe edUn i t s = [

”Hz” , −− 1e0 ,

”KHz” , −− 1e3 ,

”MHz” , −− 1e6 ,

”GHz” , −− 1e9 ,

”THz” −− 1e12 ,

]

speedMap : : TypeMap

speedMap = [

(”Hz” , s Hz) , −− 1e0 ,

(”KHz” , s KHz) , −− 1e3 ,

(”MHz” , s MHz) , −− 1e6 ,

(”GHz” , s GHz) , −− 1e9 ,

(”THz” , s THz) −− 1e12 ,

]

s Hz x = x ∗ 1e0

s KHz x = x ∗ 1e3

s MHz x = x ∗ 1e6

s GHz x = x ∗ 1e9

s THz x = x ∗ 1e12

typeMaps = [binaryMap , speedMap , timeMap , metricMap]

C.4 Boolean Operations

Listing C.4: Boolean operations.

−−

−− Boolean Compar i sons

−−

type Opera t i on = Value −> Value −> Bool

l t : : Opera t i on

gt : : Opera t i on

l t e : : Opera t i on

gte : : Opera t i on

eq : : Opera t i on

neq : : Opera t i on

t r u e : : Opera t i on

f a l s e : : Opera t i on

C.5 Basic Pairwise Comparator 223

l t x y = x < y

gt x y = x > y

l t e x y = x <= y

gte x y = x >= y

eq x y = x == y

neq x y = x /= y

t r u e x y = True

f a l s e x y = Fa l s e

C.5 Basic Pairwise Comparator

Listing C.5: Basic Pairwise Comparator.

−−

−− Bas i c P a i rw i s e Comparator

−−

type OperationMap = [(Match , Opera t i on)]

opMap : : OperationMap

opMap = [

(”LT” , l t) ,

(”GT” , gt) ,

(”LTE” , l t e) ,

(”GTE” , g te) ,

(”EQ” , eq) ,

(”NEQ” , neq) ,

(”TRUE” , t r u e) ,

(”FALSE” , f a l s e)

]

getOp : : Match −> Opera t i on

getOp m = head [op | (ma , op) <− opMap , ma == m]

bpc : : Ch −> Opera t i on −> Ch −> Bool

bpc ca op cb = ((getChDim ca) == (getChDim cb)) &&

((getChType ca) == (getChType cb)) &&

op (getChValue ca) (getChValue cb)

C.6 Type Transforming Pairwise Comparator

Listing C.6: Type Transforming Pairwise Comparator.

−−

−− Type Trans f o rm ing Pa i rw i s e Comparator

−−

t t p c : : Ch −> Opera t i on −> Ch −> Bool

t t p c ca op cb = (getChDim ca) == (getChDim cb)

&& isComparableType (getChType ca) (getChType cb)

&& op (getChBaseVa lue ca) (getChBaseVa lue cb)

getBaseType : : Type −> Type

C.7 Dimension and Type Transforming Pairwise Comparator 224

getBaseType t | member t (f r omL i s t s p e edUn i t s) = ” speed ”

| member t (f r omL i s t t imeUn i t s) = ” t ime ”

| member t (f r omL i s t b i n a r yUn i t s) = ” b i n a r y ”

| member t (f r omL i s t m e t r i cUn i t s) = ” met r i c ”

| True = ”unknown”

i sComparableType : : Type −> Type −> Bool

i sComparableType t1 t2 | t1 == t2 = True

| getBaseType t1 == ”unknown” = Fa l s e

| (getBaseType t1) == (getBaseType t2) = True

| True = Fa l s e

getChBaseVa lue : : Ch −> Value

getChBaseVa lue ch = getChBaseVa lue2 ch typeMaps

getChBaseVa lue2 : : Ch −> [TypeMap] −> Value

getChBaseVa lue2 ch [] = getChValue ch

getChBaseVa lue2 ch (tm:tms) | member (getChType ch)

(f r omL i s t [t | (t , t c) <− tm]) =

(typeConvFromMap (getChType ch) tm) (getChValue ch)

| True = getChBaseVa lue2 ch tms

typeConvFromMap : : Type −> [(Type , TypeConv)] −> TypeConv

typeConvFromMap t [] = un i t

typeConvFromMap t ((tm , tc) : tms) | t == tm = tc

| True = typeConvFromMap t tms

C.7 Dimension and Type Transforming Pairwise

Comparator

Listing C.7: Dimension and Type Transforming Pairwise Comparator.

−−

−− Dimension and Type Trans f o rm ing Pa i rw i s e Comparator

−−

−− Does not conv e r t t y pe s or v a l u e s based on d imens i ons

−− (a l though could , i n th eo r y)

−− Checks i f d imens i ons a re comparable

−− Conve r t s v a l u e s to a common base type i f p o s s i b l e

dt tpc : : Ch −> Opera t i on −> Ch −> Bool

dt tpc ca op cb = isComparableDim (getChDim ca) (getChDim cb) &&

isComparableType (getChType ca) (getChType cb) &&

op (getChBaseVa lue ca) (getChBaseVa lue cb)

−− The f o l l o w i n g a re s imp l y examples o f comparable d imens i on s e t s

s t o r a g eSe t = f r omL i s t [” pe rm sto rage ” , ” temp s to rage ” , ” d i s k s t o r a g e ” ,

” t a p e s t o r a g e ”]

benchmarkSet = f r omL i s t [”SI2K” , ”SPECInt2000 ” , ”BogoMIPS” , ”MIPS”]

t im i ngSe t = f r omL i s t [” wa l l t ime ” , ” cput ime ” , ” runt ime ”]

C.8 Example Comparators 225

co s tS e t = f r omL i s t [” co s t ”]

speedSet = f r omL i s t [” cpu speed ”]

ramSet = f r omL i s t [”ram” , ” ima g e s i z e ”]

comparableDimSets = [

s t o r a g eSe t ,

benchmarkSet ,

t im ingSet ,

cos tSet ,

speedSet ,

ramSet

]

isComparableDim : : Dim −> Dim −> Bool

isComparableDim d1 d2 = (d1 == d2)

| | i sComparableDim2 d1 d2 comparableDimSets

isComparableDim2 : : Dim −> Dim −> [Set Dim] −> Bool

isComparableDim2 d1 d2 [] = Fa l s e

isComparableDim2 d1 d2 (d s e t : d s e t s) = (member d1 d s e t && member d2 d s e t)

| | i sComparableDim2 d1 d2 d s e t s

C.8 Example Comparators

Listing C.8: Example comparators “equivalent” and “ordered”.

−−

−− Equ i v a l en t

−−

equ i v : : Ch −> Ch −> Bool

equ i v ca cb = dttpc ca (==) cb

−−

−− Ordered

−−

o rde r ed : : Ch −> Ch −> Bool

o r d e r ed ca cb = ca <= cb

C.9 Boolean Conversion

Listing C.9: Boolean Conversion.

−−

−− Boolean Conve r s i on

−−

−− I n t e r p r e t a s e t i n a boo l ean con t e x t .

−− Empty Set = Fa l s e

−− Non−Empty Set = True

C.10 Characteristic Subsets 226

boo l : : [a] −> Bool

boo l [] = Fa l s e

boo l (a : a s) = True

C.10 Characteristic Subsets

Listing C.10: Characteristic subsets and related functions.

−−

−− C h a r a c t e r i s t i c Subse t s

−−

chD im I n t e r s e c t : : [Ch] −> [Ch] −> [Ch]

chD im I n t e r s e c t chsA chsB = [ca | ca <− chsA , cb <− chsB ,

(getChDim ca) == (getChDim cb)]

c h I n t e r s e c t : : [Ch] −> [Ch] −> [Ch]

c h I n t e r s e c t chsA chsB = [ca | ca <− chsA , cb <− chsB , equ i v ca cb]

i sChSubse t : : [Ch] −> [Ch] −> Bool

i sChSubse t chsA chsB = (f r omL i s t chsA) == (f r omL i s t (c h I n t e r s e c t chsA chsB))

s ub s e t : : [Ch] −> [Ch] −> Bool

s ub s e t = i sChSubse t

r e s Ch I n t e r s e c t : : Resource −> Resource −> [Ch]

r e s Ch I n t e r s e c t (chsA , ,) (chsB , ,) = c h I n t e r s e c t chsA chsB

p a r t s u b s e t : : [Ch] −> [Ch] −> Bool

p a r t s u b s e t chsA chsB =

sub s e t (f i l t e rChByDimSe t chsA (getChSetDims chsB)) chsB

C.11 Requirement Subsets

Listing C.11: Requirement subsets and related functions.

−−

−− Requi rement Func t i on s

−−

reqToCh : : Req −> Ch

reqToCh (d , t ,m, v) = (d , t , v)

r e q u i v : : Req −> Req −> Bool

r e q u i v ra rb = (equ i v (reqToCh ra) (reqToCh rb))

&& ((getReqMatch ra) == (getReqMatch rb))

−−

−− Requi rement Subse t s

−−

r e qD im I n t e r s e c t : : [Req] −> [Req] −> [Req]

r eqD im I n t e r s e c t reqsA reqsB = [ra | r a <− reqsA , rb <− reqsB ,

(getReqDim rb) == (getReqDim rb)]

C.12 Resource Matching 227

r e q I n t e r s e c t : : [Req] −> [Req] −> [Req]

r e q I n t e r s e c t reqsA reqsB = [ra | r a <− reqsA , rb <− reqsB , r e q u i v ra rb]

i sChReqSubset : : Ch −> Req −> Bool

i sChReqSubset ca rb = dttpc ca (getOp (getReqMatch rb)) (reqToCh rb)

i sReqSubse t : : Req −> Req −> Bool

i sReqSubse t ra rb = (getReqMatch ra) == (getReqMatch rb)

&& isChReqSubset (reqToCh ra) rb

i sR eqSe tSub s e t : : [Req] −> [Req] −> Bool

i sR eqSe tSub s e t reqsA reqsB =

f r omL i s t [r a | r a <− reqsA , rb <− reqsB ,

(getReqDim ra) == (getReqDim rb) , i sReqSubse t ra rb]

== f r omL i s t reqsA

isReqSetRSSubse t : : [Req] −> [Req] −> Bool

i sReqSetRSSubse t reqsA reqsB =

i sSub s e tO f (getReqSetDims reqsB) (getReqSetDims reqsA)

&& f r omL i s t [r a | r a <− reqsA , rb <− reqsB ,

(getReqDim ra) == (getReqDim rb) , i sReqSubse t ra rb]

== f r omL i s t (f i l t e rReqByDimSe t reqsA (getReqSetDims reqsB)))

C.12 Resource Matching

Listing C.12: Resource matching and related functions.

−−

−− Resource Matching

−−

getMatchSet : : Resource −> Resource −> Set Ch

getMatchSet (csA , rsA , psA) (csB , [] , psB) = empty

getMatchSet (csA , rsA , psA) (csB , (rB : r sB) , psB) =

union (f r omL i s t [c | c <− csA , i sChReqSubset c rB])

(getMatchSet (csA , rsA , psA) (csB , rsB , psB))

ge tSa tSet : : Resource −> Resource −> Set Req

getSa tSet (csA , rsA , psA) (csB , [] , psB) = empty

getSa tSet (csA , rsA , psA) (csB , (rB : r sB) , psB) =

union (f r omL i s t [rB | c <− csA , i sChReqSubset c rB])

(ge tSa tSet (csA , rsA , psA) (csB , rsB , psB))

ge tUnsa tSet : : Resource −> Resource −> Set Req

getUnsa tSet resA resB = d i f f e r e n c e (f r omL i s t (getResReqSet resB))

(ge tSa tSet resA resB)

asymatch : : Resource −> Resource −> Bool

asymatch resA resB = (f r omL i s t (getResReqSet resB))

== (getSa tSet resA resB)

match : : Resource −> Resource −> Bool

C.13 Sorting by Ranked Preferences 228

match resA resB = asymatch resA resB && asymatch resB resA

pmatch : : Resource −> Resource −> Bool

pmatch resA (csB , rsB , psB) =

asymatch resA (csB , f i l t e rReqByDimSet rsB (getChSetDims csB) , psB)

peermatch : : [Resource] −> Bool

peermatch r e s s = and [match resA resB | resA <− r e s s ,

resB <− r e s s ,

resA /= resB]

C.13 Sorting by Ranked Preferences

Listing C.13: Sorting characteristic sets and resources by ranked preferences and

related functions.

−−

−− Pr e f e r enc e Func t i on s

−−

−− Qu i ck s o r t to s o r t a s e t o f C h a r a c t e r i s t i c s a c co r d i ng to a s o r t e d l i s t o f

−− p r e f e r e n c e s

−− NOTE: Doesn ’ t c o n s i d e r P r e f e r enc e . Value , and doesn ’ t behave p r o p e r l y f o r

−− Pr e f e r enc e . Match which i n c l u d e s ” e q u a l i t y ” (e . g . >=, <=, ==).

−− A r e a l sy stem needs one s o r t i n g a l go r i t hm per ”Match” op e r a t i o n .

chP r e f So r t : : [Ch] −> [P re f] −> [Ch]

chP r e f So r t [] [] = []

chP r e f So r t [] (p : p s) = []

chP r e f So r t (c : c s) [] = (c : c s)

chP r e f So r t (c : c s) (p : p s) =

chP r e f So r t [c f i r s t | c f i r s t <− cs ,

d t tpc c f i r s t (getOp (getPrefMatch p)) c ,

isComparableDim (getChDim c f i r s t) (getPrefDim p)] [p]

++ chP r e f So r t [c t i e | c t i e <− (c : c s) ,

e qu i v c t i e c ,

i sComparableDim (getChDim c t i e) (getPrefDim p)] ps

++ chP r e f So r t [c l a s t | c l a s t <− cs ,

d t tpc c (getOp (getPrefMatch p)) c l a s t ,

i sComparableDim (getChDim c l a s t) (getPrefDim p)] [p]

++ chP r e f So r t [c o t h e r | c o t h e r <− (c : c s) ,

not (isComparableDim (getChDim c o t h e r) (getPrefDim p))] ps

getResChSetByDim : : Resource −> Dim −> [Ch]

getResReqSetByDim : : Resource −> Dim −> [Req]

getResPrefSetByDim : : Resource −> Dim −> [P re f]

getResChSetByDim (cs , r s , ps) dim = [c | c <− cs , getChDim c == dim]

getResReqSetByDim (cs , r s , ps) dim = [r | r <− r s , getReqDim r == dim]

getResPrefSetByDim (cs , r s , ps) dim = [p | p <− ps , getPrefDim p == dim]

C.14 Preference Equivalence 229

C.14 Preference Equivalence

Listing C.14: Preference ordering equivalence and preference set normalisation.

−−

−− Pr e f e r enc e No rma l i s a t i on and Equ i v a l en c e

−−

prefToReq : : P re f −> Req

prefToReq (d , t ,m, v , r) = (d , t ,m, v)

p equ i v : : P re f −> Pre f −> Bool

p equ i v pA pB = r e q u i v (prefToReq pA) (prefToReq pB) &&

getPrefRank pA == getPrefRank pB

porde r : : [P re f] −> [P re f]

po rde r [] = []

po rde r (p : p s) = porde r [p f i r s t | p f i r s t <− ps ,

getPrefRank p f i r s t <= getPrefRank p]

++ [p]

++ porde r [p l a s t | p l a s t <− ps ,

getPrefRank p < getPrefRank p l a s t]

pnorm : : [P re f] −> [P re f]

pnorm ps = pnorm2 (porde r ps) 1 . 0

pnorm2 : : [P re f] −> Rank −> [P re f]

pnorm2 [] = []

pnorm2 ((d , t ,m, v , r) : p s) r new = [(d , t ,m, v , r new)] ++ pnorm2 ps (r new + 1 . 0)

p r e f S e tEqu i v : : [P re f] −> [P re f] −> Bool

p r e f S e tEqu i v psA psB = pr e f S e tEqu i v 2 (pnorm psA) (pnorm psB)

p r e f S e tEqu i v 2 : : [P re f] −> [P re f] −> Bool

p r e f S e tEqu i v 2 [] [] = True

p r e f S e tEqu i v 2 psA [] = True

p r e f S e tEqu i v 2 [] psB = Fa l s e

p r e f S e tEqu i v 2 (pA:psA) (pB:psB) = p equ i v pA pB && pr e f S e tEqu i v 2 psA psB

C.15 Resource Templates

Listing C.15: Template equivalence function.

−−

−− Template Func t i on s

−−

t e q u i v : : Resource −> Resource −> Bool

t e q u i v resA resB = i sChSubse t (getResChSet resB) (getResChSet resA)

&& isReqSetRSSubset (getResReqSet resA) (getResReqSet resB)

Bibliography

[1] I. Stokes-Rees, A. Tsaregorodtsev, V. Garonne, R. Graciani, M. Sanchez, M. Frank &

J. Closier. “Developing LHCb grid software: experiences and advances”, Concurrency and

Computation: Practice and Experience, 19, 2 (2007) 133–152. ISSN 1532-0626.

[2] I. Stokes-Rees, A. Tsaregorodtsev, A. Yu & V. Garonne. “DIRAC Lightweight Information

and Monitoring Services using XML-RPC and Instant Messaging”. In “Computing in High

Energy Physics and Nuclear Physics 2004”, (2004).

[3] V. Garonne, A. Tsaregorodtsev, A. Yu & I. Stokes-Rees. “DIRAC : a Scalable Lightweight

Architecture for High Throughput Computing”. In “Computing in High Energy Physics and

Nuclear Physics 2004”, (2004).

[4] V. Garonne, A. Tsaregorodtsev, A. Yu & I. Stokes-Rees. “DIRAC : Workload Management

System”. In “Computing in High Energy Physics and Nuclear Physics 2004”, (2004).

[5] N. Brook. “LHCb Computing Model”. Technical report, CERN (2004). CERN/LHCC-2004-

036 LHCC-G-084.

[6] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach & T. Berners-Lee. “RFC

2616: Hypertext Transfer Protocol – HTTP/1.1”. IETF (1999).

[7] T. Berners-Lee, R. Fielding & L. Masinter. “RFC 3986: Uniform Resource Identifier (URI):

Generic Syntax”. IETF (2005).

[8] R. M. Karp. “Reducibility among combinatorial problems”. Plenum Press, New York (1972).

[9] Roy Fielding. “Architectural Styles and the Design of Network-based Software Architec-

tures”. Ph.D. thesis, University of California, Irvine (2000).

[10] Ben Carlyle. “The REST Triangle” (2006). http://rest.blueoxen.net/cgi-bin/wiki.

pl?RestTriangle.

[11] P. Mockapetris. “”RFC 1034: Domain Names - Concepts and Facilities”. IETF (1987).

[12] World Wide Web Consortium. http://www.w3.org/.

[13] Condor. http://www.cs.wisc.edu/condor/.

230

Bibliography 231

[14] M. Livny, J. Basney, R. Raman & T. Tannenbaum. “Mechanisms for High Throughput

Computing”. Speedup Journal (1997). 11(1).

[15] Ian Foster. “The Anatomy of the Grid: Enabling Scalable Virtual Organizations”. volume

2150. Springer (2001).

[16] David S. Rosenblum & Alexander L. Wolf. “A Design Framework for Internet-Scale Event

Observation and Notification”. In M. Jazayeri & H. Schauer, editors, “Proceedings of

the Sixth European Software Engineering Conference (ESEC/FSE 97)”, pages 344–360.

Springer–Verlag (1997).

[17] B. Carpenter. “RFC 1958: Architectural Principles of the Internet”. IETF (1996).

[18] F. Carminati. “ALICE Computing Technical Design Report”. Technical report, CERN

(2005). CERN-LHCC-2005-018.

[19] D. Adams, D. Barberis, C. Bee, R. Hawkings, S. Jarp, R. Jones, D. Malon, L. Poggioli,

G. Poulard, D. Quarrie & T. Wenaus. “The ATLAS Computing Model”. Technical report,

CERN (2005). CERN-LHCC-2004-037/G-085.

[20] C. Grandi, D. Stickland & L. Taylor. “The CMS Computing Model”. Technical report,

CERN (2004). CERN-LHCC-2004-035/G-083.

[21] Rajesh Raman, Miron Livny & Marvin H. Solomon. “Matchmaking: Distributed Resource

Management for High Throughput Computing”. In “Proceedings of the Seventh IEEE In-

ternational Symposium on High Performance Distributed Computing”, Chicago IL (1998).

[22] Dewayne E. Perry & Alexander L. Wolf. “Foundations for the Study of Software Architec-

ture”, ACM SIGSOFT Software Engineering Notes , 17, 4 (1992) 40–52.

[23] Jerome H. Saltzer, David P. Reed & David D. Clark. “End-To-End Arguments in System

Design”, ACM Transactions on Computer Systems, 2, 4 (1984) 277–288.

[24] David D. Clark. “The design philosophy of the DARPA internet protocols”. In “SIGCOMM”,

pages 106–114. Stanford, CA (1988).

[25] David W. Chadwick & Alexander Otenko. “The PERMIS X.509 role based privilege man-

agement infrastructure”. In “SACMAT ’02: Proceedings of the seventh ACM symposium on

Access control models and technologies”, pages 135–140. ACM Press, New York, NY, USA

(2002). ISBN 1-58113-496-7.

[26] R. Housley, W. Polk, W. Ford & D. Solo. “RFC 3280: Internet X.509 Public Key Infras-

tructure Certificate and Certificate Revocation List (CRL) Profile”. IETF (2002).

[27] J. Vollbrecht, P. Calhoun, S. Farrell, L. Gommans, G. Gross, B. de Bruijn, C. de Laat,

M. Holdrege & D. Spence. “RFC 2904: AAA Authorization Framework”. IETF (2000).

[28] S. Farrell & R. Housley. “RFC 3281: An Internet Attribute Certificate Profile for Autho-

rization”. IETF (2002).

Bibliography 232

[29] S. Tuecke, V. Welch, D. Engert, L. Pearlman & M. Thompson. “RFC 3820: Internet X.509

Public Key Infrastructure (PKI) Proxy Certificate Profile”. IETF (2004).

[30] R. Alfieri, R. Cecchini, V. Ciaschini, L. dellrsquoAgnello, A. Frohner, A. Gianoli, K. Lorentey

& F. Spataro. “VOMS, an Authorization System for Virtual Organizations”. In “First

European Across Grids Conference”, Springer-Verlag (2003).

[31] J. Basney. “GFD-E.54: MyProxy Protocol”. Global Grid Forum (2005).

[32] T. Ylonen & C. Lonvick. “RFC 4254: The Secure Shell (SSH) Connection Protocol”. IETF

(2006).

[33] M. Blaze, J. Ioannidis & A. Keromytis. “RFC 2792: DSA and RSA Key and Signature

Encoding for the KeyNote Trust Management System”. IETF (2000).

[34] J. Callas, L. Donnerhacke, H. Finney & R. Thayer. “RFC 2440: OpenPGP Message Format”.

IETF (1998).

[35] M. Roehrig, W. Ziegler & P. Wieder. “GFD-I.11: Grid Scheduling Dictionary of Terms and

Keywords”. Global Grid Forum (2002). Grid Scheduling Dictionary Working Group.

[36] I. Stokes-Rees, A. Tsaregorodtsev, V. Garonne, R. Graciani, M. Sanchez, P. Charpentier,

N. Brook, M. Frank & J. Closier. “Live Performance Analysis of the LCG Computational

Grid Environment During the LHCb Particle Physics Experiment Data Challenge 2004”. In

“Proceedings of the IEEE Symposium on Cluster Computing and the Grid (CCGrid2005)”,

(2005).

[37] S. Belforte et al. “CDF Run II Annual Computing Plan and Budget, FY-05”. Technical

report, FNAL (2004). CDF/DOC/COMP UPG/PUBLIC/7290.

[38] The D0 Collaboration. “D0 Computing and Software Operations and Plan”. Technical

report, FNAL (2004).

[39] Standard Performance Evaluation Corporation. “SPEC CPU Integer 2000 Benchmark”.

http://www.spec.org/.

[40] MONARC Architecture Group. “Models of Networked Analysis at Regional Centres for LHC

Experiments”. http://www.cern.ch/MONARC/.

[41] MONARC Architecture Group. “Regional Centers for LHC computing” (1999).

[42] “Memorandum of Understanding for Collaboration in the Deployment and Exploitation of

the Worldwide LHC Computing Grid”. Technical report, CERN (2006). CERN-C-RRB-

2005-01.

[43] “The EU DataGrid Project”. http://www.eu-datagrid.org.

[44] F. Carminati et al. “Common Use Cases for a HEP Common Application Layer”. Technical

report, CERN (2004). HEPCAL RTAG Report (HEPCAL Prime).

Bibliography 233

[45] F. Carminati et al. “Common Use Cases for a HEP Common Application Layer for Analysis”.

Technical report, CERN (2003). HEPCAL II.

[46] CERN. “The LHC Computing Grid Project”. http://lcg.web.cern.ch/LCG/.

[47] P. Buncic et al. “Architectural Roadmap Towards Distributed Analysis - Final Report”.

Technical report, CERN (2003). CERN-LCG-2003-033.

[48] E. Laure. “EGEE Middleware Architecture”. In “EDMS 476451”, CERN (2004).

[49] I Foster, C Kesselman, J Nick & S Tuecke. “The Physiology of the Grid: An Open Grid

Services Architecture for Distributed Systems Integration”. In “Open Grid Service Infras-

tructure WG”, (2002).

[50] D. Adams, P. Charpentier, U. Egede, K. Harrison, R.W.L. Jones, J. Martyniak, P. Mato,

J. Moscicki, A. Soroko & C.L. Tan. “The GANGA User Interface for Physics Analysis on

Distributed Resources”. In “Computing in High Energy Physics (CHEP 04)”, (2004).

[51] AliEN. The Alice Experiment.

[52] T. Kosar & M. Livny. “Stork: Making Data Placement a First Class Citizen in the Grid”.

In “24th IEEE International Conference on Distributed Computing Systems (ICDCS2004),

Tokyo, Japan”, (2004).

[53] M. Wahl, T. Howes & S. Kille. “RFC 2251: Lightweight Directory Access Protocol (v3)”.

IETF (1997).

[54] Wolfgang Hoschek. “The Web Service Discovery Architecture”. In “Proceedings of the 2002

ACM/IEEE conference on Supercomputing”, pages 1–15. IEEE Computer Society Press

(2002).

[55] “Universal Description, Discovery and Integration”. http://www.uddi.org.

[56] Steven Fitzgerald. “Grid Information Services for Distributed Resource Sharing”. In “Pro-

ceedings of the 10th IEEE International Symposium on High Performance Distributed Com-

puting (HPDC-10’01)”, page 181. IEEE Computer Society (2001).

[57] B. Tierney, R. Aydt, D. Gunter, W. Smith, V. Taylor, R. Wolsky & M. Swany. “GWD-

PERF.16-2: A Grid Monitoring Architecture”. Global Grid Forum (2002).

[58] Andrew W. Cooke et al. “Relational Grid Monitoring Architecture (R-GMA)”. In “UK

e-Science All Hands Conference 2003”, (2003).

[59] SETI@Home. http://setiathome.ssl.berkeley.edu/.

[60] BOINC. http://boinc.berkeley.edu.

[61] distributed.net. http://www.distributed.net.

Bibliography 234

[62] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, T. Maquire, T. Sand-

holm, D. Snelling & P. Vanderbilt. “Open Grid Services Infrastructure”. In “Open Grid

Service Infrastructure WG”, (2003).

[63] Globus & IBM (2004). http://www.globus.org/wsrf/#announcement.

[64] Guy Rixon. AstroGrid Project (2003). http://wiki.astrogrid.org/bin/

view/Astrogrid/GlobusToolkit3Problems.

[65] Savas Parastatidis, Paul Watson & Jim Webber. “A Grid Application Framework based

on Web Services Specifications and Practices and Grid Resource Specification”. Technical

report, School of Computing Science, University of Newcastle upon Tyne (2003).

[66] Paul Brebner. “Evaluation of Globus Toolkit 3.2 (GT3.2) Installation”. Technical report,

Software Systems Engineering Group, Department of Computer Science, University College

of London (2004).

[67] Paul Brebner, Jake Wu & Oliver Malham. “Evaluating OGSA across organisational bound-

aries”. Technical report, Software Systems Engineering Group, Department of Computer

Science, University College of London (2005).

[68] Wolfgang Emmerich, John Darlington, Malcolm Atkinson, Dave Berry & Savas Parasta-

tidis. “Establishment of an Experimental OGSA Grid”. Technical report, Software Systems

Engineering Group, Department of Computer Science, University College of London (2005).

[69] P. Wilson, W. Emmerich & J. Brodholt. “Leveraging HTC for UK eScience with Very Large

Condor pools: Demand for transforming untapped power into results.” In “UK e-Science

All Hands Conference 2004”, (2004).

[70] M. Calleja et al. “Grid tool integration within the eMinerals project”. In “UK e-Science All

Hands Conference 2004”, (2004).

[71] M. Calleja, B. Beckles, M. Keegan, M. A. Hayes, A. Parker & M. T. Dove. “CamGrid: Expe-

riences in constructing a university-wide, Condor-based grid at the University of Cambridge”.

In “UK e-Science All Hands Conference 2004”, (2004).

[72] B. Beckles. “Implementing privilege separation in the Condor system ”. In “UK e-Science

All Hands Conference 2005”, (2005).

[73] B. Beckles. “Building a secure Condor pool in an open academic environment”. In “UK

e-Science All Hands Conference 2005”, (2005).

[74] Dror G. Feitelson & Ahuva Mu’alem Weil. “Utilization and Predictability in Scheduling the

IBM SP2 with Backfilling”. In “12th International Parallel Processing Symposium”, pages

542–546 (1998).

[75] IETF. “Internet Engineering Task Force”. http://www.ietf.org/.

[76] Jabber Software Foundation. http://www.jabber.org/.

Bibliography 235

[77] Ian Paterson, Peter Saint-Andre & Dave Smith. “JEP-0116: Encrypted Sessions”. Technical

report, Jabber Software Foundation (2006).

[78] G. Pape. “runit Service Supervision Toolkit”. http://smarden.org/runit/.

[79] Andrei Tsaregorodsev et al. “DIRAC - Distributed Implementation with Remote Agent

Control”. In “Proceedings of Computing in High Energy and Nuclear Physics (CHEP)”,

(2003).

[80] James Frey, Todd Tannenbaum, Ian Foster, Miron Livny & Steve Tuecke. “Condor-G: A

Computation Management Agent for Multi-Institutional Grids”. In “Proceedings of the

Tenth IEEE Symposium on High Performance Distributed Computing (HPDC)”, pages 7–9.

San Francisco, California (2001).

[81] A. T. Doyle, S. L. Lloyd & A. McNab. “GridSite, GACL and SlashGrid: Giving Grid Security

to Web and File Applications”. In “Proceedings of UK e-Science All Hands Conference 2002”,

(2002).

[82] Stuart Patterson. “LHCb Distributed Data Analysis on the Computing Grid”. Ph.D. thesis,

University of Glasgow (2006).

[83] Vincent Garonne. “Étude, définition, et modélisation d’un Système Distribué à Grande

Échelle”. Ph.D. thesis, Université de la Méditeranée, Aix-Marseille II (2005).

[84] A. Tanenbaum. “Modern Operating Systems”. Prentice Hall (2001).

[85] W. Stallings. “Operating Systems”. Prentice Hall, 5th edition (2004).

[86] A. Silberschatz, P. Galvin & G. Gagne. “Operating System Concepts”. Wiley, 7th edition

(2005).

[87] Richard W. Conway, William L. Maxwell & Louis W. Miller. “Theory of Scheduling”.

Addison-Wesley (1967).

[88] T.L. Casavant & J.G. Kuhl. “A taxonomy of scheduling in general-purpose distributed

computing systems”, IEEE Transactions on Software Engineering, 14, 2 (1988) 141–154.

ISSN 0098-5589.

[89] D. Lifka. “The ANL/IBM SP Scheduling System”. Technical report, Argonne National

Laboratory (1995).

[90] Philippe Baptiste, Peter Brucker, Marek Chrobak, Christoph Durr, Svetlana A. Kravchenko

& Francis Sourd. “The Complexity of Mean Flow Time Scheduling Problems with Release

Times” (2006). http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0605078.

[91] David Jackson, Quinn Snell & Mark Clement. “Core Algorithms of the Maui Scheduler”,

Lecture Notes in Computer Science, 2221 (2001) 87.

[92] Platform LSF. http://www.platform.com/.

Bibliography 236

[93] V.Hamscher, U.Schwiegelshohn, A.Streit & R.Yahyapour. “Evaluation Of Job Scheduling

Strategies for Grid Computing”. In “7th International Conference on High Performance

Computing”, (2000).

[94] Klaus Krauter, Rajkumar Buyya & Muthucumaru Maheswaran. “A Taxonomy and Survey

of Grid Resource Management Systems for Distributed Computing”, International Journal

of Software: Practice and Experience (SPE), 32, 2.

[95] T. Berners-Lee. “Web Architecture from 50,000 feet”. Technical report, W3C (2002). http:

//www.w3.org/DesignIssues/Architecture.

[96] M. Sgaravatto et al. “Pratical approaches to Grid workload and resource management in the

EGEE project”. In “Computing in High Energy Physics and Nuclear Physics 2004”, (2004).

[97] P. Andreetto et al. “CREAM: A Simple, Grid-Accessible, Job Management System for Local

Computational Resources ”. In “Computing in High Energy Physics and Nuclear Physics

2006”, (2006).

[98] F. Carminati & J. Templon. “Preliminary Observations on LCG-2 Based on the 2004 Data

Challenges”. Technical report, CERN (2004). CERN-LCG-GAG-DC04.

[99] “The Globus Resource Specification Language RSL v1.0”. Technical report, The Globus

Project (2005).

[100] G. Brown, editor. “System 390 JCL”. John Wiley & Sons, 4th edition (1998).

[101] Fabrizio Pacini. “JDL Attributes Specification”. Technical report, EGEE (2005).

[102] Ali Anjomshoaa, Fred Brisard, Michel Drescher, Donal Fellows, An Ly, Stephen McGough,

Darren Pulsipher & Andreas Savva. “Job Submission Description Language (JSDL) Speci-

fication, Version 1.0”. Technical report, Global Grid Forum (2005).

[103] D. Bell, T. Kojo, P. Goldsack, S. Loughran, D. Milojicic, S. Schaefer, J. Tatemura, & P. Toft.

“Configuration Description, Deployment, and Lifecycle Management” (2003).

[104] Henderson & H. Tweten. “Portable Batch System : External reference specification”. Tech-

nical report, NASA Ames Research Center (1996).

[105] R. Raman. “Matchmaking Frameworks for Distributed Resource Management”. Ph.D. thesis,

Dept. of Computer Science, University of Wisconsin, Madison (2000).

[106] C. Liu & I. Foster. “A Constraint Language Approach to Matchmaking”. In “14th Inter-

national Workshop on Research Issues on Data Engineering: Web Services for E-Commerce

and E-Government Applications (RIDE’04)”, (2004).

[107] Rajesh Raman, Miron Livny & Marvin Solomon. “Resource Management through Multilat-

eral Matchmaking”. In “Proceedings of the Ninth IEEE Symposium on High Performance

Distributed Computing (HPDC9)”, pages 290–291. Pittsburgh, PA (2000).

Bibliography 237

[108] INFN/DataTag. “The GLUE Schema Effort”. http://infnforge.cnaf.infn.it/

glueinfomodel.

[109] Fabrizio Pacini. “Job Description Language How-To”. Technical report, DataGRID Project

(2001).

[110] “Extended Resource Specification Language”. Technical report, NorduGrid (2005).

[111] Kenneth Rosen. “Discrete Mathematics and its Application”. McGraw-Hill, 5th edition

(2003).

[112] Subramanian Kannan, Mark Roberts, Peter Mayes, Dave Brelsford & Joseph Skovira. “Work-

load Management with LoadLeveler”. Technical report, IBM (2001).

[113] H. Casanova. “SimGrid: A toolkit for the simulation of application scheduling”. In “Proceed-

ings of the IEEE Symposium on Cluster Computing and the Grid (CCGrid2001)”, (2001).

