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Abstract

Ge(]ographic Routing is a family of routing algorithmls t;hat uses geographic point loca-
tions as addresses for the purposes of routing. Such routing algorithms have proven
to be both simple to implement and heuristically effec:tive when applied to wireless
sensor networks. Greedy Routing is a natural abstraction of this model in which nodes
are assigned virtual coordinates in a metric space, aid these (:oordinates are used to
perform point-to-point routing.

Here we resolve a conjecture of Papadimitri(u and Rat ajczak that every 3-connect ,d
planar graph admits a greedy embedding into the Eulidean plane. This immnediately
implies that all 3-connected graphs that exclude '3a,3 as a minor admit a greedy
emllbedding into the Euclidean plane. Additionally, we provide the first non-trivial
examples of graphs that admit no such embedding. These structural results provide
efficiently verifiable certificates that a graph admits a greedy embedding or that a
graph admits no greedy embedding into the Euclidevj plane.

This work is done in collaboration with Tomn Leighton.
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Chapter 1

Introduction

1.1 Background

The study of routing has a long and rich history. lit for many important classes

of routing problems, routing schemes that are both simple and provably effectiveo

have, so far been elusive. In particular, scalable wireless sensor networks require,

point-to-point conununication but such ad-hoc netwcrks admit no global hierarchical

addressing scheme and there are still no broadly a,ccepted, scalable point-to-point

routing schemes despite numerous proposals. Geographic Routing is a family of rout-

ing algorithms that uses geographic point locations as addresses for the purposes of'

routing. Such routing algorithms have proven to b)(, )both simple to implement and

heuristically effective when applied to wireless sonsor ne,tworks.

Recent work on routing protocols for wireless sensor networks [2], [7] has focused

particular attention on a class of 'greedy' algorithms wherein a packet at a node u

that is destined for a node v is simply forwarded to a ny neighbor ua' of u for whic,

d(u', v) < d(u, v) where d(x, y) is the Euclidean distance between the locations of x

and y in the plane. For such an algorithm to guaranl e delivery it must be the case

that for every u and v, such a u' exists (i.e. that whe 'ver a packet is in the network,

there is always a next hop that gets the packet closer in Euclidean distance to its

ultimate destination).

Rao et al. f11] proposed a natural abstraction of this model in which nodes are,



assigned virtual coordinates in a metric space, and these coordinates are used to,

perform point-to-point routing.

Definition 1. A graph G = (V, E) is said to have a qreedy embedding into a metric

space (X, d) if there is a function f : V -- X such that for every pair of distinct nodes

u, v E V, there exists a neighbor u' of u in G such that d(f(u'), f(v)) < d(f(u), f(v)),

Papadimitriou and Ratajczak [9] considered the case where (X, d) is the Euclidean

plane and gave simple examples of graphs which have a greedy embedding (e.g.,

Haniltonian graphs) and graphs that admit no greedy embedding into the Euclidean

plane (e.g., Kr,Gr+l). Papadimitriou and Rataje-zak conjectured that all 3-connected

planar graphs admit a greedy embedding into the Eutclidean plane.

Kleinberg [8] considered the case in which (X, dl) is the hyperbolic plane and

showed that every tree (and consequently every graph) has a greedy embedding in

the hyperbolic plane. However rand(om geometric graph processes in the Euclidean

plane are one of the fundamental models for reasoning aibout wireless ad-hoc networks

[4], [6], [10]. And it remains a central question as to whether these generative models

result in graphs that can be embeddhed in a metric space that is fundamentally the

same as the metric space in which these graphs werc generated.

Dhandapani [3] recently proved that all triangulated 3-connected planar graphs

have greedy ermbeddings in the Euclidean plane, a rI'laxation of the Papadimitriou-

R.atajczak conjecture. His proof made use of Schnydecr Realizers, and used the geo-

metric properties of Schnyder Drawings to find a greedy embedding.

1.2 Our Results

Here we resolve a conjecture of Papadimitriou and(l 1 batajczak that every 3-connectld

planar graph admits a greedy embedding into the Eul1idean plane. In fact, we con-

struct a greedy embedding into the Euclidean p1hlnui for all circuit grap)hs (which

generalize 3-connected planar graphs). This immnedialt'ly implies that all 3-connected

graphs that exclude K3,3 as a mlinor admit a greely embedding into the Euclidlea

plane.



Additionally, we provide the first non-trivial examples of graphs that cannot I ,

greedily embedded into the Euclidean plane. These structural results provide effi-

ciently verifiable certificates that a graph admits a gre4.ldy embedding or that a graph

admits no greedy embedding into the Euclidean pIlale.

Perhaps of independent interest, we make use o[ a decomposition theorem tdue,

to Gao and Richter [5]. This is, to the best of our knowledge, this decomnlpositio 

theorem's first use in theoretical computer science. \We use this theorem to find a

spailning subgraph that can be greedily embedded into the Euclidean plane. And we

believe that this technique can be generally applicable for finding particular types of

spanning subgraphs in circuit graphs as needed.



Chapter 2

A Greedy Embedding for Circuit

Graphs

Circuit graphs are a relaxation of 3-connected planar graphs. In this chapter, we

prove that all circuit graphs contain a spanning Chrstlnas cactus graph and p)rovide

a polynomial tinie algorithm to find such a sp)anning subgraph. We then construct

a greedy embedding into the Euclidean plane for all Christmas cactus graphs. This

proves a conjecture due to Papadimnitriou and Ratajczak that every 3-connected p)la-

nar graph admits a greedy embedding into the Euclidan plane. As a corollary, any

3-connected graph that excludes K,33 as a minor admits a greedy embedding into the

Euclidean plane.

2.1 Christmas Cactus Graphs

A cactus graph is a graph for which every edlge is I)pat of at most one cycle. In what

follows, we will be interested in a special type of cactus graph that we call a Christma s

cactus graph.

Definition 2. A Christmas cactus graph G = (1V, E) is a conlected cactus graph for

which the removal of any node v E V disconnects G inlto at most 2 components.

It is well known that a cactus graph can be constructed from a tree by replau:ing



Figure 2.1: A Christmas cactus graph G generated iy the tree T. TIhe nodes in U are
denoted with a * and the edge in F is circled.

edges with cycles of arbitrary size. Similarly, a Chri.stmauscactus graph can be con-

structed from a tree by replacing nodes with cycles and contracting edges that are

not in cycles. In particular we will make use of the following method for constructin ,

a Christmas cactus graph:

Step 1. Let T be a tree and let U be any subset of" nodes of T that contains every

node with degree at least 3 in T.

Step 2. (Repeat) For each node u E U, replacec v with a cycle C, of arbitrary

length so that all neighbors of u (in the current graph:) are connected by an edge to

a distinct 10ode in C.

Step 3. Let F be any set of edges in the graph resulting from Step 2 which are

not contained in a cycle.

Step 4. Contract out the edges in F.

For example, these steps are shown in Figure 2.1.

Simple cycles in a Christmas cac(tus graph are not necessarily node-disjoint l)ecaLuse,

a path connecting two node-disjoint cycles can e) contracted. However, for any

two simpnle cycles , C, C2 1, C 0 02! < 1 and for any three simple cycles CI, c2,C3,

01, n co n ca3 = 0.



2.2 Circuit Graphs

Barnette [1] introduced the class of graphs known as circuit graphs, which he definad

to be graphs obtained by deleting a vertex froml a 3-ccnt nected planar graph. Gao and

Richter [5] proved rich structural theorems about the class of circuit graphs, and usued

these results to inductively prove that all circuit grajphs contain a spanning closed

2-walk. We also make use of the structural propertio,s of circuit graphs, but to find

a spanning Christmas cactus subgraph. The class of circuit graphs is a relaxation of

3-connected planar graphs, but provides a more convenient class of graphs on which

to construct inductive proofs. Gao and Richter equivalently define a, circuit graph as:

Definition 3. A circuit graph is an ordered pair (G., C) such that:

I. G is 2-connected, and C is a polygon in G.

2. There is a non-crossing embedding of G in the plane s.t. C bounds an infinite

face.

3. If (H, K) is a 2-separation' of G, then C Z H, C Z K.

A 3-connected planar graph is a circuit graph b,,rause G can be embedded using

Tutte's rubber band embedding and any 2-separation (H, K) s.t. C C H would imply

that G is not 3-connected. We next review some key structural properties of circuit

graphls:

Lemma 1. [5] Let (G, C) be a circuit graph embodded in the p)lane (s.t. no edges

are crossing), and let C1 be any polygon in G. Then the subgraph G1 containing C,

and all nodes and edges inside C (in the plance enmbedding) is a circuit graph.

Definition 4. [5] A connected graph G is a chain of blocks if each block of G contains

at ]most two cut vertices and each cut vertex 2 lies in exactly two blocks. Then a

chain of blocks can be written as B1, bl, B 2, ..bk-1, Bk such that the common vertex

of blocks Bi and B,+, is bi. Then a plane chalr of b,locks is a chain of blocks and a

plane embedding s.t. for all j, UijSjBi is in the infinite face of Bj.

SA k-separation of a graph H = (V, E) is a pair III, He, (f edge disjoint subgrapLs of H, eMch
with at least k + 1 vertices, s.t. H H, U H2 and IV(H1 ) C1 V(H2)| = k.

2A cut vertezx is a vertex that when removed from G, discom 'ts the graph.
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Figure 2.2: A plane chain of blocks.

See Figure 2.2. Because each cut vertex is in exaictly two blocks, then each b,

must be distinct. A block is called trivial if the b)lock is just the edge bi, b,+1 . Thvn

the seminal work of Gao and Richter gives the following structural result for circuit

graphs:

Theorem 1. [5] Let (G, C) be a circuit graph, and let x, y E C be distinct. Then there,

exists a partition of V(G)-V (C) into V1, V ,, , Vm and distinct vertices v1 , v2, mVr E

V(C)-{x, y } s.t. the graph induced by IU{v j is a plane chain of blocks Bi,, b,, ..., bj,-1, Bik

s.t. v, e V(B,,1) - bi,1 and each nontrivial block B,.1 has an outer polygon CQ,, s.t,

(B2,., C.j) is a circuit graph 3.

Gao and Richter use this structural result to find a spanning closed 2-walk that

visits x, y only once, in any circuit graph by inductii n. In what follows, we use this

structural result to find a spanning subgraph in any circuit graph that can be greedily

emtibedded in the plane. We will use Go(x) to denote the degree of x in G. The proof'

of this theorem given by Gao and Richter is constructive, and can be used to find such

3 Gao and Richter actually state that B,,, is a block, but frnom the construction of this block in
the proof of the theorem, it is clear that B,,J is a suibgraph (c(ntainig all nodes and edges inside,
(and including) a polygon C,,j in G. This implies that (By, , C(.j) is a circuit graph and Gao and
Richter exlplicitly state this when actually invoking the struct ral theorem to prove that all circuilit
graphs contain a closed, spanning 2 walk.



a tdecomposition in polynomial time, given the planar drawing of the circuit graph.

Theorem 2. For any circuit graph (G, C) and distin lt x, y E C, there exists a Christ-

rrmas cactus graph T(G) that spans G s.t. x,y are jointly in a cycle and T(G)(x)

bT(( ,(y) = 2. And such a subgraph can be found in p~lyqnomial time.

Proof. The proof is by induction on the number of vertices in the circuit graph (G, C).

Let x, y be distinct and x, y E V(C). Applying Theorem 1, there exists a partition

of V(G) - V(C) into V1, 1,..., V, and distinct vertices vI, 2, ---..., ' V(C) - {x, y}

s.t. the graph induced by Vi U {vi} is a plane chain of blocks B, 1, b,, ..., bi,k - Bi,k

vi E V(B, 1)-bi,1 and each nontrivial block Bij has a ,uter polygon Ci,3 s.t. (B,j, Ci,j)

is a circuit graph.

From the definition of a plane chain of blocks, each c(ut vertex bi,k must 1)e distinct,

The chain of blocks Bi,1, bi,,, ..., bi,uk-, B2,k is a plane chain of blocks w.r.t. the original

plane embedding. vi is on the infinite face in G, and t]lis implies that vi E C .1 becaus,

vi must be in the infinite face in (Bi,1 , Ci,1). Choose b,,(j, = vi and bik to be any vertex

SB,,k - bt,k-1 that is contained in the infinite fa Ce,kO If Bi,k is a trivial block, then

just, choose bi,k to be the remaining endpoint. Directly from the structural theorem,

vi C Bi , - bi,1 . Then each b,, is distinct, and contained in both infinite faces C,,, and

Ci,j +- -

By induction each (non-trivial) B,,j has a Christmas cactus spanning subgrapl

s.t. bi,j-l, bij are jointly on a simple cycle and hB ",, .&,(b, 1 ), T(B,,) (b2,,) = 2. Then

join the spanning Christmas cactus graph of B,,, to the spanning Christmas c(-actus

graph of B,,, + by joining bij in each spanning Christ mas cactus graph by an edge,

and contracting the edge. See Figure 2.3.

If the neighboring block in the p)lane chain is a trivial block, then just connect a

non-trivial block to the next non-trivial block by a p)ath of the trivial blocks. If B,,I

is not trivial, then the result is a Christmas cactus spanning subgraph for the plane

chain of blocks B, 1 , 1 b, ..., b,,k-1, Bz,k s.t. v, is on a c(ycle and has T(B,, k)(v,) = 2,

If Bi. is trivial, then the result is a Christmas (:a(ctus spanning subgraph for the plan'

chain of blocks B,,1 bi,, ... , b,k-1, Bi,k s.t. v, is not o(, a cycle and 6T(B,, .I ) ( = 1
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Figure 2.3: Connecting spanning Christmas cactus graphs in a plane chain of blocks.

Then consider the base cycle V(C), and join the spanning Christmas cactus graph

of each induced plane chain of blocks Vi U {vi } to the node vi on the cycle by an edge,

and contract the edge.

The result is a spanning Christmas cactus graph of G s.t. x, y are jointly on a cycle

and 6T(G) (X),6T(G) (y) = 2 and the theorem is true by induction. This construction

also yields a polynomial time algorithm because each decomposition is polynomial

time constructible and x, y do not appear in the decomposition so the number of

decompositions that must be computed is bounded by 2. 1

bil



Chapter 3

Constructing a Greedy Embedding

In this chapter, we construct a greedy embedding of any Christmas cactus graph in

the Euclidean plane.

3.1 Embedding Christmas Cactus Graphs

Let G be an arbitrary Christmas cactus graph, and let F be the set of edges in G

that are not contained in a simple cycle. For the ),purposes of this construction, all

edges in F will be considered to be simple cycles (on two nodes). Then every edge in

G is contained in exactly one simple cycle.

Definition 5. A depth tree T w.r.t. G is a tree that contains a node for each simplc

cycle in G, where nodes in T are connected iff IV(C1) q'n V(C2 )| = 1.

Select an arbitrary node of T to serve as the "root" and define the depth of a

cycle in the graph G as the depth of the correspondiijg node in T. Then define the

depth of any nodec in G to be the minimum d(epth of any cycle containing that node,

G will be embedded on concentric serni-circles of radius 1 = Ro < R, < R 2 ... S.t. all

nodes at (depth i will be embedded on the seimi-circle of radius Ri. Let the cnter of

all the semi-circles be the origin.

For any cycle C = (p, xl, ... , xm) at depth k > 0 there will be a unique node on

the cycle that is at depth k - 1 and all remaining nodes will be at depth k. Assume
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Figure 3.1: Embedding a Christmas cactus graph on concentric semi-circles.

that for the cycle C, the unique node on the cycle that is at depth k - 1 is p. Then

p will be embedded on the semi-circle at radius Rk-I, and node x1 will be placed at

the intersection of the semi-circle of radius Rk and the ray that contains p and the

origin. The remaining nodes (if any) X2, ...,m will be embedded on the semi-circle of

radius Rk s.t. the nodes xl, x 2 , ..., xm appear in clock-wise order along the semi-circle

of radius Rk at a distance to be specified shortly.

Definition 6. A node u E G is a descendant of the cycle C at depth k if after

removing all edges in C from G, node u is not in the component that also contains

node p - the unique node in C at depth k - 1.

A node u in the cycle C at depth k, that is not the unique node in C at depth

k - 1, is also a descendant of the cycle C by this definition. See Figure 3.1.

The embedding will proceed in phases, and at the end of phase i all nodes at

depth < i will be placed. To simplify the analysis, after each phase (and subphase)

we will preserve the greedy property that the subgraph induced by all currently placed

nodes along with the current embedding, must exhibit the greedy routing property,

Formally, if at the end of a subphase, the set of nodes in G already placed is P and

the subgraph induced by P is Gp then for all s, t E P there exists a node u (adjacent

to s in Gp) s.t. d(u, t) < d(s, t).

We will use a geometric lemma to establish the properties needed for this embed-



(ling scheme. Consider the coordinates (assnume c > 1 and 0 < a,, 3d 7r):

c =(0,1 + z)

b = (- sin, cos 3)

a = (-(1 + e) sin( - a), (1 + e) 'os,(, - a))

subject to the constraints:

0 < a, <
2

0 < e < cos

0 < z < c

sina < 6(1 -cos /)
2(1 +)

Claim 1. d(d(a, c) 2 - d(b, c) 2) < ()

Prvof.

d(d(a, c)2 - d(b, c)2)dz

2(1 + z - (1 + e) cos(3 - a)) - 2(1 +z - cos,3)

S2(cos 3 - (1 + c) cos(3 - a))

S2(cos 0 - (1 + E)(cos 3 cos a + sii, 3 sin a))

< 2 cosf(1 - (1 + c) cos a)

< 0

where the last inequality follows because sin a: <j ' and cos a > 1 -- 14" (1+e)

(1+ e > 1+

Hence d(a, c)2 - d(b, c)2 is minimized for z = .

Claim 2. d(a, c) - d(b, c) > 42



Prvof. By claim 1,

d(a, c)' - d(b, c)2

> (1 + c)2 sin2 (/3 - a) - sin2 3

+(1 + e))(1 - ( 2 - (1 - -CO3)2

> (1 + )2 sin 2 3- a) - 2(1 + E)(1 -- os3)

+(1 + E)2(1 - os( - a)) 2 -2

= 2(1 + e)2(1 - cos(/3 - a)) - 2(1 + t)(1 - cos/3) - E2

= -62 + 2(1 + e)(E + cos,3 - (1 + E) cos(3 - a))

> - 2 + 2(1 + E)(e + cos,3 - (1 + )(cos /3 + sin a))

= -6 2 - 2(1 + E)(E(1 - cos 3) - (1. I ) sin a)

> -E2 + (1 + E)c(1 - cos 3)

> 5c2

Then

d(a, c) - d(b, c)
d(a, c) 2 - d(b, c) 2

d(a, c) + d(b, c)

> -(d(a, c) 2 -d(b, c)2 )5
> 6 2

since d(a, c) + d(b, c) < 5.

For notational convenience, given an emlleddingg f : V -+ R 2 define the angle

Za, b, c on nodes a, b, c, e V(G) as the angle formed by the rays (f(b), f(a) and

(f(h1), f(c).

Theorem 3. For any Christmas cactus graph G, ther; exists a grvedy embedding of

G into the Euclidean plane.

Proof Assume that every edge is in a simple cycle ty considering any edge not in

a simple cycle as a 2-cycle. Construct the depth tree T w.r.t. G, and root T at an



arbitrary node. Trace out a semi-circle of radius 1 centered at the origin. Suppose(

that the cycle C in G at depth 0 contains mr nodes, C' = (1, 2,..., m). Then divide the,

semi-circle of radius Ro into m equal angle sectors and place node i at the beginning

of the ith sector. The are subtended by 1, 2, ...., m is strictly smaller than the perimeter

of the semi-circle of radius R0 = 1 because no node is placed at the end of the mnh

sector.

For any triple (a, a + 1, c) such that c > a the angle Za, a + 1, c is strictly larger

than ' and d(a + 1, c) < d(a, c). Similarly for any triple (a, c - 1, c) such that c > a

then the angle Za, c - 1, c is strictly larger than !n l-d d(a, c - 1) < d(a, c). Hence

this emrbedding is greedy.

This establishes the base case for the inductive construction, Now assume that

all nodes at depth < i have been placed and that teic induced subgraph on thems

nodes, G,, along with the embedding on concentric sonmi-circles (as described earlier)

is greedy.

Definition 7. If all nodes in G, have been emlbedd'd, s.t. this embedding exhibits

the greedy property, then for all s, t c Gi there exists u E G, s.t. (u, s) E E(Gi) and

d(-u., t) < d(s, t). Fix n,,t = u and (lefine 6(Gi) = min d(s, t) - d(t, n,t).

Then draw a ball B, of radius 6(Gi)/3 around each node u E G,. Clearly if a

node t at (depth i + 1 s.t. (u, t) E E(G) is placed in B, then for any node s E G,, # t
the neighbor n,st that is strictly c(loser to t will also be strictly closer to u. And if

s = t E Gi then the neighbor u will be strictly closer t.o u.

Definition 8. Let 3(Gi) be defined as the mininlun (non-zero) angle over all s, t at

depth < i from s to the origin, to t in the current embedding.

Assume that all nodes at depth < i have been placed, and that the subgraph

indu(ced by these nodes along with the embedding cexhibits the greedy property. We

must embed all cycles at depth i + 1, and preserve the greedy property.

Subplhasc:

For each cycle C at depth i + 1, C = (p, x 1,..., ,r) let p be the unique niod(

in the cycle at depth i. Call x1 the rep'resentativ nl,.ode for the cycle C (choose an



orientation of C at random, and choose the next node after p). Let the radius of the

outermost semin-circle in the current embedding he R, and define 6(Gi) and ,8(Gi) as

b)efore w.r.t. the current elnbedding. Also, define e I min(6  , R i-cos 3 1(a)

Place each representative node xz at the intersection of the semti-circle of radius

Rii = Ri + c and the ray containing both the origin and p. Let P be the set of

currently placed nodes (all nodes at depth < i and cte representative node for ea.ch

cycle at depth i + 1). We will show that the sulhgraphl induced by these nodes, along

with the current embedding, exhibits the greedy prop ,rty:

For any nodes s,t E Gi there is trivially a node (adjacent to s in G, ) in the

current embedding s.t. d(u,t) < d(s,t) because the nodes in G along with the

emilbdding of these nodes exhibited the greedy property (and the embedding of nodes

in Gi has not been changed) by induction. For any nodes s, t s.t. s E Gi and t is a

representative node for a cycle C at ldepth i + 1, then t is in the ball Bp of radius

6(G,) centered around the node p in C that is the unique node in C at depth i. Then

(t,p) is an edge in G, and all s E G have a (already placed) neighbor that is strictly

closer to t.

Lastly, consider routing from a node s that is a representative node oni a cycle

C at depth i + 1 to any node that has already been placed. Again, let p be the

unique node in C that is at depth i. By construction, the perpendicular bisector to

the segment sp contains all nodes currently placed, except s, on the same side as p:

T'ivially, any node t at depth < i will be on the same side of the perpendicular

bisector to sp as the node p because the perpendicuiiar bisector is a parallel shift of

the tangent to the semi-circle of radius Ri a.t the point p. And for any node t that is

placed on the semi-circle at radius R,+1 , the angle from' t to the origin to s will be at

least i3(Gj), and from the geometric lemma (choosing a = 0) then this node will also

be on the p side of the perpendicular bisector to sp. And thus p is strictly closer to t

than s is to t for any node t at depth i + 1 that has boen placed in this subphase.

All cases are covered: the subgraph on the currently embedded nodes, along with

the current embedding is greedy because for all s, t there is an already placed neighbor

of s that is strictly closer to t.



Subphase:

For a cycle C = (p, xl,..., Xm) at depth i + 1, only the unique node p at (lepth

i and the representative node x, have been embedded so far. The embedding must

now be extended to include all nodes at depth i + 1 and this is done by placing nodes

22, ..., X, in clockwise order around the semni-circle of radius Ri+l starting from the

location of node x1.

Let G} be the subgraph induced by all nodes already placed. Define 6(Gi) as

before. Note that this difference is now defined over lcdl s, t that have already beebn

placed, which includes all nodes that are at depth < i and all nodes that are (depth

i+ I that are representative nodes for a cycle at depth i + 1. Also define C = Ri+l - R,

and note that 3(G') = 3(G,).

Then place nodes X 2 , ... , Xm on the semi-circle of radius Ri+1 at evell intervals

starting from the (already fixed) location of xi s.t. the angle (in radians) from xl

to the origin to xm is a < min(G ,) and s.t. sina < 1-O Place all- 3 3 - 2(1+e)

nodes on a cycle at depth i + 1 that have not already been placed, according to this

rule. The induced subgraph on all placed nodes after this subphase, along with the

emb(edding will exhibit the greedy property:

Now all nodes at depth < i + 1 have been pllaced. Consider all pairs s, t E Git

Again, if ,s, t E G' then there will still be a neighbor of s that is strictly closer.

If s E Gi, and t is placed in this subphase then t is at most distance ( from the

representative node u on the same cycle. s f u will have a neighbor that is strictly

closer to this representative node u, and this same neighbor will also be strictly closer

to .. If s =- u, then s and t will t)be connected by a path on the semli-circle of radius

R,,+ and each successive node on this path will be slrictly closer to t.

The only remaining case is when s is a node that is placed in this subphase:

Any node that is not in the set x2, x 3 , ... ,, X (carM iot be strictly contained in the

sector from xl to the origin to Xm because we chose a < (G. Then if s is not ax or
_ 3

xm, s will have a neighbor that is strictly closer to t, choosing the next nod(e on the

path zl, X2,..., m radially in the direction of t.

The case in which s = x, has already been covw'ered because the node xl E GC ,



Then suppose s = Xm: If t is in the set x 1 , ... , x,, fth 'n choosing the next node on

the path x 1, X2 , ... , x, radially in the direction of t and s will have a neighbor strictly

closer to t. And if t is not in the set xl, ... , x : ca K- < /3(Gi) and this implies that

the angle fromi p to the origin to the node t is at le astl, ,?(Gi). From the geometric

lenmna, d(xm, t) - d(p, t) > 0 and p is strictly closer to t.

Then all cases are covered, and the subgraph on tihe currently embedded nodes,

aloi tg with the current embedding is greedy because for all s, t there is an already

placed node that is strictly closer to t.

This completes the inductive construction, because, all nodes at depth < i + 1 have

been placed. And this also completes the proof that all Christmas cactus graphls can

be greedilv embedded in the Euclidean plan(,.

Corollary 1. Any 3-connected graph G that excludes K3,3 as a minor admits a

greedy embedding into the Euclidean plane.



Chapter 4

Greedy Embeddings for Trees

In this chapter, we provide the first non-trivial exaLmples of graphs that admit no

greedy emlbedding into the Euclidean plane. We prove a colmbinatorial condition

that guarantees non-embeddability and this condition provides a certificate for non-

em(cbddability that can be verified in linear time. 'v e use this result to construc-t

graphs that can be greedily embedded into the Euclidean plane, but for which no

spaining tree admits such an embedding.

4.1 Irreducible Triples

Definition 9. An irreducible triple is a triple { b, c, d} of nodes in a graph G such that

deg(b) = 3 and (b, c), (b, d) E E(G) and removing cither (b, c) or (b, d) disconnects

the graph. The parent of an irreducible triple {b, c, d I is the unique node a g {b, c, d}

such that (a, b) E E(G).

Definition 10. Two irreducible-triples {b, c, d} and {x, y, } are said to be indc-

pendcnt if {b, c, d} n {x, y, z} = 0 and if deleting cdges (b, c), (b, d), (x, y), and (xz,z)

leaves b and x connected. A set of irreducible triples is mutually independent if the

irreducible triples are pair-wise independent.

Lernma 2. For any set of 3 or more mutually independent irreducible triples, let a be

the parent of an irreducible triple in the set. Then fi or all irreducible triples {I, y, z)



in the set, {a} n {x, y, z} = 0 (including the triple for which a is the parent).

Proof. Clearly anly parent a of an irreducible triple {b. c, d} cannot intersect {b, c, d}

directly from the definition of parent. Suppose therc is a set of 3 or more mutually

independent triples in a graph G, and that the parent a of an irreducible triple {b, c, d}

is contained in another irreducible triple {x, y, z }. Sup Ipose that a = y. Then d(eleting

the edge (x, y) disconnects G, but b is still connected to y. This implies that b is not

still connected to x. This contradicts the definition :of independence.

Suppose that a = x. Then r(b) = {x, c, d} and I'(r) = {b, y, z} because x is the

parent of the triple {b, c, d} and b is the parent of thi:' triple {x, y, z}. Then consider

a third irreducible triple in the set of 3 or more mlutually independent irreducible

triples, {l, m, n }.

From tile definition of an irreducible triple, deltinyi the edge (b, c) must partition

G into components C1, C2. Deleting the edge (b, d) also partitioned G into two com-

ponents. Note that (b, d) cannot connect C d Cand 2 that resulted from deleting (b, c),

Then deleting (b, d) after deleting (b, c) must partitionl G into three components, one

of which contains b, one of which contains c, one of which contains d. Continuing the

argument deleting edges (b, c), (b, d), (x, y) and (x, z2 partitions G into five comp( -

nents, one of which contains b and x, one of which co irtains c, one of which contains

d, one of which contains y and one of which contains ,. The component that contains

b and x contains only the nodes b and x, because deg(b) := deg(x) =: 3 before deleting

two of the edges incident to b and two of the edges inti'ilent to z.

Node I must be contained in a (tifferent compo)nlent than b and x. Let this com-

ponment be the component that contains y. Then {1, -,i, n} would not be independent

from {x, y, z} because deleting the edge (x, y) from G' would leave I and x in different

c:nomponents, and this contradicts the definition of independence.

Thus if there is a set of 3 or more mutually independent irreducible triples, then

the parent a of any irreducible triple {b, c, d} in the set cannot lie contained in any

other triple in the set. E

Lemma 3. For any set of 3 or more mutually ind(leplendent triples, let {b, c, d} and



{x,y, z} )e two irreducible triples in the set and let a, w be the respective par-

ents of these irreducible triples (note that a and(l w re not guaranteed to be dis-

tinct). Then any simple path from y to c in the graph G must be of the form

(y, x), (x, w), ... , (a, b), (b, c). Any simple path fromnt to c must be of the form

(x, w), ... , (a, b), (b, c). And any simple path from x to b must be of the form (x, w), ... , (a, b).

Proof The proof immediately follows from the pre(vious lemma. EO

We will implicitly use the path lemma throughout the proof that any graph C

containing a set of 6 or more mutually independent irreducible triples cannot bhe

greedily embedded. Let S = U{b, c, d} be the set of all nodes in any irreducible triple

in t.he set. Let {b, c, d} be a particular irreducible triple in the set and let a be the

pareunt of this triple. Suppose G admnits a greedy embedding f : V -+ R2 . Consider

the halfspace Hb that is bounded by the perpendicular bisector to f(b), f(c) that

contains f(b). This halfspace must contain S/{c} fr mn the path lemma, becausc the

only simple paths from c to a node t E S/{c} must begin by traversing the edge

(c, b). Similarly, the halfspace Ha that is bounded I by the perpendicular bisector to

f(a), f (b) and contains f(a) must contain S { b, c, d } again from the path lemma.

Lemma 4. Let G be a graph that admits a greedy embedding f : V -- R 2 into th(e

Euclidean plane and let (p, x) E E(G) be an edge s.t. deleting (p, x) disconnects G,.

Let Cx be the component containing x that results from deleting the edge (p, x), and

let z be an arbitrary node Cx. Then {x} = - =, 'irg ninw"c. Ilf(w) - f(z) 12

Prvof Suppose that Wz f {x}, and there is a nod(lc E arg minwvEc,I If(w) - f(z) 2

and w - x. All the neighbors of w are in Cx and no node in Cx is strictly closer to

z. Then there is no neighbor of w that is strictly closer to z, and f is not a greedy

cnembldding.o

Lemma 5. Let G be a graph that admits a greedy embedding f : V - R2 into tlh

Euclidean plane, and that contains an irreducible trip)le {b, c, d}. Then any greedy

embedding into the Euclidean plane must map the l(Ildes b, c, d to points in R' s.t,

the angle Zf (c)f(b)f(d) > 3



d H3

H2

Figure 4.1: Embedding a quadruple {a, b, c, d} such that f(a) is contained in a side
of the angle ZLf(c)f(b)f (d) that is < r.

Proof. Suppose that the angle ZLf(c)f(b)f(d) is < I. Then by the law of sines, the

side (c, d) cannot be the strictly largest side in the triangle (c, b, d). Let (b, d) be the

largest side in the triangle. Node d 4 C, and c must be the closest node in C, (the

component that results from deleting the edge (b, c)) to d. And when routing from

node c to node d, node b must be selected for the next hop. However d(b, d) > d(c, d)

and this embedding cannot be greedy. C

Claim 3. Any graph that contains two independent irreducible triples {b, c, d} and

{x, y, z} - where r(b) = {a, c, d}, F(x) = {w, y, z} - cannot be greedily embedded siuch

that f(a) is contained in a side of the angle If(c)f(b)f(d) that is <7r and f(w) is

contained in a side of the angle Zf(y)f(x)f(z) that is < r.

Proof. Assume that both ZLf(c)f(b)f(d) and ZLf(y)f(x)f(z) # 7r. Consider a greedy

embedding of the quadruple {a, b, c, d} depicted in Figure 4.1.

If the embedding is greedy, then there must be a path from a to c s.t. the distances

to the destination node, c, are strictly decreasing along this path. There must also

be such a path from a to d. Any such path contains b as an intermediary node, and

this implies that d(f (b), f(c)) < d(f (a), f(c)) and d(f(b), f (d)) <d(f (a), f (d)). Thia

implies that f(c) and f(d) must be contained on the b side of the line R3. As a result,



the segment (bc, bd) must be contained on the b side of H3 because the line segment

is contained in the convex hull of the points f(c), f (d), f(b).

Using a similar argument, all nodes in G not in {b} U C, U Cd must be strictly

contained in the triangle (p, q, r), because all nod(es in G not in { b} U C~ U Cd must

b)e strictly on the b side of H 1, strictly on the b side of H2 and strictly on the a side

of 113 respectively. Because the segment (bc, bd) is (,ontained on the b side of H3 , we,

c(an relax this constraint to the requirement that all nodes in G not in {b} U C U Cc,

must be strictly contained in the triangle (bc, bd, p).

An identical argument holds for the quadruple {jw, x, y, z}, and all nodes in G not

in { x} U C U C must be strictly contained in the triangle (xy, xz, o).

Consider the point bc. This lies in the convex hiull of f(b), f(c) and any convex

body (specifically the triangle (xy, xz, o)) that strictlyi contains f(b) and f(c) must

strictly contain bc. Similarly the point bd rmust be strictly contained in the triangle

(xy, xz, o). This implies that the s(egment (bc, bd) nmst be strictly contained in the

triangle (xy, xz, o). An identical argument holds for the triangle (bc, bd, p) and this

triangle must strictly contain the segment (xy, xz).

However, this yields a contradiction because there are two triangles T and T2 sucl

that T must strictly contain the base of T2 and T2 must strictly contain the base of

T1. An almost identical argument holds when Zf(c)f (b)f (d) = 7r or Zf(y)f(x)f(z) -

7r. ]

Claim 4. If a graph G is greedily embedded and contains an irreducible triple {b, c, d}

- where F(b) = {a, c, d} - that is embedded such that f(a) is contained in a side of

the angle Zf(c)f(b)f(d) that is > 7r, then let i be the point of intersection of the

perpendicular bisector to the segment (f(b), f(c)) and the perpendicular bisector to

the segment (f(b), f(d)). All nodes not in C, U Cd arcl mapped outside the interior of

the quadrilateral (f(c), f(b), f(d), i).

ProJf Consider Figure 4.2.

Clearly, we must only prove that all nodes not in C, U Cd are mapped outside the

quadrilateral (bc, f(b), bd, i) because the line H1 must, contain all nodes not in C~ oj
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Figure 4.2: Embedding a quadruple {a, b, c, d} such thatf (a) is contained in a side of
the angle Lf(c)f(b)f(d) that is > r.

the b side, and the line H2 must contain all nodes not in Cd on the b side.

Consider the halfspace J defined as the a side of the perpendicular bisector to

f(a), f(b). Node a is not mapped into the quadrilateral (bc, f(b), bd, i) by assumption,

and any node in G not in {b} U Ce U Cd must be contained in the halfspace J1. If the

intersection of J with the quadrilateral (bc, f(b), bd, i) is empty, then clearly the claim

is proven. The halfspace J1 has an empty intersection with the triangle (f(b), be, bd)

because the points f(b), f(c), f(d) must be on the b side of the perpendicular bisector

to (f(a), f(b)).

Consider the triangle (bc, bd, i). Assume that J1 intersects the triangle (bc, bd, i).

Then J must contain at least one of the points be, bd, i. J1 cannot contain bc or bd

because f(b), f(c), and f(d) must all be closer to f(b) than to f(a). As a result, if J

intersects the triangle (bc, bd, i) then J must contain the point i.

A line can intersect another line more than once only if the two lines are identical.

Consider the line L bounding the halfspace J1. Suppose this line is identical to H1.

This can only happen if f(a) = f(c) and this would imply that the embedding is not

greedy because node a will not have a neighbor that is strictly closer to f(c). This

implies that the line L can intersect H and H2 at most once each.

J1 contains the point i, but not either of the points bc or bd. This implies that



the line L intersects both segments (bc, i) and (bd, i). This line can be cut into two,

rays. leaving from the point ab in opposite directions. Both rays begin at the point ab

inside the shaded region K, and cannot leave this region through the segment (be, bd)

because both end points of this segment are not containedll in J.

Then one of the rays must exit the region K throu gh a side bounded by either the

line H1 or the line H2. This yields a contradiction because the line L will intersect

either the line H1 or the line H2 twice. Thus J, camoI t contain i and the claim is

proven. O]

Note that Zbcibd < 2r because Zbcf (b)bd > z and Z f(b)bci = Zf(b)bdi = '

When a point x is contained in the sector Zbcibd we will say the intersection point i

colltains x.

Lemma 6. Any graph G containing 6 or more multually independent irreducible

triples cannot be greedily embedd(ed in the Euclideam plane.

Proof Suppose that a graph G contains 6 mutually inldependent irreducible triphls.

Then there are two cases to consider:

Suppose that the irreducible triples are embedded such that for each quadruple

{a, b, c, d} - where {b, c, d} is an irreducible triple and F(b) = {a, c, d} - f(a) is con-

tained( in a side of the angle Zf(c)f(b)f(d) that is > 7. Then for each quadrupl

{a, b, c, d} define the points bc, bd, i as in Figure 6.

No node in G is mapped to a point in the tria.gle (bc, bd, i) from the previous

claim. Then consider another quadruple {w, x, y, z} where {x, y, } is an irreducible,

trip)le and F(x) = {w, y, z}. Re-using the arglmnent used in the previous claim, if the

perpendicular bisector L to the segment (f(z), f(y)) does not contain i on the x side,

then L must intersect either HI or H2 twice. But L is a perpendicular bisector to two

points that are contained on the same side of Hi anll( on the same side of H2, and L

cannot be identical to H1 or H2.

Then defining the intersection point i for each quadruple {a, b, c, d} as in Figure

6, eac-h intersection point must contain all other intersection points in an angle that

is < -2. Define polygon on these intersection points - all angles in the polygon are
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Figure 4.3: Embedding quadruples.

< . And from elementary geometry any polygon on n > 6 nodes must contain an

angle that is at least 2. Then there can be at most 5 intersection points. This yields

a contradiction, because there are 6 intersection points. See Figure 4.3.

Suppose that one quadruple {a, b, c, d} is embedded such that f(a) is contained

on the side of the angle Zf (c)f(b)f(d) that is -< ir. Consider the points bc, bd, and

define intersection points for all remaining irreducible triples. Then each intersection

point for the remaining 5 irreducible triples must contain be and bd because these

intersection points must contain f(b), f(c) and f(d). We can apply the argument

used above to the perpendicular bisectors Hi, H2 and H3 and this implies that the

angles bounded by Hi, H3 and H2, H3 must contain each intersection point defined

for the remaining 5 irreducible triples.

The angles bounded by HI, Hs and H2, H3 sum to at most ir, and using the 5

intersection points and the points bc, bd we have a polygon on 7 nodes such that the

angles sum to at most 13 r, which yields a contradiction because the sum of the angles

in a 7-gon is 57r from elementary geometry. 1

Corollary 2. The complete binary tree B31 with 31 nodes cannot be greedily em-

bedded into the Euclidean plane.

Proof. The complete binary tree B31 contains 6 mutually independent irreducible

triples. 1



Theorem 4. There exist graphs that can be

plane, but for which no spanning tree can b)e

plan.i

greedtily embedded into the Euclidema

greedily embedded into the Euclidean

Proof. Let G be the cycle graph on n nodes, and for each node i add a 4-cycle

(wi, ' w), (x,, y), (Yi, z), ( , Wi) and an extra node pi, such that w, is joined by an edge

to i, and pi is joined to the node yi. Any splanning tree of this graph contains n

mutually independent irreducible triples, however, t lis graph is a Christmas cactus

graph and can be greedily embedded into the Euclid an plant,. U
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