
Theory of composable latency-insensitive

refinements

by

Muralidaran Vijayaraghavan

Submitted to the

MASSACHUSETTS INSTifUTE
OF TECHNOLOGY

AUG 0 7 2009

LIBRARIES

Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science
ARCHIVES

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2009

@ Massachusetts Institute of Technology 2009. All rights reserved.

Author
Department of Electrical Engineering and Computer Science

February 27, 2009

Certified by........
Arvind

Professor
Thesis Supervisor

Accepted by ...
Terry P. Orlando

Chair, Department Committee on Graduate Students

Theory of composable latency-insensitive refinements

by

Muralidaran Vijayaraghavan

Submitted to the Department of Electrical Engineering and Computer Science
on June, 2009, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

Simulation of a synchronous system on a hardware platform, for example an FPGA,
can be performed using a hardware prototype of the system. But the prototype may
not meet the resource and timing constraints of that platform. One way to meet
the constraints is to partition the prototype hierarchically into modules, and to re-
fine the individual modules while preserving the overall behavior of the system. In
this thesis we formalize the notion of a refinement that preserves the behavior of the
original modules - we call such refinements latency-insensitive refinements. We show
that if these latency-insensitive refinements of the modules obey certain conditions,
then these refinements can be composed together hierarchically in order to obtain the
latency-insensitive refinement of the original system. We call the latency-insensitive
refinements that obey these conditions as composable latency-insensitive refinements.
We also give a procedure to automatically transform a module to a latency-insensitive
refinement while obeying the conditions that enable it to be composed hierarchically.
The transformation serves as a starting point for making further refinements and
optimizations, and thus, gives a methodology to design hardware simulators for syn-
chronous systems.

Thesis Supervisor: Arvind
Title: Professor

Acknowledgments

First and foremost, I would like to thank Arvind for being a dedicated advisor and

an inspiring teacher. It was his encouragement and persistence that made me rigorize

the concepts to make this thesis possible.

I would also like to thank Joel Emer for introducing me to this idea and enabling

me to have hands on experience on FPGA simulators in Intel.

I would then like to thank everyone in CSG for their advice and support.

Last, but not the least, I would like to thank my family for their love and encour-

agement and my friends who made me feel at home in Cambridge.

Contents

1 Introduction 7

2 Latency-Insensitive refinements

2.1 Definition of latency-insensitive refinements

2.2 Definition of dependency

2.3 Composable cycle-accurate refinements

2.3.1 Composing composable latency-insensitive refinements

2.4 Modular composable latency-insensitive refinement of FSMs

11

. . . . 11

.... 13

. . . . 13

. . . . 17

. . . . 21

3 The latency-insensitive transform

3.1 Latency-insensitive transform of an FSM

3.2 Refining the latency-insensitive transform

3.2.1 Multi-cycle combinational functions

3.2.2 Dont-care optimization

3.3 An example of an optimized latency-insensitive refinement

4 Related work and Conclusion

4.1 Related Work

4.2 Conclusion

Bibliography

24

24

30

30

30

31

33

33

35

36

List of Figures

2-1 Latency-insensitive refinement of an FSM 12

2-2 Parallel composition of FSMs 14

2-3 (j, k) Iterative composition of FSMs 14

2-4 Parallel composition of composable latency-insensitive refinements . . 17

2-5 (j, k) Iterative composition of composable latency-insensitive refinements 18

2-6 Modular composable latency-insensitive refinement of FSMs 23

3-1 Latency-insensitive transform of an FSM 25

3-2 An example of an optimized latency-insensitive refinement 31

List of Tables

1.1 Trade-off between speed and accuracy in a software simulator

Chapter 1

Introduction

Micro-architecture designs have to be evaluated in order to get a precise evaluation of

the performance. Architects rely on simulators in order to carry out the performance

evaluation. These simulators are typically written in a sequential language like C

or C++. Various benchmarks are run on these simulators in order to evaluate the

performance of the micro-architecture. A typical design goes through several such

iterations by the architects before deciding a particular micro-architecture.

Simulators are judged by the following three characteristics:

1. Simulation speed - This is the speed at which the simulator simulates the micro-

architecture. This is different from the speed of the micro-architecture that is

modeled. If two simulators are modeling the same micro-architecture, one is

said to be faster than the other if it runs the benchmarks faster.

2. Simulation accuracy - This is the measure of the accuracy of the performance

numbers obtained from the simulator with respect to the original micro-architecture.

A more detailed model gives more accurate numbers.

3. Development time of the simulator - This is the amount of time it takes to

encode the simulator.

A software simulator has a short development time compared to a detailed hard-

ware description code. Furthermore, architects usually have their own simulation

Table 1.1: Trade-off between speed and accuracy in a software simulator

infrastructure which helps to develop software simulators rapidly. But the problem

with software simulators is that they are slow. Micro-architectures are fine-grained

parallel structures. Mapping them accurately into a software simulator drastically

reduces the speed of simulation as it sequentializes all the parallel events. Architects

use less detailed models in order to speed up the simulation time. As a consequence

of this, simulation accuracy decreases. Table 1.1 shows the trade-off between speed

and accuracy in software simulators used by Intel [10].

One can think of speeding up highly detailed software simulators by running it on

several cores, thus exploiting the parallelism. But micro-architectures of processors

and memory systems are fine-grained parallel systems. In a detailed simulator, each

component communicates with several other components every simulated cycle. Ex-

ploiting this granularity of parallelism in multicores is not possible without incurring

a huge communication cost. So using parallel software simulators on multicores is not

going to speed up the simulation of micro-architectures, in fact the communication

overhead may be so high, it might make it slower than sequential simulators.

Field Programmable Gate Arrays (FPGAs) are programmable logic devices that

can be programmed using hardware description code. FPGAs, unlike multicores,

offer a fine-grained parallel execution substrate which can potentially be used for

detailed simulation of micro-architectures. This allows us to have orders of magnitude

improvement in simulation speed, while not sacrificing the accuracy. The development

time for a simulator on an FPGA could be substantial, but the improvement in

simulation speed as well as accuracy, more than makes up for it.

The synchronous circuit description of a micro-architecture design can be directly

implemented on an FPGA - this is called prototyping the design on an FPGA. The

prototype can be directly used for simulation and performance studies. But the disad-

vantage with this approach is that the prototype has to meet the resource and timing

constraints of the FPGA platform without any modifications, or else the simulation

will not be accurate. There are several commonly used hardware structures that

map inefficiently on FPGAs. For example, the Content Addressable Memory (CAM)

consumes a lot of FPGA resources and significantly increases the critical path of the

entire design. Multi-ported register file is another such example. FPGAs have a lim-

ited amount of single-ported or dual-ported address-indexed memory, but no CAMs

or multi-ported memory, which is why these structures do not map well onto FPGAs.

FPGA platforms often have other peripherals like the Dynamic Random Access

Memory (DRAM), and may contain multiple FPGAs connected by a communication

network. These peripherals and communication network can be used for prototyping a

complete system. For example, in order to prototype a multi-core architecture along

with the memory subsystem, one could implement the individual cores in each of

the FPGAs, use the FPGA platform's communication network to model the on-chip

interconnect, and use the platform's DRAM to model the memory subsystem. But

the issue with this is that the speed of the FPGAs with respect to the peripherals or

the network can be vastly mismatched compared to the speeds in the system which

we want to model. This again boils down to not being able to map components of

the system well into an FPGA platform, though, unlike the previous problem, this

can not be solved by relaxing the resource and timing constraints.

This brings us to the general problem we are trying to solve. Given an synchronous

design, we refine the design so that it meets the resource and timing constraints, while

preserving the behavior of the original design. In this thesis, we formally define what

is meant by a refinement preserving the behavior of a synchronous design - we call

such refinements as latency-insensitive refinements. We abstract the synchronous

design as a Finite State Machine (FSM).

The rest of the thesis is organized as follows. Chapter 2 formalizes the defini-

tion of latency-insensitive refinements. In this chapter, we also state and prove the

conditions that the refinements of individual modules of the design should obey in

order to be able to compose these refinements hierarchically. This is important be-

cause synchronous circuits are typically designed as a hierarchy of modules, and so

refining the design involves refining the individual modules and hierarchically com-

posing them back. In Chapter 3, we give a methodology to automatically transform

a module into a refinement, which satisfies these conditions. We also discuss how

further refinements and optimizations can be made to this transformation. Finally,

in Chapter 4, we conclude.

Chapter 2

Latency-Insensitive refinements

2.1 Definition of latency-insensitive refinements

A latency-insensitive refinement of an FSM is a system which simulates the observable

behavior of the FSM. We make an assumption that only the outputs of the FSM

are observable; if some internal state of the FSM is observable, then we can add an

output which contains information about the internal state, thus making it observable.

Furthermore, we assume that the FSM does not have any combinational loop.

We formally define the latency-insensitive refinement of an FSM below.

Consider an FSM A (Figure 2-1(a)) with inputs il, i 2 , ... , iJ and outputs ol2, o,..., OK.

Let A' (Figure 2-1(b)) be such that, for each input ij in A, there is a corresponding

First In First Out (FIFO) input buffer i' in A'; and for each output oj in A, there

is a corresponding FIFO output buffer oj' in A'. Every buffer of A' can be enqueued

only if it is not full, and dequeued only if it is not empty.

A' is said to be a latency-insensitive refinement of A if

1. A' is cycle-accurate with respect to FSM A

Let ij denote the cycle by cycle sequence of values on input ij of A. Similarly,

let - denote the cycle by cycle sequence of values on output ok of A. Let i.

denote the sequence of values enqueued into input buffer 'i of A' and let o'k

denote the sequence of values dequeued from output buffer ok of A'. If A' is a

(b) Lat

(a) FSM A

ency-insensitive refine

-.- 4 01

- -- 0 1

0

O

0

111 OK

ment A'

Figure 2-1: Latency-insensitive refinement of an FSM

cycle-accurate refinement of A, then

(2.1)

2. A' is deadlock-free

A' is deadlock-free if it has the following property. If A' has a source which

eventually enqueues into each of the input buffer when it is not full and a sink

which eventually dequeues from each of the output buffer when it is not empty,

then no input buffer will remain full forever, and no output buffer will remain

empty forever.

This means that the source can keep enqueuing into each input buffer and the

sink can keep dequeuing from each output buffer, thus guaranteeing forward

progress.

2.2 Definition of dependency

Consider a system which has an interface similar to A' shown in Figure 2-1(b), though

this system need not be a latency-insensitive refinement. We define the notion of

dependency between an output buffer ok and an input buffer i' as follows.

Definition 2.2.1. An output buffer o' is said to be dependent on input buffer i' if,

3n > 0, and there exists n - 1 values enqueued into i ' and n values enqueued into

every other input buffer, such that the nt h value dequeued from o' changes if the nth

value enqueued into i. changes. We also say that i influences o'k

Lemma 2.2.0.1. If ij and Ok are input and output buffers, respectively, of an FSM

A, and i' and ok are the corresponding input and output buffers, respectively, of A'

which is a latency-insensitive refinement of A, if o' is dependent on i' in A' then ok

is combinationally connected to ij in A.

Proof. If ok is not combinationally connected to ij in A, then Vn > 0, there exists

no cycle by cycle sequence of n - 1 value of ij and no cycle by cycle sequence of n

values of the rest of the inputs, for which the value of ok in the nth cycle changes

when the value of ij in the nth cycle changes. But this will contradict the fact that

A' is cycle-accurate with respect to A, as in A' the value dequeued from o' changes

if the value enqueued in i changes. O

2.3 Composable cycle-accurate refinements

Large FSMs are usually designed by designing smaller FSMs and composing these

smaller FSMs hierarchically. We describe the rules of composition below.

1. Parallel Composition of FSMs

Figure 2-2 shows the parallel composition of two FSMs A1 and A 2 to get A. Let

us represent it as follows.

A = A, + A 2

Figure 2-2: Parallel composition of FSMs

Figure 2-3: (j, k) Iterative composition of FSMs

14

I1
ii

iia

2. Iterative composition of FSMs

Figure 2-3 shows the (j, k) iterative composition of an FSM A 1 to get A. Input

ij is connected to output ok. Let us represent it as follows.

A = (j, k) - A1

The (j, k) iterative composition of an FSM A 1 is legal only if output ok is not

combinationally connected to the input ij. This prevents introduction of a

combinational loop during composition.

The two rules do not introduce any combinational loops during composition. So

if the original smaller FSMs do not have combinational loops, their composition will

not introduce any combinational loops in the final composed FSM.

It is desirable to be able to compose the latency-insensitive refinements of FSMs

so that the composition of the refinements of FSMs is a latency-insensitive refinement

of the composition of the FSMs. In order for this to be true, the latency-insensitive

refinements of the FSMs should obey the following conditions.

Condition 2.3.1. Dependency condition

Vn > 0, if every input buffer of the refinement has been enqueued n times and

every output buffer has been enqueued n times, now if all input buffers that an output

buffer depends is enqueued once more, and the output buffer is not full, then the

output buffer will eventually be enqueued once more.

In particular, Dependency condition 2.3.1 is true even if the source has enqueued

some of the input buffers only n times and stops, or if the sink stops dequeuing from

some of the output buffers so as to make them full, after being enqueued n times. We

illustrate the subtleties of the condition through the following examples.

1. Example 1: If a refinement obeying the condition has an output buffer o that

does not depend on any input buffer, if all the output buffers have been enqueued

n times and if all the input buffers have been dequeued n times, now even if all

input buffers are empty, and if o is not full, then it will be enqueued once more.

This will happen even if none of the input buffers are ever enqueued henceforth.

2. Example 2: If a refinement obeying the condition has two output buffers ol and

02, if all the output buffers have been enqueued n times, and if all the input

buffers have been dequeued n times, now if some of the input buffers which ol

depends on are empty, if none of the input buffer which o02 depends on is empty,

and if 02 is not full, then it will be enqueued once more. This will happen even if

the input buffers that ol depends on are never enqueued henceforth. 02 should

not depend on whether ol has been enqueued, thus there is no forced order in

enqueuing ol and 02.

Condition 2.3.2. Cleanup condition

Vn > 0, if every output buffer of the refinement has been enqueued n times, and if

every input buffer has been enqueued n times, then eventually every input buffer will

be dequeued n times.

In particular, Cleanup condition 2.3.2 is true even if the sink stops dequeuing from

some of the output buffers so as to make them full.

Definition 2.3.1. We call a latency-insensitive refinement obeying Dependency con-

dition 2.3.1 and Cleanup condition 2.3.2 as composable latency-insensitive refine-

ments.

Theorem 2.3.1. If a system A' (Figure 2-1(b)) obeys Dependency condition 2.3.1

and Cleanup condition 2.3.2, then A' is deadlock free.

Proof. We prove that Vn > 0, if n values are enqueued into every input buffer, then

n values will be enqueued eventually into every output buffer provided there is a sink

to dequeue the output buffers whenever they are not empty, and n values will be

dequeued eventually from every input buffer. This implies that the output buffers

will never remain empty forever and the input buffers will never remain full forever.

This proves that A' is deadlock-free.

Figure 2-4: Parallel composition of composable latency-insensitive refinements

We prove this by induction over n. For n = 0, the hypothesis is trivially true. Let

us assume that the hypothesis is true for n < m. We now prove that the hypothesis

is true for n = m + 1. If m + 1 values are enqueued into every input buffer, for every

output buffer, all the input buffers that it depends on have been enqueued m + 1

times. Thus, by Dependency condition 2.3.1, all the output buffers will eventually

be enqueued once more, i.e. m + 1 times in total. Now, by Cleanup condition 2.3.2,

since all output buffers are enqueued m + 1 times, and all input buffers are enqueued

m + 1 times, all input buffers will eventually be dequeued m + 1 times. This proves

the induction hypothesis for n = m + 1. O

Thus, in order to prove that a system A' is a composable latency-insensitive re-

finement of an FSM A, it is enough to prove that A' is cycle-accurate with respect to

A, and A' obeys Dependency condition 2.3.1 and Cleanup condition 2.3.2.

2.3.1 Composing composable latency-insensitive refinements

We now describe the rules of composition for composable latency-insensitive refine-

ments.

1. Parallel Composition of composable latency-insensitive refinements

Figure 2-2 shows the parallel composition of two latency-insensitive refinements

-iJ - J--- O '

A'

Figure 2-5: (j, k) Iterative composition of composable latency-insensitive refinements

A' and A' to get A'. Let us represent it as follows.

A' = A', E A'

2. Iterative composition of composable latency-insensitive refinements

Figure 2-3 shows the (j, k) iterative composition of A' to get A'. Input buffer

ij is merged with output buffer o'k . Let us represent it as follows.

A'= (j, k)o A',

The (j, k) iterative composition of a refinement A' is legal only if output buffer

o does not depend on input buffer i.

Theorem 2.3.2. Composable latency-insensitive refinements of FSMs are compos-

able, i.e.

* If A' and A2 are composable latency-insensitive refinements of FSMs A1 and A 2,

then A' = A' A' is a composable latency-insensitive refinement of A = A1 +A 2 -

* If A' is a composable latency-insensitive refinement of FSM A1 , then A' =

(j, k) D A' is a composable latency-insensitive refinement of A = (j, k) -A 1 .

Proof. Proving the theorem for parallel composition of the refinements is trivial as the

individual refinements A' and A' are simply juxtaposed in the parallel composition

without any interaction.

.711 0,1

Let us now prove the theorem for iterative composition of a refinement.

Lemma 2.3.2.1. If A is legal, then A' is legal.

Proof. If A is legal, then, in A1, Ok is not combinationally connected to ij from the

definition of (j, k) iterative composition of an FSM. From Lemma 2.2.0.1, o' is not

dependent on i" in A'. Thus (j, k) iterative composition of A' is legal. Thus A' is

legal. O

Lemma 2.3.2.2. In A', Vn > 0, if every input buffer of A' has been enqueued n times

and every output buffer has been enqueued n times, then the merged buffer i' = o'

will be enqueued and dequeued n times eventually.

Proof. We prove this by induction on n. For n = 0, the induction hypothesis is

trivially true. Let us assume that the hypothesis is true for Vn < m. We prove that

it is true for n = m + 1. Consider the refinement A' inside A'. In A', all its input

buffers except i" has been enqueued m + 1 times, and all its output buffers have been

enqueued m + 1 times. Output buffer o' in A' can not depend on i" by definition of

an iterative composition. So, all the input buffers that output o' depends on have

been enqueued m + 1 times. Thus, o' will be enqueued k + 1 times, since A' obeys

Dependency condition 2.3.1. Since the buffers ij is merged with o', all the input

buffers of A' have now been enqueued m + 1 times, and all its output buffers have

been enqueued atleast m times. Hence, again since A' obeys Dependency condition

2.3.1, all its output buffers will be enqueued once more, i.e. m + 1 times in total.

Now, since A' obeys Cleanup condition 2.3.2, all its input buffers will be dequeued

once more, in particular i" will be dequeued once more, i.e. m + 1 times in total.

Thus we have proved the induction hypothesis. O

Lemma 2.3.2.3. A' obeys Dependency condition 2.3.1

Proof. By Lemma 2.3.2.2, the merged buffer i' = o' will be enqueued n times, given

that every input buffer of A' has been enqueued n times and every output buffer has

been enqueued n times. Let all the input buffers that an output buffer o' depends on

be enqueued n + 1 times. Consider the following two cases.

1. In A', if o' did not depend on i, then by Dependency condition 2.3.1, o will

be enqueued n + 1 times.

2. In A', if o' depended on i'., then the input buffers that o' depends on must

be a subset of the input buffers that o' depends on. This is because in FSM

A1, or is combinationally connected to ij, which is connected to Ok. If Ok is

combinationally connected to any input, then or should also be combinationally

connected to that input. So, in A', this means that all the input buffers that

o' depends on have been enqueued n + 1 times. o' will be enqueued n + 1

times as A' obeys Dependency condition 2.3.1. Hence i' will be enqueued n + 1

times. Now, in A', all the input buffers that o' depends on have been enqueued

n + 1 times. So, o0 will be enqueued n + 1 times eventually, again as A' obeys

Dependency condition 2.3.1.

Lemma 2.3.2.4. A' obeys Cleanup condition 2.3.2

Proof. By Lemma 2.3.2.2, the merged buffer i' = o' has been enqueued n times.

So, for A', every input buffer has been enqueued n times, and every output buffer

has been enqueued n times. So, every input buffer of A' will be dequeued n times

eventually, as A' obeys Cleanup condition 2.3.2. This means that every input buffer

of A' will be dequeued n times eventually. O

Lemma 2.3.2.5. A' is cycle-accurate with respect to A.

Proof. We prove the following. Vn > 0, if the n values enqueued into all the input

buffers of A' is exactly the same as the cycle by cycle sequence of n values in all the

inputs of A, then

1. the n values enqueued or dequeued from the merged buffer i' = o' of A' will be

exactly the same as the cycle by cycle sequence of n values in the connection

ij = ok of A.

2. the n values dequeued from all the output buffers of A' will be exactly the same

as the cycle by cycle sequence of n values in all the outputs of A.

We prove this by induction on n.

The hypothesis is trivially true for n = 0. Let us assume that the hypothesis is

true for n = m. We prove that the hypothesis is true for n = m + 1.

By the definition of an iterative composition, output buffer o' in A' can not

depend on i'. So, in A 1, the (m + 1)th value enqueued in o(is not influenced by the

(m + 1)th value enqueued in i'. Thus, if the rest of the (m + 1)th values enqueued

in the input buffers of A' are the same as the values of all the corresponding inputs

of A1 during the (m + l)th cycle, then, since A' is cycle-accurate with respect to A 1,

the (m + l)th value enqueued in o' is the same as the value of Ok in A 1 during the

(m + 1)th cycle. This proves the first part of the hypothesis.

Now, since i' is the same as ok, the sequence of m + 1 values enqueued in all the

input buffers of A' matches with the cycle by cycle sequence of m + 1 values of all

the inputs of A 1. Again since A' is cycle-accurate with respect to A1, the sequence

of m + 1 values dequeued from all the output buffers of A' should match with the

cycle by cycle sequence of m + 1 values of all the outputs of A1. In particular, the

sequence of m + 1 values dequeued from all the output buffers of A' should match

with the cycle by cycle sequence of m + 1 values of all the outputs of A. This proves

the second part of the hypothesis. O

Lemmas 2.3.2.1, 2.3.2.3, 2.3.2.4 and 2.3.2.5 prove that A' is a latency-insensitive

refinement of A. LI

2.4 Modular composable latency-insensitive refine-

ment of FSMs

In this section we describe the methodology to modularly convert an FSM into a

composable latency-insensitive refinement.

Given an FSM A, Algorithm 1 gives the methodology to modularly convert A into

a composable latency-insensitive refinement.

Algorithm 1 Modular conversion of an FSM A into a composable latency-insensitive
refinement

1: Perform a cut on A to partition A into two FSMs A1 and A 2.

2: Recursively apply Algorithm 1 on both the partitions A1 and A 2 .

3: Let A' and A' be the composable latency-insensitive refinements of A1 and A 2 ,
respectively. Apply parallel composition of A' and A' to obtain A'.

4: V(j, k) such that ij is an input to A1 and ok is an output to A 2, such that ij was
connected to Ok in A before performing the cut, apply (j, k) iterative composi-
tion on A'. Let A" be the resulting refinement after applying all such iterative
compositions.

5: V(m, n) such that im is an input to A 2 and on is an output to A1, such that

im was connected to on in A before performing the cut, apply (m, n) iterative
composition on A". Let A"' be the resulting refinement after applying all such
iterative compositions. A"' is the composable latency-insensitive refinement of A.

Figure 2-6 shows the application of one cut on FSM A and then transforming A

into its composable latency-insensitive refinement.

Figure 2-6: Modular composable latency-insensitive refinement of FSMs

Chapter 3

The latency-insensitive transform

3.1 Latency-insensitive transform of an FSM

In this section, we define the latency-insensitive transform of an FSM. This transform

is a particular composable latency-insensitive refinement of an FSM, which can be

automatically generated from the FSM. We discuss the procedure to convert an FSM

into its latency-insensitive transform and prove that it is indeed a composable latency-

insensitive refinement. The transform serves as a concrete guideline for designing

composable latency-insensitive refinements of FSMs, as opposed to an abstract set of

conditions that a latency-insensitive refinement should obey in order to be composable

as discussed in the previous chapter.

Consider an FSM A shown in Figure 3-1(a). Let i, i 2 , ,..., i be its inputs.

For each j E {1, 2,..., J}, let Ij denote the set of values that input ij can take.

Let 01, O2,... , OK be its outputs. For each k E {1, 2,..., K}, let Ok denote the

set of values that output Ok can take. Let s be the state of FSM A, and S be

the set of values that state s can take. The state transition function is given by

6 : S x [I1 x I2 x ... x IJ] - S. Each output Ok is combinationally connected to

state s and strictly combinationally connected to Rk inputs i ki, 4k 2 ,... 'iRk (where

{k, k 2 , . . ., kRk} C {1, 2, ... , J}). By Ok being strictly combinationally connected to

ij, we mean that if the nth value of ij changes, while the rest of the inputs remain the

same for all cycles, then the nth value of Ok changes. Thus, the value in ok is given

o o
i2 I 02

iJ OK

(a) FSM A

Wk _ML Ok
0 O
+ o

(b) Latency-insensitive transform A'

Figure 3-1: Latency-insensitive transform of an FSM

by output function Ak : S X [Ikl X Ik2 X ... X Ik] --+ Ok.

Algorithm 2 gives the behavior of FSM A during each cycle. ij(t) represents the

value of input ij during cycle t and ok(t), the value of output ok during cycle t. s(t)

represents the state of A during cycle t. The clock cycles start from 1.

Algorithm 2 Behavior of FSM A during cycle t
1: for all k E {1, 2,..., K} do
2: Calculate value of output ok during cycle t using

Ok(t)= Ak(S(t), [iki k(t) ik, (t) , ikRk (t)]) (3.1)

3: end for
4: Calculate the new state of A. This is the state of the FSM for the next cycle
t+l 1. So,

s(t + 1) = 6(s(t), [il(t), i2 (t), .. ij(t)]) (3.2)

Update state s with s(t + 1).

Consider the latency-insensitive transform A' of A shown in Figure 3-1(b). For

every input ij in A, there is a corresponding FIFO input buffer i in A'; for every

output ok in A, there is a corresponding FIFO output buffer o' in A'. State s' of A'

corresponds to state s of A. The set of values that can be enqueued into an input

buffer i' of A' is Ij which is the same as the set of values the corresponding input ij of

A can take. Similarly, the set of values that can be dequeued from an output buffer

ok of A' is Ok; and the set of values that state s' can take is S. The state s' of A' is

initialized with the same value as the state s of A. One can enqueue into the input

buffer i only when it is not empty and similarly, one can dequeue from the output

buffer o' only when it is not full.

Transform A' simulates each cycle of A. We denote this as target cycle of A'.

Algorithm 3 gives the behavior of A' during each target cycle. Here vi' represents

the value dequeued from input buffer i" and vo' represents the value enqueued into

the output buffer o'. vs' represents the value read from state s' and ns' represents

the new value of state s'.

Lemma 3.1.0.6. Output buffer ok in the transform A' is dependent on input buffer i

according to dependency definition 2.2.1, if and only if ok is strictly combinationally

Algorithm 3 Behavior of latency-insensitive transform A' during a target cycle

1: while there exists o'k, k E {1, 2,..., K} such that

* ok is not full;

* in A, if Ok is strictly combinationally connected to ikl, k2 , ... , ikRk, then

ikli k2, • •, kik are not empty; and

* ok has not been enqueued during this target cycle.

do
2: Calculate

vo' =k (VS, ki~, 2 ,... v ,kk]) (3.3)

3: Enqueue vo' in output buffer of.
4: end while
5: Calculate

ns' = 6(vs', [vi, ' 2, . . . , vi'j]) (3.4)

Update state s' with ns'.
6: Dequeue all the input buffers.

connected to ij in A.

Proof. According to Equation 3.3 in Algorithm 3, the nth value enqueued into the out-

put buffer ok can not change if none of the nth values dequeued from i i , it' 27 i t

changes, provided the rest of the values are the same. Thus ok can depend only on

if if it according to dependency definition 2.2.1. These input buffers exactly

correspond to the inputs iki, ik,... , ikk of A which ok is strictly combinationally

connected to. In Equation 3.1, since Ok is strictly combinationally connected to

ik, ik2 , .. i Rk , there exists some clock cycle for every input in that set for which the

value returned by the function Ak() changes if that input changes, and every other in-

put remains the same for all clock cycles. Since the same function is used in Equation

3.3, by dependency definition 2.2.1, ok depends on all of 4' 2 ' 'k O

The while-loop in Algorithm 3 can be executed in parallel for all the output buffers

whose conditions are met.

In the following, we prove that a latency-insensitive transform A' of an FSM A is

a composable latency-insensitive refinement of the FSM.

Theorem 3.1.1. A latency-insensitive transform of an FSM is cycle-accurate with

respect to the FSM

Proof. During the simulation of a target cycle by A', all output buffers are enqueued

once, the state is updated and all the input buffers are dequeued once. Thus, Vn > 1,

if the nth value is dequeued from every input buffer, then the nth value is enqueued

into every output buffer, and the state is updated for the nth time.

Vt > 0, let i'(t),j E {1,2,..., J} represent the tth value dequeued from input

buffer i' and o' (t), k E {1, 2,..., K} represent the tth value enqueued into output

buffer o'. Let s'(t), t > 1 represent the value of s' immediately before the tth update

of s', i.e. the value between the (t - I)th and tth update of s'. From Equation 3.3 and

Equation 3.4 of Algorithm 3, we get

Vt > 0,

o'(t) kC\ (), (t)]) (3.5)

s'(t + 1) = (s' [(t),[l I i'2 ill(t)]) (3.6)

Given that the values in every input of A is the same as the values enqueued into

every input buffer of A', we have

Vt > 0,

Vj {1, 2, ... , J}, (3.7)

i (t) = ij(t)

From equations 3.2, 3.6 and 3.7, we get (by induction)

Vt > (38)

s'(t) = s(t)

From equations 3.1, 3.5, 3.7 and 3.8, we get

Vt > 0,

Vk c {1, 2,..., K}, (3.9)

o'k (t) = Ok (t)

Thus the tth value enqueued into each output buffer of A' is the same as the value

of the corresponding output of A during clock cycle t, whenever the tth value dequeued

from each input buffer of A' matches with the value of each input of A during clock

cycle t. This satisfies the cycle-accuracy condition of Section 2.1. O

Lemma 3.1.1.1. In a latency-insensitive transform of an FSM, Vn > 0, if every

output buffer of the transform has been enqueued n times, and if every input buffer is

enqueued n times, then eventually every input buffer will be dequeued n times.

Proof. From Algorithm 3, Step 6, every input buffer will be dequeued after every

output buffer has been enqueued. This proves the lemma. O

Lemma 3.1.1.2. In a latency-insensitive transform of an FSM, Vn > 0, if every

input buffer of the transform has been enqueued n times and every output buffer has

been enqueued n times, now if all input buffers that an output buffer depends on is

enqueued once more, and the output buffer is not full, then the output buffer will

eventually be enqueued once more.

Proof. Notice first that, according to Lemma 3.1.0.6, the while loop of Algorithm 3,

waits only for all the input buffers that an output buffer depends on to become non-

empty; it does not wait for any more input buffers to be non-empty. From Lemma

3.1.1.1, we get that every input buffer will eventually be dequeued n times. Thus if

input buffers on which an output buffer depends on has been enqueued once more,

the while-loop in Algorithm 3 guarantees that the output is enqueued. O

Theorem 3.1.2. A latency-insensitive transform of an FSM is a composable latency-

insensitive refinement of the FSM.

Proof. Theorem 3.1.1 and lemmas 3.1.1.1 and 3.1.1.2 prove the statement. LO

3.2 Refining the latency-insensitive transform

3.2.1 Multi-cycle combinational functions

In Algorithm 3 for the latency-insensitive transform of an FSM, the value to enqueue

into an output buffer is given by a combinational function (Equation 3.3); and the

new value of the state of the transform is given by another combinational function

(Equation 3.4). These combinational functions can be implemented to take several

wall-clock cycles in order to obtain the result. Once the results are obtained, they are

either enqueued into an output buffer, or used to update the state of the transform, as

the case may be. The resulting system will still be a composable latency-insensitive

refinement of the FSM; the proofs of theorems 3.1.1 and lemmas 3.1.1.1 and 3.1.1.2

do not change.

3.2.2 Dont-care optimization

The state of the FSM and the values of some of the inputs may be such that an output

value can be calculated without using other inputs which are strictly combinationally

connected to that output. That is, the inputs essentially become a dont-care. This

can be taken advantage of to improve the performance of the naive latency-insensitive

transform described in Section 3.1 as follows: Every input buffer is associated with

a counter. Whenever an input is a dont-care in the FSM (for that cycle), and the

corresponding input buffer in the transform is empty, then the counter can be in-

cremented. When the input buffer is finally enqueued,if the counter is non-zero, the

value can be dropped and the counter decremented. The values enqueued into all

the output buffers remain the same as the naive transform, so this optimization is

still cycle-accurate with respect to the original FSM. Dependency condition 2.3.1 is

also satisfied, the proof being the same as Lemma 3.1.1.2. Cleanup condition 2.3.2 is

satisfied, the proof for which is as follows.

Lemma 3.2.0.1. Dont-care optimization does not violate Cleanup condition 2.3.2.

Proof. If every output buffer has been enqueued n times, if every input buffer has

tail head

(a) Shift register of size 1

fsize Circular Buffer

(b) Optimized latency-insensitive refinement of the shift
register

Figure 3-2: An example of an optimized latency-insensitive refinement

been enqueued n times, then by Algorithm 3, every input buffer will be dequeued n

times. If instead, every output buffer has been enqueued n times, but some input

buffer has been enqueued k < n times, then the counter for that input buffer would

be n - k, and hence it will drop n - k values enqueued into the buffer. Thus, every

input would be dequeued n times, if every input is enqueued n times and every output

is enqueued n times. l

3.3 An example of an optimized latency-insensitive

refinement

In typical hardware designs, modules communicate via pipelined links, characterized

by the latency 1. These links can be abstracted as a 1-size shift register A with all

the registers initialized as shown in Figure 3-2(a). Notice that the output is not

combinationally connected to the input. The output is combinationally connected

only to the head of the shift register. This property can be used to design the

latency-insensitive refinement of the shift register.

Consider a system A' shown in Figure 3-2(b). It contains a circular buffer of size

1. The circular buffer is initially full, and every entry is initialized with the value in

the corresponding register of shift register A. The output buffer of the refinement is

enqueued with the value removed from the circular buffer whenever the circular buffer

is not empty and the output buffer is not full. Note that according to the definition

of dependency in Definition 2.2.1, the output buffer is not dependent on the input

buffer. The input buffer is dequeued and inserted into the circular buffer whenever

the circular buffer is not full and the input buffer is not empty.

Theorem 3.3.1. A' is a latency-insensitive refinement of A.

Proof.

Lemma 3.3.1.1. A' is cycle-accurate with respect to A.

Proof. The value enqueued in the output buffer is always equal to the value in the

head of the circular buffer. Since the circular buffer of A' and the shift register A are

initialized with the same values, if the same values are inserted into the circular buffer

from the input buffer, as are inserted into the shift register, then the values in the

head of the circular buffer and the shift register match. This proves the lemma. O

Lemma 3.3.1.2. A' obeys Dependency condition 2.3.1.

Proof. The output buffer is always enqueued as long as there is an element in the

circular buffer. If k values are enqueued into the output buffer, then k values can be

inserted into the circular buffer. So when k values are enqueued into the input buffer,

they will be inserted into the circular buffer. The circular buffer will not be empty

after k values are enqueued into the output buffer as it had 1 elements initially. So,

one more value can be inserted into the output buffer. This proves the lemma. Ol

Lemma 3.3.1.3. A' obeys Cleanup condition 2.3.2.

Proof. If the output buffer is enqueued k times, then the circular buffer can be inserted

k times. So, if k values are enqueued into the input buffer, they will all be dequeued

and inserted into the circular buffer. This proves the lemma. O

Lemmas 3.3.1, 3.3.1.2 and 3.3.1.3 prove the theorem. O

Chapter 4

Related work and Conclusion

4.1 Related Work

The work done as part of this thesis is an extension of the Theory of latency-insensitive

design [3], [5], [2], [4]. [3], [5], [4] and [2] give a methodology to automatically wrap

modules in order to make them latency-insensitive. Their work focuses on solving

the problem of wire delay between these modules. By wrapping the modules and

making them latency-insensitive, any number of buffers can be inserted between the

modules, thus mitigating wire delays. Each module in the system has a stringent

structural restriction that all of its outputs should be registered, in order to be able

to create the wrapper. Our work extends this in the following ways. First of all,

we give an automatic transformation to convert any module into a latency-insensitive

refinement. This transformation is very similar to the transformation discussed in the

previous work, but it does not place any structural restriction on the modules - the

outputs of the modules need not be registered, they can be combinationally connected

to the inputs. Removing this restriction enables us to partition the system arbitrarily

into modules, which is important from a design perspective. Secondly, we give the

sufficient conditions that the refinements must obey in order for it to be composable.

This gives the flexibility to create a refinement obeying these conditions from scratch,

or to optimize an existing refinement, without losing the compositionality properties.

For example, the designer can add buffers in a pure combinational module, and re-

timing the buffers will pipeline the module without affecting the functionality, thus

improving performance.

The work on distributed simulation [7], [6] is similar to our work. A distributed

system contains several communicating processes. The only means of communication

between the processes is via messages. A process can take a finite time (delay) to

produce its outputs. [7] proposes a scheme to simulate this distributed system of

processes without deadlocks. Their scheme involves sending time-stamps along with

every message, and sending null-messages through an output line, in case of no activity

in that output line for the current set of inputs. Our solution is very similar to theirs

when applied to the special case of simulating a distributed FSM. Each module of

the FSM can be thought of as a process in [7], and the outputs are produced with

0-delay. This avoids the need for time-stamps in our latency-insensitive refinement.

Also every output of the module is produced every cycle. This avoids the need for

null-messages in our work.

Lately, there has been a surge of interest in the academic community in using FP-

GAs for micro-architectural simulation. This work was inspired by one such project,

HASim [10], [9]. In this project, FPGA simulators for an in-order and an out-of-

order pipeline for the Alpha ISA were developed. The modules of the simulator are

connected via A-Ports [10], which model the communication latency between mod-

ules. An A-Port modeling an i-latency link, I > 0 is initialized with 1 values. The

modules of the simulator have the following behavior: all the input A-Ports are read

first and then, all the output A-Ports are written. This restricts the composability of

the modules. For example, if a module has an input 0-latency A-Port and an output

0-latency A-Port, and in the overall design, if the two A-Ports are combinationally

connected to each other, then the system will deadlock. The focus of our work is to

enforce conditions on the behavior of the modules for composability. We state and

prove the conditions that a module must obey in order for it to be composable, thus

giving a theoretical foundation for FPGA-simulators to be correct and deadlock-free.

The A-Ports themselves are exactly the same as the latency-insensitive refinements of

the i-latency links which we discuss in the thesis. Other projects involved in creating

FPGA simulator infrastructure include FAST [8] and RAMP [1]. The modules of the

simulators communicate using a model of a FIFO (Connectors in FAST and Channels

in RAMP). These projects do not enforce restriction on the behavior of the modules,

thus again restricting the composability of the modules.

4.2 Conclusion

In this thesis, we have formally defined latency-insensitive refinements and composable

latency-insensitive refinements. We have stated and proved the conditions that a

latency-insensitive refinement should satisfy in order for it to be composable. We

also described an automatic procedure to convert any design into a latency-insensitive

refinement, and the further optimizations that can be performed on it.

This technique enables us to easily write fine-grained parallel simulators for syn-

chronous designs which can be implemented on FPGAs. It essentially allows the

simulator to trade time for space, i.e., take several clock cycles but use lesser re-

sources, while being cycle-accurate with respect to the original design. In the future,

we plan to implement an FPGA simulator for multi-core, multi-threaded PowerPC

processor along with the associated memory subsystem using this technique.

Bibliography

[1] Arvind, Krste Asanovic, Derek Chiou, Joel Emer, James C. Hoe, Christoforos

Kozyrakis, Shih-Lien Lu, David Patterson, Jose Renau, and John Wawrzynek.

RAMP: Research Accelerator for Multiple Processors - A Community Vision for

a Shared Experimental Parallel HW/SW Platform. Technical report, University

of California Berkeley.

[2] L.P. Carloni, K.L. McMillan, A. Saldanha, and A.L. Sangiovanni-Vincentelli. A

methodology for correct-by-construction latency insensitive design. Computer-

Aided Design, 1999. Digest of Technical Papers. 1999 IEEE/ACM International

Conference on, pages 309-315, 1999.

[3] L.P. Carloni, K.L. McMillan, and A.L. Sangiovanni-Vincentelli. Theory of

latency-insensitive design. Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, 20(9):1059-1076, Sep 2001.

[4] L.P. Carloni and A.L. Sangiovanni-Vincentelli. Performance analysis and opti-

mization of latency insensitive systems. Design Automation Conference, 2000.

Proceedings 2000. 37th, pages 361-367, 2000.

[5] Luca Carloni, Ken McMillan, and Alberto Sangiovanni-Vincentelli. Latency in-

sensitive protocols. In N. Halbwachs and LNCS 1633 D. Peled, editors, Proc. of

the 11th Intl. Conf. on Computer-Aided Verification (CAV), page 12. UC Berke-

ley, Cadence Design Laboratories, July 1999.

[6] K. M. Chandy and J. Misra. Asynchronous distributed simulation via a sequence

of parallel computations. Commun. ACM, 24(4):198-206, 1981.

[7] K.M. Chandy and J. Misra. Distributed Simulation: A Case Study in Design and

Verification of Distributed Programs. Software Engineering, IEEE Transactions

on, SE-5(5):440-452, Sept. 1979.

[8] Derek Chiou, Dam Sunwoo, Joonsoo Kim, Nikhil Patil, William H. Rein-

hart, D. Eric Johnson, and Zheng Xu. The FAST methodology for high-speed

SoC/computer simulation. In ICCAD '07: Proceedings of the 2007 IEEE/ACM

international conference on Computer-aided design, pages 295-302, Piscataway,
NJ, USA, 2007. IEEE Press.

[9] M. Pellauer, M. Vijayaraghavan, M. Adler, Arvind, and J. Emer. Quick Per-

formance Models Quickly: Closely-Coupled Partitioned Simulation on FPGAs.

Performance Analysis of Systems and software, 2008. ISPASS 2008. IEEE In-

ternational Symposium on, pages 1-10, April 2008.

[10] Michael Pellauer, Muralidaran Vijayaraghavan, Michael Adler, Arvind, and Joel

Emer. A-Ports: an efficient abstraction for cycle-accurate performance models

on FPGAs. In FPGA '08: Proceedings of the 16th international ACM/SIGDA

symposium on Field programmable gate arrays, pages 87-96, New York, NY,
USA, 2008. ACM.

