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We consider extra dimensional field theory descriptions of backgrounds with N different throats where
one of the extra dimensions in each throat is much larger than the others. Such backgrounds can be
described by field theory on N 5D warped spaces which intersect on a ultraviolet (UV) brane. Given a field
that propagates in all N throats there are N boundary conditions on the UV brane (which are determined
by the effective Lagrangian on the UV brane) in addition to the boundary conditions on the N infrared
branes. We derive a general set of UV boundary conditions and give examples of how they are applied to
particular situations. Three simple example applications are given: in the first the number of families is
determined by the number of throats and the SUSY flavor problem is solved via an S3 symmetry of the
throats; in the second we embed this scenario in a SUSY GUT with a solution of the doublet-triplet
splitting problem based on the product group approach; while in the final example we show a simple
geometric implementation of a SUSY trinification model on three throats.
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I. INTRODUCTION

Theories with extra dimensions have found many new
applications over the past ten years. Large and warped
extra dimensions have been proposed to alleviate the hier-
archy problem [1,2], small extra dimensions can give rise
to novel approaches to GUT model building [3], universal
extra dimensions can give new dark matter candidates [4],
and even new mechanisms for electroweak symmetry
breaking can be found using extra dimensions [5–7]. In
most of these models, only the simplest possible topologies
of the extra dimensional space have been assumed: a single
(or sometimes two) extra dimensions compactified on a
circle (or torus), or a very simple orbifold like S1=Z2 or
T2=Z2. This severely limits the possible configurations
available for model building. For example in the case of
warped extra dimensions it is usually assumed that there is
a single warp factor in the theory, and that one needs to
introduce complicated intersecting brane configurations in
order to get a warped model in more than one extra
dimension. However, it has been found in string theory
[8] that a generic type of situation arising from flux com-
pactifications leads to geometries with multiple ‘‘throats’’
hanging out from the ‘‘head’’, which is a compact Calabi-
Yau manifold (see Fig. 1). Such compactifications with
multiple throats could have many advantages over the
more commonly considered ones. It is relatively simple
to introduce multiple scales into the theory, it allows for

clearly separate fields without having to introduce multiple
extra dimensions, etc. The purpose of this paper is to give a
simple field theory description of such multithroat string
compactification set-ups, and to show some possible sim-
ple applications for extra dimensional model building that
would not be easily achieved without such set-ups (see also
[9] for previous phenomenological applications of multi-
throat set-ups).

FIG. 1 (color online). A generic multithroat geometry.
Multiple throats are hanging out from the head which is a
compact Calabi-Yau manifold. In our field theory approach,
each throat is modeled by a single warped extra dimension.
The throats intersect at a point, the UV brane. The UV physics of
the head is described by some brane localized operators con-
necting the various fields living in the individual throats.
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II. BOUNDARY CONDITIONS

In the field theory limit that we are considering we
imagine that the transverse sizes of the throats are all
negligible, and also shrink the head to a single point, the
UV brane. Thus we end up with N 5D bulks parametrized
by the coordinates z1; . . . ; zN (see Fig. 2). We should again
stress that these are not coordinates of N extra dimensions,
but rather N single extra dimensions intersecting at a point
in space, thus identifying the points1 z1 � 0 with z2 �
0; . . . ; zN � 0. This point is what we will be calling the
UV brane. The other N (distinct) endpoints of the throats
corresponding to z1 � R01, z2 � R02; . . . , zN � R0N will cor-
respond to N separate IR branes, thus yielding N separate
scales in the theory. This set-up is a generalization to
multithroats of our construction [10] where two throats
have been introduced to separate the top and bottom quarks
from the light fermions.

On this geometry, let us consider a single scalar field �
which propagates in all of the throats. We start our analysis
of the modes of this field by introducing N 5D bulk scalar
fields �i each of which will live in just one of the throats
that intersect on the single UV brane. The bulk actions are
given by2

 L bulk �
X
i

�������
g�i�
p

�
1

2
gMN
�i� @M�i@N�i � Vi��i�

�
; (2.1)

where gi is the metric in the i-th throat. In order for the
picture to be consistent, they have to match on the UV
brane: g�1�jz1�UV � . . . � g�N�jzN�UV � g�UV�. At this
point, the N fields �i are still totally independent. In order
to make it a single field propagating over the whole ge-
ometry we need to connect these fields at the UV brane. For
simplicity we will first consider only the lowest dimension
operators on the UV brane (warp factor dependencies are
included in the mass terms):

 L UV �

�
�

1

2

XN
i;j�1

mij�i�j

�
jzi�UV

: (2.2)

The variation of the bulk actions and the UV-brane action
gives the following N boundary conditions (BC’s):

 0 � @zi�g
55
�i�

�������
g�i�
p

�i� �
XN
j�1

mij�j: (2.3)

UV-brane kinetic terms can be included in a straightfor-

ward fashion, leading to @�@��i terms in the BC.
Including interaction terms on the UV brane will lead to
nonlinear terms in the BC’s. Note, that (2.3) provides
exactly the right number of BC’s to be able to fully
determine the system. We started out with N scalar fields
each of which satisfy a second order differential equation,
so one needs 2N BC’s to solve the system. N of these are
provided by the BC’s at the IR branes, while further N
come from (2.3) at the UV brane.

A particular choice of mass terms on the UV brane leads
to a very simple set of BC’s. If the mass terms have the
form (with the convention that �N�1 � �1)

 L UV � �
XN
i�1

kim��i ��i�1�
2
jzi�UV (2.4)

then the BC’s are

 @zi�g
55
�i�

�������
g�i�
p

�i� � 2kim��i ��i�1� � 0: (2.5)

In the largem limit these equations will just simplify to the
N � 1 independent equations (independent of the ki’s):

 �i � �i�1 for i � 1 . . .N � 1 (2.6)

while the sum of these equations will give the remaining
BC

 0 �
XN
i�1

1

ki
@zi�g

55
�i�

�������
g�i�
p

�i� (2.7)

A mechanical analogy for this system is given by N
vibrating rods, which are connected at their ends with
springs to each other, with the boundary mass kim corre-
sponding to the spring constant (see Fig. 3).

In a more general case, the structure of the spectrum, in
particular, the number of zero modes and their localization
in the throats, depends on the BC on the UV brane,
effectively described by the localized mass terms. The
general set of BC’s in Eq. (2.3) can be rewritten as:

 0 � @zi�i �
XN
j�1

~mij�j; (2.8)

where

z 1

z 2

z N

z 2

z N

z 1

FIG. 2. Illustration of the limit of the generic multithroat
geometry considered in this paper.

1For a flat extra dimension, we can always chose the UV brane
in each throat to be located at zi � 0. In a warped extra
dimension where translational invariance along the extra dimen-
sion is lost, we cannot simply shift the origin of the coordinates
zi to bring the UV brane at zi � 0. The discussion presented here
is easily generalized to more general (warped) set-ups.

2Throughout this paper, we will use a mostly minus signature
and M;N . . . � 0, 1, 2, 3, 5 denote bulk coordinates while
�; � . . . � 0, 1, 2, 3 denote brane coordinates.
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 ~m ij � �g
55
�UV�

�����������
g�UV�
p

��1�@zi�g
55
�i�

�������
g�i�
p

��ij �mij�jzi�UV

(2.9)

(we have used here the continuity of the metric on the UV
brane, and simply redefined the mass term in order to
include the derivative of the metric factor). Let us assume
for simplicity that bulk mass terms are absent and the BC’s
on the IR branes are Neuman: in this case the zero modes
are characterized by flat wave functions �i � const.
Therefore, there is a zero mode for every BC involving
only derivatives: after diagonalizing the mass matrix ~m, we
can see that the number of zero modes is equal to the
number of zero eigenvalues (N-rank ~m). The eigenstates
also determine where the zero modes live. Take v�a�i to be
the components of a-th eigenvector with eigenvalue 0 (i.e.
a runs from 1 to N-rank ~m). Then the solutions for the
constant zero modes are

 ��a�i / v
�a�
i : (2.10)

If vk is smaller that the other coefficients, the component of
the zero mode living in the k-th throat is suppressed with
respect to the others, so that the zero mode is repelled from
the k-th throat. On the other hand, if vk is larger than the
other v’s, than the zero mode lives preferably in the k-th
throat. In this way, just playing with the BC’s we can
control where a scalar zero mode is living. For the more
general case with nonconstant zero modes bulk solutions
(but still assuming that the warp factors and bulk masses
are the same in each throat), the actual zero modes corre-
spond to eigenvectors of ~mij whose eigenvalues are the
negative of the slope of the zero mode bulk solution. It is
straightforward to generalize this to the case where the
bulk zero mode solutions are different in each throat.

It is easy to check that for a flat bulk with the general UV
BC’s (2.3) that the standard reflection/transmission prob-
lem works correctly. We can for instance check it explicitly
in the nontrivial case of three throats connected at a UV
brane by general BC’s of the form (2.3). Taking IR BC’s
such that on one bulk there is an incoming (towards the UV
brane) plane wave and a reflected plane wave, while in the

other bulks there are transmitted (moving away from the
UV brane) plane waves, the wave functions of the three
scalar fields will be of the form (the UV BC’s require the
waves to have the same frequency in the different throats
and, assuming the same bulk mass in the different throats,
the bulk equations of motion also impose the wave vectors
to have the same strength)

 �1�x; z1� � ei�!t�kz1� � rei�!t�kz1� (2.11)

 �2�x; z2� � �2e
i�!t�kz2� (2.12)

 �3�x; z3� � �3ei�!t�kz3� (2.13)

r is the reflection coefficient in the first throat, while �2;3

are the transmission coefficients in the other throats. The
general BC’s at the UV brane (zi � 0) are

 @z1
�1jz1�0 �m11�1jz1�0 �m12�2jz2�0 �m13�3jz3�0 � 0

@z2
�2jz2�0 �m12�1jz1�0 �m22�2jz2�0 �m23�3jz3�0 � 0

@z3
�3jz3�0 �m13�1jz1�0 �m23�2jz2�0 �m33�3jz3�0 � 0

(2.14)

These three equations can be solved to obtain the reflection
and transmissions coefficients in terms of the UV-brane
masses, mij. For example, in the simplest case with the
boundary terms as in (2.4) and of three throats in the limit
m! 1 the BC’s will be

 �1jz1�0 � �2jz2�0 � �3jz3�0;

@1�1jz1�0 � @2�2jz2�0 � @3�3jz3�0 � 0:
(2.15)

One can then explicitly calculate that

 r � �
1

3
; �2 �

2

3
; �3 �

2

3
; (2.16)

and thus

 jrj2 � j�2j
2 � j�3j

2 � 1: (2.17)

This is a simple example of conservation of probability,
that is the sum of the reflection coefficient and the trans-
mission coefficients into the different throats adds up to
one:

 R�
XN
i�1

Ti � 1 (2.18)

One can show that this relation is also satisfied for the
general case with the BC’s from (2.14). This simple result
can be easily generalized to incoming waves on an arbi-
trary number of throats.

Spectrum of KK modes

The spectrum of KK modes in the ‘‘thin‘‘ limit of a
multithroat configuration possesses some interesting fea-
tures. A free-scalar field propagating on N flat throats

FIG. 3. A mechanical analogy: our procedure of generating the
BC’s on the UV brane can be thought of as vibrating rods
connected by springs at one of their ends.
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joined at a single UV brane provides a simple case that
shows many aspects of the general situation. Applying
Neumann BC’s at the IR ends of each of the throats
�0�R0i� � 0 and the simple Kirchhoff-type BC’s given in
Eqs. (2.6) and (2.7) at the UV brane, the solution in the i’th
throat for the n’th KK wavefunction is given by

 �i;n�zi� �
���
2
p
Cn

cos�qn�R0i � zi��
cos�qnR0i�

(2.19)

where the KK mass-squareds are determined by the solu-
tions for qn of the eigenvalue equation

 

XN
i�1

tan�qnR
0
i� � 0: (2.20)

The normalization constant Cn is found to be

 Cn �
1�������������������������������P

i
R0isec2�qnR

0
i�

r : (2.21)

If the N throats are symmetric R01 � R02 � . . .R0N � R0

then the solutions to the KK momentum eigenvalues are
simple

 qn �
n�
R0

(2.22)

with normalized wavefunction in the i’th throat

 �i;n�zi� �

���������
2

NR0

s
cos�qn�R0 � zi��: (2.23)

Notice that this normalization factor depends upon the total
volume of theN throats but the mass gap to the first excited
state above the zero mode is 1=R0. This leads to the
possibility of large volume compactifications without the
usual associated light KK modes cf. [11].

However if the throats are not symmetric, as we would
generically expect, then the spectrum of KK modes can be
extremely complicated, even in this very simple flat-throat
free-scalar case. In particular, if the throat lengths R0i are
not all rationally related then the spectrum of KK masses
appears to be ‘‘chaotic‘‘ as can be seen by simple numeri-
cal investigation of the eigenvalue Eq. (2.20). Alternatively
Dirichlet conditions at the UV brane can lead to the spec-
trum of N decoupled throats.

III. FERMIONS IN MULTIPLE THROATS

Fermions in extra dimensions always require special
attention, since chiral fermions appear only after imposing
appropriate BC’s (see [12] for an extensive discussion of
fermion BC’s). The reason is that higher dimensional
fermions are necessarily nonchiral Dirac fermions. In a
single flat extra dimension a 5D fermion is given (in terms
of 4D Weyl spinors) as

 

��z�
� �z�

� �
; (3.1)

where �will denote a left-handed 4D Weyl fermion, and  
a right handed one. The equation of motion in the bulk for
such a field with bulk mass m is given by
 

�i ���@��� @zi
� �m � � 0;

�i��@� � � @zi��m� � 0:
(3.2)

�,  satisfy first order differential equations, so one must
impose in total two BC’s for the system. The simplest BC’s
are  j0;R0 � 0 (or �j0;R0 � 0) which would imply the pres-
ence of a chiral zero mode in � with wave function e�mz

(or for  with wave function emz). Another possible choice
is that of twisted BC’s, that is  j0 � �jR0 � 0 (or the other
way round) in which case there would be no zero modes.

Here we would like to construct a set-up with throats,
which could give a theory with chiral zero modes, that
could be localized in either of the throats, or in both. For
simplicity we will start with just two throats. If these were
not connected at the UV brane, there would be many
possibilities for the zero modes. For example, we could
have a LH (or a RH) zero mode in each throat, or one LH in
one and one RH in the other throat (assuming none of the
fields are twisted). However, we would like a case, when
there is a single (for example LH) zero mode propagating
in both throats. This means that we need to start with a
separate LH zero mode in both throats, and remove one
combination of them. Because of chirality this can only be
done by adding a localized RH mode at the UV brane.

Consider, for example, the following action (@
$

zi �
~@zi �

@
 

zi):

 S �
Z R01

0
d4xdz1

�
�i ��1 ���@��1 � i 1��@� � 1

�

�
1

2
 1@
$

z1
�1 �m1 1�1 � H:c:

��

�
Z R02

0
d4xdz2

�
�i ��2 ���@��2 � i 2�

�@� � 2

�

�
1

2
 2@
$

z2
�2 �m2 2�2 � H:c:

��

�
Z
d4x�m1=2 0��1 � �2� � H:c:�jz�0 (3.3)

Here 1, 2 refer to two throats. We will also assume that the
BC in the absence of the UV brane would have been
 1j0;R01 �  2j0;R02 � 0. The equation of motion with respect
to the localized field will then enforce a modified BC

 �1jz�0 � �2jz�0; (3.4)

while integrating the bulk equations of motion for the �1;2

fields around the UV brane (	 is a small distance away
from the UV brane) imply
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� 1j	 � � 1j0 �m1=2 0 � 0 (3.5)

 

� 2j	 � � 2j0 �m1=2 0 � 0: (3.6)

Using the original BC at z � 0, we are left with

  1jz�	 � � 2jz�	: (3.7)

These new BC’s will remove one of the combination of
zero modes, and the remaining single left-handed zero
mode will have the wave function

 �1�z� � Ae�m1z; �2�z� � Ae�m2z; (3.8)

and the remaining overall coefficient A is determined by
the normalization of the kinetic term of this zero mode. If
m1 � m2 < 0 then the zero mode will be localized at the
two IR ends of the two throats. For m1 � m2 > 0 the zero
mode will be localized around the UV brane in both
throats, while for m1m2 < 0 it will be localized at the
end of the throat with positive m. This is illustrated in
Fig. 4.

We can easily generalize the above procedure for the
case with arbitrary number N throats. We will again be
interested in the case of a single chiral fermion (for ex-
ample a left-handed one) propagating in all throats. Thus
we need to start with a system that has a LH zero mode in
all throats (that is with BC’s ij0;R0i � 0). In order to remain
with just one overall zero mode we need to remove the
additional zero modes via localized mass terms. One pos-
sibility would be to add Majorana masses, but we are
assuming that there are some conserved U�1� charges
that generically forbid Majorana mass terms. Thus we
introduce N � 1 localized RH modes 
i at the UV brane,
and add the localized Lagrangian

 

Z
d4x

XN�1

i�1

XN
j�1

�m1=2 ~
iKij�j � H:c:�jz�0: (3.9)

We will assume that the rank of theN 	 �N � 1�matrix K
is N � 1, so that there is not any combination of the
localized fields that can be decoupled, and only one zero
mode is left in the spectrum. The equations of motion of
the localized fields, for the zero mode, will impose the
following N � 1 BC’s at zi � 0:

 

X
j

Kij�j � 0: (3.10)

The wave functions of the zero mode in the throats is

 �j � Aje
�mjzj ; (3.11)

where the coefficients Aj are determined, up to an overall
normalization, by the BC’s on the UV brane. Thus, the
matrix K will determine in which throats the zero mode
prefers to live, while, as in the 2-brane case, the signs and
magnitudes of the bulk masses can yield to a wide variety
of different localization patterns.

A simplified case, similar to the N vibrating rods for a
scalar field, is given by the following mass term:

 

Z
d4x

XN�1

i�1

�m1=2
i��i � �i�1� � H:c:�jz�0: (3.12)

This will then imply the BC’s �1 � �2 � . . .�N at z � 0,
and the zero mode will be of the form

 �i � Ae�mizi ; A �
�XN
i�1

�
1� e�2miR0i

2mi

��
��1=2�

:

(3.13)

IV. GAUGE FIELDS

We now would like to extend the previous multithroat
set-up with scalars to allow gauge fields to also propagate
in the throats. The IR BC’s can be derived exactly as one
would do for a single throat theory so we only have to
discuss the BC at the UV brane. The bulk Lagrangians we
consider are in flat space:

 L bulk;i � �
1

4g2
5;i

Fa2
�i�MN: (4.1)

The results for the warped case are briefly summarized at
the end of this section.

To find the BC’s on the UV brane for the case where a
single gauge field propagates in all the throats let us start
with N SU�M� gauge fields propagating in N throats and
consider how to describe in field theory the UV breaking of
the N gauge groups to the diagonal SU�M� gauge group.
This can be achieved by introducing N � 1 bi-fundamental
Higgs fields localized at the UV brane at zi � 0:

FIG. 4. The wave function of the fermions for various choices
of the signs of the bulk masses. For the continuous cases
m1m2 < 0, while for the case localized at the UV brane m1,
m2 > 0. The final case (with localization at the two ends)
corresponds to m1, m2 < 0. For all cases we have chosen jm1j �
jm2j � 1=R01 � 1=R02.
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 L UV �
XN�1

��1

�D��
y
�D��� � ��Tr�y��� � c2

��
2� (4.2)

where �� transforms as a fundamental of SU�M�� and an
antifundamental of SU�M���1. The gauge covariant de-
rivative is given by (Ta are the generators of the gauge
group in the fundamental representation and Aa

���� are the
gauge fields in �th throat)

 D��� � @��� � i�A
a
����T

a�� ���T
aAa���1��� (4.3)

As usual we expand the Higgs around its VEV:

 �� �
ei��=f���

2
p �v� h�� � � 1 . . .N � 1; (4.4)

where��, v, and h� areM	M matrices and�� � �a�T
a

and f2 � TrvyTaTav. Since we are interested in breaking
to the diagonal subgroup we will take v to be proportional
to the identity. The Lagrangians (4.1) and (4.2) contain
some bulk and brane mixing terms involving A� that we
want to cancel out with a generalized R
 gauge fixing term.
Expanding up to quadratic order:

 

Leff �
XN
i�1

Z R0i

0
dzi

�
1

g2
5;i

�
�

1

4
Fa2
�i��� �

1

2
�@ziA

a
�i���

2 �
1

2
�@�A

a
�i�5�

2 � @�A
a
�i�5@ziA

a�
�i�

��

�
XN�1

��1

1

2
Trvy

�
1

f
@��� � A

�
��� � A

�
���1�

��
1

f
@��� � A���� � A���1��

�
v

�
XN�1

��1

1

2
Tr@�h

y
�@�h� � ��Trvyh��2 � . . . (4.5)

Integrating the derivative mixing term by parts gives:

 

Z R0i

0
dziAa�i�5@zi@�A

a�
�i� � �

Z R0i

0
dzi@ziA

a
�i�5@�A

a�
�i� � �A

a
�i�5@�A

a�
�i� �

R0i
0 : (4.6)

The mixing terms between vectors and scalars are then cancelled by adding the bulk and the brane gauge fixing
Lagrangians (for simplicity we will take all the brane gauge fixing parameters to be equal to 
b):

 

LGF � �
XN
i�1

1

g2
5;i

1

2
i

Z
dzi�@�A

a�
�i� � 
i@ziA

a
�i�5�

2 �
XN
i�1

1

2
b

�
@�A

a�
�i� � 
b

�
f��ai � �

a
i�1� �

Aa
�i�5

g2
5;i

��
2
��������zi�0

�
XN
i�1

1

2
b

�
@�A

a�
�i� � 
b

Aa�i�5
g2

5;i

�
2
��������zi�R0i

; (4.7)

(with the convention that �a0 � 0 and �aN � 0). The uni-
tary gauge is realized in the limit where all the 
’s are sent
to infinity. The full Lagrangian then leads to the following
equation of motion for A� (qi denotes the 4D momentum):

 @zi�@ziA�i��� �
�
q2��� �

�
1


i
� 1

�
q�q�

�
A�
�i� � 0; (4.8)

while the BC’s, fixed by requiring the vanishing of the
boundary variation terms in Eq. (4.5), are:

 @ziA
a
�i�� � g

2
5;if

2�Aa�i�� � A
a
�i�1��� � 0: (4.9)

In the infinite VEV limit, the corresponding UV BC’s are

 Aa�i�� � Aa�i�1�� (4.10)

 

@z1
Aa
�1��

g2
5;1

� . . .�
@zNA

a
�N��

g2
5;N

� 0 (4.11)

These BC’s are analogous to case of scalar fields propagat-

ing in multiple throats, thus the KK expansion of these
fields will have identical properties for the two cases.

Next we would like to discuss the question of under what
circumstances will there be physical modes in the scalar
components. The bulk equation of motion for the scalar
fields A�i�5 is:

 
i@2
zAa�i�5 � q

2Aa
�i�5 � 0; (4.12)

From this we see that the only physical modes that can
survive in the unitary gauge limit 
! 1 are those with
q2 � 0. Thus for theses modes we have

 @2
zAa�i�5 � 0: (4.13)

The BC’s for the �’s and A�i�5’s are obtained by requiring
that the variation of the action vanishes at the UV brane:
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 �Lscalar � �
XN�1

��1

@�@��a���a�

�
XN
i�1


i
2g2

5;i

�Aa�i�5@ziA
a
�i�5jzi�0 (4.14)

 

�
XN
i�1


b

�
f��ai � �

a
i�1� �

Aa
�i�5

g2
5;i

���������zi�0

	

�
f���ai � ��

a
i�1� �

�Aa�i�5
g2

5;i

�
(4.15)

In the unitary gauge the terms in the A5 and � equations of
motion that are multiplied by gauge parameters must van-
ish. So we see that �a1 and �aN�1 are fixed in terms of Aa�1�5
and Aa

�N�5. The remaining N � 2 equations from 
b terms
fix the remaining �ai ’s and require

 0 �
XN
i�1

Aa
�i�5

g2
5;i

��������zi�0
(4.16)

By requiring that the terms proportional to 
i vanish, we
also obtain

 @ziA
a
�i�5jzi�0 � 0 (4.17)

We can see that as expected, the BC’s for the A5 compo-
nents are the same as for the A� components, except that
the Dirichlet BC is replaced by a Neumann BC and vice
versa. The BC’s (4.16) and (4.17) together with the bulk
equation of motion implies that for any physical mode the
A�i�5’s have to be constant in every throat, and due to the
BC (4.16) these constants have to add up to zero. Thus
there can at most beN � 1 independent scalar modes. How
many of these N � 1 are actually physical will depend on
the BC’s at the IR branes. If there is no additional symme-
try breaking on any brane, or if there is symmetry breaking
on at most one brane, then none of the scalar A�i�5 modes
will be physical. The reason is that the BC on a given IR
brane for A�i�5 will be Neumann @ziA

a
�i�5jzi�R0 � 0 for the

case when a particular generator a is broken by a VEVof a
scalar field on the brane, while it will be Dirichlet
Aa�i�5jzi�R0 � 0 for the case there is no symmetry breaking.
If there is a Dirichlet BC at the bottom of at least N � 1
throats then at least N � 1 of the A�i�5’s are set to zero, and
since all N have to also add up to zero, we see that they all
have to vanish. So there is no physical mode left. Thus in
order for a physical scalar zero mode to exist in any
particular gauge direction, the generator corresponding to
that direction has to be broken at least twice (on the bottom
of at least two throats). This also immediately implies, that
if a particular generator is broken on k throats, there will be
k� 1 physical scalar zero modes appearing.

The counting of the physical scalar modes has a very
simple holographic interpretation (at least for the case

when all the throats are warped). If the extra dimensions
were warped, then the set-up we have produced would
correspond to N different 4D CFT’s (corresponding to
the bulks of the warped throats), each of which has an
SU�M� global symmetry. The set-up around the UV brane
ensures that only the diagonal subgroup of these global
symmetries is actually gauged. Then if the symmetry is
broken on the bottom of k throats that will correspond to k
of the CFT’s spontaneously breaking its own global sym-
metry, each of which will produce a Goldstone boson.
However, since the diagonal subgroup is gauged, one
combination of these Goldstone bosons is eaten, leaving
us with k� 1 physical massless Goldstone modes. We
have seen that the BC’s derived here exactly reproduce
this expected answer. Even though we have only consid-
ered the flat-throat case here, the generalization to the
warped case is straightforward. With bulk Lagrangians of
the form

 L bulk;i � �K�i��zi�
1

4g2
5;i

Fa2
�i�MN; (4.18)

following the same procedure as before, we obtain the
following BC’s for the A� components in the infinite
VEV limit

 Aa�i�� � Aa�i�1�� (4.19)

 

K�1��z�

g2
5;1

@z1
Aa
�1�� � . . .�

K�N��z�

g2
5;N

@zNA
a
�N�� � 0 (4.20)

while the BC’s for the A5 components read

 0 �
XN
i�1

K�i�

g2
5;i

Aa
�i�5jzi�R (4.21)

 0 � @zi�K�i�Aa�i�5�jzi�R (4.22)

V. GRAVITY

Let us finally discuss how an appropriate gravitational
background and fluctuations could be obtained in these
throats. For useful references for this section see [13].
For the background metric we will be assuming that it is
conformally flat in every throat and is given by

 g�i�MN � e�Ai�zi��dx�dx���� � dz2
i �; (5.1)

where the coordinates zi run from the UV brane zi � 0 to
the individual IR branes zi � R0i. We will assume that the
metric is continuous at the UV brane, that is

 Ai � Ai�1 � 0: (5.2)

Here we have rescaled the overall warp factor on the UV
brane to be equal to one. If there are different cosmological
constants �i in the different throats, then the warp factors
will be given by
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 Ai�zi� � 2 log�zi=Ri � 1�; (5.3)

where the AdS curvatures in the different throats are given
by their usual expressions

 1=R2
i � �


2�i

6
; (5.4)

and 
2 is the 5D Newton constant (related to the 5D Planck
scale by 
2 � 1=�2M3


�). These will completely fix the
solutions, however one still has to satisfy the generalized
Israel junction condition [14]. In this case it will be given
by

 

X
i

@ziAijzi�0 �
2
2

3
T; (5.5)

where T is the tension of the junction (i.e. the UV brane).
This will just result in the usual Randall-Sundrum (RS)-
type fine tuning between the brane tensions and the various
throat cosmological constants:

 

X
i

1

Ri
�

2

3
T: (5.6)

One can also find the graviton KK modes easily in this
background. Assuming that the metric fluctuations are of
the form

 ds2
i � e�Ai�zi��dx�dx����� � h

�i�
���x; zi�� � dz2

i � (5.7)

and using transverse traceless gauge (that is neglecting the
radion-type scalar solutions) h�� � @�h�� � 0 we find that
the Einstein equations in the throats give the usual RS-type
equations:

 �@�@� � @2
zi�h

�i�
�� �

3

2
@ziAi@zih

�i�
�� � 0: (5.8)

All the terms including the brane tension are compensated
by the effects of the background metric, so the generalized
Israel junction condition at the UV brane for the perturba-
tions will just be:

 

X
i

@zih
�i�
�� � 0; (5.9)

while the metric should still be continuous on the UV brane
requiring

 h�i��� � h�i�1�
�� : (5.10)

Thus the BC’s for the graviton modes are completely
analogous to the case of scalars and gauge bosons with a
single zero mode. For the particular case of a graviton zero
mode in a warped throat (à la RS), we can easily solve
these equations, since the solution of (5.8) are just constant
in every throat, with the constants equal at the UV brane.
The overall normalization would then be fixed by calculat-
ing the kinetic term of the graviton zero mode.

VI. APPLICATIONS

A. A throat for every family

One obvious application of the multithroat construction
is to have a set-up where the gauge bosons propagate on all
the throats but a family of quarks and leptons lives in a
single throat. With three throats, we can have the three
families each propagating in different throats. In order to
be able to generate mixings among different families the
Higgs field has to have an overlap with the UV brane. Thus
one would expect that in order to solve the gauge hierarchy
problem one would have to make the set up supersymmet-
ric. The supersymmetric flavor problem could then be
resolved geometrically, if one assumes that the three
throats were identical (that is they are related by an S3

exchange symmetry). In this case one could imagine that
the only source of supersymmetry breaking was due to
strong dynamics at the bottom of the throats giving rise to
equal soft supersymmetry breaking terms localized on the
IR branes. Since we are assuming that the three throats are
identical, one will get equal soft breaking terms for the
three families, and since they are separated in different
throats they will be flavor diagonal. In order for the Higgs
to pick up soft breaking terms it has to then propagate in
the three throats. Since we are assuming that the three
throats are identical this will also imply that the Yukawa
couplings in the throats are equal for the three families. A
hierarchy among the three families can then be obtained by
adding terms to the UV brane such that the VEV’s of the
Higgses in the three different throats will be the largest for
the throat containing the third generation, and the smallest
for the first generation. The mixings among the generations
and the differences of masses within a generation can then
be adjusted by adding some additional UV-brane localized
Yukawa couplings. The set up is illustrated in Fig. 5.

νeu,d,e,

τ,ντt,b,µ,νµc,s,

SUSYSUSY

SUSY

S3

SU(3)xSU(2)xU(1)

FIG. 5. Illustration of the throat construction of the model with
a throat for every family.
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B. A GUT model for doublet-triplet splitting

One can embed this scenario in a model of doublet-
triplet splitting in SUSY GUTs along the lines of [15,16].
Thus these GUT models can be given a simple geometric
interpretation. The essence of the model in [15] is to have
three SU�5� groups broken by various bifundamental fields
Zi and �Zi to the diagonal SU�3� 	 SU�2� 	U�1� sub-
group. A key element is the S3 exchange symmetry of
the three SU�5� factors and an additional Z2 symmetry
that will forbid direct mass terms of the Higgs fields.

The geometric construction is again based on a super-
symmetric three-throat set up, each of which have an
SU�5� group propagating in them. The three throats have
again an S3 exchange symmetry as in Fig. 6. We assume
that half of the eight supercharges are broken on the IR
brane via BC’s, and thus only an N � 1 set of fields have
light modes. On the UV brane we introduce the bifunda-
mental fields Zi, �Zi and a generic superpotential (as in [15])

 W�Z�UV � M1

X
j

�Zj �Zj� �
1

M2

X
j�k

�Zj �Zj��Zk �Zk� � . . . ;

(6.1)

where the extra terms correspond to additional dimension
four superpotential terms. Among the possible set of super-
symmetric vacua are those with VEVs

 hZ1i � h �Z1i � v1diag�1; 1; 1; 0; 0�; (6.2)

 hZ2i � h �Z2i � hZ3i � h �Z3i � v2diag�1; 1; 1; 1; 1�: (6.3)

With these VEVs the three SU�5�’s in the three throats are
broken to just the SM groups. There are six separate Higgs
fields Hi, �Hi (which are originally six hypermultiplets, but
due to the BC’s on the IR brane only one chiral component
will have a zero mode). In order to forbid the direct mass
term for these fields one needs to assume that there is a Z2

symmetry f �H;Z; �Zg ! �f �H;Z; �Zg which will only allow
the superpotential coupling on the UV brane

 W�H;Z�trilinear � �
X
i;k

HiZik �Hk; (6.4)

where we have defined Zik � Zj for j � i, k. With this
additional UV-brane superpotential all components of the
Higgs fields Hi, �Hi will get a mass of order v1;2, except for
one pair of SU�2� doublets, which will be identified with
the MSSM Higgs doublets. This will also automatically
solve the �-problem, and an order Mweak �-term can be
generated if after minimizing the potential for the Z,
�Z-fields the VEV’s will get shifted due to the addition of
the soft breaking terms. The model of [16] can be imple-
mented similarly, with the added convenience that the UV-
brane VEV’s of the Z, �Z can now be interpreted as Wilson
lines along the coordinates parameterizing the direction
along the UV head.

C. A simple geometric construction for trinification

Quite a lot of effort has been devoted [17] to naturally
implement a grand unified trinification [18] model based
on the gauge group SU�3�3=Z3 into extra dimensions. The
multithroat construction clearly offers a simple implemen-
tation for such a theory. In 4D the gauge group is given by
SU�3�c 	 SU�3�L 	 SU�3�R, with SU�3�c being ordinary
QCD, SU�2�L � SU�3�L, and Y � � 1��

3
p �T8

L �
���
3
p
T3
R �

T8
R�. One family of SM matter can be embedded into the

representation 27 � �3; �3; 1� � �1; 3; �3� � ��3; 1; 3�. This
contains the usual SM fermions, plus some additional
massive vectorlike fields: an additional SU�2�L singlet
vectorlike bottom, an additional vectorlike SU�2�L doublet
(color singlet) plus two right handed neutrinos.

The symmetry breaking is obtained by at least two Higgs
fields in the same representation 27. Clearly, since QCD is
unbroken only the �1; 3; �3� component of these higgses can
get a VEV, and the assumption is that one of these higgses
� will get a VEV of the form

 h�i �
v

� �
(6.5)

breaking SU�3�L 	 SU�3�R to SU�2�L 	 SU�2�R 	
U�1�B�L, while the other Higgs � has a VEV of the form

 h�i �
v0

� �
(6.6)

breaking the group to a different 3� 2� 2� 1 subgroup.
In total the two VEV’s would leave 3� 2� 1 invariant.
Electroweak symmetry breaking is achieved if further
(electrically and color neutral) components of the Higgs
fields get VEV’s of the order of the electroweak scale.

The extra dimensional construction based on throats
would work as follows: fermions are bi-fundamentals
under the SU�3� groups, and assuming they live in separate
throats, the individual SU�3� gauge bosons have to be
propagating in two separate throats each:

z1

z2 z3

SU(5)

SU(5)

5,10
_

5,10
_

SU(5)

5,10
_

1

2

3

FIG. 6. Illustration of the throat construction of the SU�5�3

model.
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 SU�3�c ! �z1; z2�; SU�3�L ! �z2; z3�;

SU�3�R ! �z1; z3�:
(6.7)

This can be achieved using a construction for the gauge
fields of the sort presented in Sec. IV. Fermions are then
localized in single throats, obviously with the above as-
signment of the gauge groups we would find

 �3; �3; 1� ! z2; �1; 3; �3� ! z3; ��3; 1; 3� ! z1:

(6.8)

This is illustrated in Fig. 7. Since the symmetry breaking
should be felt by all the fermions, the Higgs fields should
be localized on the Planck brane. Thus in order to explain
the hierarchy the theory should be supersymmetric.
Fermion hierarchies could then be explained by varying
the localization parameters of the fermions.

VII. CONCLUSIONS

We have shown how a general theory on a manifold with
many throats can be described in a field theory limit as a
collection of five dimensional warped spaces intersecting
on a single UV brane. We have also shown how the
Lagrangian on the UV brane determines the BC’s for the
extra dimensional fields, giving examples with scalars,
gauge bosons, and fermions. This set-up provides a whole
new set of tools for model builders to exploit. We have
shown the appropriate BC’s for scalar, fermion, gauge
boson and graviton fields. We have provided three very
simple sample applications of these ideas. In the first the
three generations of the MSSM propagate in separate
throats, and the supersymmetric flavor problem is solved
via the exchange symmetry of the three throats. The second
example we show how this scenario can be embedded in
a beautiful model of doublet-triplet splitting in SUSY
GUTs which can be also interpreted geometrically. The
third example provides a geometric implementation of
trinification.
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