
A compact plug-in module for LHC-like trigger emulation

P. Kokkas 1, N. Manthos 1, G. Sidiropoulos 1, P. Vichoudis 2

1 University of Ioannina, Ioannina, Greece

2 CERN, 1211 Geneva 23, Switzerland

Georgios.Sidiropoulos@cern.ch

Abstract
A compact trigger emulation module for evaluating

electronic systems for LHC applications has been built using
off-the-shelf components. The emulator, which is based on an
FPGA, generates both programmable and true-random trigger
patterns in compliance with the LHC triggering rules. For the
true-random trigger part, the source of randomness is the
avalanche effect on a transistor emitter-base diode. The
system can be used either as a plug-in module for VME
systems or as a standalone device controlled via a standard
USB link by a PC running LabVIEW.

I. MOTIVATION
The need of a flexible device emulating realistically the

random arrival of particles on a detector is apparent,
especially during the construction/testing phases of the
corresponding on and off-detector electronic systems. Having
the ability to define certain parameters such as the mean rate
and the distribution of the randomly generated trigger signals
would make such a device extremely useful. Additionally, if
the device could be portable and work in stand-alone mode, it
would make it even more attractive. All these led to the
development of a compact plug-in trigger emulator module
based on a source of true randomness.

 Such a device, apart from being useful for High Energy
Physics experiments, is also suitable for nuclear physics and
radiology experiments where the emission of a radioactive
source needs to be emulated.

II. HARDWARE IMPLEMENTATION
The trigger emulator plug-in module is based on an FPGA

and a random noise generation circuitry. The circuitry that
forms the random generator produces pulses with random
intervals. The source of randomness is the avalanche effect on
a transistor emitter-base diode, biased by a digitally controlled
voltage source.

Figure 1 illustrates the schematic of the random number
generator. The transistor on the left side of the schematic is
the avalanche noise generator. The output is amplified by a
two-stage transistor amplifier. The amplified noise signal is
superimposed on a configurable DC level (created by a digital
potentiometer) and it is fed to an FPGA internal gate which
acts as a comparator and produces random transitions. The
programmable voltage source on the left side of the schematic
controls the biasing of the transistor emitter-base diode,
changing in this way the mean value of the distribution.
Figure 2 displays the distribution of 1024 random triggers

generated by the emulator, where the solid curve is an
exponential fit to the histogram.

Figure 1: Schematic of the true random interval generator.

The output of the random generator is treated by a digital
processing circuitry implemented in an FPGA. Its principal
function is to measure the time intervals between the
transitions generated at the output of the logic gate extracting
in this way random numbers. Additionally it applies specific
rules and functionality depending on the application (details
of the functionality can be found in section III). Finally the
FPGA provides the necessary communication interface for
setting the desired working parameters. The module includes
also an optical transceiver for inter-connection with the
various off-detector electronic systems.

Figure 2: The exponential distribution of 1024 generated true

random trigger intervals with mean rate ~100 KHz.

508

0123456789

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/44178753?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This compact module (12.3cm x 4cm x 1.2cm) can be
plugged as a mezzanine on various readout systems i.e.
VME64 [1] but it can also work as a stand-alone device with
the help of a support board that provides the necessary power
and a USB interface in order to communicate with a standard
PC. The support board can be viewed in figure 4.

Figure 3: The trigger emulator plug-in module. On the left, the

optical transceiver is shown while on the right, the FPGA and the
mezzanine connector.

Figure 4: Photograph of the support board that provides power,

additional clock, JTAG and USB interface to the trigger emulator
mezzanine, used for evaluation purposes.

III. FUNCTIONALITY
The purpose of the trigger emulator is to generate

sequences of trigger signals (trigger patterns) either based on
the random number generator or on user defined parameters.
In addition it can provide other timing and fast command
information (clock signal, resynchronization signal etc) to the
front-end (on-detector) system in a programmable way in
order to facilitate various system tests. The 40.08MHz clock
signal used in all LHC systems, is produced locally by a
QPLL [2] ASIC configured as a local oscillator using a
160.32MHz quartz1 [3] as a reference. Using the 40.08MHz
clock, the triggering emulator generates four encoded fast
commands as described in table 1.

1 This quartz has been specially produced for LHC
applications.

Figure 5: Block diagram of the functionality of the emulator.

The encoding scheme used (called “T1” [4]) is a 3-bit
pattern, thus it requires 3 clock cycles to be transmitted
serially. The first bit of the pattern is always ‘1’ denoting the
existence of a fast command and the remainder denotes which
of the four fast commands is being transmitted (“00”=LV1A,
“01”=BC0, “10”=Resynch, “11”= CalPulse).

The trigger emulator is developed in such way that it can
generate bursts of triggers by specifying the time between
consecutive triggers expressed as a number of clock cycles.
Figure 6 shows how a burst of (one clock cycle width) pulses
can be defined by a sequence of numbers (t1, t2, t3 … tN).

The implementation of the burst generator is based on a
RAM, where the values t1, t2, t3 etc are stored. Firstly, the
address pointer is reset and therefore the first value stored in
the RAM (t1) appears at its output. This value is then loaded
to a decrementing counter. When the counter reaches zero, the
terminal count output is asserted. At the same time the address
pointer of the RAM is incremented providing the next value
(t2) to the decrementing counter and so on. Figure 7 shows a
simplified block diagram of a burst generator based on a
RAM.

The trigger emulator comprises four identical stages, one
per fast command. From the four identical stages, only the
one associated with the trigger generation can either be loaded
from the true random number generator or defined by the
user. The user has the option to mask any of the four
generated fast commands.

Table 1: The encoding of the four fast commands.

Name Description Priority Encoding
Resynch Soft reset of the front-end chips 1 (high) 110

BC0 Bunch crossing zero 2 101
CalPulse generate internal injection

pulses
3 111

LV1A Level 1 Trigger Accept 4 (low) 100

1

0

2 3
N-1 N

T2 T3 TNT1

Figure 6: Programmable or random burst.

Figure 7: Programmable burst generation.

509

0123456789

The trigger emulator is able to generate bursts of up to
1024 triggers. The time between two consecutive pulses can
be between 3 and 232 clock cycles2. If the user wishes to
generate bursts with N<1024 triggers, he can set the end of
the burst by writing a zero (or an illegal) value to address N of
the RAM.

It is worth mentioning that the emulator includes a
machine that emulates the Proton and Ion bunch disposition at
LHC [5]. Where there is supposed to be a gap in the
disposition, the machine suppresses the (random or
programmable) output of the trigger pattern generator.

The fast commands generated need to be encoded properly
in order to be transmitted to the front-end electronics. Prior to
the fast command encoder, a state machine is introduced to
ensure the respect of the fast command priority. The encoding
and priority of the signals can also be found in table 1. After
the selection of the command with the higher priority, its
encoding follows, as described in table 1.

In order to minimize the necessary connections for the
transmission of the clock and the T1 information, an
additional encoding combines the two signals into a single
one. The trigger emulator implements two different methods
of combining the clock encoding and the T1 information. The
first method (“CLK+T1” [4]) combines the two signals by
removing a pulse from the clock signal whenever the T1
signal is ‘1’. This is the encoding scheme used by the CMS
Tracker front-end control chipset [6] and adopted by other
sub-detectors. The second encoding method is based on a
160.32 MBaud bi-phase mark encoder with time-division,
which multiplexes 2 channels using a balanced DC-free code.
This encoding scheme is fully compatible with the scheme
used for the CMS TTC system [7], although channel B which
normally transmits broadcast and individually-addressed
commands is currently not used. Figure 8 illustrates the TTC-
like encoder implemented in the emulator.

Figure 8: TTC encoding.

IV. USER INTERFACE

The trigger emulator comes with a LabVIEW [8] user’s
interface when it works in stand-alone mode. This LabVIEW
interface allows the user to define the working parameters
(such as desired mean rate, number of triggers etc) of the
functionality discussed in section III. The LabVIEW
application includes among others, a graphical display of the
fast timing signals generated by the emulator. It is worth

2 In the case of CMS, values less than 3 are considered as
illegal because the CMS trigger rules define that 3 LHC-clock
cycles is the minimum time between two consecutive LV1A
commands.

mentioning that the application developed is compatible with
both Windows and Linux operating systems.

Figure 9: The front panel of the emulator’s LabVIEW interface.

V. SUMMARY AND CONCLUSION

A plug-in module able to emulate trigger and fast

commands for LHC applications was built. The most
important feature of this device is the ability to produce
trigger patterns based on true random number generation. The
source of randomness is the avalanche effect on a transistor
emitter-base diode, biased by a digitally controlled voltage
source.

The emulator produces randomly generated trigger pulses
with time intervals following an exponential distribution with
programmable mean between 1 KHz and 1 MHz (trigger
rate). Therefore it can be used in emulating the arrival of
particles on a detector enabling this way the testing of the
corresponding on and off-detector electronic systems.

The device can either be used as a mezzanine card on
various systems (VME based systems) or in stand alone mode
controlled by a PC running LabVIEW.

Such a device, apart from being useful for High Energy
Physics experiments, is also suitable for nuclear physics and
radiology experiments where the emission of a radioactive
source needs to be emulated.

VI. ACKNOWLEDGEMENTS

This work was partially supported by the Greek General

Secretariat of Research and Technology and was co-funded
by the European Union in the framework of the program
“Heraklitos” of the “Operational Program for Education and
Initial Vocational Training” of the 3rd Community Support
Framework of the Hellenic Ministry of Education, funded by
25% from national sources and by 75% from the European
Social Fund (ESF).

510

0123456789

VII. REFERENCES
[1] IEEE standard 1101.1, 1998 edition.
[2] The QPLL project Web site: http://proj-qpll.web.cern.ch/
proj-qpll/
[3] Micro Crystal “CC1F-T1A quartz crystal data sheet”
http://www.microcrystal.com/productdocuments/variants/CC1
F-T1A._4625.pdf
[4] B.G.Taylor, “Timing distribution at the LHC” presented at
the 8th Workshop on electronics for LHC, 2002.
[5] P. Collier “Proton & Ion Bunch Disposition in the LHC,
SPS & PS”, presented at CERN, 2003
[6] CMS Tracker Control Web site http://cmstrackercontrol.
web.cern.ch /cmstrackercontrol/
[7] The TTC project Web site: http://ttc.web.cern.ch/
TTC/intro.html
[8] National Instruments Corp. “LabVIEW 5.1 Function & VI
Reference Manual”, 1998

511

0123456789

