
Operational Planning for Multiple Heterogeneous Unmanned Aerial
Vehicles in Three Dimensions

by

Blair Ellen Leake Negron

B.S. Operations Research
United States Air Force Academy, 2007

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

AUG 12 2009

L FR.AR FS

Submitted to the Sloan School of Management in
Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN OPERATIONS RESEARCH
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARCHIVES
June 2009

Copyright @2009 Blair L. Negron. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly paper and
electronic copies of this thesis document in whole or in part.

Signature of Author:

Approved by:

U Sloan School o0 Management

Interdepartmental Program in Operations Research
S May/ 14, 2009

_ U Stepha E. I
he Charles Stark Draper Laboratory, Inc.

Technical Supervisor

Certified by:
Hamsa Balakrishnan

Assistant Professor, Aeronautics and Astronautics and Engineering Systems
Thesis Advisor

Accepted by:
/ Cynthia Barnhart

Professor, Civil and Environmental Engineering
Co-Director, Operations Research Center

THIS PAGE INTENTIONALLY LEFT BLANK

Operational Planning for Multiple Heterogeneous Unmanned Aerial Vehicles in Three

Dimensions

By

Blair Ellen Leake Negron

Submitted to the Sloan School of Management
on May 14, 2009 in partial fulfillment of the requirements for the

Degree Master of Science in Operations Research

ABSTRACT

Unmanned aerial vehicles are being incorporated in an increasing variety of operations. To take
full advantage of the vehicles, the plans for the operations should integrate each vehicle's
capabilities when planning the operations. This thesis focuses on planning operations for
multiple, heterogeneous UAVs for the purpose of monitoring Earth's phenomena through data
collection. The planning is done for flight in three dimensions. The problem also includes time
window constraints for data collection and incorporates human input in the planning process.

Two solution methods are presented: (1) a mixed-integer program, and (2) an algorithm that
utilizes a metaheuristic to generate composite variables for a linear program, called the
Composite Operations Planning Algorithm. The suitability of the two methods to solve the
operations planning problem is compared based on the ability of each of the methods to find
high-value, feasible solutions for large-scale, operationally sized problems in a reasonable
amount of time. The analysis shows that the Composite Operations Planning Algorithm can
develop operations plans for problems including 15 UAVs and 5000 nodes in less than 25
minutes using a desktop computer.

Technical Supervisor: Stephan Kolitz
Title: Member of the Technical Staff
The Charles Stark Draper Laboratory, Inc.

Thesis Advisor: Hamsa Balakrishnan
Title: Assistant Professor
Aeronautics and Astronautics and Engineering Systems

THIS PAGE INTENTIONALLY LEFT BLANK

ACKNOWLEDGEMENTS

I am very thankful for all of the support that I received while working on this thesis. So

many people influenced and inspired me while I completed the work. Thank you!

First and foremost, I want to thank God for providing me with the opportunity to glorify

His name through my work here at MIT. He has blessed me beyond measure, Col 3:23.

I would like to thank Dr. Steve Kolitz and Professor Hamsa Balakrishnan for guiding me

through the thesis writing process. They provided me with support and advice throughout my

two years working on this thesis. I especially want to thank them for letting me work from

Texas, even though it was more difficult!

I also want to thank Col. Andrew Armacost for his invaluable support. I wouldn't be

here graduating from MIT if it hadn't been for his guidance through my four years at the

Academy and his help in getting me accepted to this program. I have yet to find another

teacher who is so willing to go out of his way to help students. He is a truly remarkable teacher

and mentor.

I would like to thank my friends who helped me get through MIT and made it fun.

Mallory and Lisa - thank you for being there; I am so glad that I met both of you! Chris, thanks

for explaining everything to me!

Next, I want to thank my family. My mother and father, who always supported me in

everything that I do. Thank you for always pushing me to do my best and supporting me no

matter what the cost! Victoria, Adam, John, Meredith, Aaron, Perri, and Evan - you all are

awesome!

Last, but not least, I want to thank my wonderful, amazing husband, Evin, for his

support throughout this process. I know you didn't like living away from me, honey, but I am

moving to Texas soon! You are amazing and I am truly blessed to have you in my life. I can't

wait to start our next chapter together.

This thesis was prepared at the Charles Stark Draper Laboratory, Inc. under NASA

ESTO's AIST-05 program, Grant Number NNXO6AG17G.

Publication of this thesis does not constitute approval by Draper or the sponsoring

agency of the findings or conclusions contained herein. It is published for the exchange and

stimulation of ideas.

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the U.S.

Government.

Blair L. Negron, 2Lt, USAF May 14, 2009
Blair L. Negron, 2Lt, USAF May 14, 2009

TABLE OF CONTENTS

1 Introduction 15

1.1 Thesis Overview 15

1.2 Contributions 17

1.3 Thesis Motivation 18

2 Unmanned Aerial Vehicle Earth-Observing System Operational Concept 19

2.1 Earth Phenomena Observing System (EPOS) 20

2.1.1 Earth Phenomena Observing System Functional Overview 21

2.1.2 Sensor Web 22

2.1.3 The Role of the UAV Planner 24

2.1.4 Human Collaboration 24

2.2 Operational Scenarios 25

2.2.1 Current Studies and Operations 25

2.2.2 Projected Issues with Future UAV Use 27

2.2.3 Concept of Operations Using the UAV Planner 28

2.3 UAV Planner Problem Statement 30

2.3.1 Scope of Problem 30

2.3.2 Purpose of UAV Planner Problem 31

2.3.3 Operations Plan 32

2.3.4 Multiple, Heterogeneous UAVs 32

2.3.5 Operations Plan Characteristics 32

3 Model Formulation and Development 35

3.1 Mathematical Structure of the UAV Problem 36

3.1.1 Tasks and Locations 36

3.1.2 Input 37

3.1.3 Output 38

3.1.4 Operator Input 40

3.2 Network Representation 42

3.2.1 Network Formulation 42

3.2.2 Static Graph Representation 43

3.2.3 Time and Space Graph Representation 44

3.3 Literature Review 45

3.3.1 The Traveling Salesman Problem 45

3.3.2 Modified Traveling Salesman Problems 50

3.3.3 The Orienteering Problem 52

3.4 Mixed Integer Programming Model 53

3.4.1 Mixed Integer Programming Formulation for the USV Planner 53

3.4.2 Model Formulation 54

3.4.3 Implementation 58

4 Formulation of Algorithm 59

4.1 Composite Variables 60

4.1.1 Literature Review of Composite Variables 61

4.1.2 Full Path Composite Variables 62

4.1.3 Composite Variable Formulation 63

4.1.4 Integrality of Linear Relaxation 64

4.1.5 Use of a Metaheuristic for Full Path Composite Variables 65

4.2 Composite Operations Planning Algorithm (COPA) 65

4.2.1 Methodology 66

4.2.2 Step I: Subset Allocation 67

4.2.3 Step II: Composite Generation 70

4.2.4 Step III: Composite Variable Linear Program 78

4.2.5 Overview of Algorithm 79

4.3 Implementation of COPA 80

4.3.1 Sample Input Data 81

4.3.2 Test Set Development 82

4.3.3 Output 83

5 Testing and Analysis 85

5.1 Comparison of COPA and MIP 86

5.1.1 Testing Method 86

5.1.2 Runtime Comparison 87

5.1.3 Optimality Comparison 90

5.2 COPA Runtime Sensitivity Analysis 92

5.2.1 Impact of Additional Tasks and Locations 93

5.2.2 Large Size Test Cases 94

5.3 Operator Input Scenario 95

5.4 Operations Plan Analysis 98

5.5 Operational Forest Fire Scenarios 100

5.5.1 Improvement of Subset Allocation Methods 101

5.5.2 Scenario I: Geographically Separated Units 101

5.5.3 Scenario II: Closely Stationed Units 106

6 Conclusions and Future Work 111

6.1 Summary of Contributions 111

6.2 Possible Modifications within Current Framework 112

6.2.1 Incorporation of Weather Data 113

6.2.2 Trajectory Planning Capabilities 114

6.2.3 Entrance and Exit Locations for Tasks 114

6.3 Future Work 115

6.4 Conclusions 116

THIS PAGE INTENTIONALLY LEFT BLANK

LIST OF FIGURES

Figure 2.1 EPOS Functional Overview 22

Figure 2.2 Sensor Web Diagram 23

Figure 2.3 UAV Route Backbones for NASA/USFS Fire Demonstration [40] 26

Figure 2.4 Ikhana Image of a California Fire Overlaid on Google Maps [32] 27

Figure 2.5 Functional Structure of a Decentralized System 30

Figure 3.1 Multiple Locations to Image Area on Ground 37

Figure 3.2 Example Operations Plan 40

Figure 3.3 Human Collaboration Example 42

Figure 3.4 Network Created for an Instance of the UAV Planner Problem 43

Figure 3.5 Static Graph Representation 44

Figure 3.6 Time-Space Representation 45

Figure 3.7 Lin-Kernigan 2-opt Algorithm 50

Figure 4.1 Paths for Example 4-1 60

Figure 4.2 Composites for Example 4-2 63

Figure 4.3 Flow of the Composite Operations Planning Algorithm 67

Figure 4.4 2-opt Example 73

Figure 4.5 Deletion-Insertion Example 74

Figure 4.6 2-Exchange Example 76

Figure 4.7 Overview of Composite Operations Planning Algorithm 80

Figure 4.8 Sample Data 82

Figure 4.9 Sample Output 83

Figure 5.1 Average Runtime for COPA 89

Figure 5.2 Comparison of Operations Plan Values for MIP and COPA 92

Figure 5.3 Impact of Additional Tasks on COPA Runtime 93
Figure 5.4 Impact of Additional Locations per Task on COPA Runtime 94

Figure 5.5 Runtimes of Large Test Sets 95

Figure 5.6 Tasks for Operator Input Scenario 96

Figure 5.7 Operations Plan containing Pre-Assigned Tasks 97

Figure 5.8 Operations Plan for Operator Input Scenario without Pre-Assigned Tasks 98

Figure 5.9 Scenario I Tasks 102

Figure 5.10 Decentralized Operations Plan for Scenario I 103

Figure 5.11 Centralized Operations Plan for Scenario I 104

Figure 5.12 Example Path 105

Figure 5.13 Scenario II Tasks 107

Figure 5.14 Decentralized Operations Plan for Scenario II 108

Figure 5.15 Centralized Operations Plan for Scenario II 109

THIS PAGE INTENTIONALLY LEFT BLANK

LIST OF TABLES

Table 2.1 Example 3-1 Observation Plan for UAV 1 39

Table 2.2 Example 3-1 Observation Plan for UAV2 40

Table 4.1 Example 4-6 Composites 46

Table 5.1 UAV Types 87

Table 5.2 Runtime Analysis of MIP and COPA 88

Table 5.3 Average Runtimes for MIP and COPA 89

Table 5.4 Standard Deviation of Runtimes 90

Table 5.5 Optimality Comparison 91

Table 5.6 Task Data for Operator Input Scenario 99

Table 5.7 Example 5-1 Time Windows 106

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 1

Introduction

The advancement of technologies for unmanned aerial vehicles (UAVs) has allowed the

vehicles to be used in an increasing variety of operations. Current planning for many of the

operations do not take full advantage of the capabilities of the vehicles, because of the

complexity inherent in the planning of these operations.

The purpose of this thesis is to develop an algorithm to plan UAV operations. The

development of the algorithm addresses two main challenges to the UAV operations planning

process. The first challenge is generating plans that include multiple, heterogeneous UAVs, and

the second is planning the operations for flight in three dimensions.

This chapter will introduce the topics discussed throughout this work. The first section

provides an overview of the chapters included in the thesis. The second section summarizes the

contributions of this thesis. The third section states the motivation for this work.

1.1 Thesis Overview

This thesis presents and analyzes two methods that can be used to plan UAV operations.

The methods are developed through six chapters. An overview of the chapters follows.

Chapter 2 presents the operational concept for the planning of UAV operations. This

chapter introduces the Earth Phenomena Observing System (EPOS), a planning and control

testbed for the coordination of a system of satellites, UAVs, and unmanned surface vehicles

(USVs). It is shown that the algorithm developed in this thesis can be incorporated into EPOS

as the UA V Planner, which develops the plans for the UAV portion of the system. The chapter

then presents operational uses for the UAV Planner, including the use of the planner to develop

operations for UAVs to assist firefighting missions. It is shown that the UAV Planner can be

used in either a centralized system, in which there is a single command station to monitor the

operations of every UAV, or a decentralized system, in which multiple command stations control

subsets of UAVs. At the end of the chapter, the UA V Planner Problem statement describes the

constraints for the development of operations plans. A solution to the UAV Planner Problem

provides a three dimensional plan of operations for a system of multiple, heterogeneous UAVs.

In Chapter 3, the UAV Planner Problem is mathematically formulated. The chapter

discusses how to model the constraints presented at the end of Chapter 2. It is shown that the

UAV Planner Problem can be formulated as a network problem. Previous literature describing

similar problems is reviewed to assist in the development of an algorithm for the UAV Planner

Problem. In particular, the Orienteering Problem and the USV Observation-Planning Problem are

presented as problems that closely resemble the UAV Planner Problem. The end of the chapter

introduces a mixed integer programming (MIP) model for the UAV Planner Problem. The

model is implemented using optimization software. An analysis of this solution method is

provided in Chapter 5.

Chapter 4 formulates the Composite Operations Planning Algorithm (COPA) to solve the

UAV Planner Problem. The chapter begins by introducing full path composites, which link a

UAV type with a full path. A reformulation of the UAV Planner Problem using composite

variables is given. COPA, which utilizes this reformulation, is then presented. The three steps

of the algorithm are introduced: Subset Allocation, Composite Generation, and Full Path

Composite Variable Linear Program. The last portion of the chapter focuses on the

implementation of COPA, called the COPA software. The implementation is done in Java and

is used in the testing and analysis of the program.

The testing and analysis of the MIP and COPA are presented in Chapter 5. The chapter

begins with a comparison between the implementation of the MIP and the COPA software. It is

shown that, although the MIP provides an exact solution, COPA is able to provide a plan of

operations quickly. In addition, it is shown that the MIP is unable to produce an operations

plan for cases including more than 15 tasks. COPA is able to provide plans of operations for

large cases including 500 tasks. The next portion of the analysis presents scenarios to

demonstrate COPA's planning capabilities. First, a scenario is used to illustrate how COPA can

incorporate a human operator into the planning process. Then, two firefighting scenarios are

presented. The scenarios are treated as both centralized and decentralized systems. They

demonstrate how COPA generates a plan of operations for the UAVs for both types of systems.

The last chapter, Chapter 6, provides a summary of the work presented in this thesis.

The chapter summarizes the contributions of this thesis. Proposals for modifications to COPA

are presented, including the incorporation of weather data into the planning process. In

addition, future work concerning the UAV Planner Problem is suggested. The chapter ends by

summarizing the conclusions made in this paper.

1.2 Contributions

In the development of an algorithm to plan UAV operations, the following significant

contributions are made through this work.

* This thesis develops and implements a Mixed-Integer Programming model to solve

the UAV Planner Problem. The solution to the MIP develops plans for operating

multiple, heterogeneous UAVs in three dimensions. The MIP is implemented using

ILOG's OPL Studio 5.5 and solved using the CPLEX 11.0 solver.

* The development and implementation of COPA, an algorithm to plan operations for

multiple, heterogeneous UAVs for flight in three dimensions. This algorithm uses a

local search heuristic to generate composites which link a full path and UAV type. The

composites are then used in a composite variable linear program. The result of the

algorithm is used to develop a plan of operations for the system of UAVs. The

algorithm is coded in Java, which calls CPLEX 11.0 to solve the linear program.

* Testing and comparison of the MIP and COPA. The MIP and COPA are tested and

compared to determine which method is better suited to be used to plan UAV

operations.

* Development of operational scenarios to depict the use of COPA. Two scenarios are

developed to illustrate the use of COPA to fight wildfires.

* Recommendations for modifications to COPA. Possible modifications within the

current framework of COPA could provide increased capabilities in planning UAV

operations. For example, including weather data in the planning process.

1.3 Motivation for Thesis

The purpose of this thesis is to develop an algorithm that plans the operations for a set

of multiple, heterogeneous UAVs. In addition, the plans should be three-dimensional and

satisfy the constraints of the UAV Planner Problem. The goal of this work is to develop an

algorithm that can generate the plans quickly, while ensuring that the plans include the

collection of valuable data for those deploying the UAVs.

The plans generated by the algorithm will be useful in the development of the planning

and control testbed called EPOS. The algorithm can be implemented for use in firefighting

missions. In addition, the planning algorithm is developed for used in any operations in which

UAVs can make a positive impact.

Chapter 2

Unmanned Aerial Vehicle Earth-Observing System Operational Concept

This chapter introduces the Earth Phenomena Observing System (EPOS), with a focus on

the UAV component of the system. Draper Laboratory has been developing EPOS under NASA

ESTO (Earth Science Technology Office) funding since 2000. EPOS is a closed-loop planning

and control testbed for the coordination of a system of satellites, unmanned aerial vehicles

(UAVs), and unmanned surface vehicles (USVs) to collect data for the purpose of monitoring

Earth phenomena. This chapter presents the purpose and functional structure of EPOS and the

potential uses for EPOS, specifically focusing on its UAV capabilities.

The chapter then concentrates on the component of EPOS that plans the operations for

multiple heterogeneous UAVs; this component is known as the UAV Planner. The role and

function of the UAV Planner within EPOS is described.

The next part of the chapter presents previous uses of UAVs to monitor Earth's

phenomena, focusing on the use of UAVs in firefighting missions. The section describes two

operational concepts for the UAV Planner: a centralized system, in which a central command

station controls the entire set of UAVs, and a decentralized system, in which there are multiple

command stations control subsets of the UAVs.

The end of the chapter provides a statement of the operations planning problem. The

statement describes aspects of the operational problem that should be considered when creating

the operations plan.

2.1 Earth Phenomena Observing System (EPOS)

The Earth Phenomena Observing System (EPOS) is a planning and control test bed for

the coordination of a system of satellites, UAVs, and unmanned surface vehicles (USVs). Each

component, called a sensor platform, carries data-collecting sensors. The sensor platforms work

together to provide scientific data to monitor and study Earth's natural phenomena. This data

include aerial images, wind samples, water temperature samples and other metrics that the

sensors have the ability to measure. The system can be used to plan the monitoring of multiple

phenomena, including hurricanes, flash floods, forest fires, and other natural events. Example

2-1 provides an illustration of how EPOS utilizes its capabilities to track a hurricane.

Example 2-1. An EPOS concept of operations can be illustrated through a hurricane scenario. In order

to monitor a hurricane, EPOS can utilize all sensor platforms. The satellites can provide aerial images of

the hurricane to track the movement and location of the storm. USVs can be deployed to collect water

temperatures, while UA Vs can collect wind speeds at various altitudes, both assisting in the forecast of

the storm's trajectory. By enabling these observations, EPOS enhances our ability to understand the

hurricane and predict its movements.

EPOS develops a coordinated operations plan to collect the observations. An operations

plan specifies a location for each sensor platform at specific times throughout the planning

horizon. The first aspect of the operations plan is the location; for UAVs, the location must be

defined in three dimensions: latitude, longitude, and altitude. The second aspect of the

operations plan is time. The sensor platforms should have sufficient time to travel between

locations where they can collect data and time to collect the data once the location has been

reached.

One goal of EPOS is to enable the use of sensor platforms as a sensor web. A sensor web

is a system of spatially distributed sensors that can dynamically respond to its observations. In

order to achieve the mission of a sensor web, EPOS must engage in re-planning as a response to

the data is gathered by the sensor platforms. This re-planning is known as dynamic re-planning,

and will be discussed further in the next section.

People are an integral part of the EPOS system. People drive the system's planning by

requesting the collection of data and monitoring the plans produced by EPOS. Requests for

data can come from multiple interested parties: scientists studying the phenomena, alert and

warning centers, or those with a practical interest. For example, firefighters might want to

observe the location of a fire to determine how they can stop the spread of the fire. These

people, defined as users of the EPOS system, ask the system to collect specific pieces of data.

Their requests define the observations that the sensor platforms will collect; plans are

developed to satisfy these requests. More details on the role of people in the system will be

discussed later in this chapter.

2.1.1 Earth Phenomena Observing System Functional Overview

The primary objective of the EPOS functional structure is to create an operations plan for

the sensor platforms to collect data. The operations plan introduced in the previous section

specifies both movement and data collection for the sensor platforms. This section will describe

how EPOS develops an operations plan for each group of sensor platforms. The process has

three steps that correspond with the three levels of the diagram in Figure 2.1.

In the first step, the Observation Coordination Planner inputs requests for data that

originate from the system users. These requests define tasks (or targets) where sensor platforms

are to collect data. The Observation Coordination Planner completes a high level division of the

tasks; allocating each task to be completed by a specific type of sensor platform.

In the second step, the operations plan is created independently for each group of sensor

platforms. Each group has an independent platform planner, which receives a list of tasks

assigned its respective sensor platform by the Observation Coordination Planner. The platform

planner creates an operations plan for the sensor platforms under its control that direct the

platforms to perform tasks on the list. The planner attempts to create an operations plan that is

valuable to the users, gathering the most beneficial information about the natural phenomena.

In the last step, the operations plan is executed with the assistance and approval of a

human operator. The operator directs the movement of the sensor platforms using the

operations plan proposed by the platform planner. In this step, the operator is able to make

changes to the proposed plans for the purpose of creating a more valuable plan.

SBS - Space Based Sensor
alltargets Obseation UAV - Unmanned Aerial Vehicle

al targets Observation USV - Unmanned Surface Vehicle
system-level value function Coordination Planner

targets allocated to SBSs targets allocated to UAVs targets allocated to USVs
value function value function value function

SBS Planner UAV Planner USV Planner

observation plan movement and observation plan movement and observation plan
(e.g., location, time, sensor mode) (e.g., location, time, sensor mode) (e.g., location, time, sensor mode)

Satellites w Sensors C UAVs w Sensors

Figure 2.1 EPOS Functional Overview

Dynamic re-planning and execution is achieved by repeating these steps when

necessary. Reasons for re-planning include additions or changes to the users requests,

responses to previously collected data, or changes in weather that inhibit the collection of data

by sensor platforms. After re-planning is completed, the new operations plan is executed

directly from the present state of the system; assets are not required to return to a headquarters

or home base before executing the new plan.

2.1.2 Sensor Web

As discussed, a goal of EPOS is to enable the use of sensor platforms as a sensor web. A

sensor web is a collection of coordinated sensors. The concept of a sensor web was developed

at the National Aeronautics and Space Administration (NASA):

"...the Sensor Web consists of a system of wireless, intra-communicating, spatially
distributed sensor pods that can be easily deployed to monitor and explore new
environments..." [17]

The sensors have a centralized purpose: to provide valuable scientific data, allowing

scientists and researchers to monitor the environment in the area that the sensors are deployed.

The information can be exploited and used for a variety of purposes. In many cases, as with

EPOS, a sensor web is developed to observe Earth's phenomena.

A sensor web contains both control nodes and sensor nodes. Control nodes collect data

gathered by the system and direct the flow of information throughout the sensor web. Sensor

nodes are the sensor platforms that gather observations, which are transmitted to the control

nodes. In EPOS, sensor nodes are the sensor platforms: satellites, UAVs, and USVs.

While a system of sensors working together to achieve a common goal is not a new idea,

the sensor web utilizes the availability of new technology to improve upon previous concepts.

Unlike the systems of "distributed sensors" or "sensors networks," the goal of the sensor web is

to dynamically respond to data collected by sensors. Distributed sensor systems and sensor

networks contain multiple spatially distributed ground, air, and space resources that collect raw

data which is given directly to a centralized control center for processing. The data flows

directly from the sensors to the control center. Conversely, the goal of a sensor web is to have

data flowing in multiple directions; between sensor nodes to control nodes, between two sensor

nodes, or between two control nodes. This allows the sensors to dynamically respond to data

flowing from each sensor node. A visual of a sensor web is shown in Figure 2.2.

Figure 2.2 Sensor Web Diagram [41]

As discussed above, this response is achieved through dynamic re-planning and

execution. The system performs re-planning while continuing current operations. The new plan

is developed as an extension of the current plan without creating inefficiency in the operations.

When re-planning is completed, the new plan is spliced in the currently executing plan. To

achieve this, the new plan must incorporate the placement and activities of the sensor nodes in

the current plan when planning future operations.

2.1.3 The Role of the UAV Planner

The primary role of the UAV planner is to plan the operations for the UAV sensor

platforms in EPOS. It will be incorporated into the functional structure of EPOS and will serves

as part of a control node in the EPOS sensor web.

The UAV Planner is a platform planner, as defined in Section 2.1.1. As a platform

planner, the UAV Planner is part of the second stage of planning in EPOS and follows the

planning method described for platform planners. The UAV Planner receives a list of tasks

from the Coordination Planner. The UAV Planner then creates an operations plan for the

system the UAVs. This plan attempts to obtain the most valuable information for those

monitoring the phenomena.

In addition, the UAV Planner will be continually receiving data from nodes in the EPOS

sensor web. The planner will respond to these inputs by incorporating new information into

the UAV operations plan. For example, in the case of using the system to monitor a forest fire,

if the control node receives information that the temperature in a particular location has

significantly increased, it might plan to obtain an aerial image of the location to determine if the

forest fire has spread to the area.

2.1.4 Human Collaboration

As noted above, EPOS includes people in its planning process. The system includes

both human operators and users. It is important to make a distinction between the roles of the

human involved with the system. The operator monitors the operations planning and ultimately

determines the plan that is executed. The users submit requests for the system to collect data

samples that will be valuable to him or her.

A human operator will direct re-planning and oversee the processes of each of EPOS

platform planners, including the UAV Planner. Throughout the operations, the operator of the

UAV Planner can see the list of tasks assigned to the UAV system. The operator has the

freedom to direct all aspects UAV operations; the individual operators determine the extent of

involvement. He can construct the complete operations plan for UAVs, if he desires, or he can

execute the plan exactly as prescribed by the UAV Planner. After the planning stage, the

human operator executes the selected plan and monitors the UAVs as the plan is executed.

The users of the EPOS system are the scientists, researchers, firefighters, weather

analysts, and other users who benefit from the data collected by the system and use the data to

monitor Earth's phenomena. They are the driving force behind the operations of EPOS, because

they generate the requests for data from which operation plan is developed. They also perform

the crucial job of quantifying how "valuable" an observation is to their research or operations.

This assigned value is used in determining which tasks are the most critical for the system to

perform.

2.2 Operational Scenarios

This section discusses practical uses for EPOS, specifically the system's UAV operations.

While EPOS could be used to plan the monitoring of multiple phenomena, this section focuses

on use of the system for fighting fires. Previous instances of the use of UAVs to supplement

firefighting efforts are introduced; as well as current studies in this area. The section then

presents the proposed operational concept for the UAV Planner in future firefighting scenarios.

Forest fires are a hazardous natural phenomenon. Each year, wildfires destroy millions

of hectares of land spread throughout all parts of the world. In addition to the destruction of

land, wildfires impact the surrounding community by endangering lives and creating a burden

on the local economy to reconstruct infrastructure and homes destroyed by the fire [14]. UAVs

provide firefighters with enhanced capabilities to strategically and intelligently fight fires,

greatly reducing the amount of land destroyed and its impact on the surrounding community.

2.2.1 Current Studies and Operations

Research into the use of UAVs to assist fighting wildfires has been quickly increasing as

UAVs become more affordable and available. NASA and the United States Forest Service

(USFS) have worked together to conduct yearly demonstrations of the use of UAVs to fight

wildfires since June 2006.

Demonstrations have been conducted with a single UAV. In 2007, the UAV route was

built around a pre-determined backbone. The UAV flew along the backbone, deviating only to

collect necessary data. The entire route was prepared before take-off and then followed

throughout the flight. A map illustrating a route from 2007 is shown in Figure 2.3.

Backbones

Figure 2.3: UAV Route Backbones for NASA/USFS Fire Demonstrations [40]

In October 2007, NASA deployed the Predator-B Ikhana UAV to obtain images of

wildfires in California. It was the first time that the UAV was used in an operational

firefighting mission. The firefighters involved in the mission indicated that the information

provided by the UAV contributed to their ability to make decisions in planning the mission.

After the fires were contained, Ed Hollenshead, the Director of Fire and Aviation for the Forest

Service in California, said:

"This technology is going to be an excellent tool for our Incident Commanders. Its

ability to give us real time information and reduce the risk to firefighting crews on the

ground is invaluable" [31].

Since this innovative use of UAVs in fighting wildfires, NASA has continued to work to

improve this technology in order to further assist firefighters.

Figure 3.4 is an image taken in October 2007 by the Ikhana aircraft over the San

Bernardino Mountains of Southern California. The image was processed at NASA Ames

Research Center, where it was overlaid on Google Earth maps. The yellow is the active fire.

Dark red and purple hues indicate areas where the fire has already burned the vegetation, while

the green indicates area that has not been affected by the fire [32].

Figure 2.4 Ikhana Image of a California Fire Overlaid on Google Earth Maps [32]

2.2.2 Projected Issues with Future UAV Use

The current process for operations planning used by NASA and the Forest Service will

need to be altered as new technologies and multiple UAVs are incorporated into firefighting

missions. This section will focus on some of the advances that will affect operations planning

for UAVs in the future.

As UAVs become less expensive, more than one UAV might be deployed in support of a

firefighting mission. To take advantage of the increased capabilities of multiple UAVs, each

UAV should have a unique portion of the operations plan. While flying on multiple backbones

could provide each UAV with a unique plan, it may be more efficient to fly point-to-point

between tasks. An improved UAV planner should have the ability to plan efficient operations

for more than one UAV.

In addition, new UAVs might not be identical to the Predator-B that has been used for

firefighting operations. This further increases the complexity of the problem, as different UAVs

provide different capabilities; they will move at different speeds and have different limitations.

These capabilities should be incorporated into the operations planning.

To benefit from these advances in UAV technology, there exists a need for an improved

planning capability that takes into account multiple, heterogeneous UAVs operating in a three

dimensional environment. The planning capability should fully utilize the resources of the

system to provide the maximum amount of information to the users. Ultimately, it will increase

the effectiveness of our firefighters, hurricane monitors, and other natural phenomena

researchers.

2.2.3 Concept of Operations using the UAV Planner

The purpose of this section is to outline the steps to be taken if the UAV Planner is used

in a firefighting missions. The first part of the section illustrates how tasks are input by the user

and then assigned to the UAV Planner. Then, two concepts of operations are introduced - a

centralized system and a decentralized system. In the centralized system, an operator at a single

command center controls all of the UAVs. In the decentralized system, incident commanders

maintain control over a subset of UAVs independent from other commanders.

2.2.3.1 Request Inputs

In the first phase of operations for the UAV Planner, users determine the data to be

collected by the UAVs. In this example, the users are firefighters. Two examples of tasks are

presented: The first is to take an aerial image, and the second is to collect a wind speed sample.

First, the firefighters determine that they would like an aerial image of the north edge of

the fire. Using a graphical user interface, the firefighters will indicate the area of which they

would like an image. A pair of polar coordinates indicating two corners will demarcate the area

of the requested image. The firefighters will also indicate the value of the image to their

operations. If the image is critical to the planning of their operations, this task is assigned a very

high value. However, if the image is merely 'nice to have' it is indicated by a low value

associated with the request.

Second, the firefighters decide that they would like to know the wind speed at a certain

altitude over a given area of operations. Similar to the aerial image, the firefighters will

determine the area and altitude from which they would like to collect the wind speed. The

firefighters will determine the value of the wind speed to their operations. They will input the

area of operations, the altitude, and the value of the data into the UAV Planner.

Additional tasks can be requested. After the task requests are collected, the centralized

and decentralized systems operate differently.

2.2.3.2 The Centralized System

In a centralized system, an operator at a single command station location utilizes the

UAV Planner and dispatches the UAVs according to a selected plan. In this system, the

operator has control over the entire system of UAVs. When the UAV Planner is utilized within

the EPOS functional structure, it is a centralized system.

The operator takes the following steps to execute the operations plan for the UAVs.

First, the operator inputs the task list created by the Coordination Planner into the UAV

Planner. Using this task list, the planner creates an operations plan for each UAV in the system.

Next, the operator has the opportunity to make changes to the proposed plan. If the operator

sees no improvement to the plan, he executes the operations by dispatching the UAVs.

Otherwise, he can alter the plan as desired before execution. As the plan executed, the operator

monitors the system and can make adjustments to the executing plan as necessary.

2.2.3.3 The Decentralized System

In a decentralized system the UAVs are in separately controlled groups with separate

command stations. These command stations are closely linked to incident groups of firefighters

on the ground. Note that this system does not take advantage of the EPOS functional structure;

in a decentralized system, there is no Coordination Planner to assign tasks to the system of

UAVs.

The tasks for the UAVs to accomplish come from the incident group of firefighters. The

command station operator inputs the tasks generated by the group. The operator then creates

an operations plan for the set of UAVs under his control. The operator approves and modifies

the plan as necessary and dispatches the UAVs under his control. He has no information about

the operations of the other command stations. Figure 2.5 illustrates a decentralized system.

Incident groups
sent on

firefighting
mission.

Group 1 Group 2
generates generates

requests for data. requests for data.

Operator inputs Operator inputs
requests and requests and

builds operations builds operations
plan. plan.

Operator Operator
executes executes

operations plan. operations plan.

Figure 2.5 Functional Structure of a Decentralized System

2.3 UAV Planner Problem Statement

This section discusses the UAV Planner and the operational problem that is addressed;

this problem is called the UA V Planner Problem. First, the scope and purpose of the problem are

presented. Then, the output of the problem - the operations plan - is shown to have two parts: a

path plan and an observation plan. The last section discusses characteristics of the problem that

should be incorporated into the operations planning.

2.3.1 Scope of Problem

Throughout the operational planning process high-level, mid-level, and low-level

decisions are to be made. This section describes each level. The UAV Planner focuses on the

mid-level decisions; therefore, these are the decisions addressed in the description of the

operational problem of the UAV Planner.

High-level decisions are out of the scope of this research. However, these decisions are

critical to the operations of the UAV Planner. High-level decisions focus on decisions that affect

the entire EPOS system. They include:

(1) Should UAVs be deployed in support of a mission?
(2) How should the Coordination Planner allocate tasks?
(3) How valuable is a specific observation?

These decisions are made prior to the use of the UAV Planner.

The UAV Planner addresses mid-level decisions, focusing on the construction of an

operations plan for the system of UAVs. It assumes that the tasks are known, and that possible

locations to complete the tasks and their value to the user are also known. This research focuses

on the following questions of different characteristics:

(1) Which tasks should be performed?
(2) In what order should the tasks be performed?
(3) At what time should a UAV perform the tasks assigned to it?
(4) Which UAV should perform which task?

Additional topics and decisions are discussed throughout this paper; however these are the

types of questions that will be addressed by this study.

Low-level decisions are also out of the scope of this problem. An example of a low-level

decision is to determine the exact trajectory taken by each UAV.

2.3.2 Purpose of UAV Planner Problem

The UAV Planner problem has two goals: (1) To develop a process to create a plan of

operations for the UAVs which is valuable to the user, and (2) To created the operations plan in

a timely manner. These goals must be balanced when developing a method to solve the

problem.

The first goal is to create an operations plan for the UAVs that is the most valuable to the

user. While the planned movements should be sensible and efficient, the primary objective

focuses on the value of data to the user. The operations plan will be presented in more detail in

the following section.

The second goal is to be able to construct the routes in a short amount of time. A quick

operations planner is essential for the dynamic re-planning and execution needed in a sensor

web. First, the operations plan should be determined quickly enough for the plan to be

executed; if the operations plan is not completed until after the beginning of the first time

period, then the plan is useless and must be reconstructed. In addition, a quick operations

planner allows the operator to re-plan if needed; such as in the event that a very valuable task

with a short suspense time is requested.

Most likely, there will be a trade-off of these two aspects: a very fast operations planner

typically creates less valuable plan; while slower planner may be able find the most valuable

operations plan. The emphasis of the UAV Planner Problem is to develop a planner that is

practical and can be used in an operational system. For this reason, the planner must be able to

work quickly even though it might not produce the most valuable operations plan.

2.3.3 Operations Plan

The output of the UAV Planner is an operations plan for the system of UAVs under its

control. The plan will have two parts: the first part is in the form of paths that direct each UAV

to perform tasks along its respective path; the second part defines the time at which a UAV

should be at specific points along the path. The two parts of operations plan are called the path

plan and the observation plan.

The path plan is an ordered sequence of tasks that create a path. Because each task has an

associated location (latitude, longitude, and altitude), the sequence of tasks is fundamentally a

sequence of locations that create a route for the UAV to travel along. The path plan defines

which UAV will perform which route. The UAV Planner does not determine the exact

trajectory between the tasks.

The second part of the operations plan is the observation plan. The observation plan

defines the times that each UAV arrives and departs each task location along its route. This part

is important, as many of the tasks are time sensitive and should be completed within a specified

range of time. The significance of time is explored further in the section Route Characteristics.

2.3.4 Multiple Heterogeneous UAVs

As discussed in Section 2.2, the UAV Planner is developed to provide the capability to

create operation plans that incorporate multiple UAVs. This capability requires for the planner

to coordinate the path and observation plans in such a way that the user is provided with the

most valuable data to understand the natural phenomena.

In addition, the UAV Planner is specifically designed to work with UAVs of different

types. Therefore, it is developed with the capability to coordinate the operations plans of

multiple UAVs of different types and can be called a multi-heterogeneous UAV Planner.

Initially, the type of UAV is not assigned to perform a specific task. Therefore, in order

to provide this capability, the UAV Planner has to determine which type of UAV should

perform which tasks, taking into account the unique abilities of the specific UAV type.

2.3.5 Operations Plan Characteristics

The operations plan takes into account the characteristics of the operational problem.

This section presents three characteristics of the operational problem to consider when

generating operations plans for the UAVs: three dimensionality, time sensitivity, and

continuous operations.

2.3.5.1 Three Dimensionality

The operational problem presented to the UAV Planner is three-dimensional. UAVs

have the ability to move in three dimensions, changing altitude in addition to latitude and

longitude.

Furthermore, data collection can occur from more than one location; in fact, there are an

infinite number of locations that a UAV could collect certain pieces of data. For example, taking

an aerial picture of a location on the ground can be done from a wide range of altitudes and

angles. The operations plan must choose the exact location (latitude, longitude, and altitude)

that a UAV should collect data. The UAV Planner will have to determine how to take advantage

of this flexibility.

However, to provide useful operations plans, the UAV Planner should be able to

determine restrictions on the location at which a picture could be taken. These restrictions can

be attributed to a variety of circumstances. For example, there are operational restrictions. If

the user necessitates a specific picture definition or field of view then the locations from which

the sensor on the UAV can achieve the specifications is limited. In addition, weather aspects

may restrict the range of locations available to complete a task. For example, if the sun is

casting large shadows across the main object of an image, the image may be rendered useless to

the user and a waste of time for the UAV system. Alternatively, cloud coverage may block the

view of an object, again creating a useless image.

2.3.5.2 Time Sensitivity

The nature of Earth's phenomena presents the UAV Planner with an operational

problem that is time sensitive. Phenomenon can change quickly and timely data is needed to

track their progression. If data is not collected within a specific length of time, then it might be

useless to the user. For example, in tracking the winds of a hurricane, if the UAV visits a

location after the hurricane has already moved out of the area, then the sample is of no use to

the scientist. Therefore, it is critical to take into account the time at which the data is collected.

Example 2-2. An example of time sensitivity can be found in the firefighting scenario. Perhaps the

firefighters would like to know the direction and speed of the wind in order to determine the most likely

direction in which the fire will spread. This data would need to be collected quickly, because it affects how

the firefighters choose to plan their firefighting operations, as they will send a squad to the area in which

the fire is the most likely to spread. However, if the data is not collected in a timely manner, the decision

will still have to be made. Once the information has been collected, it might be too late for the firefighters

to incorporate the information into their decision-making process.

2.3.5.3 Continuous Operations

A challenge of the UAV Planner Problem is to effectively create and execute operation

plans. In order to have continues operations, re-planning will be executed during the current

execution. In addition, the new operations plan must follow directly from the current plan.

Therefore, the new plan must anticipate where the UAV will be at the time that the new plan is

executed. Otherwise, there will be discontinuity between the plans as the UAVs are positioned

to execute the new plan.

Also, the UAV Planner does not want the UAV returning to the ground at the

conclusion of each plan. It is efficient for the UAVs to return to the base only when necessary to

refuel or for maintenance issues.

Chapter 3

Model Formulation and Development

The previous chapter presented the operational characteristics of the UAV Planner

Problem. The UAV Planner Problem, as defined in the last chapter, is to create an operations

plan for multiple, heterogeneous UAVs. This chapter develops a mathematical representation

that addresses the UAV Planner Problem. The mathematical representation begins with a

description of the mathematical structure of the UAV Planner Problem, including the definition

of terms to describe components of the model. A mathematical representation of the inputs and

outputs is also presented, followed by a discussion of the role of the human operator in the

planning process.

The mathematical formulation allows us to identify similar problems in the literature. In

particular, previous studies on the Traveling Salesman Problem assist in understanding UAV

Planner Problem and provide insight into methods for solving the problem. The Orienteering

Problem is introduced as a variant of the Traveling Salesman Problem with characteristics

similar to the UAV Planner Problem [23]. In addition, similarities between the UAV Planner

Problem and the Unmanned Surface Vehicle Observation-Planning Problem, studied by Miller, are

discussed [30].

At the end of the chapter, a mixed integer programming (MIP) model of the UAV Planner

Problem is presented. This MIP utilizes binary and continuous decision variables to build an

operations plan for a set of UAVs that satisfies the constraints of the UAV Planner Problem.

3.1 Mathematical Structure of the UAV Problem

This section presents the mathematical model of the UAV Planner Problem. The

terminology used to describe the components of the UAV Planner Problem is defined. The

inputs and outputs of the model are described. Finally, it is shown how the human operator is

incorporated into the operations planning process.

3.1.1 Tasks and Locations

The concept of a task was presented in the previous chapter. When users request for the

collection of data, they are "tasking" the system to collect data. The concept of a task is broad

and dependent on the sensors attached to the UAV. A location is the latitude, longitude, and

altitude coordinates at which the task can be performed. Occasionally, the term task location is

also used to describe a specific location at which a task can be performed.

Tasks can be of two types: an area task or a point task. Area tasks define an area in which

the UAV should be for a given time period. These tasks include requests for a UAV to loiter in

a given area, to monitor a phenomenon or to be ready to take a nearby aerial image when the

time arises. Point tasks are tasks that can be performed at a single location. These tasks include

collecting the wind speed and obtaining an aerial image.

As previously discussed, each task can be performed at one of multiple locations where

it is possible to collect the requested data. To be able to create a mathematical model, the

number of possible locations per task will be finite. Increasing the number of possible locations

for each task greatly increases the size of the problem. Figure 3.1 displays the concept of having

multiple locations for each task.

While allowing tasks to be performed at multiple locations increases the complexity of

the problem, it allows for flexibility in the path planning and allows the planner to take

advantage of the three-dimensional capabilities of the UAVs. For example, a UAV might not be

able to reach that location directly above the area for a requested image; however, it might be

able to obtain a picture at an angle that is valuable to the user. Therefore, multiple locations

increase the flexibility of the path plans and might result in operations that are more valuable to

the user.

Figure 3.1: Multiple Locations to Image Area on Ground

In addition, for tasks that include aerial imaging, the altitude at which the image is taken

determines the resolution of the image. If an aerial imaging task can be taken at either a high or

a low altitude, the image taken from the higher altitude will have a lower resolution than the

image taken at a lower altitude. In addition, an image taken at a higher altitude will have a

larger field of view than an image taken from a lower altitude. By determining which altitude

to take the image from, the UAV Planner Problem also determines the resolution and area of the

image.

3.1.2 Input

There are two classes of input data for the mathematical model. The first type of input

data is data that describes the tasks for the UAVs. The second type is data that describes each

UAV's performance specifications.

The time windows for each task are part of the input. To simplify the representation of

time, absolute time windows will be converted into relative time with the start time of the

operations plan as time 0. For example, consider a task with an absolute time window

beginning at 9:30 that will be part of a plan with a start time at 8:00. The early time window will

be input as 1.5, because 9:30 is 1.5 hours after 8:00.

The following list describes the input data for each task:

1. Task Locations: The set of latitudes, longitudes, and altitudes at which a task could be
performed.

2. Observation Time: The time it takes for the UAV to complete the task (in hours).

3. Value: A measure of how valuable the data collected in the task is to the user. This is
used for the objective function, the total value of all completed tasks. The value can be
(and usually is) different for different task locations.

4. Time Windows: The start and end time during which the data collection task has value.
For the model, the absolute time windows will be converted into the number of hours
after start time. For example, an early time window of 1.5 indicates that the task must be
performed more than an hour and a half from the start time for the plan (time 0).

The following list describes the performance input data for each UAV:

1. Endurance: The maximum flight time for each UAV.

2. Speed: How fast the UAV moves over the ground. The model assumes speed to be
constant when traveling between tasks.

3. Climb/Sink Rate: How fast the UAV can increase/decrease its altitude.

4. Ceiling/Floor: Operational constraints on the (upper/lower) altitude limits for the UAV.

These inputs are used to calculate other data in the model. For example, the model

calculates the time necessary to travel from one location to another for each UAV. Calculation

of this value uses both task data and the UAV speed.

3.1.3 Output

As mentioned in the introduction to this chapter, the model outputs an operations plan

for each UAV, in the form of a route with times defining when the UAV should be at each

location. The path plan is described by the following characteristics:

1. Task Order: The order in which the UAV will complete its assigned tasks.

2. Location Selection: The path plan will determine the location at which the task will be
completed.

The observation plan includes the following:

1. Start Times: The time at which the UAV will begin each task assigned to it.

2. End Times: The time at which the UAV will complete each task assigned to it.

3. Departure/Return Times: The time at which the UAV will depart its command station and
the time at which it will return to its command station.

Example 3-1 provides an example of an operations plan containing a path and an observation

plan.

Example 3-1. This example describes an operations plan, including a path plan and an observation plan,

given a set offive tasks, ({t, t2,...,t 5), to be completed by a set of two UA Vs, {u, u2}. The following is a

path plan for the example:

1. The first UA V, ui, will complete the ordered set of tasks: [t5, ti, t4

2. The second UAV, u2, will complete the ordered set of tasks: (t2, t3J

The observation plan provides the time that the UA Vs will be at each task in their respective assigned

tasks. The times given are the number of hours after the execution start time for the plan. The following

provides an observation plan for the example:

The first UAV, ul, departs the command station at time 0, and then perform the following

observations. The UAV returns to the command station directly after competing task 4:

Task Start Time End Time
ts 0.2 0.35
ti 0.45 0.6
t4 0.77 0.8

Table 2.1 Example 3-1 Observation Plan for UAV 1

The second UAV, u2, also departs the command station at time 0, and then perform the following

observations. The UAV returns to the command station directly after completing task 3:

Task Start Time End Time
t2 0.56 0.71
t3 0.89 0.92

Table 2.2 Example 3-1 Observation Plan for UAV 2

This path and observation plans for both UAVs are illustrated below in Figure 3.2. With both the path

plan and the observation plan, a complete operations plan is created for each UA V.

Figure 3.2 Example Operations Plan

3.1.4 Operator Input

As discussed in the previous chapter, the UAV Planner has an operator who oversees the

operations of the UAVs, and, ultimately directs the UAVs in the operations plan. The operator

is also part of the operations planning process for the UAVs. While the incorporation of a

human operator into the decision making process might result in the selection of sub-optimal

plans, he or she serves as a check on the plans proposed by the UAV Planner for any mistakes,

potentially hazardous situations, or possibly to add last minute requests.

The operator can enter the decision making process at two points. First, he or she can

assign specific tasks to be completed by a specific type of UAV. Second, the operator can decide

which plan will be executed by the UAVs. This is discussed further in the following paragraphs

and in Example 3-2.

The human operator can first enter the decision making process before the UAV Planner

is executed. In this stage, the human operator communicates to the planner that a specific type

Start Time: 0.45 hrs
End Time: 0.6 hrs 1

,000 Start Time: 0. 77 hrs
End Time: 0.8 hrs

Start Time: 0.2 hrs ,

End Time: 0.35 hrs /

00,

/A Start Time: 0.56 hrs
End Time: 0.71 hrs

UA V #1 UA V #2

Depart: 0 Depart: 0
Return: 1.0 Return: 1.0 3 Start Time: 0.89 hrs

End Time: 0.92 hrs

LEGEND

4. Command
Station

O Task

-W- - UAV1

.............. UAV2

of UAV should perform certain tasks. The reason for having human interaction at this point is

two-fold. First, the human operator might have a particular bias toward the type of UAV to

perform the task. For example, the user who requested the data collected by the task might also

request for a specific type of UAV; alternatively, as the operator gains experience he or she

might be able to identify the UAV that would be most suited to the task. Second, if the

characteristics of a task identify which UAV should perform the task, the operator can assign

the UAV to the task. For example, if the sensor necessary to complete the task is only attached

to a single type of UAV, then the operator can input for the type of UAV to perform the task.

This results in the UAV Planner creating plans more quickly, because it no longer has to

consider which UAV type at assign to the task.

At the end of the UAV Planner execution, the human operator selects which operations

plan will be executed by the system of UAVs. The operator is presented with multiple sets high

value plans; the set of plan with the highest overall value is highlighted. This provides the

operator with the ability to select lower value plans for reasons unknown to the UAV Planner,

such as the unexpected presence of low-altitude clouds in an area, which would render an aerial

image useless.

Example 3-2. This example illustrate how the operator enters the UAV Planner's operations

planning process for a system with six tasks and a two UAV's. The operator enters the process at two

points: (1) Before the operations plan is created by the UAV Planner, the operator can assign specific

tasks to be performed by specific UA V types; and (2) After the UA V Planner has created operations

plans, the operator can choose which plan he would like to execute.

In this example, before the operations plan is created, the operator indicates that he would like

Tasks 1 and 3 to be completed by UAV 1. This is shown in the left side of Figure 3.3. The UAV Planner

then creates multiple operations plans that include the operator's input. This is shown on the right side

of Figure 3.3. At this point, the operator enters the decision making process for the second time. He can

decide to execute either Option 1 or Option 2. Notice that although both options are different, in both

operations plans Tasks 1 and 3 are performed by UAV 1.

Model Output
Operator
Input Option 1 Option 2Input

3 3 3

I. 4 4 4

Task Pre-assigned __ UAV 1 > LIAV 2 Command
".... to UAV 1 Path Path Station

Figure 3.3 Human Collaboration Example

3.2 Network Representation

This section describes the formulation of the UAV Planner Problem as a network problem.

The class of network problems is defined by the ability to represent the problem on a graph. A

graph, G = (N, A), is defined as a set of nodes, N, and arcs, A. This formulation of the problem

will provide insight into methods to solve the problem.

3.2.1 Network Formulation

In the UAV Planner Problem, the task locations define the locations of the network

nodes; therefore, the set N is the set of task locations. The flight paths traveled by the UAV

between task locations create the arcs of the network. An example of the UAV Planner Problem

as a network is shown in Figure 3.4.

Feasible operations plans follow the arcs and nodes of the network; there are additional

guidelines that must be followed in order for the plan to be feasible. A walk on a network is

defined as an ordered set of nodes, (il, i2, ..., it), such that that the arc (ik, ik+l)E A for k = 1..t. A

path is a walk in which no node appears twice in the set. Because we do not want to perform

the same task twice, a path is needed. However, if the vehicle returns to its starting location, it

then creates a tour or a route, where il = it.

Nodes

(1 Locations

Command
AT Station

Figure 3.4 A Network Created for an Instance of the UAV Planner Problem

Therefore, the operations plan includes a path if the UAV does not return to its

command station, or a route if it does. Because the graph represents a transportation network

and the objective is to find paths or route for vehicles in the network, the UAV Planner Problem

can be classified as a vehicle routing problem. This will be important in identifying similar

problems in the literature.

3.2.2 Static Graph Representation

A static graph representation of the problem can be shown by a representation of the

network formulation of the UAV Planner Problem. Operationally, the operations plan will be

performed over a time period; however, the static graph representation captures the plan

without a portrayal of time.

Using the same representations from the network formulation of the problem, the nodes

represent the locations at which the UAVs perform tasks. The arcs between the nodes illustrate

how the UAV will travel between tasks. Figure 3.5 is a static graph representation for the

operations of a single UAV.

Arcs

I Flight
Paths

Figure 3.5 Static Graph Representation

3.2.3 Time-Space Graph Representation

The static graph representation presented in the previous section is unable to model the

time dimension of the UAV's operations. To model position and time, the time-space

representation can incorporate time by creating nodes that indicate the location of the UAV and

the time that the UAV is at the location. Therefore, a node must be created for each task

location at every time over the planning horizon. The number of nodes in the representation is
very large when illustrating multiple UAVs and tasks. Figure 3.6 provides a time-space

representation for the operations of a single UAV.

The time-space representation will assist in scheduling UAV operations, because it

records the location of every UAV at each point in time. In addition, the time-space

representation assists in dynamic re-planning for the system of UAVs. A new plan will aim to
follow directly from the current plan of operations without interruption, such as the need to

reposition. The placement of each UAV at the time that the new plan will take over can be

found in the time-space representation and used to re-plan operations.

-Of

04-00
-VN 1

0

'r

Task Task Task
Location 2, Location 2, Location 2,

t+1 t+2 t+3

Figure 3.6 Time-Space Representation

3.3 Literature Review

The UAV Planner Problem is fundamentally a Traveling Salesman Problem. This

section explores the Traveling Salesman Problem, focusing on available methods to solve the

problem. It also introduces three variants of the Traveling Salesman Problem that are similar to

the UAV Planner Problem: The Traveling Salesman Problem with Time Windows, the Prize

Collecting Traveling Salesman Problem, and the Orienteering Problem.

3.3.1 The Traveling Salesman Problem

A solution to the Traveling Salesman Problem is the route with the minimum distance that

visits each node in the network. Dantzig describes the problem as following: "Find the shortest

route (tour) for a salesman starting from a given city, visiting each of a specified group of cities,

and then returning to the original point of departure" [16]. This problem is known to be NP-

complete; therefore, it is classified as a "hard" problem [9]. Because of its difficulty, multiple

techniques have been developed in order to solve the problem. Three of the most common

methods include integer programming, dynamic programming, and heuristics.

3.3.1.1 Computational Complexity of the Traveling Salesman Problem

An algorithm can solve in polynomial time if the function of the runtime to guarantee a

solution is polynomial with respect to the size of the problem. More specifically, the runtime of

an algorithm can be modeled by a function f(n) where n denotes the number of nodes in the

network. If the function f(n) is of the form Knc where K and c are both constants, then the

algorithm is of polynomial time [1]. This algorithm would then be classified as "good."

However, if the worst case of the algorithm is not of polynomial time, then it is a "bad"

algorithm [29].

In literature, problems are classified as either "hard" or "easy" depending on whether or

not there exists an algorithm that can find the solution in polynomial time. Currently, no known

algorithms for the Traveling Salesman Problem satisfy this criterion. For this reason, the

Traveling Salesman Problem is classified as a "hard" problem. In addition, it is an NP-complete

problem, because the best-known algorithm has a non-polynomial function for its runtime [29].

3.3.1.2 Integer Programming Formulation

The basic Traveling Salesman Problem can be modeled by an integer program in which

binary variables indicate the decision whether or not to traverse an arc in the network. The

variable, x,, will take on the value of one if the arc between node i and node j is traveled, and

zero otherwise.

The most popular model, proposed by Dantzig, Fulkerson, and Johnson, is given here

[9]. The variable d, is the distance from node i to node j:

Minimize dx, (3.1)
(t,j)EN

Subject to x, = 2 Vj EN (3.2)
tEN

Sx, S -1 VSC N,S 0 (3.3)
,J ,1} (3.4)

xY E {0,1} (3.4)

The set N, as defined above is the set of nodes in the network, while S is a subset of N.

Constraints 3.1 ensures that each node in the network is visited by forcing the traveler to travel

into and out of each node. Constraints 3.2 are sub-tour elimination constraints; they ensure that

the solution is a single tour. The size of the problem increases dramatically with the addition of

the sub-tour elimination constraints; a complete problem includes every sub-tour elimination

constraint. This means that there are 2N sub-tour elimination constraints in the complete

problem.

3.3.1.3 Exact Solution Methods

Unfortunately, the Traveling Salesman Problem is difficult to solve, as discussed in

Section 3.3.1.1. All known solution methods run in non-polynomial time; in the worst case, they

might have to search the entire solution space in order to confirm an optimal solution.

However, there are methods to reduce the solve time for the model. These methods attempt to

intelligently search the solution space. Three of the most common methods are the cutting

planes method, branch-and-bound, and dynamic programming.

Dantzig, Fulkerson, and Johnson first proposed a cutting planes method to solve the

integer program. The method begins by solving the liner programming (LP) relaxation, which

allows the x,j variables to take on continuous values between zero and one. This provides a

lower bound for the integer solution. Then, sub-tour elimination constraints are added to force

fractional solutions towards integer solutions, as well as to get rid of any sub-tours in the

relaxation solution [16].

The branch-and-bound method is commonly referred to as a "divide and conquer"

algorithm [9]. Similar to the cutting planes method, the first step is to solve the relaxation, and

use the solution as a lower bound. The algorithm continues by solving subproblems in an

attempt to find integer solutions. Lower bounds are used to discard certain subsets of the

feasible set from consideration [29].

Dynamic programming attempts to solve integer problems by sequentially working

through the system to find the "best" solution at every point along the way [9]. The idea, first

applied to the Traveling Salesman Problem by Richard Bellman, is built upon the concept that

the shortest path through a subset of cities must be part of the overall solution [1]. Bellman

explained the dynamic programming in the following manner:

"It is clear that, the tour being the path i th rough ji,j2...,jk in some order and then to 0

must be of minimum length; for, if not the entire tour could not be optimal since its total

length could be reduced by choosing a shorter path from i through ji,j2,...,jk to 0" [7].

The algorithm takes advantage of this by finding the shortest route through a subset of the

cities. The cities are iteratively added to the route. In each round, starting with the shortest

route from the current solution (which contains only a subset of the cities), a new city is added

in the way that minimizes the necessary additional distance.

An advantage of dynamic programming is that necessary constraints on the order of the

cities visited, which decrease the size of the solution pool, can be incorporated into the

algorithm. In addition, the constraints allow the algorithm to dismiss large sets of possible

solutions; therefore, with constraints, the algorithm will produce the optimal solution in a

shorter amount of time [7].

3.3.1.4 Heuristic Solution Methods

Ideally, heuristic solution methods find near-optimal solutions quickly. These methods

do not search the entire set of solutions, but find for the best solution in a reasonable amount of

time.

Heuristic methods can be broken down into two groups: first, tour construction procedures

efficiently build feasible routes by adding vertices one at a time; and, second, tour improvement

procedures improve an already feasible route [27]. An algorithm that incorporates both tour

construction and tour improvement procedures is called a composite algorithm [27]. Most

algorithms that are used to solve the Traveling Salesman Problem are of this type.

The nearest neighbor algorithm is a simple tour construction procedure commonly used

to solve the Traveling Salesman Problem [19]. The algorithm starts at an arbitrary starting

point, and proceeds to add the node that is closest to the present node until all nodes are

included in the path. The last node is then connected to the origin to create a tour.

Another class of construction procedures, known as insertion algorithms, follows the

following steps [27]:

Step 1: Construct a simple tour with only two nodes.

Step 2: Consider each node not in the tour. Insert the node that meets a specific

criterion.

Common criterion that are used to decide which node should be added to the network include:

(1) Adding the node that is closest to the tour; (2) Adding the node that is the furthest from the

tour, known as furthest neighbor, and (3) Adding the node that produces the least increase in

distance, called cheapest insertion [27]. Other criterion have been proposed, including those

measure angles and ratios that include multiple metrics [38].

Tour improvement procedures start with a feasible route built by a construction

procedure. The procedures then use simple routines to improve the route. Flood noticed that if

the path crosses itself at any point during the tour, then the tour could be improved by

switching the order of nodes so that the tour does not cross [19]. Croes proposed a similar idea,

that he labeled inversion, where the order of two nodes is switched to find a better tour [15]. Lin

and Kernighan built upon these ideas, proposing the k-opt algorithm [1]. The algorithm goes

through all subsets of k arcs and attempts to reconnect the tour with a set of k new arcs. If an

improvement can be found, then the new arcs are added to the tour, and the algorithm

continues to the next set. An example of the k-opt algorithm, the 2-opt algorithm, is shown in

Figure 3.7.

Another group of tour improvement procedures are metaheuristics. These methods

include subroutines that determine which part of the solution set to explore. These heuristics

include simulated annealing, which is modeled after the cooling process of metal, and tabu search,

which records which solutions have already been considered [25].

(1) Arc (2, 3)
replaced by (2,4)
(2) Arc (4, 5)
replaced by (3, 5)

Original Route: {1,2,3,4,5
Total Length: 9

Improved Route: (1,2,4,3,5)
Total Length: 6

Figure 3.7 Lin-Kernighan 2-opt Algorithm

3.3.2 Modified Traveling Salesman Problems

This section describes problems that are similar to the UAV Planner Problem. While

fundamental aspects of the UAV Planner Problem are similar to the traveling salesman

problem, many aspects of the problem distinguish it from the original Traveling Salesman

Problem. This section will introduce two problems that encompass differing elements of the

UAV Planner Problem: the Prize Collecting Traveling Salesman Problem and the Traveling Salesman

Problem with Time Windows.

3.3.2.1 The Prize-Collecting Traveling Salesman Problem

The Prize-Collecting Traveling Salesman Problem is described as a Traveling Salesman

Problem where each city has an associated "profit" that the salesman will receive by visiting the

city. The objective function remains the same as the original Traveling Salesman Problem; the

salesman wants to minimize his travel costs. However, an additional constraint is added to

ensure that the salesman achieves a certain amount of "prize."

Balas formulated the problem as an integer program [5]. The formulation uses the

decision variable xj to indicated if arc (i,j) is traveled by the salesman. The associated costs of

travel are denoted by ci,. The decision variable y, is used to indicate whether or not node i is

included in the tour. The variables w, represent the profits associated with node i, while wo is the

amount of prize money that the salesman must achieve. Assuming that there is no penalty if the

salesman does not visit a city, the problem is formulated as:

Minimize cixij (3.5)
(i,j)EA

Subject to x, -yi =0 Vi E N (3.6)
jEN-{I}

Sx,1 -yj =0 Vj EN (3.7)
iEN-{I}

I WXi Wo (3.8)
iEN

y, E {0,1},x, E {0,1},V(i,j) E A (3.9)

The formulation includes a final constraint that the tour, denoted by G(x) must be a cycle [5].

Notice that there are separate decision variables for the nodes and arcs in the network; similar

decision variables will be used in the mixed integer programming formulation for the UAV

Planner Problem.

Balas proposes an exact method for solving the problem by studying the polytope that

defines the set of feasible solutions [18]. Other proposed solution methods include heuristic

algorithms with performance guarantees. Awerbach, et al., proposed a heuristic that begins by

using an approximation algorithm to find the minimum spanning tree and replicating nodes to

create a tour. This approach has been adopted and improved through other studies by Blum, et

al. [10], and Arora and Karakostas [18].

3.3.2.2 The Traveling Salesman Problem with Time Windows

The Traveling Salesman Problem with Time Windows constrains the salesman's visit to

each town to be within a time window. The salesman must visit after the lower bound of the

time window, li, and before the upper bound, ui. The object of the problem remains the same as

the Traveling Salesman Problem; to find the shortest tour that connects all of the cities [4].

Baker proposed a nonlinear program to model this problem. The formulation relies on a

single decision variable ti that denotes the time that the salesman visits city i. An additional

decision variable, tn+l, represents the time that the salesman returns to the origin. The variables

dij are the shortest times to travel the arcs (i, j):

Minimize tn+1 - to (3.10)

Subject to t, - t, a di i = 2 - n (3.11)

t, - t ad j i = 3 -n,2 j5 i (3.12)

tn+1 - t i > dil i = 2 - n (3.13)

ti a 0 i = 1 - n + 1 (3.14)

1, ! ti < ui i = 2 - n (3.15)

Baker solves the problem using a branch and bound method that can appropriately

handle the nonlinearity and non-differentiability. Gendreau, et al, propose a heuristic approach

that constructs tours using a nearest neighbor algorithm [20]. At each iteration, all cities after

the city inserted must be checked to ensure that the time window bounds are not violated.

3.3.3 The Orienteering Problem

While the previous two formulations presented incorporate aspects of the UAV Planner

Problem, the problem closest to the UAV Planner Problem is the Orienteering Problem and its

derivatives, the Orienteering Problem with Time Windows and the Team Orienteering Problem. The

Orienteering Problem, posed first by Tsiligrides, gets its name from the sport of orienteering, in

which competitors travel to pre-determined locations and receive points for each location to

which they are able to travel [42]. The competitors have a time limit, within which, they must

return to the starting location [23].

The objective of the Orienteering Problem, like the UAV Planner Problem, is to

maximize the total value of all locations visited by a competitor. This is a significant deviation

from the problems formerly discussed where finding the shortest route was the goal of the

problem.

The Orienteering Problem is known to be NP-complete [23] and few exact algorithms

have been proposed. Ramesh, Yoon, and Karwan developed an exact method using a branch-

and-bound algorithm that utilizes the Lagrangian relaxation and problem reformulation to

obtain an integer solution [35].

Most research on the Orienteering Problem focuses on heuristic approaches to the

problem. The first algorithm proposed by Tsiligrides utilizes a Monte Carlo approach to build

initial routes [42]. The routes are then improved through local search heuristics, including

methods similar to Lin-Kernigan's 2-opt method.

Further research into the Orienteering Problem continued to produce similar composite

algorithms with different methods for building and improving routes. Golden, Levy, and

Vohra developed an algorithm that starts with route construction through a cost-benefit

analysis [23]. They improve the initial route with a 2-opt method followed by a center-of-

gravity improvement method. Golden, Wang, and Liu, produced a more efficient algorithm in

which the algorithm "learns" over the course of the improvements [24]. Ramesh and Brown

[34] developed an iterative method with four phases: (1) Build initial routes through a cost-

benefit analysis scheme; (2) Use Lin-Kernighan 2-opt method to improve routes; (3) Interchange

nodes by deleting a node and replacing it with a more valuable node; and (4) Iterating through

the phases until the marginal improvement of a round falls beneath a specified threshold [34].

Variants of the Orienteering Problem have also received the attention of researchers due

to constraints in the operational problem. The Orienteering Problem with Time Windows

introduces a range of times for each location in which it must be visited to be of worth to the

competitor, similar to the time windows place on observations in the UAV Planner Problem.

Kantor and Rosenwein propose two heuristics to solve the Orienteering Problem with

Time Windows [26]. Their first heuristic, called a tree heuristic, "systematically generates a list

of feasible paths and then selects the most profitable path from the list." They also develop a

composite algorithm in which routes are built through cost-benefit analysis and then improved

by inserting nodes where feasible. They found that their tree heuristic found better solutions,

but was more computationally difficult. Righini and Salani propose an exact method to solving

the Orienteering Problem with time windows using dynamic programming in conjunction with

state space relaxation [36].

Both an exact and an approximate algorithm have been proposed for the Team

Orienteering Problem. In the team Orienteering Problem, a team of competitors can split up to

visit locations and their score is the sum of the values of all locations visited by each team

member. Therefore, mathematically, the solution would include multiple routes, one for each

team member. Boussier, Feillet, and Gendreau use a branch and price algorithm to find an

exact solution to the team Orienteering Problem [11]. Vansteenwegen, et al, have developed a

metahueristic that uses a greedy construction algorithm to build routes and local search

heuristics to improve upon them [43].

3.4 Mixed Integer Programming Model

As with the problems previously presented, a mixed integer program can be formulated

to model the UAV Planner Problem. The model provides the ability to explore methods to find

the exact solution. Although previous research has shown that exact methods might not be

practical, the optimal solution will be useful to evaluate the quality of the solutions generated

by heuristic methods.

3.4.1 Mixed Integer Programming Formulation for USV Planner

In the study on the operations of USVs, Miller posed a problem similar to the UAV

Planner Problem [30]. The USV Observation-Planning Problem (USVOPP) creates operations

plans for unmanned surface vessels that collect data from their location on the surface of the

ocean. In his study, he develops a mixed integer program for the USV planner problem that is

used as the basis for the MIP presented for the USVOPP. Alterations, such as the inclusion of

multiple locations for each task, were added to the formulation.

The MIP developed by Miller took advantage of integer decision variables that include

the placement of a node in the route. The variable xikt takes a value 1 if node i is visited by USV

k in the t-th placement on the route. The variable, therefore, models multiple decisions. A

similar variable is used in the MIP formulation for the UAV Planner Problem; in this

formulation, the variable includes the location at which a task should be performed.

Continuous decision variables are used to model the time at which nodes are visited.

Similar to the formulation of the Traveling Salesman Problem with Time Windows given in

Section 3.3.2.2, there is a lower bound and upper bound within which the task must be

completed.

3.4.2 Model Formulation

This section introduces the mixed integer programming model for the UAV Planner

Problem. First, the sets, decision variables, and inputs notation are defined. Then, the objective

function and constraints are introduced.

3.4.2.1 Set Definitions

The following sets will be used in the formulation:

C = Set of task, location pairs
T = Set of all tasks
U = Set of UAVs
P = Set of placements in a path

The set P is the set of placements in a path. A placement denotes the order of a task in the

path. For example, if a task is in placement five in a path, then the task is the fifth task that will

be performed by the UAV. The set of placement contains the placement for each task in the

path; therefore, the set associated with a path with ten tasks will contain the first ten natural

numbers while the set of placements associated with a path containing only five tasks will

contain the first five natural numbers.

3.4.2.2 Decision Variables

perform(,),(.u,t) A binary decision variable describing if task i is performed at location k
by UAV u in placement t. The t describes the location of the task in the
respective UAV's path. For example, if t=1, then task i at location k will
be the first task completed by UAV u.

travel(,k),(J,),u A binary decision variable describing if the arc from (i,j) to (j,l) is
traveled by UAV u.

arrive(t,k),u A continuous variable that assigns the time that UAV u will arrive at
task i in location k.

depart(r,k),u A continuous variable that assigns the time that UAV u will depart
task i in location k.

3.4.2.3 Input Notation

The inputs to the model are those discussed in Section 3.1.2. They are denoted as:

early,

late,

obstime,

altitude(,,k)

horizon

ceiling,,

floor,

endurance,

traveltime(,,k),(j,),u

value(,k),u

Beginning of time window for task i

End of time window for task i

Required time to complete task i

The altitude of task i at location k

Planning horizon

Maximum altitude for UAV u

Minimum altitude for UAV u

Maximum length of flight for UAV u

Length of time for UAV u to travel from location (i,j) to (j,l)

The value for UAV u to complete task i at location k

3.4.2.3 Objective Function

The objective is to maximize the total value of tasks completed. Mathematically, this is:

Maximize u (vak lu e
(
i,k),u * perform(i,k),ut)

uEU\(i,k)EC,tEP/

3.4.2.5 Constraints

The model has thirteen constraints that are categorized as either UAV operational

constraints, network constraints, or time window constraints. The UAV constraints ensure that

the capabilities of the UAVs are not exceeded, ensuring that the resulting operations plan is

feasible for the vehicles. The following are the UAV operational constraints:

(1) Ensure that the observation altitude is above the UAV floor

altitude(i,k) * perform (i,k),u,t floor,
uEUtEP

(2) Ensure observation altitude is below UAV ceiling

altitude(i,k) * perform(,k),u ceiling,
uEUtEP

V(i,k) E C,u E U

(3) Ensure all activities are completed within the planning horizon

arrive(,k),u + obstimei s horizon V(i,k) E C,u E U

The network constraints ensure that the resulting operations plan creates a feasible path

plan for the operations plan. The following are the network constraints:

(4) Each placement, t, can only be assigned one task

perform(i,k),u,t 1
(t,k)EC

Vu E U,t E P

(5) Constrain a single UAV to perform a task

I I perform(i,k),u,t
uEUkEL

Vi E T,t E P

(6) Ensure that the targets are assigned in successive placements on the UAV path

perform(ik),ut+l - perform(i,k),u,t < 0
(i,k)EC (i,k)EC

Vu E U,t E P -1

V(i,k) E C,u E U

(7) Force an arc to exist between two successive performed tasks

perform(i,k)(u,t+1) + perform(,k)u,t) - travel(i)j,k),u 0 V(i,k) E C,(j,l) E C,u E U,t E P -1

(8) Force an arc to leave every performed node

travel(i,k)(j,1) u - p e rf orm(i ,k),(u,t) 0 V(i,k) E C,(j,l) E C
uEU uEUtEP

(9) Ensure than arc enters every performed node

Stravel(.k), j,) u - perform(i,k),(u,t) 0 V(i,k) E C,(j,l) E C
uEU uEUtEP

The time window constraints limit the resulting operations plan to performing tasks within

the desired time window. In this formulation, the observation must be completed within the

time window. The following are the time window constraints:

(10) UAV must arrive after the beginning of the time window

arrive(i,k),u early, * perform(i,k),u,t V(i,k) E C,u E U,t E P

(11) UAV must exit before end of time window

depart(sk),u : latei * perform(ik),u,t V(i,k) E C,u E U,t E P

(12) UAV must depart the task after sufficient time to complete the task

depart(i,k),u arrive(i,k),u + obstime, * perform(,,k),,, V(i,k) E C,u E U

(13) Ensure sufficient travel time between tasks (a(,k),(,1),u must be calculated a priori as
explained in Subsection 3.4.2.6)

depart(,k), + trave ltime(i,k),(j,1),u -a(i,k)(j,1),u(1 - travel i).(J1),.u) < arrive(j ,),u

V(i,k) E C,(j,l) E C

3.4.2.6 Linearization of Constraint (13)

The value for a(1,k),(j,1),u in constraint (13) is a linearization of a necessary constraint. The

model needs to constrain the time that a UAV arrives at a next task to be greater than the time

that it departs the previous task plus the travel time between the two. The natural way to write

this constraint would be:

(depart(i,k),u + traveltime(,,(,tU) * [(perform(,k),u,t - perform(j,),,t,+ I- l] arrive(.iu

However, this constraint is not linear, because variables are being multiplied together and an

absolute value is used. Therefore, Ropke, Cordeau, and Laporte, developed the following way

to linearize the constraint [37]. The value, a(i,k),(j,),,, which must be found before solving the

model, is:

a(,k)(j,1),u = max(0,late, + obstimei + traveltime(t,k)(j,) ,u - early,)

This constraint will now either be redundant with the non-negativity constraints (if the UAV

does not travel between the two locations) or will constraint the arrival to the next task to be

greater than the departure time of the last task plus the travel time.

3.4.4 Implementation

Optimization software can be used to solve the MIP. The software chosen is ILOG's

OPL Studio 5.5 which utilizes CPLEX 11.0. This software utilizes solution methods discussed in

the Literature Review; the method is based on the branch-and-bound method. The software

provides an exact solution to the mixed integer program, and thus an optimal solution to the

UAV Planner Problem. The results and performance of this implementation will be discussed in

detail in Chapter 5.

Chapter 4

Formulation of Algorithm

When solved, the mixed integer program introduced at the end of the previous chapter

provides an exact solution to the UAV Planner Problem. While the MIP is beneficial in solving

the UAV Planner Problem, the complexity of the MIP might cause lengthy runtimes. This

motivates the development of an algorithm to generate operations plans in a reasonable amount

of time.

This chapter introduces an algorithm, called the Composite Operations Planning Algorithm

(COPA). COPA combines a metaheuristic with a linear program to solve the UAV Planner

Problem. The description of COPA begins with an introduction to composite variables. A

composite variable is a binary decision variable that models multiple related decisions. The

UAV Planner Problem is reformulated using composite variables that represent a path and an

associated type of UAV. The reformulation is incorporated into an algorithm that uses a

metaheuristic to generate the composite variables.

The chapter begins by describing composite variables and introducing the reformulation

of the UAV Planner Problem. The chapter continues by describing COPA and the steps of the

algorithm. The end of the chapter discusses the implementation of COPA, known as the COPA

software.

4.1 Composite Variable Formulation

A composite variable is a decision variable that models multiple decisions in a single

variable. The decisions are not necessarily connected; in fact, the variables often group together

decisions that do not initially seem to be related.

For the UAV Planner Problem, composite variables can simplify the formulation of the

problem. Many of the complexities of the problem, such as time windows and three-

dimensional paths, can be incorporated into a composite. Therefore, these aspects do not have

to be explicitly modeled; decreasing the number of variables and simplifying the formulation.

The following provides an example of a composite variable.

Example 4-1. In this example, a composite combines a path on a graph, G, and a vehicle type. The graph,

G, has four nodes, (1, 2, 3, 4, 5}, and two types vehicles, (A, B}, travel on the graph. The following are

paths through the graph G:

Path (1): 1 - 2 - 5

Path (2): 1- 3 - 4 - 5

Path (3): 1 - 4 - 5

The paths are shown in Figure 4-1. The composite variable y' represents the decision for a vehicle of type

k to travel along Path i. Therefore, if ya takes the value 1, then a vehicle of type A travels on Path (1); if

ya takes the value 0, then a vehicle of type A does not travel on Path (1). The variable includes two

decisions that are generally not connected: first, whether Path (1) is traveled on; second, the specific type

of vehicle to travel on the path.

3 Task

1 5 5 - Path

2 0
4 4

Path (1) Path (2) Path (3)

Figure 4.1 Paths for Example 4-1

4.1.1 Literature Review of Composite Variables

This section reviews some of the literature on composite variables. Much of the

literature on composites applies the technique to transportation problems, incorporating path

and flow variables into composites. This section focuses on transportation related problems,

although the approach has been modified for other types of problems, including general

network design and fixed-charge problems [33].

Armacost, Barnhart, and Ware use composite variables to design the air network for the

United Parcel Service [3]. Their formulation for the design problem models aircraft routes and

package flow as composite variables. The solution to their composite variable formulation

provides an air network for the carrier's next day of operations. It is shown that the composite

variable formulation achieves a stronger lower bound than traditional network design

approaches. Focusing on the same problem, Armacost presents the composite variable

formulation as a Dantzig-Wolfe decomposition of a traditional network design formulation [2].

In addition, he compares the composite variables to Chvital-Gomory cuts in the dual of the

formulation.

Using a similar definition for composite variables, Nielsen addresses a network design

problem to transport military personnel and cargo [33]. Nielsen's formulation combines one or

more aircraft missions that cover the complete movement of a subset of cargo into a composite

variable. He concludes that the formulation has strong linear programming relaxations and can

design a large-scale transportation network in a short solution time.

Cohn and Barnhart apply a composite variable formulation to crew scheduling and

maintenance routing decisions for commercial airlines [13]. The formulation combines the two

problems - maintenance routing and crew scheduling - which are typically solved sequentially.

Solving the problems separately can result in inefficiencies in the system, which is costly for the

airlines. Cohn and Barnhart use composite variables to integrate the problems and provide

more efficient plans for the airlines [13].

Barth provides a military operations planning application using composite variables [6].

He focuses on the real-time planning of aircraft missions, including re-planning during the

execution of a mission. The formulation uses composite variables that include targets, multiple

aircraft, and routes. He concludes that the formulation has a strong linear programming

relaxation when compared to traditional methods. In addition, the formulation can be solved

quickly to allow dynamic re-planning of the missions.

4.1.2 Full Path Composite Variables

To create a linear program for the UAV Planner Problem using composite variables, the

composite variables should be designed to incorporate multiple decisions that must be made in

creating operations plans for the UAVs. A full path composite, presented in this section, is

designed to model necessary decisions in the planning process.

A full path composite has two parts: a full path and a type of UAV. The full path is an

ordered set of tasks that spans the planning horizon. Therefore, a UAV can only perform one

full path per planning horizon. The full path composite also has an assigned type of UAV. If

the composite is incorporated into the operations plan, then a UAV of the type will be assigned

to fly the path. A full path composite variable is a binary variable that represents the decision

whether or not to incorporate the full path composite associated with the variable into the

operations plan.

A feasible set of full path composite variables provides the information needed to create

an operations plan. Example 4-2 illustrates a full path composite variable.

Example 4-2. A full path composite variable includes a full path with an assigned UAV type. The full

path composite variables are similar to the composite variables introduced in Example 4-1; however, this

example incorporates multiple locations per task into the composite variables.

Consider a scenario with five tasks denoted (1, 2, 3, 4, 5) that can be performed at two locations

each. The UAVs start at a command station, denoted by 0. The notation for this is (i, j) where i denotes

the task number and j denotes the location number. There are two vehicle types denoted [A, B). The

following are full path composite variables:

Composite (1): UAV type A completes the path 0 - (1, 1) - (4, 1) - (2, 1) - 0

Composite (2): UAV type B completes the path 0 - (2, 1) - (5, 2) - (1, 1) - 0

Composite (3): UAV type A completes the path 0 - (4, 2) - (3, 1) - (1, 1) - 0

The composites are shown in Figure 4.2. Similar to the previous example, each composite can be

represented by a single variable. In this case, the binary variable yi represents the decision whether or not

to include Composite (1) in the operations plan. The variable yi takes a value of 1 if Composite (1) is

included in the operations plan; otherwise, yl takes a value of 0.

Location

A Path

.. * UAV Type

+ _ Command
Station

Composite (1) Composite (2) Composite (3)

Figure 4.2 Composites for Example 4-2

Example 4-2 illustrates that full path composite variables model multiple decisions; for

example, the decision of the location that a task should be performed at is incorporated into the

path. When a composite variable is selected, each of the following decisions is made: the time

period in which the tasks are performed, the location at which tasks are performed, and the

type of UAV that performs the task.

4.1.3 Composite Variable Formulation

The composite variable formulation utilizes the full path composite variables introduced

in the previous section. This formulation models the UAV Planner Problem and a solution

contains the information needed for an operations plan.

The full path composite variables are used in a binary program for the UAV Planner

Problem. The following sets are used in the formulation:

C = Set of Composite Variables

T = Set of Tasks

A = Set of UAV Types

Ua = Set of UA Vs of Type a

The formulation has a single binary decision variable that describes if composite c is included in

the operations plan:

Y' = 1, if composite c is included
0, otherwise

Inputs for the formulation include information about the composites:

b = 1, if composite c includes task t
0, otherwise

a = 1, if composite c uses UAV type a
0, otherwise

vc = The value of composite c

The value of composite c, vc, is found by summing the values of all tasks performed in the path

included in composite c. With these inputs, the formulation for the Full Path Composite Variable

Binary Formulation (FPCVBF) is:

FPCVBF: Maximize IvC (4.1)
(EC

Subject to y, :< 1 VtE T (4.2)
cEC

Iaa yc UPa VaEA (4.3)
cEC

Yc E {0,1} Vc E C (4.4)

Constraints 4.2 ensure that each task is performed a single time. Constraints 4.3 allow for a

composite variable to be selected for each UAV in the system; the constraints ensure the number

of selected composites for a UAV type is less than the number of available UAVs of the type

This FPCVBF greatly simplifies the MIP presented at the end of Chapter 5. However, it

maintains the constraints of the UAV Planner Problem. Many of the constraints are

incorporated into the generation of the composites; thus, the constraints do not need to be

modeled explicitly. For example, when the composite variable path composite is created, it is

ensures that the data is collected within time window constraints. Therefore, there is no need

for variables to model the start and end times of observations in the composite formulation.

This reduces the number of variables and constraints necessary to model the problem.

4.1.4 Integrality of Linear Relaxation

The formulation given above is a binary program, because the decision variable y, is

constrained to be in the set {0,1} in Constraints 4.4. However, the constraint can be relaxed and

it will still result in a binary solution. This is due to the structure of the problem; specifically,

the structure of the constraints. The constraints create a feasible region with vertices where the

values of the variables are either zero or one. Because of this, the relaxed version of the

formulation provides an answer that is at the vertices of the feasible region.

The problem can be reformulated with a relaxed constraint for the composite variables.

The reformulation is called the Full Path Composite Variable Formulation:

FPCVF: Maximize vcYc (4.5)

Subject to 6 yc 1 VtE T (4.6)
cEC

a YC l UI VaE A (4.7)
(EC

0 ye 1 VcEC (4.8)

4.1.5 Using a Metaheuristic for Full Path Composite Variables

A metaheuristic utilizes other methods in conjunction with a heuristic to solve a problem.

For the FPCVF, a metaheuristic can be used to generate the composite variables for the

formulation.

As discussed in Section 3.3.1, heuristics are commonly used to solve problems similar to

the UAV Planner Problem. The heuristic methods discussed in 3.3.1 can be used to generate full

path composites. The full path composites are represented by composite variables in the

FPCVF. In this way, the heuristic that generates the composites is a subroutine that is used in

conjunction with linear programming to solve the UAV Planner Problem, as described in

Section 4.2.

4.2 Composite Operations Planning Algorithm (COPA)

This section presents the Composite Operations Planning Algorithm (COPA) that is

developed to solve the UAV Planner Problem and uses FPCVF as its optimization model.

Section 4.2.1 provides an overview of the algorithm. Sections 4.2.2 through 4.2.4 describe the

steps of the algorithm in detail.

4.2.1 Methodology

COPA combines the use of a linear program and a metaheuristic to solve the UAV

Planner Problem. The algorithm starts by iterating through the metaheuristic multiple times

until a set number of composites have been generated. Once the metaheuristic is completed, the

composites are used in the FPCVF to solve for the optimized set of path plans for the entire set

of UAVs.

COPA includes three main steps. The steps, which are discussed in more detail in

Sections 4.2.2 through 4.2.4, are introduced here:

Step I: Subset Allocation. In this step, tasks are allocated to be performed by a specific UA V
type.

Step II: Composite Generation. Using the set of tasks allocated to a UA V type, full path
composites are generated for each UA V of the type. This step utilizes a heuristic method to create
the path plans.

Step III: Full Path Composite Variable Linear Program. The full path composites generated
in Step II are modeled by full path composite variables in the FPCVF. The FPCVF is solved to
determine the best set of composites to incorporate into the operations plan for the system of
UAVs.

Steps I and II are iterated until a predetermined number of composite are generated for the

FPCVF; this number might be limited by computer memory or runtime constraints. Step III is

solved a single time and the solution is used to create an operations plan for the entire set of

UAVs. Figure 4.3 illustrates the flow of the algorithm.

The role of the FPCVF in the algorithm has two purposes. First, it ensures that the best

set of generated path plans are chosen to create the observation plan for the system. Second, it

ensures that the solution is a set cover: that each UAV in the system is assigned a path plan so

that the solution utilizes each UAV.

Step III: Full Path
Composite Variable

Linear Program

Figure 4.3 Flow of the Composite Operations Planning Algorithm

4.2.2 Step I: Subset Allocation

In the first step of the algorithm, tasks are assigned to be performed by a specific type of

UAV. The result is a mutually exclusive, collectively exhaustive set of task subsets, i.e., a

partition of the full task set. Each subset has an assigned type of UAV to perform the tasks in

the subset.

The objective of this step is to assign tasks to subsets that result in high value composite

variable path plans. To achieve this, the assignment of tasks to subsets occurs multiple times

and each time a different heuristic method is used to determine which subset to assign a task to.

Each method starts with the same steps. First, it is determined which types of UAVs are

able to perform the tasks. For example, for a task location that is far away, a UAV type with a

short endurance cannot reach the location. Therefore, this task should not be included in the

subset assigned to the UAV with short endurance. Second, the UAV Planner operator can

assign tasks to subsets. Each method takes into account these assignments before starting the

breakdown of the remaining tasks.

Sections 4.2.2.1 through 4.2.2.3 present methods used for subset allocation. These

methods provide simple routines to allocate tasks to the subsets.

4.2.2.1 Observation Length Subsets

The first heuristic method used for subset allocation utilizes the required observation

time of the task to determine which type of UAV should perform the task. The supposition is

that UAVs with longer endurance are better suited to perform the tasks that have longer

observation times. Essentially, the tasks with longer observation times are assigned to the

subsets associated with the UAVs with longer endurances.

To describe the method (and following methods) the following notation is used:

A = Set of UAV types

U, = Set of UAVs of type i

S, = Set of tasks assigned to UA V type i

T = Set of Tasks

u, = Number UAVs of type i

u = Total number of UAVs

a = Total number of UAV types

i = Index for type of UAV

t = Index for set of tasks

The following steps describe the method:

(1) Sort the set of tasks, T, by observation length. The index used for the set of tasks is t;
t = 0.

(2) Select the UAV type with the longest endurance for which a subset has not been
created; this is type i.

(3) Assign tasks t through t + uk/u to S,.

(4) Repeat Steps 2 and 3 until all tasks have been assigned to a subset.

The resulting subsets are then used in Step II of the COPA. The next subsection

describes an alternate method for subset allocation.

4.2.2.2 Time Window Subsets

This method for subset allocation utilizes the time windows of each task to determine

which subset to assign the task to. The logic behind this method is that each UAV should have

tasks whose time windows are spread across the planning horizon. This addresses the problem

of UAV types being assigned tasks that are clustered in a portion of the planning horizon, thus

unnecessarily limiting the number of tasks that can be completed.

The following steps describe the method. The notation introduced in the previous

subsection is used.

(1) Sort T by early time window.

(2) Loop through the following steps until t = I T I. Initialize t = 1, i = 1:

(a) Assign task t to S,.

(b) Update t = t + 1; i = i + I if i < a, i = I if i= a.

The subsets created by this algorithm are then used in composite generation in Step II of the

algorithm. The next subsection describes a third method for subset allocation.

4.2.2.3 Random Subsets

This method for creating subsets uses random numbers to assign the tasks to subsets.

Depending on the value of the random number, N, the task being assessed is assigned to any of

the possible UAV types, as long as it is feasible for the UAV type to perform the task. The size

of the subsets is also randomly generated.

The method uses the same notation as the previous sections. To create the subsets, the

following steps are taken:

(1) Initialize t = 1.

(2) Loop through the following steps until t = I T I:

a. Get a random number, N E [0, 1].

b. Assign task t to a subset using the following rules:

i. If N < 1/a, assign to S1.

ii. If (i - 1)/a < N < i/a, assign to Si.

iii. If N > (a - 1)/a, assign to Sa.

These subsets are also used in Part II of the algorithm. The next section describes how they are

used to generate composites.

4.2.3 Step II: Composite Generation

In next step of COPA, full path composites are generated for each UAV in the system. A

metaheuristic is used to generate the composites. This metaheuristic is based on the heuristic

developed by John Miller in his study of the USVOPP. The heuristic developed by Miller is

called the 3PAA, or the Three Phase Approximate Algorithm [30]. Alterations to Miller's algorithm

were made to include multiple locations for each task, which was not a part of the USVOPP.

The 3PAA proposed by Miller has the following three stages: the Construction Phase, the

Improvement Phase, and the Insertion Phase. First, the Construction Phase uses a construction

heuristic that uses cost-benefit analysis to determine which task locations to add to the path

plans. After the initial paths are constructed, the algorithm moves into the second phase, the

Improvement Phase. In this phase, the initial paths are improved upon using three

improvement procedures: 2-Opt, Deletion-Insertion, and 2-Exchange. In the Insertion Phase,

unvisited tasks are inserted into the paths wherever it is feasible. The resulting paths are a

solution to the USV Operations-Planning Problem [30].

For the UAV Planner Problem, the 3PAA was modified to include the consideration of

different locations at which the tasks can be completed. To accomplish this, task locations are

considered in the Construction Phase of the algorithm. In addition, a fourth phase is added

after the Insertion Phase, in which the task location can be swapped with a location of higher

value for the same task; this additional phase is called the Location Swap Phase.

The metaheuristic developed for COPA is described in detail in the following

subsections. The metaheuristic has four phases: the Construction Phase, the Improvement

Phase, the Insertion Phase, and the Location Swap Phase.

4.2.3.1 Construction Phase

In the construction phase of the metaheuristic, initial paths are created for the UAVs in

the system. To create the paths, the construction algorithm builds a path for a UAV of a given

type by calculating a cost-benefit ratio and adding the task with the highest ratio to the end of

the path.

The construction phase is dependent on input describing the UAV types, the tasks, and

the task locations. The input is represented by the notation introduced in Section 4.2.2.1 for the

MIP. The notation and additional notation is defined here:

value,tl

obstime,

idletime(,t)

late,

traveltime(gj),t,1),

endurancei

horizon

Value of task t at location 1

Required time to complete task t

Length of time that the UAV will have to wait before starting task at

location 1 due to a time window constraint

End of time window for task t

Length of time for a UAV type i to travel from task location (i, j) to

(t, 1)

Endurance of UAV type i

Planning horizon

To ensure time window constraints are kept, the current time in the path must be recorded; it is

denoted by currentTime. In addition, the parameters wl, w2, w3, and w4 are used to denote

weights used in the cost-benefit ratio.

The following steps describe the construction procedure. The procedure is repeated for

each UAV type, and produces the set P,,k, the set of ordered tasks for the path of UAV k of type

(1) Obtain list of locations associated with tasks in Si. This is set Li.

(2) Set currentTime, = 0; current location is (t', 1').

(3) For each UAV of type i:

a. For each feasible tasks in L, calculate:

value(t,)

wl * obstime, + w2 * idletime,) + w3 * late, + w4 * traveltime(,)(t,'1)

Find max{pt,l) V(t,l) E L; this is (t*, 1*)

Add (t*1 1*) to Pi,k.

Remove all other locations for task t from Li.

e. Update currentTimek. If currentTimek > endurancei or currentTimek > horizon,

start path for next UAV; k = k +1.

When completed, this procedure provides an initial path, in the form of an ordered set

of locations, for each UAV. As previously noted, the ordered set of locations for UAV k of type i

is represented by P,,k. The symbol Pi represents the set of paths for UAVs of type i; therefore, Pi

= {Pi,1, Pi,2, ... }. The symbol P denotes the entire set of paths, which is also the set of composites.

The next phase of composite generation improves upon the paths in set P.

4.2.3.2 Improvement Phase

The improvement phase of composite generation improves the paths created by the

construction phase. To improve the paths, this phase uses three improvement procedures: 2-

Opt, Deletion-Insertion, and 2-Exchange.

Each of the improvement procedures utilizes the order of the tasks in the current path.

The placement of a task refers to the order of the task in the set. For example, if the current path

is represented by the ordered set (3, 4, 2, 1} then task 2 is in the third placement in the path.

The procedures use placement to determine which tasks to consider when improving the

paths. For COPA, this is generally within 25 percent of the current placement of the task. The

percentage is of the total number of tasks in the path; for the example above, 25 percent would

be one because there are four tasks. Therefore, in this example, a task is within 25 percent of

another task if it is within one placement of the task.

4.2.3.2.1 2-Opt

The first improvement procedure is modified from the Lin-Kernigan 2-opt method [30].

In a 2-opt, two arcs on the path are replaced by two new arcs. If the change shortens the

duration of the path and the path remains feasible, then the new arcs are incorporated into the

path. This also changes the order of the tasks in the path.

The time window aspect of the UAV Planner Problem causes many paths to be

infeasible after a 2-opt is performed. Therefore, the traditional 2-opt can be modified to increase

the likeliness that the resulting path remains feasible. For this purpose, tasks are limited to

being swapped with tasks that are near each other in the path; this is defined to be within 25

percent of the total number of tasks in the path. For example, if the path includes twelve tasks,

then the tasks must within four placements of each other in the existing path. Example 4-3

illustrates the 2-opt algorithm.

Example 4-3. In this example, the existing path for a particular UAV type is represented by the ordered

set of tasks (a, b, c, d, e, f, g, h}.

When considering swapping Task c with another task, only tasks within two placements of Task

c are considered because there are eight tasks in the path (8*0.25 = 2). Therefore, the following tasks are

eligible to be swapped with task c: a, b, d, and e. Let's consider switching the order of Task b and Task c.

Arcs (a, b) and (c, d) are replaced by arcs (a, c) and (b, d). The feasibility of the new path is checked

(including the time windows for the tasks). If the path is stillfeasible, then the new duration is calculated

and compared to the duration of the original path. If the new duration is less, then the new path is kept.

An illustration of this example is show in Figure 4.4.

(1) Arc (a, b) replaced by (a, c)
(2) Arc (c, d) replaced by (b, d)
(3) Arc (b, c) replaced by (c, b)

Figure 4.4 2-opt Example

4.2.3.2.2 Deletion-Insertion

The Deletion-Insertion method is an inter-path method; the method deals with two

separate paths when attempting to improve the solution. The Deletion-Insertion method

deletes a task from the first path, and then inserts the task into another path.

As with the 2-opt method, the Deletion-Insertion method can cause infeasibility in the

time window constraints on the tasks. The method is altered similarly to the 2-opt method. The

method considers inserting tasks that are proportionally in the same placement on the new path

as the task was in the old path. For example, if the old path has twelve tasks and the fourth task

is being considered for deletion, then it is calculated that the task is currently located at the 25th

percentile in order of the path. If the new path has eight tasks, then proportionally, that would

be the second task, so inserting it in the second placement in the path would be considered.

Insertion is considered within 25 percent of the proportional placement. Because the

new path has eight tasks, 25 percent is within two placements of the proportional placement.

Therefore, in this example, the task can be inserted in placement 1, 2, 3, or 4 of the new path.

The deletion and insertion are maintained if the resulting paths have a cumulative shorter

duration and if they remain feasible. Example 4-4 demonstrates the Deletion-Insertion method.

PathA Y- +

Path B
i+1

Task y inserted into 2 nd

placement in Path B.

Path A +

Path B
i+1

Figure 4.5 Deletion-Insertion Example

Example 4-4. Consider the example in the text above. The first path, Path A, has twelve tasks. The

fourth task in the path, Task y, is being considered for deletion and insertion into another path. Task y is

at the 25th percentile of Path A. The path that Task y might be inserted into is Path B. Path B has eight

tasks, therefore, the 25th percentile is the second task. Task y is inserted into the second spot in Path B.

The feasibility of both Path A and B are checked; iffeasible, the new durations are calculated. If the

cumulative new duration is less than the previous duration, then Task y remains as the second task in

Path B. Figure 4.5 illustrates this example.

4.2.3.2.3 2-Exchange

The 2-Exchange method is also an inter-path method similar to the Deletion-Insertion

method. In the 2-Exchange method, two tasks are switched between two paths. This is

equivalent to deleting two arcs in from two separate paths and replacing them with two new

arcs.

As with the 2-opt and Deletion-Insertion, the paths can become infeasible due to the

time window constraints on the arcs. The method is therefore applied in same way as Deletion-

Insertion. When considering which tasks to exchange between the routes, tasks in placements

proportionally within the same percentile of the each other are considered. Example 4-5

illustrates this method.

Example 4-5. The 2-Exchange method exchanges tasks between two paths. Consider exchanging Task x

from Path A with Task y from Path B. Assume that Task x is the fourth task in Path A which has twelve

tasks, and Task y is the second task in Path B which has eight tasks. Therefore, they are proportionally

placed in the same percentile of each path. Task x is then deleted from Path A and Task y is inserted into

the 4th placement in Path A. Task y is deleted from Path B and Task x is inserted into the 2nd placement

in Path A. The feasibility of both paths is checked. If both are feasible, then the new durations are

calculated. If the cumulative new duration is less than the previous duration, then the exchange is

maintained. Figure 4.6 illustrates this example.

Path A X-1

Path B Y-1+

(1) Task x deleted from Path A,
added to Path B

(2) Task y deleted from Path B,
added to Path A

Path A

Path B+ y+1

4.6 2-Exchange Example

4.2.3.3 Insertion Phase

The Insertion Phase applies an insertion heuristic method to the path. In this phase, it is

attempted to find a feasible location to insert each task that is not previously included in the set

of paths, P.

The phase begins by determining which tasks are not included in any of the paths; this is

the set T'. The task locations for the tasks that were not included are put in the set L. The set is

then ordered by value and represented by L'. Starting with the highest value task location, it is

attempted to insert the task into each of the paths. When a feasible placement for the task is

found, the task is inserted into the path. All locations from the path associated with the tasks

are then deleted from L'.

The method continues until as many tasks have been inserted as are feasible. This phase

is summarized in the following steps. The index m is used to denote the placement in a path; p

is used as an index for the paths in set P:

(1) Collect set of tasks not included in any path in P; this is T'.

(2) Get the set of locations associated with the tasks in T'; this is L.

(3) Sort L by value to get L'.

(4) Loop through L', starting with I = 1. Initialize p = 1, m = 1.

(i) Check if feasible to insert location 1 into path p in placement m.

(ii) If feasible, insert, delete 1 and all other locations associated with the same task

from L', and return to (4), 1 = 1 + 1. If infeasible, return to (i), m = m + 1.

4.2.3.4 Location Swap Phase

The Location Swap Phase is not part of the 3PAA proposed by Miller, but was added to

the algorithm to ensure that the tasks are completed in the most valuable location possible. In

this phase, locations can be swapped out for higher value locations of the same task. For

example, if the first task in Path A is currently performed at a location with a value of 10 but it

can be performed at a location with a value of 15, then the higher value location is swapped for

the lower value location, if feasible. The swap is considered for each location in each path.

The notation used is the same as in the previous subset. In addition, the set H represents

the set of task locations with higher value than the current location for the task that is included

in the path. The index h is used as an index for the locations in set H. Recall that P is the entire

set of path and p is used as an index for the paths in P. The steps of the method are as follows:

(1) Loop through the paths in P. Start with p = 1.

(2) Loop through all tasks in p. The placement is denoted by m = 1.

(3) Find all locations of higher value for the task in placement m of path p; this is H.

(4) Loop through H; h = 1.

(i) Attempt to swap location h with location m in p.

(ii) If feasible, swap. If infeasible, h = h + 1.

4.2.3.5 Review of Composite Generation

The Composite Generation Step of COPA, described in the preceding sections, is the

most complex part of the algorithm. Multiple heuristics are applied to each path in an organized

manner to produces an improved solution. An overview of composite generation is

summarized in the following steps:

(1) Construction Phase: Construct initial paths.

(2) Improvement Phase:

(i) Iterate 2-Opt for a set number of exchanges or until no improvement.

(ii) Iterate Insertion-Deletion for a set number of exchanges or until no
improvement.

(iii) Iterate 2-Exchange for a set number of exchanges or until no improvement.

(5) Insertion Phase: Insert as many unperformed tasks as possible.

(6) Location Swap Phase: Swap out task locations for locations with higher value.

The result of the Composite Generation Step is a set of composites that represent paths

and are used in the third step of the algorithm. The paths were created to be performed by a

specific type of UAV; and each path has an complete set of ordered tasks that define the location

that a task should be performed at, the start times, and end times for each observation. The next

section describes how these composites are used in the FPCVF described in Section 4.1.3 to

create as operations plan for the system of UAVs.

4.2.4 Step III: Composite Variable Linear Program

The last step of COPA is to solve FPCVF introduced in Section 4.1.3. The result of the

linear program is a set of full path composites, one for each UAV in the system. The composites

are incorporated into an operations plan for the system.

The purpose of the FPCVF is to find a set cover for the set of UAVs that is most valuable

to the user. A set cover ensures that each UAV is assigned to a composite, so that a complete

operations plan is created by the set of composites. Each time Step I and II are completed, the

result is a set covering set of paths. However, the set of paths created during the first run may

not be the most valuable; in fact, the FPCVF chooses the best combination of paths that is a set

cover for the UAV regardless of the run from which the composite paths were created.

The results of the FPCVF depend on the number of composites created during Step I

and II. With more composites, the FPCVF has more feasible sets of paths that could be assigned

to the UAVs. The number of composites is determined by the number of times that Step I and II

are run; this number is determined before running the algorithm. Example 4-6 provides an

example of the linear programming step in the algorithm.

Example 4-6. This example looks at a scenario with two types of UAVs: Type 1 and Type 2. There is a

single UA V of each type. There are six tasks in the scenario; each task can be performed at two locations.

The notation for the task locations is (i, j) where i denotes the task and j denotes the location. The

following table summarizes the composites path and UA V types:

Composite
ComposVariable UAV Type Path Value
Variable

YI 1 (6,1) 4 (5,1) 80

Y2 1 (3, 1) - (4,1) 40

Y3 1 (2,1) - (1,2)- (4,2) 100

Y4 2 (3, 1) - (4,1) 40

y5 2 (3, 1) - (5, 1) 60

Y6 2 (6, 2) -)(5,1) 70

Table 4.1 Example 4-6 Composites

Using these composites, the resulting FPCVF is:

Maximize 80y,1 + 4 0 y2 + 100 y3 + 40 y4 + 60 y + 7 0 y 6 (4.9)

Subject to y1+ y 2 + y 3 1 (4.10)

Y4 + Y5 + Y6 < 1 (4.11)

Y2 + Y4
+ Y5 1 (4.12)

Y2
+ Y3 + Y4 1 (4.13)

YI + Y5 + Y6 < 1 (4.14)

Y + y6
< 1 (4.15)

y, 5 1 Vi =1..6 (4.16)

The objective value, 4.9, indicates that the objective is to maximize the total value of the composites

chosen by the linear program. Constraints 4.10 and 4.11 ensure that each UAV is assigned a single path.

Constraint 4.12 ensure that Task 3 is only included in the composite paths a single time; essentially, that

the task is only performed once. Notice that Task 3 is included in the paths for Composites 2, 4, and 5.

Constraints 4.13, 4.14, and 4.15 have the samefunction for Tasks 4, 5, and 6, respectively. Constraints

for Task I and Task 2 are not needed, because they are included in only one composite each.

4.2.5 Overview of Algorithm

This section provides a summary of COPA as it has been described through the

preceding sections. Because the algorithm includes loops, the algorithm is shown in a flow

chart in Figure 4.7. In the figure, the steps are labeled as Subset Allocation, Composite

Generation, and the Full Path Composite Variable Linear Program. The result of the algorithm

is an operations plan for the UAVs.

Step I: Subset Allocation. Create subsets of tasks that
are assigned to a specific type of UAV through one of

the following methods:
(1) Time Windows Subsets

(2) Obseration Length Subsets
(3)Random Subsets

Step II: Composite Generation Metaheuristic. Generate
composites of paths and UAV types. This metaheuristic

has four phases:
(1)Construction
(2)Improvement

(3)Insertion
(4)Location Swa

No
Desired

number of
composites
generated?

Yes

Step III: Full Path Composite Variable Linear Program.
In this step, the composites are used to generate

constraints for the FPCVF. The composites selected by
the linear program provide the operations plan.

Figure 4.7 Overview of Composite Operations Planning Algorithm

4.3 Implementation of COPA

To test the ability of COPA to produce optimized operations plans, the algorithm is

implemented in NetBeans 6.1 using Java. To perform the last part of the algorithm, the FPCVF,

the optimization software CPLEX 11.0 is called from Java. The implementation is useful for

testing various cases with differing characteristics. An important aspect is the ability to test

COPA on test cases with large numbers of UAVs and tasks.

The implementation also allows for analysis on the runtime of the algorithm. The

runtime analysis can also be compared to the runtime of the MIP introduced in the previous

chapter to determine which method can solve large-scale problems in a reasonable amount of

time.

This section introduces how data is inputted into the COPA software, how the test sets

are created, and discusses the output of the COPA software.

4.3.1 Sample Input Data

To implement COPA, data describing the UAVs and the tasks are input using Java. The

data is stored in a single text file that takes the form of the data in Figure 4.8.

The first line of the data file provides information about the test case: the number of

tasks, the number of locations per task, the number of UAV types, and the planning horizon.

The next block of data provides information about the UAVs types: speed, endurance, ceiling,

floor, climb rate, and sink rate, and the individual UAVs' starting locations. Finally, the data

describing the task locations follows: the task identification number, the location number,

latitude, longitude, altitude, point value, early time window, late time window, and the

necessary observation time. The example in Figure 4.8 illustrates the data.

Number of Tasks

UAV Types
A__ _ _

Number of Numberof
Locations per UAV Types

Tasks Planning Horizon

,/,"- J

UAVs

S ins
o

2 12

180 18 21000 12000 2400 2400

80 6 21000 12000 1200 1200

50 105 0

50 105 0

50 105 0

52.5 105.0 20060 69 3.32 3.73 0.37

52.5 105.0 17528 95 3.32 3.73 0.37

54.0 103.0 18155 40 9.30 11.52 0.29

54.0 103.0 19033 80 9.30 11.52 0.29

52.0 102.5 17122 94 2.90 6.59 3.33

52.0 102.5 21242 58 2.90 6.59 3.33

50.5 105.0 17458 49 9.36 9.59 0.02

50.5 105.0 15759 45 9.36 9.59 0.02

51.0 103.0 14115 93 1.03 3.92 0.58

51.0 103.0 17621 49 1.03 3.92 0.58

Figure 4.8 Sample Data

4.3.2 Test Set Development

Each test set requires a large amount of data to describe the necessary input. To

automate the process of creating test sets, a program using random numbers was developed in

MATLAB.

Some of the data was determined prior to the creation of the test set. The data describing

the UAVs was determined based on information about operational UAV types that have been

used for Earth monitoring missions. The starting locations for the individual UAVs are the

predetermined locations for the command stations.

The data describing the tasks was autonomously created using a random number

generator and mapping the number to a reasonable range. The distributions of the latitude,

longitude, altitude, time windows, and observation times were uniformly distributed. The

observation time was computed after the time window duration to ensure that duration of the

time window was long enough to allow the UAV to complete the task.

To create different locations for each of the tasks that were in close proximity to each

other, the values for the latitude, longitude, and altitude were perturbed slightly, using a

separate random number generator. This ensured that the different locations associated with

the same tasks were relatively close to each other. The time windows and observation time

remained the same for each location.

4.3.3 Output

The output of the program provides the path and observation plan for the set of UAVs

after solving the FPCVF. In addition, it outputs the information for all of the composites that

are created, if the information is required. It also records the runtime of the algorithm, which

times how long it took the computer to produces the path and observation plan, including data

input and output. An example of the output of the COPA software in shown in Figure 4.9.

Composite Arrival time at 1Departure time
Number tasks. from tasks.

*** COMPOSITE NO. 1

UAVtypefor - UAV Type: 1
composite. Location Start Time EndTime

Start Location 0 1.1661

S (4,2) 1.8 2.25
Locations in pathfor (5,1) 5.97 5.98

composite.

*** COMPOSITE NO. 2

UAV Type: 2
Location Start Time EndTime
Start Location 0 0.4723
(2,1) 1.98 5.17

*** COMPOSITE NO. 3

UAV Type: 1
Fullpathcompostes. Location Start Time EndTime

Start Location 0 1.309
(2,1) 1.98 5.17
(5,1) 5.97 5.98

*** COMPOSITE NO. 4
UAV Type: 2
Location Start Time EndTime
Start Location 0 5.204

(1,2) 5.63 5.71

Composite 1: 0

Output of FPCVF. Composite 2: 0
Composites3and4 Composite 3: 1
will be incorporated Composite 4 : 1
into operations plan.

The optimal value of the route is: 186
The calculation time is: 938

Figure 4.9 Example Output

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 5

Testing and Analysis

This chapter evaluates two methods proposed to solve the UAV Planner Problem: the

Mixed-Integer Program (MIP) formulation presented in Chapter 3 and the Composite

Operations Planning Algorithm (COPA) presented in Chapter 4. The first part of the chapter

focuses on a comparison of the two methods.

The chapter then focuses on the runtime of COPA. Because the goal of this research is to

find an efficient method to solve the problem, Section 5.2 analyzes the sensitivity of COPA's

runtime to additional task and task locations. The ability of COPA to handle large-scale cases of

the UAV Planner Problem is tested to determine if COPA is able to handle large test sets.

Section 5.3 follows a scenario in which operator input is incorporated into COPA. The

results of this scenario illustrate how the algorithm uses operator input in the development of

an operations plan. Section 5.4 looks closely at the operations plans developed for this scenario.

Section 5.5 utilizes two scenarios to analyze the performance of two concepts of

operations: a centralized system and a decentralized system. In centralized operations

planning, COPA is used to generate an integrated operations plan at a centralized command

station for a system of UAVs that are deployed out of separate command stations. The

planning for a centralized system is called decentralized operations planning. For a decentralized

system, the operations plans for the UAV are generated separately for each command station,

without knowledge of the other station's operations. The planning for this system is called

decentralized operations planning. The scenarios demonstrate the advantages and disadvantages

of the two concepts of operations.

5.1 Comparison of COPA and MIP

This section focuses on the performance of COPA and the MIP. To determine which

method is better suited to solve the UAV Planner Problem in an operational context, the

methods are compared by analyzing two characteristics: the runtime of the method and the

value of the resulting operations plan.

The software discussed in Section 4.3 is used in the analysis of COPA. The COPA

software is implemented in Java and calls CPLEX 11.0 to solve the FPCVF. COPA was

developed to have a short runtime. It uses a heuristic method that does not search the entire set

of solutions, and, therefore, can identify a solution more quickly than an algorithm that

considers every solution. However, because it does not search the entire set of solutions, it

cannot guarantee that the resulting operations plan is optimal.

The MIP analysis utilizes ILOG's OPL Studio 5.5 and CPLEX 11.0 to solve the linear

program. The software uses an exact solution method to determine the optimal solution. The

optimal solution is the "best" solution to the UAV Planner Problem; it is the solution that has the

highest value to the user. In the worst case, the MIP searches the entire solution space to find

the optimal solution. The solution space is defined as the entire set of solutions to an instance of

the UAV Planner Problem. Therefore, the runtime for the MIP can be lengthy.

This section provides analysis and testing data to confirm that COPA is a quick

algorithm that might produce sub-optimal operations plans. It also illustrates that cases with

fifteen or more tasks are intractable using the MIP formulation.

5.1.1 Testing Method

To analyze COPA and the MIP, twenty pseudo-random test sets were created using the

method described in Section 4.3.2. There are four test sets each for the following number of

tasks: 5, 10, 15, and 20. The tasks in each test set can be performed at two locations each.

Therefore, for a test set with 5 tasks, there are 10 total locations, or, equivalently, 10 nodes in the

network.

Each test set has two types of UAVs. Four UAVs were included in each test set, two of

Type 1 and two of Type 2. The UAV types are described in the following table:

Speed Endurance Climb Rate Sink Rate
Type (mph) (hr) Ceiling (ft) Floor (ft) (ft/mn) (f/min)

1 180 18 21000 12000 2400 2400
2 80 6 21000 12000 1200 1200

Table 5.1: UAV Types

For COPA, the number of composite variables generated by the algorithm affects the

results of both the runtime and optimality analysis. Therefore, it was determined that each test

set would be run with the following number of composites: 24, 48, and 72. For each result, the

number of composites generated is noted.

When testing the MIP, the linear programming (LP) relaxation, is also tested using the

same test sets. The LP relaxation relaxes the binary constraints on the decision variables.

Specifically, in the LP relaxation of the MIP presented for the UAV Planner Problem, the

variables perform(i,k),u,t and travelo,k),,),u are allowed to take any value on the interval [0, 1].

Therefore, the LP relaxation does not guarantee an executable operations plan. However, it does

provide an upper bound for the MIP's performance that can be useful for cases in which the

MIP cannot confirm a solution.

5.1.2 Runtime Comparison

The goal of the runtime comparison is to determine whether COPA or the MIP is able to

create an operations plan that solves the UAV Planner Problem in the shorter amount of time.

To test this capability, the twenty test sets discussed in the previous section were solved using

each method: COPA, the MIP, and the LP relaxation. Each test set was solved three times using

COPA. First, COPA generated 24 composites; second 48 composites were generated; and third,

72 composites were generated.

It is expected for COPA to be the faster method. This is because COPA does not search

the entire solution space to find the optimal solution. In fact, the COPA's solution might not be

optimal; however, it does select the best solution out of those considered by the algorithm.

Conversely, the MIP is an exact solution method that, when completed, provides the optimal

solution. Table 5.2 provides the runtimes of each of the testing runs.

COPA COPA
Size of Problem COPRA LP

(Tasks, Runtime (s) (s) (s) Runtime (s) Relaxation
Locations) 24 Comp. 48Runtime (s)

48 Comp. 72 Comp.

(5,2) 0.81 1.17 1.376 2.93 0.26

(5,2) 0.734 0.817 0.938 20.53 0.25

(5,2) 0.613 0.526 0.848 7.42 0.25

(5,2) 0.617 0.679 0.99 16.28 0.25

(10,2) 0.357 0.98 0.913 3625 1.5

(10,2) 0.348 0.832 0.939 2640.53 1.5

(10,2) 0.398 0.456 0.49 6081 1.32

(10,2) 0.323 0.563 0.866 2732.16 1.81

(15,2) 0.82 1.099 1.163 7881.61* 28.53
(15,2) 0.825 0.941 1.088 1178.4* 954.8
(15,2) 0.414 0.626 0.764 19866.41* 1600.0
(15,2) 0.439 0.772 1.23 220.65 1292.8
(20,2) 0.764 0.748 0.989 4084.25* 651577.3

(20,2) 0.457 0.736 1.537 2912.10* 53.28

(20,2) 0.543 1.095 1.211 40092.43* 2376784.4
(20,2) 0.48 0.757 1.087 21816.79* 35.53

* = Time until best solution was found (unable to prove).

Table 5.2 Runtime Analysis

The data presented in Table 5.2 indicates that, for each test set, the COPA algorithm

solves the problem in the shortest amount of time. In fact, as the size of the test sets increased,

the MIP was unable to confirm that the solution provided by the program was optimal, even

after allowing the algorithm to search the solution space for a long period of time.

Table 5.3 shows the averages of the runtimes for each size of the problem. It is

important to note that, for the test cases with 20 tasks, the MIP did not solve any of these

problems to completion, which explains the decrease in average runtime between the test cases

with 15 task and those with 20 tasks for the MIP.

Average COPA Average COPA Average COPA
Runtime (s) Runtime (s) Runtime (s)Problem Runtime (s)24 Comp. 48 Comp. 72 Comp.

(5, 2) 0.694 0.798 1.038 11.79
(10, 2) 0.357 0.708 0.802 3769.67
(15, 2) 0.625 0.860 1.061 10756.87
(20, 2) 0.561 0.834 1.206 3498.18

Table 5.3 Average Runtimes

The average runtimes support the claim that COPA solves the UAV Planner Problem in

a shorter amount of time. For example, in test sets with 15 tasks that could be performed at two

locations each, the average runtime for COPA with 72 composites generated is 0.802 seconds,

while the average runtime for the MIP is 1 hour, 2 minutes, and 49.67 seconds. The average

runtimes for COPA are shown in Figure 5.1; the MIP runtimes are not included.

Figure 5.1 Average Runtimes for COPA

Another important aspect is the variance of the runtimes. In an operational situation, it

would be detrimental to use an algorithm that might take significantly longer than expected;

hence, the standard deviation of the runtime should be evaluated. Table 5.4 gives the standard

deviations of the runtimes; this shows that the standard deviations of the runtimes for the MIP

are orders of magnitude larger than the standard deviations of the runtimes for COPA.

1.4

1.2

0.8 -
0. , 5 Tasks

" 0.6 - - 1-+ 10 Tasks

0.4 '-0- - 00 15 Tasks

0.2 -*-20 Tasks

0 -

24 Comp. 48 Comp. 72 Comp.

Number of Composites

Standard Standard Standard
Standard

Size of Deviation of Deviation of Deviation of Deviation of MIP
Problem COPA Runtime (s) COPA Runtime (s) COPA Runtime Runtime

24 Comp. 48 Comp. 72 Comp.

(5, 2) 0.096 0.275 0.233 8.045

(10, 2) 0.031 0.241 0.210 1603.596

(15, 2) 0.229 0.205 0.206 9052.503

(20, 2) 0.140 0.174 0.239 17526.573

Table 5.4 Standard Deviation of Runtimes

5.1.3 Optimality Comparison

The objective for the optimality comparison is to determine how close the solution

selected by COPA is to the optimal solution, which is provided by the MIP. By definition, the

MIP, if it is able to find one, provides an optimal solution: the solution with the highest value to

the user.

To determine the ability of COPA to generate solutions close to the optimal solution,

COPA was applied to the twenty test sets discussed in Section 5.1.1 and used for the runtime

analysis. Similar to the runtime analysis, COPA was applied to each test set three times: first, 24

composites were generated; second, 48 composites were generated; and, third, 72 composites

were generated.

The value of the operations plan developed by COPA depends on the number of

composites generated. With a greater number of composites, the FPCVF linear program can

choose from a wider selection of composites. Therefore, it is possible that the solution selected

by COPA has higher value if more composites are generated. This is equivalent to stating that,

by generating more composites, a larger solution space is explored by the algorithm in selecting

the best solution. Table 5.5 presents the data for the optimality comparison.

Value of Value of Value of Value of Lowest Value of
Size of COPA COPA COPA MIP Otility LP Integrality

Problem Solution Solution Solution pRelaxation Ga
Solution Gap p24 Comp. 48 Comp. 72 Comp. Solution

(5,2) 245 255 255 295 13.56% 295 0%

(5,2) 161 161 161 161 0% 201 19.90%

(5,2) 274 275 275 281 2.14% 281 0%

(5,2) 279 279 279 279 0% 344 18.90%

(10,2) 543 543 543 555 1.30% 670.25 17.20%

(10,2) 660 660 664 739 10.15% 756 2.25%

(10,2) 634 696 696 696 0% 764 8.90%

(10,2) 432 434 434 466 6.87% 558 16.49%

(15,2) 851 888 888 959* 2.10% 1007 4.77%

(15,2) 884 884 884 884* 0% 960 7.92%

(15,2) 920 960 960 992* 3.23% 1054 5.88%

(15,2) 959 959 959 974 1.54% 1031 5.53%

(20,2) 1207 1247 1265 703* ** 1382 49.13%

(20,2) 1102 1102 1102 784* ** 1280 38.75%

(20,2) 1138 1171 1190 1127* ** 1330 15.26%

(20,2) 1122 1125 1139 766* ** 1240 38.23%

* = Best solution; computer unable to prove.
** = Algorithm solution greater than MIP solution

Table 5.5 Optimality Comparison

The data in Table 5.5 indicates that COPA provided solutions with values that were

close to the value of the optimal solution; the values are shown visually in Figure 5.2. Out of

the nine cases where the MIP was able to confirm the optimality of the solution, COPA

provided answers of equivalent value. The average optimality gap of the nine cases with

confirmed optimal solutions; the average optimality gap was 3.95%. The optimality gap is the

percentage that a solution deviates from the optimal solution.

Another significant observation is that, in the test sets with 20 tasks, the computer was

unable to provide a solution to the MIP that was better than the COPA solution before it ran out

of memory. The actual solution to the MIP would have been better than or equal to the COPA

solution, by definition; however, because the computer was unable to find the solution, a better

solution cannot be found using these methods.

1400 r---T-

1200 Value of MIP Solution

1000

800

600

400

-- - - -I--

___ ji)_
x Value of COPA

Solution with 24
Composites

* Value of COPA
Solution with 48
Composites

0 Solution with 72
0 --- Composites

0 2 4 6 8 10 12 14 16 18

Figure 5.2 Comparison of Operations Plan Values for MIP and COPA

Appendix B provides a table with both the runtime and optimality results. The data in

this table provides a succinct view of the runtime and optimality trade-offs of COPA and the

MIP. The data shows that for the test sets with five tasks, the MIP did not have significantly

longer runtimes, and was able to provide better solutions. However, as the test set got larger,

the runtime of the MIP increased significantly; eventually, the test sets were intractable for the

MIP.

Operationally, the UAV Planner Problem might include scenarios with large numbers of

tasks. This suggests that COPA is better for the operational scenarios of the UAV Planner

Problem. The runtime of algorithm did not increase significantly with the larger number of

tasks and, for all test sets, provided a feasible, high value solution. The next section analyzes

the runtime of COPA in greater detail, focusing on the impact that increasing the size of the test

set has on the runtime of the algorithm.

5.2 COPA Runtime Sensitivity Analysis

The purpose of this section is to analyze the impact that the problem size has on the

runtime of COPA. Runtime is important in the UAV Planner Problem and for dynamic re-

-~----~ ----- ~--------
I-~~~I-----~--Ip-~7-----TII~-r__-_l~

i

planning of the problem. Additionally, the operational problem most likely includes large

numbers of tasks, which increases the complexity of the problem and, hence, the runtime of

solution methods. In this section, we discuss the impact that additional tasks and additional

locations per task have on the runtime of COPA, and examine the ability of COPA to solve

large-scale problems.

The analysis in this section is performed using test sets randomly generated, as

discussed in Section 4.3.2. There is no continuity of test sets between the parts of the analysis;

new test sets were generated for each section.

5.2.1 Impact of Additional Tasks and Locations

To determine the impact that additional tasks has on the runtime of COPA, pseudo-

random test sets were used. The test sets contained numbers of tasks ranging from five to 50

tasks, in intervals of five. As expected the runtime of COPA increased with an increase in the

number of tasks in the test set. The average increase in runtime was 0.02 seconds for an

additional five tasks in the range of test sets analyzed.

Figure 5.3 illustrates the runtimes of the test sets. The figure shows the increase in

runtime as the number of tasks increases. Also, the figure shows that the variance of the

runtime increases with an increase in the number of tasks.

Figure 5.3 Impact of Additional Tasks on COPA Runtime

The impact of additional locations per task was tested using pseudo-random test sets

with 10 tasks. The number of locations per task in the test sets ranged from two to 10 in

intervals of 2. Therefore, the first test set had 10 tasks that could be performed at two locations

each, the second test set had 10 tasks that could be performed at four locations each, and so on.

The testing concluded that additional locations per task affected the runtime by adding

an average of 0.1 seconds per additional two locations in the range of test sets analyzed. The

results are illustrated in Figure 5.4.

Figure 5.4 Impact of Additional Locations per Task on COPA Runtime

5.2.2 Large Size Test Cases

Operationally, the UAV Planner Problem can become very large. To understand how

COPA handles large-sized problems, the algorithm was tested using test sets with an increasing

number of tasks. Each test set had 15 UAVs, five of Type 1 and 10 of Type 2 as described in

Table 5.1. The planning horizon for the test sets was six hours.

The testing began with 100 tasks that could be performed at 10 locations each; therefore,

the number of nodes in the test set was 1,000. Then, 100 tasks were added for each test set. The

largest test set added had 500 tasks that could be performed at 10 locations each for a total of

5,000 nodes in the problem. Tests with more tasks were not performed before the publishing of

this thesis.

1.2

1

0.8

0.6

0.4 -

0.2

2 4 6 8 10

Number of Locations per Task

During the testing, COPA generated 30 composites for each test set. This number was
determined before testing. Generating additional composites would increase the length of the
runtime; therefore, there is a balance between generating composites and maintaining a

reasonable runtime.

1600

1400 Observation
of Runtime

01200

ooo 0 Average
Runtime

600

U 400

200

0 1000 2000 3000 4000 5000 6000
Number of Nodes

Figure 5.5 Runtimes of Large Test Sets

Figure 5.5 shows the runtimes of the large test sets; the runtimes are displayed for eight

test sets of each size. The trend line connects the average runtimes.

COPA was able to handle these large test sets in a reasonable amount of time. The
longest runtime was 23 minutes and 46.4 seconds for a test case with 500 tasks that could be
performed at 10 locations each. This runtime is reasonable for an operational situation where

the planning horizon is six hours.

5.3 Operator Input Scenario

Part of the UAV Planner Problem is to allow the operator to provide input to incorporate

into the operations plan. COPA includes operator input by the operator assigning tasks to be

performed by a specific UAV type before initiating the algorithm; this is called pre-assigning a

task.

0
4'

The input is used in the Subset Allocation step of COPA. The pre-assigned tasks are put

into the subsets desired by the operator. The algorithm continues without alteration until the

FPCVF is solved. After determining which composites produce the best operations plan, the

operator is provided with multiple plans to choose from, with the most valuable set of

composites highlighted.

The operator involvement in COPA is illustrated through a scenario. This scenario has

six tasks that can be performed at two locations each. The locations differ only in altitude.

There are two UAVs in this example; there is one UAV of Type 1 and one UAV of Type 2 as

described in Table 5.1. Therefore the operator can pre-assign tasks to be completed by either

type of UAV. The UAVs are centrally controlled and are dispatched from the same initial

location. Figure 5.6 illustrates the scenario in two dimensions.

Task
Location

Command
Station

0 0

04'

0

116 116.5 117114.5 115 115.5114

Figure 5.6 Tasks for Operator Input Scenario

For this example, COPA develops operations plans with operator input and without

operator input and compares the operations plans developed by COPA in both cases.

0

€ I I I i , • "+ + + ;44 e 4Ilr.J lieO

The operator input is the following:

Set of tasks to be performed by UA V of Type 1: (1, 6}

Set of tasks to be performed by UAV of Type 2: (2, 41

The pre-assigned tasks were chosen arbitrarily for the purpose of this illustration. These pre-
assignments were put into COPA and the resulting operations plan includes the pre-assigned
UAV types performing the tasks. This operations plan, which has a value of 350, is shown in
Figure 5.7.

41 Task 4, Location 2 Task
Start Time: 1.7298 hrs (Location
End Time: 1.9298 hrs

o - Task 2, Location 2 Ctation
Start Time: 0.8344 hrs
End Time: 0.8944 hrs UAV

- LIAV 2

38 -

Task 1, Location 1
Start Time: 0.06 hrs /

37 -End Time: 0.16 hrs /

/ .. Task 5, Location 1
S .Start Time: 1 hrs

36 - End Time: 1.05 hrs
Task 6, Location 2
Start Time: 1.5683 hrs
End Tire: 1.6183 hrs I 1 '.

'I R 114.5 115 115.5 116 116.5 117 117.5 lie

Figure 5.7 Operations Plan containing Pre-Assigned Tasks

An operations plan for the same scenario was also developed using COPA without any
tasks pre-assigned. The resulting operations plan is shown in Figure 5.8. COPA was able to

develop an operations plan with a higher total value of 360.

In this example, COPA was able to find a more valuable operations plan than with the
operator input. Both options would be available to the operator before he or she decides which

operations plan to execute. The section operations plan, with no pre-assigned tasks, would be

highlighted because it has a greater value.

Task 2, Location 2
Start Time: 0.8344 hrs
End Time: 0.8944 hrs

2 3/

Task 1, Location 1
Start Time: 0.06 hrs / /

-End Time: 0.16 hrs / /

//

Task 6, Location 2
Start Time: 2.1361 hrs
End Tire: 2.186 hrs

Task 4, Location 1
Start Time: 0.9994 hrs
End Time: 1.1994 hrs

/ /

/
/

Task 5, Location 1
Start Time: 2.5686 hrs
End Time: 2.6186 hrs

34 114.5 1 . 116 116.5 117 1183~4 114.S 11 lS l.5 116 116.S 117 117.S 118

*)
0

Task
Location

Command
Station

Figure 5.8 Operations Plan for Operator Input Scenario with No Pre-Assigned Tasks

5.4 Discussion of Operations Plans

This section will look closer at the operations plans developed by COPA in Section 5.4.

The purpose is to improve our understanding of the plans developed by the algorithm. The

reason for examining this particular example is because it includes a small number of tasks and

UAVs, and, therefore, provides a good illustration.

To review, the scenario has six tasks that can be performed at two locations each. Two

UAVs are in the scenario; one of Type 1 and one of Type 2, as described in Table 5.1. The

planning horizon is three hours. The task data from the input file is shown in Table 5.6.

This analysis focuses on the operations plan developed by COPA without operator

input, shown in Figure 5.8. The following paragraphs highlight some of the aspects of the

scenarios that are not captured in the figures displaying the operations plans. Specifically, the

impact of the following three aspects are discussed: value of the tasks, altitude, and time

windows.

" UAV 1

-UAV 2

Task Early Late Observation
Location Latitude Longitude Altitude Value Time Time

Window Window

(1, 1) 38 115 14000 60 0 1 0.1
(1, 2) 38 115 16000 60 0 1 0.1
(2, 1) 39 115 20000 100 0 1 0.06
(2, 2) 39 115 18000 80 0 1 0.06
(3, 1) 39 116 14000 60 0 1.5 0.2

(3, 2) 39 116 15000 20 0 1.5 0.2
(4, 1) 40 117 16000 80 0.4 1.5 0.2

(4, 2) 40 117 18000 40 0.4 1.5 0.2
(5, 1) 37 117 13000 100 1 3 0.05
(5, 2) 37 117 18000 70 1 3 0.05
(6, 1) 36 115 19000 80 1 3 0.05
(6, 2) 36 115 14000 70 1 3 0.05

Table 5.6 Task Data for Operator Input Scenario

First, the value of the tasks impacts the development of the operations plans. A concern

about the operations plan shown in Figure 5.8 might be that the operations plan does not

include Task 3, even though the path for UAV 1 seems to pass almost directly over the location

of the task. The reason for this is the value of the tasks. If the UAV performs Task 3, which has

a maximum value of 60, then it would be unable to perform either Task 4, with a value of 80, or

Task 6, which is performed at location (6, 2) with a value of 70.

Second, it is important to understand the impact of altitude on operations planning,

especially because it cannot be captured in the two-dimensional figures. For example, a concern

about the operations plan shown in Figure 5.8 might be the crossing of the paths for UAV 1 and

UAV 2. However, it is important to remember that altitude is also a factor in creating the

operations plan. The altitudes of the task locations included in the plan for UAV 1 are:

(1, 1) Altitude: 14000ft
(4, 1) Altitude 16000ft
(6, 2) Altitude 14000ft

Contrast those altitudes with the altitude of the tasks in the plan for UAV 2:

(2, 2) Altitude: 18000ft
(5, 2) Altitude: 18000ft

Therefore, the plans do not actually cross each other, because the UAVs are operating at

different altitudes.

The last concern that will be mentioned is a UAV crossing its own path. This is

illustrated in the operations plans developed by COPA for the operator input scenario when the

pre-assigning of tasks was included in the operations planning, which produced the operations

plan shown in Figure 5.7. The reason for this is the time window constraints on the tasks. Time

windows can constrain a task to be performed before another task, regardless of the efficiency

of performing the tasks in that order. For example, if Task 1 and Task 5 from Table 5.6 are in

the same path, then Task 1 must be performed earlier in the path than Task 5. This is because

the time window for Task 1 ends one hour after the start of the operations, while the time

window for Task 5 starts one hour after the start of operations. Therefore, the time windows

constraints do not allow Task 5 to be performed before Task 1. Section 5.5.2 and Example 5-1

further discuss the impact of time windows.

5.5 Operational Forest Fire Scenarios

The purpose of this section is to provide the reader with an idea of how COPA functions

in an operational scenario. In the scenarios, firefighters work in smaller teams, called incident

units, placed in strategic locations around the perimeter of a wildfire. The leaders of these

smaller groups are called incident commanders.

Two types of planning are discussed: centralized operations planning and decentralized

operations planning. For centralized operations planning, a single command center has control

over all of the UAVs in the system. The operations plan for each UAV is developed at the

command center. While the UAVs are deployed from the location of the incident units, the

plans are coordinated and all tasks are known before the operations plans are created.

For decentralized operations planning, incident commanders have control over a subset

of the UAVs. The commanders oversee the development of the operations plans; therefore, the

plans are not coordinated. The operations plans are developed knowing only the tasks

generated by the incident group. The incident commander, and hence the operations planner,

for the incident group are not aware of the tasks generated by other incident units.

In this section, two scenarios are presented using each operational concept. In the first

scenario, the incident units and the tasks generated by the units are geographically separated. In

the second scenario, the incident groups are stationed close to each other and their tasks are

intermingled. Operations plans for both scenarios are developed by COPA using both

centralized and a decentralized operations planning. This section illustrates the operations

100

plans developed by COPA in each of these situations. Additional information on the operations

plans, including the times that the UAVs should be at each task, is in Appendices C through G.

5.5.1 Improvement of Subset Allocation Methods

During the operational scenario analysis, it became apparent that there was a need to

improve the methods for the Subset Allocation step of COPA. In previous analysis, the UAVs

were deployed from identical starting locations. For this analysis, the methods described in

Section 4.2.2 produced subsets resulted in high value full path composites.

In the operational scenarios, COPA was able to develop operations plans using these

methods; however, it was apparent that the operations plans could be more valuable to the

user. The subset allocation was not taking into account the initial location of the UAVs.

Because of this, the subsets might contain tasks that are spatially distributed, making it difficult

for a UAV to perform many of the tasks. Therefore, new methods were developed to be able to

build higher valuable operations plans.

The new methods are based on the existing methods described in Section 4.2.2:

observation length subsets, time window subsets, and random subsets. The methods were

altered by adding an initializing step that takes into account the initial location of the UAV

types. The step first assigned tasks to subsets depending on the initial locations of the UAVs

type. The new method follows the following steps:

(1) Find the set of all initial locations for the UAVs; this is set I.

(2) Partition tasks into subsets based on distance from the initial locations in I. The set C,
is the set of tasks that is closest to an initial location i.

(3) Build subsets according to existing methods, within the subset of tasks Ci.

(4) Combine subsets that are for UAVs of the same type.

The new methods were incorporated into COPA for the following analysis. The value of the

resulting operations plans increased with the new methods in place.

5.5.2 Scenario I: Geographically Separated Units

In this scenario, two incident units are geographically separated. The units, Unit A and

Unit B, are working to contain the same fire, but are located on different sides of the perimeter

of the fire. This scenario is analyzed using both centralized and decentralized operations

planning.

The scenario begins with the generation of tasks by both Unit A and Unit B. These tasks

create separate test cases for the UAV planner problem. The tasks generated by the units are

shown in Figure 5.9. The figure illustrates that the task locations are geographically separated.

For this scenario, the locations at which the tasks can be performed at differ only in altitude.

Therefore, the illustration below is unable to show the separate locations, because it is two-

dimensional.

54 -

Unit A Task
52. . . Location

so50 Unit B Task

* Location
48 -

+ Command

46 - Station

44 -

42

40 -

Do

38 DODD

DO DOD 0

36 o o 0

3102 104 106 108 110 112 114 116 118 120 122

Figure 5.9 Scenario I Tasks

Coordination between the incident units might not result in a more valuable operations

plan, because the tasks are geographically separated and it is impractical for the UAVs to travel

between the sets of tasks. In fact, the best plans might be identical, because it is impractical for

the UAVs to travel between the tasks generated by the two units.

Each unit has a single UAV of Type 1 and two UAVs of Type 2, as described in Table 5.1.

For the decentralized operations planning, there were 36 composites generated for each unit, for

a total of 72. In the centralized operations planning, 72 composites were generated.

102

5.5.2.1 Decentralized Operations Planning to Scenario I

First, operations plans are developed using decentralized operations planning. COPA is

run individually for both Unit A's and Unit B's set of tasks. The command station is the

location from which the UAVs are controlled; in a decentralized scenario, each incident unit has

its own command station. This is not necessarily the location from which the UAVs are

dispatched, but the term is used to denote the place that controls the UAVs.

The COPA software is first used to create an operations plan for the UAVs under the

control of Unit A. Then, the software is used to create an operations plan for the UAVs under

the control of Unit B. The operations plans developed by COPA for Scenario I are shown in

Figure 5.10.

Figure 5.10 Decentralized Operations Plan for Scenario I

The value of the operations plan for Unit A was 986; the value of the operations plan for

Unit B was 766. Therefore, the total value of the operations plans for Scenario I using

decentralized operations planning was 1752.

103

54 *

52

50

48

46

44

42

40

38 2 0

36 0I I

3102 104 106 108 110 112 114 116 118 120 122

o Unit A Task
Location

Unit B Task
Location

Command
Station

, Path for UAV
from Unit A

Path for UAV
- from Unit B

5.5.2.2 Centralized Operations Planning for Scenario I

For centralized operations planning, the operations plans are developed at a central

command center; however, the UAVs are still dispatched from the location of the incident units.

To use COPA for centralized planning for Scenario I, the task data for both units was

input to the COPA software. The combined test case had 50 tasks and six UAVs. The results

from the centralized operations planning is shown in Figure 5.11. The operations plan had a

total value of 1770.

I '

Figure 5.11 Centralized Operations Plan for Scenario I

5.5.2.3 Comparison between Decentralized and Centralized Planning for Scenario I

As Figures 5.13 and 5.14 illustrate, the UAVs for Unit A and Unit B only performed the

tasks generated by their respective units for both decentralized and centralized operations

planning. While this was expected due to the distance between the tasks generated by the units,

it was not expected for the operations plans to differ. The centralized operations plan had a

104

o Task
Location

Command
Station

,,, Path for UAV
from Unit A

Path for UAV
from Unit B

48- D

0

00

110 112 114 116 118 120

higher value than the cumulative value of the decentralized operations plan, despite the fact

that it would be possible to produce the centralized operations plan through decentralized

planning.

The difference in the operations plans is a result of the Subset Allocation step of COPA.

If the same subsets were presented to COPA in both centralized and decentralized planning,

then the result would be identical. However, the methods used for subset allocation produced

differing subsets; specifically, for the subsets constructed using a random number generator.

The operations plans from both types of planning are similar. Both operations plans

include 23 of the 50 tasks in the test set. In both plans, 12 of the tasks are from Unit A with the

remaining 11 from Unit B. The values are fairly close: the cumulative value of the decentralized

operations plans is 1752 and the value of the centralized operations plan was 1770.

The paths in the operations plans may not seem efficient, because the paths cross each

other. As discussed in Section 5.4, this is an impact that time windows can have on operations

planning. While it may be more efficient to perform tasks in a different order that may cause

the performance of the tasks to no longer be valuable to the user. Example 5-1 illustrates how

this happens in the case of Unit B's operations plan.

Example 5-1. This example illustrates why the operations plans created by COPA include paths that

cross each other. Specifically looking at the operations plan for Unit B in Scenario I using centralized

operations planning, one of the paths crosses itself. The path is shown in Figure 5.12.

105

Task 46

48.5 -

4 02 103 164 105 106 107 108

o Task
Location

Command
Station

- Path for UAV

Figure 5.12 Example Path

The tasks completed by the UAV of Type 2 are, in order, Task 46, Task 42, and Task 15. The time

windows for these tasks force the tasks to be completed in this order. The following table provides the time

windows. The time windows are given in hours after the start time of the operations plan:

Task Number Early Time Window Late Time Window

46 1.08 3.84

42 6.24 8.25
15 9.36 9.59

Table 5.7 Example 5-1 Time Windows

A path that contains the tasks in the order (15, 46, 421 is more efficient than the current order, which is

{46, 42, 15). However, the time window for Task 46 ends at 3.84 hours after the start of the operations.

The time window for Task 15 does not begin until 9.59 hours after the start. Therefore, it is infeasible for

the tasks to be performed in the order {15, 46, 42).

5.5.3 Scenario II: Closely Stationed Units

In the second scenario, Unit A and Unit B are located close to each other and the task

locations are intermixed in the same area. The operations planning are done in the same way as

106

a a

0 0

0 0

in Scenario I. First, an operations plan is developed using decentralized planning. Then, an

operations plan is developed using centralized operations planning.

Before the operations planning, the units generate the tasks. For this scenario, Unit A

generated 25 of the tasks; Unit B generated the other 25. Each task can be performed at two

locations each. The task locations are shown in Figure 5.13; the locations for a given task differ

only in altitude. Unit A and Unit B each have three UAVs under their control for a total of six in

the scenario. They each have a single UAV of Type 1 and two UAVs of Type 2 as described in

Table 5.1.

43 -

o Unit A Task
42 - Location

41 * Unit B Task
* Location

40 0 0 0o +

S+ Command

39 - Station

S 0

38 * * 0

0 *0 0

37 0 * 0 0 *
* *

36 * *

35 0

34 +

3 1 I I I I I I I I
3

i 3 114 115 116 117 118 119 120 121

Figure 5.13 Scenario II Tasks

Both decentralized and centralized operations planning utilize COPA. For the

decentralized planning, there are 36 composites generated for each unit, for a total of 72

composites. For centralized planning, there are 72 total composites generated.

5.5.3.1 Decentralized Operations Planning for Scenario II

In the decentralized operations planning for Scenario II, COPA was first used on to

create an operations plan at the command center for Unit A. The tasks generated by Unit B

107

were unknown to the algorithm during the planning. An operations plan was then created at

the command center for Unit B.

The resulting operations plans are shown in Figure 5.14. The path plans are shown on

separate graphs to make them easier to read; however, they are showing the same area. (The

task locations are the same as in Figure 5.13.) As in Scenario I, the paths cross themselves due to

the time window constraints. The operations plan for Unit A has a value of 905, while the

operations plan for Unit B has a value of 907, for a total of 1812.

33 34 115 Ie Uni7 11 Path Pla20

Unit A Path Plan

114 115 116 117 118 11S 120 121

Unit B Path Plan

+ Command
Station

Task
Location

.... Path Plan for
UAV of Type I

Path Plan for
UA V of Type 2

Figure 5.14 Decentralized Operations Plan for Scenario II

5.5.3.2 Centralized Operations Planning for Scenario II

For the centralized operations planning for Scenario II, the tasks from both units were

input to the COPA software. A single run of the algorithm created an operations plan for the

UAVs in both Unit A and Unit B. The results of the centralized operations planning are shown

in Figure 5.15. The paths are shown on separate graphs to make them easier to read. The total

value of the operations plan is 1884.

108

43 43

S40-

p 40

39 o -

39

38 3

36
36 -0 0

35
36 ,

35

9 13 134 I15 11 1 116 11 120 111 313 114 115 11 d 11 119 120 121

Unit A Path Plan Unit B Path Plan

+ Command o Task Path Plan for Path Plan for
Station Location UAV of Type 1 UA V of Type 2

Figure 5.15 Centralized Operations Plan for Scenario II

5.5.3.3 Comparison between Decentralized and Centralized Planning for Scenario II

For Scenario II, the centralized operations plan is more valuable for the user. The value

of the plan is 1884, while the total value of the decentralized operation plans is 1812, where the

plan for Unit A's UAVs has a value of 905 and the plan for Unit B's UAVs has a value of 907.

In addition, more tasks were included in the centralized operations plan. In the

decentralized operations plans, Unit A completed nine of its tasks and Unit B completed 12 of

its tasks; therefore, a total of 21 tasks were included in the operations plan. In the centralized

operations plan, 24 tasks were included, for a gain of 3 tasks.

The centralized planning resulted in a higher value of operations, because the UAVs are

given the freedom to perform tasks for the other unit. In this scenario, UAVs from Unit A

performed three of the tasks generated by Unit B. UAVs from Unit B performed seven of the

tasks generated by Unit A.

For both centralized and decentralized operations planning, COPA developed valuable

operations plans to the user. This illustrates that the algorithm can be used in either way to

assist in planning for UAV operations.

109

THIS PAGE INTENTIONALLY LEFT BLANK

110

Chapter 6

Conclusions and Future Work

The purpose of this chapter is to summarize the work presented in this thesis. The

chapter first presents the contributions made through this thesis, including the methods and

implementations developed to solve the UAV Planner Problem. The next section proposes

possible modifications to the Composite Operations Planning Algorithm (COPA) and presents

future research areas for the UAV Planner Problem. The end of the chapter summarizes the

conclusions of this thesis.

6.1 Summary of Contributions

The purpose of this research is to develop an algorithm capable of solving the UAV

Planner Problem that could be implemented for operational use. This thesis demonstrates the

COPA's ability to solve the UAV Planner Problem. The contributions of this thesis are

summarized in the following paragraphs.

Formulation and implementation of the Mixed-Integer Programming Model

for the UAV Planner Problem. Chapter 3 presents an MIP formulation that can

provide an exact solution to the UAV Planner Problem. The MIP was

implemented using OPL's ILOG Studio 5.5 and the CPLEX 11.0 solver.

* Formulation and implementation of the Composite Operations Planning

Algorithm (COPA). COPA uses a metaheuristic in combination with a

composite linear program to solve the UAV Planner Problem quickly. COPA is

implemented in Java to create a software package that solves the UAV Planner

Problem; this implementation is the COPA software. It is shown that the

software can develop an operations plan for an instance of the UAV Planner

Problem containing 15 heterogeneous UAVs and 500 tasks that can be performed

at 10 locations each in less than 25 minutes.

* Testing and comparison of MIP and COPA. Chapter 5 presents the testing and

comparison of the MIP and COPA, illustrating the strengths and weaknesses of

each method. The MIP is able to provide an optimized operations plan for the

UAV Planner Problem. However, instances with more than 15 tasks that could

be performed at two locations each are intractable for the MIP. COPA provides

operations plans that are valuable to the user, but might not find the most

valuable solution. The runtimes for COPA are significantly shorter than the

runtimes for the MIP implementation. COPA was able to provide operations

plans for all instances of the UAV Planner Problem that were presented to the

algorithm.

* Operational scenarios to depict the use of COPA in operations planning. Two

scenarios are used to illustrate the use of COPA to fight wildfires. The scenario

illustrates the use of the algorithm using both centralized and decentralized

planning.

* Recommendations for modifications to COPA. The next section of this chapter

proposes modifications to COPA that make it more likely to be able to execute

operations plans developed by the algorithm.

6.2 Possible Modifications within Current Framework

While COPA incorporates the constraints of the UAV Planner Problem into the

algorithm, there are additional operational constraints that could be incorporated. Adding

these constraints to the algorithm would increase the capabilities of COPA in developing

112

operations plans that are useful in an operational setting. Subsections 6.2.1 through 6.2.3

discuss possible modifications to COPA.

6.2.1 Incorporation of Weather Data

One of the concerns when planning UAV operations is the impact that weather will have

on the observations. The presence of clouds, fog, or precipitation beneath the altitude from

which an image is taken can make the image worthless to the user; the image will contain only

the weather and not the desired location on the ground. Therefore, incorporating weather in to

COPA can increase the affectivity of the operations plans created by the algorithm.

Although other weather data might be available, this section will focus on proposals to

include the probability of cloud cover in the to the operations planning. The methods described

for incorporating this data assume that the data is readily available to the algorithm.

One method to incorporate the probability of cloud cover in COPA is to use the data

when deciding which composites to include in the operations plan. This can be done by

altering the objective function of the FPCVF to balance the value of the composite with the

probability of cloud cover. First, the probability that the tasks in the composite path will not be

affected by cloud cover can be found by multiplying together the probabilities that each of the

tasks included in the composite path will not be affected by cloud cover. Using p',k to represent

the probability of cloud cover for task i at location k and the set C to denote the set of task,

location pairs in the composite path, the equation is:

P(composite not affected by cloud cover) = wc = [(1- Pi,k) (6.1)
(i,k)EC

The probability that cloud cover will not affect the composite is denoted by co. Recall the

notation in Section 4; y is a binary decision variable representing the decision to include

composite c in the operations plan and v, denotes the value of composite c. The new objective

function is:

Maximize eCVYC (6.2)
c EC

113

By multiplying the value of the composite by the probability that the composite will not be

affected by weather, the composite value is scaled by this probability. Therefore, the

composites with a high probability of cloud cover become less valuable. In this way, the

objective function attempts to balance value and weather concerns.

A second method to include the probability of cloud cover in COPA would be to

discount the value of tasks based on the probability that the task will not be affected by cloud

cover before building the initial routes. For example, the value of a task could be replaced by

the value of the task multiplied by one minus the probability of cloud cover, similar to the

method above. In this method, the value of the tasks will be discounted throughout the

algorithm.

There are other methods for incorporating more detailed weather information into

COPA that would help create improved operations plans. Further research in this area would

assist future UAV operations.

6.2.2 Trajectory Planning Capabilities

The current operations plans created by the COPA software do not include high fidelity

trajectories between the tasks. Instead, the UAVs follow a straight-line trajectory between the

task locations. Assuming the capability to create trajectories from other software, COPA can

incorporate the trajectories into the operations planning. Because COPA relies on travel time to

determine the operations plans, the travel time of an exact trajectory can replace the current

travel times. The algorithm could then continue to build operations plans with the new matrix

of travel times.

After the algorithm has produced an operations plan, the trajectories can be placed

between the task locations to create exact trajectories for the UAVs.

6.2.3 Entrance and Exit Locations for Tasks

An entrance location is defined as the location where the UAV starts to perform a task.

The exit location is the location where the UAV is at the conclusion of the task. Including

entrance and exit locations for each task provides two additional capabilities.

First, it allows the operator to define partial paths to be included in the full path. For

example, the operator could input that he or she would like tasks {1, 2, 3} to be performed in

that order. In this case, tasks {1, 2, 3} would be treated as a single task with the entrance

114

location at the location of Task 1 and the exit location at the location of Task 3. The observation

length is the total time for the partial path.

Second, allowing the entrance and exit locations to differ would allow for the UAV to

travel during the area tasks and exit at a separate location. This would improve the efficiency of

the operations plans because the UAV could leave from the location in the area task that is

closest to the next location in the path.

The entrance and exit locations for each task location could be incorporated into the

Composite Generating step of COPA. When the paths are built, the algorithm uses the entrance

location as the location that the UAV must reach to begin the task. The algorithm will use the

exit location as the location where the UAV will travel from to the next path. It is assumed that

the travel time between the entrance and exit locations are included in the observation time for

the task.

6.3 Future Work

Future work will continue to increase the capability and effectiveness of operations

planning for UAVs. In addition to the modifications proposed in the previous section, there

are additional capabilities that would be beneficial to the operations planning process.

Two useful capabilities to consider are: (1) Synchronize UAVs to monitor an area or take

an image of an area at the same time, and (2) Include heading information in the operations

planning. Synchronization of UAVs at a particular task location can be beneficial to researchers

and other users. The UAVs obtain aerial images of the same location at high and low

resolutions and with different fields of view. Heading information is useful, because certain sun

angles might cause images to become worthless to the user. By monitoring the heading and sun

angle, we can increase the probability that a UAV collects high value data.

Additional future work could investigate alternative methods for solving the UAV

Planner Problem. For example, the MIP formulation was solved using a branch-and-bound

optimization method; however, another method might be able to solve the MIP in a shorter

amount of time, such as approximate dynamic programming.

Alternatively, other heuristic methods could be used for the metaheuristic in COPA.

Methods such as tabu search or simulated annealing could be used to build the full path

composites needed for COPA. These methods might generate better composites for the

algorithm, or the method might generate composites in a shorter runtime.

115

Another area of research includes applying the operations planning methods presented

in this thesis to other applications. UAVs are currently being used for a wide variety of

purposes: military, local law enforcement, and other surveillance operations. COPA could be

used for the operations planning for the UAVs in these situations.

6.4 Conclusions

In summary, this work formulates the UAV Planner Problem for the purpose of creating

operations plans for a set of UAVs to monitor Earth's phenomena. A mixed-integer program

for the problem is formulated and implemented. In addition, an algorithm called COPA is

presented for the operations planning for UAVs. COPA is implemented to create the COPA

software. Through testing and analysis, it is shown that COPA can generate operations plans

for instances of the UAV Planner Problem with up to 500 tasks that can be performed at 10

locations each.

We conclude that COPA is a viable algorithm for generating operations plans for UAVs.

The algorithm provides operations plans that adhere to the constraints of the UAV Planner

Problem. It allows for the input of a human operator in creating the plans. In addition, the

algorithm provides a construct can be modified to include new capabilities, and will hopefully

assist in future research on UAV operations planning.

116

APPENDIX A

GLOSSARY OF ACRONYMS

3PAA Three Phase Approximate Algorithm

COPA Composite Operations Planning Algorithm

EPOS Earth Phenomena Observation System

ESTO Earth Science Technology Office

FPCVBF Full Path Composite Variable Binary Formulation

FPCVF Full Path Composite Variable Formulation

LP Linear Program

NASA National Aeronautics and Space Administration

SBS Space Based Sensor

UAV Unmanned Aerial Vehicle

USFS United States Forest Service

USV Unmanned Surface Vehicle

USVOPP USV Observation-Planning Problem

Computer Software Acronyms

CPLEX Optimization software produced by ILOG

ILOG Company owned by IBM which creates optimization software

JDK Java Development Kit

OPL Application created by OPL that uses CPLEX optimization software

117

THIS PAGE INTENTIONALLY LEFT BLANK

118

APPENDIX B

COPA AND MIP COMPARISON TABLE

* = approximate; computer ran out of memory in fmding solution
= time until solution was found--not able to prove, ran for atleast one more hour before terminatmg

= Algorithm solution greater than MIP solution

119

Size of Problem Alg. Alg. Lowest LP LP
(Tasks, Alg. Solution Alg. Solution Alg. Solution Alg. MIP MIP Optimality Relaxation Relaxation

Locations) (24 Comps) Runtime (s) (48 Comps) Runtime (s) (72 Comps) Runtime (s) Solution Runtime (s) Gap Opt Value Run Time
(5,2) 245 081 255 1.17 255 1.376 295 2.93 13.56% 295 0.26

(5,2) 161 0 734 161 0.817 161 0.938 161 20 53 0% 201 0.25

(5,2) 274 0 613 275 0.526 275 0.848 281 7.42 214% 281 025

(5,2) 279 0.617 279 0.679 279 0.99 279 16.28 0% 344 0.25

(10,2) 543 0 357 543 098 543 0.913 555 3625 1.30% 670.25 1 5

(10,2) 660 0.348 660 0832 664 0.939 739 2640.53 10 15% 756 1.5

(10,2) 634 0.398 696 0.456 6% 049 696 6081 0% 764 1.32

(10,2) 432 0.323 434 0 563 434 0 866 466 2732.16 6 87% 558 1.81

(15,2) 851 082 888 1 099 888 1 163 959 7881 61" 2.10% 1007 28.53

(15,2) 884 0.825 884 0941 884 1 088 884 1178.4** 0% 960 15:54.8

(15,2) 920 0.414 960 0.626 960 0.764 992 19866.41" 3.23% 1054 26.40 0

(15,2) 959 0439 959 0.772 959 1.23 974 220.65 1.54% 1031 21:32.8

(20,2) 1207 0.764 1247 0748 1265 0989 703 4084.25" ** 1382 3.59.37.29

(20,2) 1102 0.457 1102 0.736 1102 1.537 784 2912.10** * 1280 53.28

(20,2) 1138 0543 1171 1.095 1190 1.211 1127 40092.43" ** 1330 11.13.04.44

(20,2) 1122 048 1125 0.757 1139 1.087 766 21816.79" ** 1240 35.53

THIS PAGE INTENTIONALLY LEFT BLANK

120

APPENDIX C

SCENARIO I: DECENTRALIZED OPERATIONS PLAN FOR UNIT A

*** COMPOSITE NO. 19
UAV Number: 1

Location Start Time End Time
Start Location 0 0
(14,2) 2.1363 3.7663
(20,1) 5.41 5.84
(3,1) 7.0331 8.0031
(9,1) 10.43 10.84

*** COMPOSITE NO. 21
UAV Number: 3

Location Start Time End Time
Start Location 0 1.8735
(15,2) 2.78 4.48
(24,2) 5.5574 6.9974
(1,2) 7.6573 7.8573
(27,2) 9.23 9.35
(2,1) 11.51 11.83

*** COMPOSITE NO. 35
UAV Number: 2

Location Start Time End Time
Start Location 0 4.3404
(7,1) 5.63 5.69
(12,1) 6.2888 9.1188
(26,2) 10.81 10.92

121

THIS PAGE INTENTIONALLY LEFT BLANK

122

APPENDIX D

SCENARIO I: DECENTRALIZED OPERATIONS PLAN FOR UNIT B

*** COMPOSITE NO. 1
UAV Number: 1

Location Start Time End Time
Start Location 0 0.1644
(16,1) 1.43 4.96
(19,2) 6.24 7.95
(20,1) 9.136 10.636

*** COMPOSITE NO. 18
UAV Number: 3

Location Start Time
Start Location 0
(5,1) 1.0667
(1,2) 3.32
(17,2)
(18,1)
(2,2)

6.99
8.65

9.3

End Time
0
1.6467

3.69
7.34
8.66

9.59

*** COMPOSITE NO. 23
UAV Number: 2

Location Start Time End Time
Start Location 0 1.2562
(7,2) 2.37 2.45
(13,2) 5.1
(8,1) 10.64

6.92
10.67

123

THIS PAGE INTENTIONALLY LEFT BLANK

124

APPENDIX E

SCENARIO I: CENTRALIZED OPERATIONS PLAN

Unit B

*** COMPOSITE NO. 67
UAV Number: 1

Location
Start Locatio
(44,2)
(5,1)
(35,2)
(2,2)

Start Time End Time
n 0 2.7686

4.76 6.2
7.02 7.3

1
8.7042
1.51

8.8642
11.83

*** COMPOSITE NO. 56
UAV Number: 2

Location Start Time End Time
Start Location 0 1.8735
(20,2) 2.78 4.48
(16,1) 4.7533 7.5833
(49,2) 9.23 9.35
(48,2) 10.81 10.92

*** COMPOSITE NO. 52
UAV Number: 4

Location Start Time
Start Location 0
(19,1) 2.3198
(32,2) 4.4784
(39,2) 7.2296
(23,1) 10.64

*** COMPOSITE NO. 47
UAV Number: 5

Location Start Time
Start Location 0
(22,2) 2.37
(13,1) 2.9
(40,1) 8.65
(10,2) 9.3

End Time
0

2.8998
5.9784
7.5796

10.67

End Time
1.2562

2.45
6.23
8.66

9.59

*** COMPOSITE NO. 60
*** COMPOSITE NO. 9 UAV Number: 6
UAV Number: 3

Location Start Time End Time
Start Location 0
(18,2) 2.1363
(1,2) 4.1683
(9,2) 5.41
(4,1) 7.0331
(11,1) 10.43

0
3.7663

4.3683
5.84

8.0031
10.84

Location Start Time
Start Location

(46,2)
(42,2)
(15,1)

3.84
6.2625
9.36

End Time
0 2.3844

5.34
7.9725

9.38

125

Unit A

THIS PAGE INTENTIONALLY LEFT BLANK

126

APPENDIX F

SCENARIO II: DECENTRALIZED OPERATIONS PLAN FOR UNIT A

*** COMPOSITE NO. 2
UAV Type: 2

Location Start Time EndTime
Start Location 0 8.8842
(5,1) 10.78 10.79

**** COMPOSITE NO. 7
UAV Type: 1

Location Start Time
Start Location 0
(15,2) 4.86
(19,1) 6.67
(1,2) 8.4432
(12,2) 11.32

EndTime
3.2429

5.53
7.45
9.2932
11.73

*** COMPOSITE NO. 12
UAV Type: 3

Location Start Time EndTime
Start Location 0 1.4264
(6,2) 4.32 4.53
(20,1) 5.0346 5.2046
(7,2) 7.1381 7.5281
(13,2) 8.82 9.23
(3,1) 10.33 10.35

127

THIS PAGE INTENTIONALLY LEFT BLANK

128

APPENDIX G

SCENARIO II: DECENTRALIZED OPERATIONS PLAN FOR UNIT B

*** COMPOSITE NO. 24
UAV Type: 3

Location Start Time
Start Location 0
(3,2) 1.71
(1,1) 2.7887
(17,2) 4.0289
(10,2) 6.0956
(5,1) 9.61
(8,2) 11.86

EndTime
0.2029

1.87
2.9287
4.9689
7.4056

9.95
11.94

*** COMPOSITE NO. 31
UAV Type: 1

Location Start Time End Time
Start Location 0 0
(21,1) 1.213 1.843
(9,1)
(15,2)

7
11.75

9.36
11.85

*** COMPOSITE NO. 32
UAV Type: 2

Location Start Time
Start Location 0
(11,2) 3.23
(7,2) 7.51
(16,2) 11.45

End Time
2.0098

6.32
8

11.47

129

THIS PAGE INTENTIONALLY LEFT BLANK

130

APPENDIX H

SCENARIO II: CENTRALIZED OPERATIONS PLAN

Unit B

*** COMPOSITE NO. 13
UAV Type: 1

Location Start Time
Start Location 0
(6,2) 4.32
(19,1) 6.67
(10,1) 8.2036
(41,2) 11.45

*** COMPOSITE NO. 8
UAV Type: 2

*** COMPOSITE NO. 58
UAV Type: 4

End Time
1.4264

4.53
7.45

9.3436
11.47

Location Start Time End Time
Start Location 0
(15,2) 4.86
(9,1) 7.57
(49,2)
(40,2)

13.0311
13.8981

1.3224
5.53

7.94
13.1311
13.9981

*** COMPOSITE NO. 3
UAV Type: 3

Location
Start Locatio
(46,1)
(20,1)
(34,1)
(13,2)

Start Time
n 0

1.213
4.76
7
10.5758

*** COMPOSITE NO. 53
UAV Type: 5

Location Start Time
Start Location 0
(28,2) 1.71
(26,1) 2.7887
(4,2) 4.6504
(35,2) 7.526
(3,1) 10.5019

*** COMPOSITE NO. 54
UAV Type: 6

End Time
0
1.843

4.93
9.36

10.9858

End Time
0.2029

1.87
2.9287

5.9704
8.836
10.5219

Location Start Time EndTime Location Start Time End Time
Start Location 0
(5,1) 10.78

8.8842
10.78

Start Location 0
(25,1) 2.17
(7,2) 6.74
(23,2) 9.0264
(27,2) 9.4643
(30,1) 10.3031
(33,2) 11.86

0.4491
4.64

7.13
9.1364
9.6543
10.6431

11.94

131

Unit A

THIS PAGE INTENTIONALLY LEFT BLANK

132

REFERENCES

[1] Applegate, D., Bixby, R. E., Chvatal, V., and Cook, W. J., The Traveling Salesman Problem:
A Computational Study, Princeton University Press, Princeton, NJ, 2006.

[2] Armacost, A., "Composite Variables Formulations for Express Shipment Service
Network Design," PhD Thesis in Operations Research, Massachusetts Institute of
Technology, Cambridge, MA, 2000.

[3] Armacost, A., Barnhart, C., and Ware, K., "Composite Variable Formulations for Express
Shipment Service Network Design," Transportation Science 26, 2002.

[4] Baker, E. "An Exact Algorithm for the Time Constrained Traveling Salesman Problem,"
Operations Research 31(5), 938-945, 1983.

[5] Balas, E., "The Prize Collecting Traveling Salesman Problem," Networks 19, 621-636,
1989.

[6] Barth, C., "Composite Variable Formulation for Real-Time Mission Planning," Masters
Thesis in Operations Research, Massachusetts Institute of Technology, Cambridge, MA,
2001.

[7] Bellman, R., "Dynamic Programming Treatment of the Traveling Salesman Problem,"
Journal of the Association for Computer Machinery 9(1), 61-63, 1962.

[8] Bellmore, M., and Hong, S., "Transformation of Multisalesmen Problem to the
Standard Traveling Salesman Problem," Journal of the Association for Computer Machinery
21, 500-504, 1974

[9] Bertsimas, D., and Tsitsiklis, J. N., Introduction to Linear Optimization, Athena Scientific,
Belmont, MA, 1997.

[10] Blum, A, et al., "Approximation Algorithms for Orienteering and Discounted Reward
TSP," Society for Industrial and Applied Mathematics Journal of Computing 37, 653-670, 2007.

[11] Boussier, S., Feillet, D., and Gendreau, M., "An Exact Algorithm for Team Orienteering
Problems," A Quarterly Journal of Operations Research 5(3), 211-230, 2006.

[12] Chao, I., Golden, B, and Wasil, E, "A Fast and Effective Heuristic for the Orienteering
Problem," European Journal of Operational Research 88, 475-489, 1996.

[13] Cohn, A., and Barnhart, C., "Improving Scheduling by Incorporating Key Maintenance
Routing Decisions," Operations Research 51(3), 387-396, 2003.

[14] Cortez, P. and Morais, A., "A Data Mining Approach to Predict Forest Fire using
Meteorological Data," Portuguese Association for Artificial Intelligence, 2007.

133

[15] Croes, G., "A Method for Solving Traveling-Salesman Problems," Operations Research
6(6), 791-812, 1958.

[16] Dantzig, G., Fulkerson, R., and Johnson, S., "Solution of a Large-Scale Traveling-
Salesman Problem," Operations Research 2(4), 393-410, 1954.

[17] Delin, K. A., and Jackson, S. P., "A Sensor Web: A New Instrument Concept," SPIE's
Symposium on Integrated Optics, 2001.

[18] Feillet, D., Dejax, P., and Gendreau, M., "Traveling Salesman Problem with Profits,"
Transportation Science 39(2), 188-205, 2005.

[19] Flood, M., "The Traveling Salesman Problem," Operations Research 4(1), 61-75, 1956.

[20] Gendreau, M., Hertz, A., Laporte, G., and Stan, M., "A Generalized Insertion Heuristic
for the Traveling Salesman Problem with Time Windows," Operations Research 46(3),
330-335, 1998.

[21] Geomens, M. X., and Williamson, D. P., "A General Approximation Technique for
Constrained Forest Problems," Society for Industrial and Applied Mathematics Journal of
Computing 24(2), 296-317, 1992.

[22] Gillett, B. E., and Miller, L. R., "A Heuristic Algorithm for the Vehicle-Dispatching
Problem," Operations Research 22(2), 340-349, 1974.

[23] Golden, B. L., Levy, L., and Vohra, R., "The Orienteering Problem," Naval Research
Logistics 37, 307-318, 1987.

[24] Golden, B., Wang, Q., Liu, L., "A Multifaceted Heuristic for the Orienteering Problem,"
Naval Research Logistics 35 (3), 359-366, 1988.

[25] Hillier, F. S. and Lieberman, G. J., Introduction to Operations Research, McGraw-Hill
Professional, 2004.

[26] Kantor, M.G. and Rosenwein, M. B., "The Orienteering Problem with Time Windows,"
The Journal of the Operational Research Society 43(6), 629-635, 1992.

[27] Laporte, G., "The Traveling Salesman Problem: Overview of Algorithms," European
Journal of Operational Research 59(2), 231-247, 1992.

[28] Laporte, G. and Martello, S., "The Selective Traveling Salesman Problem," Discrete
Applied Mathematics 26, 193-207, 1990.

[29] Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A., and Shmoys, D. B., The Traveling Salesman
Problem: A Guided Tour of Combinatorial Optimization, John Wiley and Sons, Inc, New
York, 1985.

134

[30] Miller, J. V., "Large-Scale Dynamic Observation Planning for Unmanned Surface
Vessels," Masters Thesis, Massachusetts Institute of Technology, 2007.

[31] "NASA and Forest Service Partner on California Wildfires," USDA Forest Service News
Release, 17 August 2007, <www.fs.fed.us/r5/ news/2007/nasa-fs.shtml>.

[32] "NASA Images of Wildfires," NASA/U.S. Forest Service, 5 November 2007,
<http://www.nasa.gov/vision/earth/lookingatearth/socal wildfires_oct07.html>.

[33] Nielsen, C., "Large-Scale Network Design using Composite Variables: An Application
for Air Mobility Command's 30-day Channel Route Network," Masters Thesis in
Operations Research, Massachusetts Institute of Technology, Cambridge, MA, 2002.

[34] Ramesh, R. and Brown, K. M., "An Efficient Four-Phase Heuristic for the Generalized
Orienteering Problem," Computers and Operations Research 18, 151-165, 1991.

[35] Ramesh, R., Yoon, Y., and Karwan, M. H., "An Optimal Algorithm for the Orienteering
Tour Problem," ORSA Journal on Computing 4, 1992.

[36] Righini, G. and Salani, M., "Decremental State Space Relaxation Strategies and
Initialization Heuristics for Solving the Orienteering Problem with Time Windows with
Dynamic Programming," Computers and Operations Research 36, 1191-1203, 2009.

[37] Ropke, S., Cordeau, J., and Laporte, G.. "Models and Branch-and-Cut Algorithms for
Pickup and Delivery Problem with Time Windows," Networks 49(4), 258-272, 2007.

[38] Rosenkrantz, D., Stearns, R., and Lewis, P., "An Analysis of Several Heuristics for the
Traveling Salesman Problem," Society of Industrial and Applied Mathematics Journal of
Computing 6(3), 563-581, 1977.

[39] Russell, R. A., "M-Tour Traveling Salesman Problem," Operations Research 25, 517-524,
1977.

[40] "Sensor Web Dynamic Replanning," NASA ESTO AIST-05 Year I Annual Review,
September 5, 2007.

[41] Talabec, S. J., "Sensor Webs: An Emerging Concept for Future NASA Systems," An
Information Systems Center Technology and Assessment Seminar, 16 May 2002, Powerpoint
Slideshow, 16.

[42] Tsiligrides, T. "Heuristic Methods Applied to Orienteering." Journal of the Operational
Research Society 35, 797-809, 1984.

[43] Vansttenwegen, P., Souffriau, W., Vanden Berghe, G., and van Oudheusen, D., "A
Guided Local Search Heuristic for the Team Orienteering Problem," European Journal of
Operational Research 196, 118-127, 2009.

135

