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ABSTRACT

After reviewing prevalent approaches to the modeling pandemic influenza transmission,
we present a simple distributional model that captures the most significant population
attributes that alter the dynamics of the outbreak. We describe how diversities in activity,
susceptibility and infectivity can drive or dampen the spread of infection. We expand the
model to show infection spread between several linked heterogeneous communities; this
multi-community model is based on analytical calculations and Monte Carlo simulations.

Focusing on mitigation strategies for a global pandemic influenza, we use our
mathematical models to evaluate the implementation and timing of non-pharmaceutical
intervention strategies such as travel restrictions, social distancing and improved hygiene.
In addition, as we witnessed with the SARS outbreak in 2003, human behavior is likely
to change during the course of a pandemic. We propose several different novel
approaches to incorporating reactive social distancing and hygiene improvement and its
impact on the epidemic curve. Our results indicate that while a flu pandemic could be
devastating; there are non-pharmaceutical coping methods that when implemented
quickly and correctly can significantly mitigate the severity of a global outbreak.

We conclude with a discussion of the implications of the modeling work in the context of
university planning for a pandemic.
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CHAPTER 1:

WHY WORRY ABOUT PANDEMIC FLU?

"Pandemic influenza is like hurricanes, tsunamis,
and earthquakes: It will happen. "

- Michael Osterhold'

An outbreak of pandemic influenza has the potential to be more disastrous than a

nuclear exchange between two warring nations. Historical examples, such as the 1918-19

flu which killed over 40 million people, have demonstrated how catastrophic the flu can

be. Influenza pandemics have occurred intermittently over centuries, and experts agree

that the next pandemic is only a matter of time. While medical advances over the past

century have been significant, we still don't have a simple cure for the flu, and if a new

flu virus emerges, it can spread quickly throughout the world causing a pandemic. Such a

disaster would not only place extraordinary and sustained demands on the public health

and medical care systems, but would also burden the providers of essential services and

strain the operations of all businesses. The federal government forecasts that up to 40%

of the US population may be absent from their daily routines for extended periods as a

result of illness or care-giving responsibilities (IPNSPI, 2006). High rates of worker

absenteeism could in turn affect critical infrastructure, including the operations of water

Center for Infectious Disease Research and Policy, University of Minnesota.



treatment facilities and power plants, while efforts to slow the spread of disease could

limit the availability of food. A pandemic would impact all sectors of society.

The US National Intelligence Council's 2020 Project "Mapping the Global

Future" identified a flu pandemic as the single most important threat to the global

economy (Karesh, 2005). A report from the Lowy Institute for International Policy

concluded that even a very mild pandemic, like the 1968-1969 version, would result in a

global economic loss of $330 billion and a human loss of 1.4 million people (McKibbin,

2006). A catastrophically severe 1918 version is forecasted to wipe out $4.4 trillion of

global economic output and kill more than 140 million people (McKibbin, 2006).

The potential magnitude of this disaster requires advance planning, early

preparedness and rapid action triggered by the detection of a new, easily transmissible

and lethal virus. During the past few years policymakers have begun to realize the

severity of this threat, and preparedness plans have started to develop across many layers

of government. The US Department of Health and Human Services issued guidelines in

November 2005, but left it to the states to produce specific plans, indicating that states

should not rely on the federal government for much help during a pandemic. States have

released versions of their pandemic plans, but most states do not include personal

contact-avoidance or other more non-pharmacologic containment steps (Holmberg,

2006). One authority was even quoted saying that "short of obtaining [antiviral] drugs,

there is not much we can do to prepare" for a pandemic (Weaver, 2005). To explain this

omission, policymakers point to the lack of epidemiologic data proving the effectiveness

of non-pharmaceutical interventions. However, evidence from the SARS outbreak



indicate that improved hygiene, use of masks and other behavioral changes decreased the

spread of respiratory disease by 90% (Lo, 2005)!

There are many questions that policy makers and public health officials have been

trying to answer regarding the effectiveness, timing and drawbacks of various medical

and non-pharmaceutical interventions. Decision makers have been trying to gain insight

into the future to try and forecast how a pandemic would spread through the global

population as well as within countries, regions, cities or even individual families. Their

goals include determining which interventions are best suited for which types of

scenarios. The timing and magnitude of the control measures are also important. Policy

makers have been trying to address all of these issues. It is unethical to run experiments

of pandemic flu transmission, thus developing mathematical models is the best approach

to analyzing and playing through pandemic what-if scenarios. Mathematical models

provide us with a systematic method of detecting the important transmission changing

factors, testing various control strategies and considering the likelihood of various

outcomes.

In this thesis we will model the spread of influenza through a population and

incorporate various interventions and behavioral changes to evaluate and analyze their

impact. As a result we hope to provide decision makers with a systematic approach to

evaluating and comparing the effectiveness of various government imposed containment

strategies and voluntary behavioral changes. In addition, we will also present actionable

insights from our models that have significant relevance for decision makers.

In this chapter, we will discuss the biology of influenza, talk about the

transmission of the virus and its epidemiological properties as well as possible mitigation



strategies. In addition, we will discuss past pandemics and what could happen in the

future if H5N 1, or another influenza virus strain, mutates and initiates the next pandemic.

We will also present motivation for our research of pandemic flu as well as provide some

background information that will help explain the logic of our modeling approaches.

1.1 A Little Biology

There are three distinct types of influenza virus that have been identified A, B,

and C. These three antigenically distinct RNA viruses comprise the Orthomyxoviridae

family. Flu types A and B are responsible for epidemics associated with increased

hospitalization and death rates. Type B, which mutates at a slower rate than Type A, is

found only in humans and seals. Consequently, a degree of immunity to Type B is

maintained by a portion of the population. Because of this slower rate of antigenic change

as well as limited host range, type B influenza never results in a pandemic (Zambon,

1999). Influenza type C usually manifests itself in a very mild illness, or is completely

asymptomatic and has not caused widespread outbreaks. Types B and C do not present a

large magnitude of public health concern, thus we will focus on type A.

Influenza virus A can be further divided into subtypes based on differences in two

surface proteins called hemagglutinin (H) and neuraminidase (N). Hemagglutinin,

making up approximately 80% of the surface proteins, functions in the attachment of the

virus to a host cell. The remaining 20%, the neuraminidase, is thought to facilitate the



spread of the progeny virus2. Antivirals function by blocking either the hemagglutinin or

the neuraminidase to prevent the multiplication of the virus in the host. Both H and N are

antigens to which the human body can raise antibodies. There are 16 known H and nine

known N subtypes that, through various combinations, make up all the subtypes of

influenza A. Table 1.1 gives examples of some of the most prevalent subtypes of

influenza A.

As virus cells replicate, various mutations of the surface antigens occur as a

response to host immunity; this is termed "antigenic drift". These types of gradual

mutations result in seasonal flu outbreaks, but do not lead to pandemics since partial

immunity remains in the population. In order to deal with this gradual evolution of the

virus the World Health Organization (WHO) selects and reformulates the strains of the

flu virus into the annual influenza vaccine. Influenza A virus also experiences another

more worrisome type of mutation called "antigenic shift". Antigenic shift is a

reassortment of gene segments, and it can occur when two or more different subtypes of

influenza A infect the same cell. For example, if an avian H5N1 virus and human H3N2

virus co-infect a cell, a new 'H5N2' could emerge (Webster, 2004). This new strain could

have the high virulence and case fatality rate of H5N1 and the efficiency of human-to-

human transmission of seasonal flu (CDC). The unusually broad range of hosts

susceptible to influenza A, especially birds, pigs and humans, appears to increase the

likelihood of this event. Notably, in some parts of the world, humans live in close

proximity to both swine and fowl, so antigenic shift is even more likely to effect the

human population. It is not possible to predict the antigenic shift mutations, thus no

2 Neuraminidase is the target for antiviral therapy referred to as neuraminidase inhibitors. Antivirals such as
Zanamavir and Oseltamavir block neuraminidase so that the release of new virus particles is inhibited and
their spread is thwarted.



vaccines can be produced for these emerging strains ahead of time. This emergence of a

new and unpredictable strain to which humans have no immunity or effective vaccine,

can cause a global pandemic in a very short amount of time.

Subtype Name/Location Time Period Cases/Deaths

HIN Spanish Flu, global 1918 - 1919 50 - 100 million deaths
Endemic in humans Annual Seasonal

HJN2 Endemic in humans Annual Seasonal

Asian Flu, global 1957 - 1958 1 - 4 million deaths
H2N2

Russian Flu3, global 1889- 1890 - 1 million deaths

Hong Kong Flu, global 1968 - 1969 - 1 million deaths
H3N2

Endemic in humans Annual Seasonal

(CDC). The5N1 Avian Flu, Asia-Turkey 2003 -2009 405 cases, 254 deaths

H7N2 North America, UK 2002pandem2003ic 2007 6 cases

H7N3 Canada 2004 2 cases

H7N7 Netherlands 2003 89 cases, 1 death

H9N2 Hong Kong 1999,2003,2007 4 cases

HJON7 Egypt 2004 2 cases

Table 1.1

A non-exhaustive list of Influenza A subtypes that have infected the human population

(CDC). The strains currently endemic in humans are included in the seasonal flu vaccine.
The highlighted subtypes are all potential strains for a future pandemic.

Currently, the most discussed pandemic threat is caused by the H5N1995). strain,

which is also referred to as the "Avian Flu". This virus has infected birds in over 35

countries and has resulted in the deaths, through illness and culling, of over 200 million

birds across Asia. Various control measures have been attempted, but the virus persists

and is endemic in Southeast Asia where it is primarily found in long-range migratory

birds and is unlikely to be eradicated soon. The H5Nl virus has been reported to have

3 The evidence that H2N2 caused the 1889-1890 outbreak is not conclusive, but suspected based on studies

in the Netherlands (Smith, 1995).
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infected 405 people in 15 countries, resulting in 254 deaths (WHO, 2009). Fortunately at

this time, this subtype has not shown an ability to transmit efficiently between humans;

for more information on H5N1 see Section 1.5. Even if the currently circulating H5N1

virus does not result in the next human pandemic, evidence suggests that a different

influenza strain is likely to emerge and cause the next catastrophic pandemic. For

example, H9N2 infected children in China in 1999 and 2003; H7N2 caused infections in

New York and Virginia in 2002 and 2003; and H7N3 infected poultry workers in Canada

in 2004 (CDC, 2005). In 2003 H7N7 infected more than 1000 people in the Netherlands,

even passing from human to human (Enserink, 2004). Overall, the National Academy of

Sciences, CDC and chief medical personnel across the world agree that the next influenza

pandemic is only a matter of time (Gerberding, 2005; Carr-Brown, 2005; Knox, 2005). A

pandemic will happen; the main source of uncertainty is when.

1.2 Flu Transmission

The transmission of influenza occurs through respiratory emissions from sick

individuals when talking, sneezing or coughing. These emissions enter the environment

and can either come in direct contact with a well individual or are transmitted indirectly

through an inanimate object. There are two types of droplet emissions that can be

produced by a sick individual: large droplets and aerosols. Large droplets are usually

considered larger than 10 micrometers and are produced in the upper respiratory tract,

particularly the nasopharyngeal region. Aerosol particles are formed in the lower



respiratory tract and are generally smaller than 5 micrometers. These modes of

transmission are not mutually exclusive.

Large droplet transmission occurs when contagious droplets produced by the

infected host are propelled a short distance, 3 to 6 feet, through coughing or sneezing and

can come into contact with another person's conjunctiva, mouth or nasal mucosa. These

droplets can spread directly from human to human or indirectly through contact with

secretions that have settled on various surfaces. Since these droplets generally are large

and do not stay suspended in the air, this mode of transmission is not affected by special

air handling or control of room pressures. Several authors have argued that large droplet

transmission is the predominant mode of influenza spread.

In contrast to larger droplets, aerosol or droplet nuclei can remain suspended in

the air for prolonged periods and be disseminated by air currents in a room or through a

facility over long distances to be inhaled by a susceptible host. When aerosols are inhaled

they are deposited in the lower respiratory tract due to their small size. Aerosol

transmission would be of greater concern in settings where ventilation is poor, such as in

an airplane or other closed space. While this mode of transmission is highly debated,

(Tellier, 2006; Bridges, 2003) there is evidence that small particles can be more

infectious since they can settle deeper in the lungs. Preventing the spread of droplet

nuclei requires the use of special air handling and ventilation procedures.

Indirect transmission occurs either when an infected person uses hands to contain

a cough/sneeze and then touches various objects or when large droplets that are expelled

from the mouth settle on a surface. In support of infection through contaminated fomites

or indirect contact, there are studies that show that human influenza viruses can survive



on a variety of surfaces at a temperature of 28'C and 35-49% humidity. For example,

influenza virus can survive 24-48 hours on nonporous surfaces such as plastic and steel,

and 8-12 hours on porous surfaces like tissue or cloth. However, the life of any particle in

the environment is affected by factors including moisture, temperature as well as size and

characteristics of the virus itself. Surface disinfectants and hand hygiene should decrease

this mode of transmission.

Various interventions have been proposed to decrease transmission of the flu.

Improved hygiene: hand washing and using alcohol based hand sanitizer has been

showed to decrease the spread of influenza in controlled environments such as day cares,

schools and nursing homes.(Roberts, 2000; Luby, 2005; WHO, 2006; Falsey, 1999)

While there is no conclusive data regarding the effectiveness of surgical masks, there is

some evidence indicating that wearing a mask will help prevent the infected from

spreading it to the well by containing and slowing the speed of droplets (HHS, Inouye,

2006). There is evidence that shows that specialized air handling, which includes

ventilation, HEPA filtering and exhaust fans, are effective in reducing potential aerosol

transmission of influenza (Li, 2005). In addition, ultra-violet light, specifically UV-C, has

the potential to disinfect air by inactivating virus-containing aerosols (Weiss, 2007).

While it is commonly agreed that these three modes of transmission are possible,

and that the above mentioned interventions may be useful, there is a great deal of debate

regarding which mode of transmission is the most predominant for influenza. This

implies that while these interventions have been shown to be useful, we can't easily

quantify their impact. More studies are necessary to answer this important question, but it

will not be addressed in this research.



1.3 Influenza Manifestation

Infection begins when a virus particle, also known as a virion, enters a host cell

and begins to replicate. Initially the host has no symptoms and does not shed the virus

into the environment; this is known as the latent period. After about 1-3 days of the latent

period, the infectious period begins. In addition, usually about 1-2 days after the start of

the infectious period the individual may start to show symptoms of the infection. These

symptoms usually include sore throat, aching and fever. The time from initial infection to

the start of symptoms is called the incubation period and is illustrated in Figure 1.1.

What makes flu complicated to contain from the public health point of view is the order

in which the infectious and symptomatic periods begin. For example, during the SARS

outbreak people became symptomatic before they were maximally infective. Since the

sick showed symptoms avoiding infectious people was easier, and isolation and

quarantine became plausible.4 Furthermore, health care workers, rather than the general

population, were more likely to be exposed. With influenza, the infectious period usually

precedes symptoms by about 24 hours, giving the virus a head start in infecting people

before the host even knows if he or she is sick.

In addition, especially for seasonal influenza, people can become infected with

influenza and become infectious without showing any illness or only very mild and

negligible symptoms. These "healthy carriers" are estimated to comprise up to 50% of the

infected population in seasonal flu. This aspect makes it difficult for people to effectively

isolate the sick and avoid infection when well. Fortunately, the presence of healthy

4 Another reason that isolation and quarantine were more realistic for SARS is because of the longer
timeline of the virus. The latent period was 10 to 14 days, unlike 1-3 days for the flu, giving the
government more time to track infectious and potentially infected individuals.



carriers is considered very unlikely for infection with a virus completely novel to the

human immune systems.

Start of viral Not infective
Infection shedding anymore

Latent period Infectious period

Incubation period Symptomatic Recovered
or dead

Symptoms Symptoms
appear disappear

Figure 1.1

The temporal progression of the flu's symptoms and infectiousness. The highlighted
dashed line segment between the start of viral shedding and appearance of symptoms is

the reason that quarantine and isolation are very difficult for flu.

Individuals who become symptomatic usually experience high fever, cough, sore

through, runny or stuffy nose, headache, muscle aches and extreme fatigure. Most people

who get the flu recover completely in one to two weeks, but some can develop serious

and potentially life-threatening medical complications such as pneumonia. It is

approximated that in the United States seasonal flu is associated with about 36,000 deaths

and 200,000 hospitalizations annually (WHO, 2003). On a global level, in a year's

normal two flu seasons, one per hemisphere, there are between three to five million

severe cases and up to 500,000 deaths (WHO, 2003). Flu-related complications can occur

at any age, but for seasonal flu, the elderly and people with chronic health problems are

more likely to develop serious complications. The 1918-1919 outbreak was unusual



because it caused more morbidity in the young and generally healthy 20-40 year old

population. Overall, the clinical manifestation as well as the morbidity and mortality

levels differ from one flu subtype to another subtype and are impossible to predict ahead

of time.

1.4 Flu Treatment

No drugs can cure influenza. Recommended treatment usually consists of bed rest

an increased intake of nonalcoholic fluids and some antipyretics (fever reducers) until

fever and other symptoms lessen in severity. Antibiotics are ineffective, unless prescribed

for a secondary infection. Certain drugs - antivirals - have been found effective in

lessoning flu symptoms, but most efforts against the flu focus on prevention through

vaccination that creates immunity or through improved hygiene and social distancing

measures.

Antiviral medicines can relieve flu symptoms, but only if taken during the first 48

hours of symptoms. Oseltamivir (Tamiflu), in pill form, and zanamivir (Relenza), an

inhalant, are neuraminidase inhibitors that are currently preferred for flu virus infections

and have shown to reduce symptoms, complications and shorten illness by one to two

days (Jefferson, 2006). In addition to treating infected patients, antivirals can be used for

prophylactic purposes, with prevention rate from 68-89%, for highly exposed and

essential service individuals (NSW, 2006). While there are studies that suggest antiviral

treatment and prophylaxis have the potential to contain a pandemic if introduced

immediately (Ferguson, 2005; Longini, 2005), others have indicated that this would lead



to the emergence of resistant strains that would become highly prevalent in the

population (Eichner, 2009). For example, the CDC recommends that neither Amantadine

(Symmetrel) nor Rimantadine (Flumadine), both in pill form, are used to prevent

influenza because some flu strains have up to 91% resistance. Different strains of the flu

have varying degrees of resistance against these antivirals, and it is impossible to predict

what degree of resistance a future pandemic strain may have (Webster, 2006). Also,

antivirals, including Oseltamivir, have FDA label warnings about behavioral changes.

Furthermore, it has been estimated that in order to mitigate a pandemic we would need

multiple doses of antivirals per member of the population for only eight weeks protection

(Wu, 2006). This is not long enough and also currently infeasible given our stockpiles

and distribution capacities. Antivirals alone are not likely to stop the next flu pandemic.

For seasonal flu, much of the illness and death can be prevented by the annual flu

vaccination; however, no vaccine exists for the next unknown pandemic subtype. After a

viral strain emerges and is detected, it will take anywhere between 3-9 months before the

first doses become available. It is clear that relying on vaccines, especially initially, will

be impossible. As for the seasonal flu vaccine, it consists of greatly weakened, killed, or

fragmented viruses. Antigens in the vaccine stimulate a person's immune system to

produce antibodies against the viruses. If the corresponding flu viruses invade a

vaccinated person at a later time, the sensitized immune system recognizes the antigens

and quickly responds to help destroy the viruses. Vaccine efficacy varies from one person

to another, but studies have shown 70 - 90% effectiveness in preventing illness.

Furthermore, if infected, hospitalization and death rate are also significantly decreased.

Some people believe that a seasonal flu vaccine may provide some protection for or



decrease the severity of a pandemic strain. Thus while it is clear that vaccines will not be

available in time to prevent a pandemic, annual flu vaccinations are still highly

recommended.

1.5 The Avian Flu: H5N1

Influenza pandemics are associated with high morbidity, excess mortality as well

as economic and social disruptions. Scientifically speaking, influenza pandemics arise

when:

1. A "novel" influenza virus subtype, to which the general population has no pre-

existing immunological protection, emerges. This also implies that no vaccine is

available at the onset of the outbreak.

2. The virus infects humans and causes serious illness

3. It spreads efficiently amongst people with sustained chains of transmission (WHO,

2003).

Once such an event starts and reaches a certain level of local or regional spread,

continued worldwide spread of the virus is considered inevitable especially given the

highly interconnected nature of today's world.

As mentioned in Section 1.2, H5N1 is a candidate pandemic viral subtype

currently found in the avian reservoir. The H5N1 subtype spreads efficiently amongst

birds via the intestinal tract and can be found in their feces. Unlike many other strains

that infect migratory birds without causing disease, H5N1 is deadly for the avian

population. Millions of birds have died as a result. Furthermore, people who have been



infected with H5Nldon't always die from secondary bacterial infections, which is more

common in seasonal flu. Avian influenza, without the presence of bacteria, can cause

direct pulmonary damage that in turn can result in noncardiogenic pulmonary edema and

pneumonia (McFee, 2007).

"If seasonal influenza is a predictable killer, the avian flu has the potential to be a

true killing machine" (McFee, 2007). Despite the various control efforts of the

international health community, H5N1 persists and is unlikely to be eradicated. This virus

is endemic in long-range migratory birds found in Southeast Asia. Human H5N1

infection continues to occur, and the case fatality rate is high. Table 1.2 shows the impact

of the H5N1 virus on the human population.

Country Cases Deaths
Azerbaijan 8 5
Bangladesh 1 0
Cambodia 8 7

China 38 25

D................ibouti 1
............................................ E .g y p t ................................. .... .............. 5 4 ..................t 5 4 2 3

Indonesia 141 115
Iraq 3 2

Lao People's 2 2
Democratic Republic

Myanmar 1
N ig e ri ....................................... 1
Pakistan 3 1
Thailand 25 17
Turkey 12 4

Viet Nam 107 52
Total 405 254

Table 1.2

The total number of laboratory confirmed H5N1 cases between January 1, 2003 and
February 5, 2009.



Avian flu infects people through the respiratory tract; inhaling the virus or getting

it on hands and then contacting the pulmonary mucosa. Luckily, people can't get infected

by eating properly cooked poultry; however, eating raw eggs, poultry blood, or

undercooked bird meat could lead to an infection. Infection does require either the

unusually close handling of poultry or the inappropriate cooking of poultry products,

which happen to be common practices in the countries where human avian flu cases have

been recorded (McFee, 2007).

H5N1 has already achieved the first two of the three attributes of a pandemic.

Moreover, the data suggests that a few cases have resulted from, albeit inefficient,

human-to-human transmission. Thus far we have been fortunate that the infection has

stopped at the second person in the link, usually a family member. However, if the virus

does mutate, history has shown us that we could be facing a very deadly and disastrous

pandemic.

1.6 Past Pandemics

It is likely that influenza viruses have existed for thousands of years, even papers

by Hippocrates in 412 B.C. seem to document an influenza epidemic. Pandemics in the

pre-virology era are difficult to recognize definitively, but are usually characterized by

periods of excess mortality that coincide with global accounts of an illness that

epidemiologically and clinically resembles influenza. The first known pandemic was in

1580 and spread from Asia to Africa, Europe and the Americas. It was a particularly

severe outbreak and death rates were high: 9,000 of 80,000 people died in Rome and



some Spanish cities were described as "nearly entirely depopulated" by the illness

(Beveridge, 1978). Pandemics are believed to have continued to occur periodically before

the isolations of the first influenza A virus, with outbreaks in 1729-1733, 1781-1782,

1830-1833, and 1889-1890, 1918-1919 (Potter, 1998). The 1889-1890 strain, never

definitively identified, was called the Russian flu because it came to Europe from the

East. It came in three waves, had higher morbidity and mortality than seen in decades,

and was the first pandemic for which somewhat detailed records are available (Noble,

1982).

The 1918-1919 pandemic was the most destructive outbreak in recorded history

killing up to 100 million people, which is more than World War I and World War II

combined. As can be seen in Figure 1.2, this virus decreased the average life expectancy

of people by over 10 years. While it is suspected that the virus originated in the United

States in Kansas, the disease became known as the Spanish flu since Spain was the first

to openly admit the impact of the outbreak. The Spanish flu spread across the whole

world even reaching the remote areas of the world like the Arctic and the Pacific Islands.

Even in places where the death rate was low, the virus was widespread enough to bring

everyday life to a halt. Saloons, theaters, vaudeville houses, schools and churches were

closed in an effort to stop the infection. The number of doctors was severely lacking and

nurses, medical students, veterinarians and other medical staff were put to work as

doctors. The government, which was dealing with the end of WWI a this point in time,

tried to keep up morale by denying and lying about influenza, but unfortunately that

caused even more panic. This was a very grim period of time.
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Life expectancy in the US during the 20th century. The sharp dip in life expectancy in
around 1918 is the result of the Spanish Flu.

The 1918 pandemic began mostly in military camps with a relatively mild wave

in the spring of 1918. This first wave was followed by two additional more severe waves

in the fall and winter. The second, extremely virulent strain spread across the globe in 2

months. The average case fatality rate was about 2.5%; however, the US military

experienced rates ranging from 5-10% (Barry, 2004). The unique feature of this

pandemic was the disproportionately high mortality rate for healthy adults between the

ages of 15 - 45 years; see Figure 1.3. The mortality for pregnant women was even higher

ranging somewhere between 23-71% (Barry, 2004). While in some places only a fraction

of the population was infected and a small percentage died, in others, like several villages

in Alaska, entire population's were wiped out.
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W-curve: the death rate by age for the 1918-1919 pandemic. The unique factor of this
outbreak is that unlike most seasonal flu, which is deadly for solely the very young and

elderly, it killed an unusually high number of people in the 20-40 years old category
(Taubenberger, 1996)

The excess influenza deaths in 1918-1919 seem to be a result of either secondary

bacterial pneumonia or severe acute respiratory distress-like syndrome (ARDS). It

appears that the viral infection spread down the respiratory tract causing severe tissue

damage and was often followed by secondary bacterial invasion (Morens, 2008). ARDS

appears to have contributed about 10-15% to the overall fatality rate. Patients with ARDS

experienced extremely rapid progression of the illness characterized by blue-gray facial

discoloration as the patient drowned because of fluid-filled alveoli (Morens, 2007).

Furthermore, investigators have postulated that an overly robust immune response, seen

in the younger population, induced a "cytokine storm" that caused ARDS and may have

contributed to the unusually high fatality rate. In addition, the Spanish flu had long term



effects, both economic impact in the next several years and even longer term health

effects on those who were born during the pandemic (Almond, 2006). All of these factors

differentiate the Spanish Flu from other pandemics of the 2 0th century, and make it the

worst case scenario for planners who are preparing for future pandemics.

As mentioned previously there have been two other pandemics in the 2 0 th century.

In 1957, a flu outbreak occurred in a province of southwest China and within six months

most areas of the world were dealing with the Asian Flu. There were two waves of the flu

in the US. The first wave had the highest attack rate amongst school aged children while

the second wave affected the elderly population (PanFlu, 2009). While this virus was

relatively quickly identified and a limited supply of the vaccine was available, 10-35% of

the world population was affected (PanFlu, 2009). The overall mortality rate was

comparatively low and about 2 million people died worldwide.

The most recent and most mild pandemic of the 2 0 th century occurred in 1968 -

the Hong Kong Flu. First detected in early 1968 in Hong Kong, the virus spread

worldwide during the following two winters, peaking in the winter of 1968-1969, and had

a cumulative death toll of about 1 million people. Several theories explaining the lower

fatality rate exist. One is that the Hong Kong strain, specifically its neuraminidase, was

similar to that of the Asian flu, and thus prior infection by the Asian flu may have

provided some immunity. Another suggestion is that instead of peaking in the fall, the

Hong Kong flu only gained momentum near the school holidays. Children who usually

contribute significantly to flu transmission stayed at home, so the rate of flu amongst

schoolchildren and their families was low. The third conjecture is that medical care and

antibiotics for secondary bacterial infections were available for the sick. Overall, it is



unclear whether the milder Hong Kong & Asian Flu or the severe Spanish Flu is more

representative of the next flu pandemic.

1. 7 Now and Then

Before using past pandemics as a way to provide us with a glimpse of the next

outbreak we have to ask one important question. Given the medical and other inventions

and developments over the past century, are we more or less prepared for a severe

pandemic?

Even though we still do not have a simple cure for the flu, medical discoveries

and creations over the past century such as vaccines and antivirals lead many to argue

that the next pandemic is not going to be as traumatic. Even though vaccines for the next

pandemic will take multiple months to produce and there aren't sufficient antivirals,

antibiotics alone could be helpful decreasing the fatality rate. Some believe that

secondary bacterial pneumonia contributed significantly to the mortality during past

pandemics (Morens, 2008), thus the existence of antibiotics would make a significant

difference in the future. Just the identification of the flu virus and the understanding that

it spreads through respiratory contacts rather than through gases formed by decomposing

bodies is a significant development. Today people understand that cutting breathing holes

for the nose and mouth in a mask, as sometimes done in 1918-1919, makes the mask

useless. Overall improvements in hygiene should also help decrease the transmission of

the flu. At the same time we still do not know a lot about influenza transmission. We

don't know which modes of transmission are the most significant and aerosol



transmission is highly controversial. Hopefully these questions can be answered before

the next pandemic, so that people know how to best protect themselves against that flu.

In addition to medical developments, other inventions and societal changes are

likely to change the dynamics of a flu pandemic in the 21st century. The Spanish Flu

occurred before transcontinental air travel, television or the internet. Instead many people

were serving in the military and living in barracks that were breeding grounds for

efficient flu spread. Better living conditions for people should help decrease transmission

locally; however, air travel will very quickly spread the flu across all corners of the

world. Researchers also show that air transportation increases the probability of global

outbreaks in the first place (Colizza, 2007). Once a virus begins to spread, it is likely to

reach the whole world very quickly. In 1918, it only took a couple of months for the

Spanish Flu to circle the globe. As a result of increased travel today, it is very unlikely

that geographical heterogeneities of infected and uninfected cities will last for more than

one or two weeks in a country such as the US (Viboud, 2006).

Not only will the virus spread much faster, but knowledge of the virus will spread

like wildfire. The internet and television provide every individual with 24/7 access to

information. This immediate access to information could be very helpful if the media

properly educates the public on how to behave and what to do. For instance, in 1918,

Philadelphia officials denied the existence of the Spanish Flu in their city and continued

to hold parades and other social gatherings that helped propagate the flu. Today this

would be impossible. Alternatively, there is also a chance that the media will create a

tremendous amount of panic as they show and dramatize stories of sick and dying people.

In the wake of Hurricane Katrina such sensationalist reports confused, unnerved and



mislead a lot of people. Thus while it is clear that the media and internet will have a

significant impact, it is unclear whether it will be beneficial or detrimental.

Other developments driven by the goal to cut costs as much as possible may be

very problematic in the case of a pandemic. Our hospitals have become lean as our

medical surge capacity has become very small. The seasonal flu created enough of an

increase in demand to overwhelm hospitals in 1999-2000 (Mariano, 1999). While

hospitals have decreased in scale, people's expectations and reliance on the medical

system have increased. Today there are a lot more individuals who rely on medication

and treatment. It is unclear, that in a pandemic, diabetes patients would always receive

their medication or medical attention if necessary.

Cutting costs has also made us very interdependent. We depend on the products in

the millions of containers that are shipped into the US annually. Very few people today

are self sufficient; we buy food at the grocery store, not grow it in our back yard. Not

only are we very strongly interconnected, but we also have a just-in-time mentality which

requires a smooth functioning of all elements in the network. In a pandemic, as panic

spreads, supply chains are likely to be disrupted. Even if the virus never enters the US,

these disruptions can have cascading effects. From this perspective our society is more

vulnerable than it was one century ago.

The impact of the next pandemic is very unpredictable. In addition to changes and

inventions over the past century, each viral strain is different. Before the virus emerges

we will not know its virulence, morbidity or mortality. What we do know is that

preparation for the next pandemic is very important. Preparation and coordination



amongst all levels is crucial: the federal, state and local government, organizations,

companies, families and individuals all need to have a plan for the next pandemic.

1.8 Moving Forward

Catastrophes, natural disasters and terrorist attacks have all tested people's ability to cope

with and adapt to extremely grim, demanding and dangerous circumstances. Whether

through social distancing, cooperating and working together or relying on the help of

others, people have demonstrated that they can adjust to various difficulties; an avian flu

pandemic is not going to demolish our world. However, there is evidence that during

SARS the losses that resulted were fueled and magnified by panic due to lack of public

information and lack of guidance. Thus in order to minimize disruption, suffering and

losses the government must know how to win the trust and confidence of the population,

calm the people, and organize and rally the public as a strategic partner in battling the

disease.

Modem science has alerted us to the pandemic threat posed by the H5N1 avian influenza

virus and provided us with forewarning that wasn't available prior to past influenza

pandemics. Private businesses now have the opportunity to cooperate with governments

and international financing institutions; thus if mobilized together, they could take

tactical steps to prevent the spread and minimize the impact of a pandemic. In addition,

recent advances in technology would allow many companies to conduct business via

electronic communications, which would permit their employees to work from home.

Shipping companies could maintain their operations, by letting on-line purchases offset



some of the decline in retail trade. With appropriate planning, there are ways of

mitigating the effects of a global pandemic on the daily social and economic functions of

our society.

From all this is it very clear that we desperately need a preplanned strategy that deals

with how to cope with the avian flu pandemic. Organizations such as the WHO and CDC

have presented several recommendations on policies that they believe should be

implemented (WHO, 2005). Their strategies to control the risks and damages of an

influenza pandemic include enhancing surveillance, using monitoring and diagnostic

systems, improving public communications, establishing stockpiles of vaccines and

antivirals, preparing the health care systems and facilities, and considering the

implementation of control measures such as quarantines (CDC, 2004). Careful

consideration of those policy recommendations makes it clear that they are too abstract

and difficult to apply. For example, the CDC and HHS have provided universities with a

checklist to help guide their policies. Unfortunately this checklist presents more questions

than answers for university planners. There are too many gaps in our knowledge and even

if we had information regarding the virulence and morbidity of the next pandemic, it

would still be impossible to intuitively sense what would happen.

The best way to systematically analyze many different possibilities and scenarios is

through creating mathematical models - simulations of what could happen. In these

models it is possible to not only include medical and government imposed interventions,

but also social distancing and hygiene behavioral changes. Moreover, not only will a flu

model and implied coping strategy be constructive to the whole world, it would also have

additional long-term benefits. Infectious diseases remain a leading cause of morbidity and



mortality worldwide, with HIV, tuberculosis and malaria estimated to cause 10% of all

deaths each year. New pathogens continue to emerge in animal and human populations.

Therefore, it is sensible to study the general implications of an infection propagation

model in order to adopt broader, far reaching measures to strengthen the institutional,

regulatory and technical capacity of the human health sector. An investment in

researching the avian flu would have both short-term and long-term value.

In this thesis we will both provide new approaches to modeling the spread of

influenza as well as discuss the impact of a pandemic on an organization. The technical

contribution of this research is that we developed new modeling approaches that involve

a range of tools from simple probability to dynamic programming. Using these analytical

tools, we show how to model different types of human heterogeneities that are present in

the population. We also created completely original models for how people change their

behavior in a pandemic. The impactful and actionable contribution of this thesis is

derived from the models that we have created. We are able to identify some of the most

pertinent population characteristics that impact overall transmission and the probability

that an individual will get sick. Additionally, we have determined what can be done to

decrease the risks of infection without the use of vaccines or antivirals.

Here is a summary of how this thesis will progress. In Chapter 2, we begin by

reviewing the many different approaches that people have taken to modeling flu

transmission. In the following chapter, we introduce the basic model that is referred to

throughout this work. We show the importance of incorporating certain heterogeneities of

population attributes in the models. Additionally, since people are likely to alter their

daily behavior based on the information that they receive about the pandemic, we propose



several approaches to incorporating human reaction into our model in Chapter 4.

Chapter 5 adds a spatial component to the model as well as evaluates the impact of

various interventions. We change gears as we move into Chapter 6 and discuss the

issues that universities will have to face in a flu pandemic. Focusing on the

Massachusetts Institute of Technology (MIT), we propose a few solutions to some of the

problems outlined by the CDC and HHS university checklist. After examining each of the

intervention factors individually, in Chapter 7 we consider their combined impact and

conclude that with proper planning, we can change the course of the pandemic.

Mathematical models will help us prepare our population for the next pandemic.

This preparation will assist countless institutions in dealing with the cascading

implications of a widespread outbreak. More importantly, advance planning will help

save lives.
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CHAPTER 2:

REVIEW OF PANDEMIC

MODELING APPROACHES

This research uses models to examine the expected impact of various government

imposed and voluntary interventions on the progression of an influenza pandemic. Past

pandemics are one approach to evaluating the effect of different interventions. However,

solely relying on past outbreaks is not sufficient since influenza strains continuously

mutate and take on different characteristics. Also, the past provides us with a limited set

of scenarios that actually occurred and does not give us any insight into would have

happened if the control measures were different. Models allow us to systematically assess

different scenarios as well as pandemics of varied severity. With the help of mathematical

models we can consider and resolve many different "what if' questions.

The types of models that have been used to describe the spread of infection range

from basic differential equations to detailed stochastic agent-based models.

Compartmental models of various complexities are the most common approach to

modeling influenza and will be reviewed in Section 2.3. Yet as computing capabilities

and memory have increased over the past decade, very complex simulations have also



become more prevalent in literature. These computationally intense approaches will be

discussed in Sections 2.4 & 2.5. Another widely used approach relies on one specific

parameter for the description of infection spread - the basic reproductive number Ro: the

average number of infections a typical infectious individual will generate in a fully

susceptible population (Diekmann et al., 1990). Ro will be further described in Section

2.2.

Overall, we will discuss several types of models that have been used to offer

insight into epidemics and mention the advantages and limitations of each as well as

point out the circumstances in which each type of model adds the most value.

2.1 The First Steps in Epidemiology

The Greek physician Hippocrates is sometimes said to be the father of

epidemiology coining the terms endemic - disease seen in some locations but not others -

and epidemic - disease seen intermittently through time. Hundreds of years later, in his

book De contagione et contagiosis morbis (1543) Girolamo Fracastoro proposed that

diseases are caused by "unseeable," very small, alive particles and that personal and

environmental hygiene can help prevent the disease.

A more quantitative study of epidemiology began in the 17th century and was

driven by one of the most famous infectious disease epidemics - the Great Plague. John

Graunt, (1620-1674) a London merchant, developed early human statistical and census

methods and is known as one of the first demographers. He is also considered to be one

of the first epidemiology experts because his book Natural and Political Observations



Made upon the Bills of Mortality (1662) was mostly focused on public health statistics.

During that time London kept a bill of mortality which John Graunt analyzed to try and

create a system to warn the onset and spread of the bubonic plague, see Figure 2.1.

While the system was never created, Gaunt was the first to use statistical analysis to study

disease.

Figure 2.1
A bill of mortality for the city of London, England for the week of September 2 6 th

through October 3 rd 1665.

Before the creation of the current version of compartmental models, Daniel

Bernoulli developed a differential equations model to describe smallpox dynamics and

the benefits of inoculating healthy individuals (Dietz, 2002). He published this work in

1776 titled as Essai d'une nouvelle analyse de la mortalit cause par la petite virole et



des avantages de l'inoculation pour la privenir. This approach was the first type of

compartmental model, but is assumed that the infection rate of susceptible individuals

was independent of the number of infected people in the population and thus didn't fully

capture the dynamics of contagious disease transmission.

2.2 Ro - Basic Reproductive Number

One of the most commonly referred to variables in epidemiology is Ro. The basic

reproductive number - Ro, is the expected number of secondary infections produced by a

typical index case in a completely susceptible population (van den Driessche, 2008). Ro,

as it is now understood was established by George MacDonald in 1952, reintroduced by

Klaus Dietz in the 1970s and then later canonized by Anderson and May in the early

1980s (Heesterbeek, 2003). Researchers utilize Ro in a variety of ways; ranging from a

way to calibrate their models (Ferguson, 2006), to a way to describe their model's results

(Germann, 2006). A related value is the effective reproductive number. As the population

of susceptibles is depleted, the generation specific reproduction number, R(t), reflects

how many secondary infections will result from each newly infected individual on

generation t. Theoretically, R(t) is a monotonically decreasing function because as the

number of susceptibles decreases fewer people have the potential to get infected.

Policy makers often refer to the reproductive number to guide their decision

making process. It appears that one of the reasons for the popularity of Ro is that it is

somewhat intuitive. An infection can grow in a fully susceptible population if and only if

Ro > 1 (Hethcote, 2000). This well established statement can be somewhat misleading



because an Ro > 1 does not guarantee that a disease will take off. Consider a population

where half of the population - group 1 - because of behavioral and immunological

reasons, can spread the virus to 4 people if infected, while the other half - group 2 -

never spreads the virus. By some definitions of the reproductive number, we have an Ro

of 2. If the first person to get infected is a member of group 2 the virus dies out right

away. This is an example of a case where R0>1, but the disease dies out after the index

case more than half of the time. To see more about the complexities of using Ro as an

input value to guide policy, refer to a study by Meyers et al. They focus their study on

SARS and illustrate that for a single value of Ro, any two outbreaks, even in the same

setting, may have very different epidemiological outcomes (Meyers, 2005).

The mix-up over Ro arises partially because there is some ambiguity in its

definition (Hsieh, 2003) especially where the population in question is heterogeneous

(Larson, 2008). Determining who in the population is a typical index case is vague. In

addition, when a disease emerges, estimates of Ro vary significantly. With Severe Acute

Respiratory Syndrome (SARS) the estimations for Ro ranged between a little over one to

values over seven (Lipsitch, 2003). While some work has been done to clarify these

concepts (Wallinga, 2007), the issues are far from resolved. The matter is further

complicated by the question whether control measures should or shouldn't be

incorporated in calculating Ro or R(t). In the case of SARS there was a decline in the

number of secondary cases that coincided with the application of control measures,

including isolation of SARS cases and quarantine of their asymptomatic contacts

(Lipsitch, 2003). One of the approaches to address this is to define a value Rc which is the



reproduction number with control measures in place. For a heuristic derivation of Rc see

the paper by van den Driessche and Watmough (van den Driessche, 2002).

Overall, there are three types of approaches based on the basic reproduction

number: models that express Ro in terms of parameters that describe the virus' virulence

and morbidity (MacDonald, 1952; Hyman, 2000), models that fit the Ro parameter to data

using branching or martingale models (Becker, 1974; Becker, 1989) and models that use

endemic equilibrium data to derive Ro (Dietz & Heesterbeek; 2002, Dietz, 1975). While

using R(t) or Ro provides a computationally intuitive basis for describing disease

dynamics, this approach neglects important heterogeneity and stochasticity complexities

(Eubank, 2004; Larson, 2007).

2.3 Deterministic Compartmental Models

The basic compartmental models are contained within a series of three papers by

W.O. Kermack and A.G. McKendrick in 1927, 1932, and 1933 (Kermack, 1927, 1932,

1933). This most prominent epidemiology modeling approach is based on dividing the

host population into several compartments based on their status with respect to the

disease. It also incorporates the underlying assumptions about the nature and rate of

transfer amongst the compartments.

The simplest, yet applicable compartmental model, known as the SIR model

divides the total population of N into three distinct groups:

1. Susceptible (S): people who have no immunity to the virus, and so have the

potential to get infected



2. Infectious (I): people who are currently infected and can transmit the virus to the

susceptible individuals

3. Removed/Recovered (R): people who are immune to the infection because they

have recovered from the disease.

In addition to establishing these compartments the model specifies how the sizes of these

groups change over time. The first case is the Kermack-McKendrick model. See Figure

2.2 for a flow chart of the model.

Figure 2.2
The flow chart for an SIR model.

The solution to the following set of differential equations will give size of the susceptible

S(t), infectious I(t) and recovered R(t) at time t:

dS dl dR
=- pfSI; = pfSI - aI; =aI

dt dt dt

The assumptions that are embedded in this model are:

1. An average member of the population makes iN contacts per unit of time,

assuming N is the total population size (mass action incidence).

2. The probability of infection spreading from an infected to a susceptible individual

per contact is p.

3. Infected individuals leave the infected group at a rate of al given I people in the

infected compartment. To elaborate further, the duration of the infective period is

exponentially distributed with mean 1/a.



4. There are no births or deaths from the overall model; there are no demographic

effects.

The basic reproductive number, Ro (see Section 2.2 for the definition) for this model is:

R pS(O)RO --

There is a different SIR model which changes the first contact rate assumption. In

this other model, the rate of contact per unit of time is constant, 2, instead of an

increasing function of the population size. This approach is known as standard incidence.

The reproductive number for this approach is:

Ro =

There are several limitations of the basic SIR model. One is that the latent and

incubation periods are of equal duration and the infectious and symptomatic periods

begin at the same time. Adding other compartments addressed these issues. An SEIR

model adds an exposed group; after contacting the infection an individual proceeds into

the exposed, but not infectious group before proceeding in the infected state.

A slightly more complex compartmental model adds two compartments to the

standard SIR model. There is a group for individuals in the latent stage, L. After leaving

the latent stage at rate K, a fraction a of the people proceed to the standard infectious

group while the rest proceed to the infectious, but asymptomatic compartment, A. The

individuals in the asymptomatic compartment have infectivity reduced by a factor of 6

and proceed to the recovered group at a rate of q. Lastly, this model differentiates

between the recovered and the dead individuals who have been removed from the



population from the infectious groupf fraction of the time. Below is the set of differential

equations describing this basic influenza model.

dS dL
= -pflS(I + SA); = pfS(I + SA)- L;

dt dt
dl dAX = ati& - a[; d = (I - c) L - q7A;
dt dt

dR dN
= fal +A ; - -(1- f )a[

dt dt

See Figure 2.3 for the model flow chart.

(1-j)aJ

CoL fal

p/Js(-5A)
S A) R

(1-o)KL qA
A

Figure 2.3

Model flow chart for influenza that incorporates the latent period and the asymptomatic
people in the population.

The reproductive number for this model is:

Ro = flpS(O) - +

In order to include vaccination or antiviral treatment, more compartments can be

added. See Appendix A for a few examples.

Another limitation of the simple SIR model is that it also assumes a completely

homogeneous population social structure or behavioral distinctions. In many past

influenza epidemics it has been observed that much of the transmission of infection can



be traced back to school children who have many very close interactions in the school

environment. Some individuals are more socially active then others or some are more

susceptible then others thus propagating the virus. Again, the solution proposed by

modelers to add this type of heterogeneity is to add more compartments.

Consider two subpopulations of size N1 and N2 and a contact rate of 61 and 6 2 per unit of

time, and that the fraction of contacts made by a member of group i with a member of

groupj is r. Then

rll + r 12 = r21 + r22 = 1

and since the number of contacts made by members of group 1 with members of group 2

is equal to the number of contacts made by group 2 with group 1 we also have:

rl 2 6,N, = r213 2N 2

At this point, the interaction level between groups one and two is still unclear. One

approach is just to find values for ry , ij = 1,2 that satisfy the above three equations. The

other approach is to assume that there is proportionate mixing between the groups, so the

number of contacts between the groups is proportional to their activity levels (Nold,

1980). This conjecture is appropriate when contacts can be assumed to be roughly

random. Under the assumption of proportionate mixing we have:

SN
ri. = 9^

i 6 NI + 92N2

and

r = r2 1 =: 1, r,2 = r 22 = 2 .

Assuming the same infective period for the groups as before and no deaths, the SIR

model for this population is:



dS 1  ( = SI + S 112 1

dt NJ N 2 )

dl s( S I S I 2 dR1

dt N, N2  dt

dS2 rf SI + 2 S2

dt N, N2

d1 ( S2I1 SI2 a dR2 =2
dt N, N2 dt

The reproductive number for this model is (van den Driessche, 2008):

,,81 +6232 2N 1 + 2
2 N 2

a a( 1 N 1 + 2 N 2 )

Note that since all these models are deterministic, and chance does not come into

play, an Ro>1 does indicate that the virus is going to spread.

By adding more compartments we can also address the problematic assumption

that all people become symptomatic and spread the virus with equal intensity. Adding

more compartments does give more flexibility to the model; however, this approach lacks

realism because the model is not constrained to give integer values for the number of

people in each of the compartments. This deterministic approach gives a good description

of what would occur once the infection has taken off, but it does not capture what can

occur at the initial and final stages of the virus. The early and end stages of the epidemic

curve are best modeled stochastically.

We do not use compartmental models for our research because while they are a

great basis for understanding transmission modeling, they are too inflexible for the

purpose our research. Adding more compartments requires more input parameters and

assumptions on the mixing of the population. In addition, these compartmental models



lock in people's behavior into a predetermined pattern that does not reflect the

progression of the outbreak.

2.3 Stochastic Models

One of the primary uses of stochastic models is considering disease transmission

in small populations, such as hospitals (Cooper, 1999). When populations are small,

stochastic fluctuations may make a very big difference in the transmission dynamics.

Stochastic models can also be helpful in determining disease dynamics in the initial and

final stages of the illness. Additionally they give more information on the probability of

the outbreak, the distributions for the final size and duration of the outbreak. The

stochastic models briefly described in this section are based on SIR models. There are

three different methods for formulating stochastic epidemic models:

1. Discrete time Markov chain (DTMC) model

2. Continuous time Markov chain (CTMC) model

3. Stochastic differential equation (SDE) model

We will give a brief description of the DTMC and CTMC models. Please refer to the

following references for more information of the SDE model (Allen, 1999, 2003, 2008).

For the DTMS model let the number of susceptibles, infecteds and recovereds at

time t be denoted as S(t), I(t), R(t) {O,1,2,...,N}. This model is a bivariate process

{(S(t), I(t))}to with a joint probability function given by:

P(s,i) = Pr{S(t)= s,I(t)= i}



Also, let t {O, 0,At,2At,...} where At is small enough that at most one change in state occurs

during that interval. The parameters from the SIR discrete model described in the

previous section are still applied. The transition probability is then:

flpis / NAt (k, j) = (-1,1)JaiAt (k, j) = (1,0)
Pr{S(t + At) = s + k,I(t + At) = i + j S(t) = s,I(t) = i / i_ =A (k,)(0)

I - 8pis / NAt - aiAt (k, j) = (0,0)
[0 otherwise

For more information on the following model please see (Allen, 2008).

The assumptions for the CTMC SIR model are similar to the DTMC model,

except that At-+O. The system of forward Kolmogorov differential equations is:

dP(s,i) p(i - 1)(s + ) +pis
dt (s+J,-1) N P(s,+)a(i + 1) (si) + N i

The complexity of stochastic models is obvious, and analytical results are very rare for

realistic models. The most common usage of these models is through computer

simulation.

The stochastic approaches presented above are clearly a great deal more complex

than their deterministic counterpart. The pertinent question here is what is more

important, the extra layer of realism or a simpler model? The stochastic and deterministic

approaches aim to mimic the same occurrence. The relationship between the two is that

in the limit of large population size, the expected values of vectors in the stochastic

models approach the vector values in the deterministic SIR model.

The other relevant question is in what circumstances is it preferable to use either

stochastic models or their deterministic counterpart? As mentioned before, stochastic

models are best suited for describing transmission within small populations; examples

are: a family, an apartment building a small military base. The extra effort in creating a



stochastic model is also worthwhile when studying the initial and final stages of an

outbreak. Before the virus has infected a sufficient number of people, there is a lot of

chance determining how quickly it will take off or how long it will simmer. Stochastic

models on the whole allow us to address chance occurrences. In a large outbreak within a

large population unusual occurrences are lost in the mix, so deterministic models are an

easier and better approach.

A limitation for both deterministic and stochastic compartmental models is that

they do not reflect the dynamic relationship between human behavior and number of

people getting sick from the disease. The more people get sick the more other individuals

will try to decrease their daily contacts, start washing their hands more regularly and

overall change their behavior to decrease their chances of getting sick. In Chapter 4 we

will suggest approaches to model this aspect.

2.5 Network Models

Some researchers point out that compartmental models have a flawed assumption:

random mixing. Both the stochastic and deterministic models rely on the postulation that

every individual is equally likely to come into contact with every other individual in the

population. Realistically this is not the case. Consider the somewhat extreme scenario of

modeling the whole United States; it is obvious that the likelihood of an individual from

the East coast interacting with someone from the West coast is not the same as his/her

probability of contacting someone from the same city on the East coast. This same logic

holds true when modeling a city; people usually interact with family much more than



with strangers on the street. Infectious diseases propagate over networks of many scales:

from continent to continent via the air transportation network, from neighborhood to

neighborhood via subway lines and bus routes, and from person to person via social

contacts. Techniques developed 30-50 years ago, including computer simulation and

percolation theory have provided an approach to modeling disease transmission

integrating the locality of individuals within the overall population. In the 1990's a

continued interest in network science also found applications in mathematical

epidemiology.

Epidemiology network models are based on social network structures and attempt

to understand the impact of social mixing patterns. Interactions are modeled as a graph,

where individuals are represented as nodes, while their interactions are represented as

edges. For modeling disease spread using the binary, 0 or 1, approach to represent the

interactions between individuals is probably not the most accurate tactic. This has led to

the development of weighted edges, where each edge of the graph has a weight, usually

restricted between 0 and 1.

As can be expected in these models, a node's degree determines the

connectedness of a person to the overall society. The degree distribution of the overall

graph is another important factor determining how quickly the illness will spread through

the community. Network models can range from simple lattice and random mixing

networks, to small-world graphs or incredibly detailed social networks, the latter will be

discussed in Section 2.5. See Figure 2.4 for examples of some of these network

structures. These networks provide a backbone for stochastic Monte Carlo models that

simulate how an infection could spread from one source node to the rest of the



population. Percolation theory also allows researchers to study the behavior of the disease

in a given graph. These studies have shown that the degree, betweenness and farness of

nodes alter disease dynamics (Christley, 2005).

Lattice Network Random Network Small World Network

Figure 2.4
Examples of different types of networks that have been used to study infection diffusion.

2.6 Agent-based Simulation Models

As computational power has grown over the past years, microsimulation -

individual based models - has increased in popularity. Microsimulation ranges from

extremely detailed and reality mimicking to fairly abstracted models. The Glass et al.

model is a somewhat stylized model of a society infected by the flu. They created a

community where people belonged to different types of social interaction groups:

household, work, school, etc. All persons within each household were linked to each

other with mean link contact frequencies of 6/day. Every person also belonged to 1

multiage extended family group with a mean link contact frequency of 1/day.

Furthermore, mean link contact frequencies for children in a school are 6/day. Teenager



classes, adult work, and gatherings of older adults result in 1 mean link contact per day.

By incorporating these more realistic nuances the group found the importance of children

mixing schools as a key driver of infection. Their dramatic finding was that children and

teenagers who compose only 29% of the population are responsible for 59% of infection.

This group did not rely on Ro, in fact they point out that the calculation of Ro from small-

community data such as theirs is ambiguous.

Ferguson N.M. et al. use the individual-based simulation approach to model

pandemic flu transmission in the United Stated and Great Britain. This model, similarly

to the Glass model, represents transmission in households, schools, workplaces and the

wider community, but it also uses location specific data. Using information on

transmission in each of the environments and the attack rates of past pandemics the

authors calibrated their model. Afterwards they studied the speed and extent of viral

spread given different interventions. Their work indicates that without significant

interventions it would take about 2 months for the infection to reach its peak. As for

antiviral treatment, they conclude that it could be useful for controlling transmission in

both the household and the workplace, but would require many doses of the antiviral.

Two other agent-based models, similar to the one described above, were

developed in an attempt to predict the scenario that could occur in Southeast Asia where

the disease is expected to commence. Ferguson et al. conclude that as long as the virus is

less transmissible than the 1918 flu, combining geographically and socially targeted

prophylaxis and social distancing could stop a nascent pandemic (Ferguson et al., 2003).

Similar in intention, the Longini et al. group has analogous findings (Longini et al.,

2005). Both works highlight the importance of early diagnosis and immediate treatment,



the significance of proper timing is a shared finding that should sway policy makers' flu

containment measures. Yet again, these models do not attempt to model reactive human

behavior changes because it is too unpredictable.

A significant portion of current research has taken this even further making use of

the advancement of computer capabilities. For example, a group at Los Alamos, with the

use of their supercomputer initially created for nuclear weapons' study, models every

individual within the US and studies flu spread (Germann et al., 2006). Using census data

and transportation information they produced a complex program which simulated, at a

very detailed level, the interaction of over 240 million "people" over 180 days. The level

of detail truly makes this model an individual-based model since each "person" is

supposed to be unique. The modelers openly acknowledge that "the spontaneous public

response to news of an approaching pandemic will affect social behavior in unpredictable

ways". To reflect that in their simulation they implement various social distancing

behaviors that are expected given an initial pandemic curve. The problem is that human

reaction should reflect the updated epidemic, but this dynamic concept is not

incorporated. As a result the social intervention strategies are terminated too early to be

fully effective. The researchers' conclusions are that vaccines and antiviral drugs will be

the salvation to the pandemic disaster. They further assert that limiting contact between

people through travel restrictions, quarantine and school closing will only buy time,

perhaps enough time for vaccine production, but this strategy alone will not stop the

epidemic.

Microsimulation models have provided a lot of insight, however given that there

is no knowledge of the various disease parameters for the next pandemic it is unclear



whether this level of detail and computational effort is as useful as it can be for well

known infections. More complex models require more inputs, and many agree that the

complexity of a model should be influenced by the amount and reliability of data.

Furthermore, performing sensitivity analysis and verification of these models is difficult

given how detailed they are. This suggests that initially it may be appropriate to use

simpler models until enough data is acquired to facilitate parameter estimation.

2.7 Modeling Pandemic Flu

Let us summarize some of the points made in this chapter that support the

modeling approach that is presented in this thesis.

. The structure of interaction may be an important field of study, however given the

lack of information that currently exists about the next strain of pandemic flu it may

be premature to focus solely on these extremely complex models. These models

may be very helpful tools for currently circulating diseases or in the future when we

know more about the next pandemic flu virus. At this point, simple models for the

flu pandemic are also very valuable.

. When using deterministic compartmental models or something similar, it is

important to correctly define a community; it shouldn't be too large to negate the

random mixing assumption, but not too small for stochastic processes to be

influential.

. Modeling different types of heterogeneity is important, but is currently

understudied. The lack of data is one of the complicating factors.



Modeling behavior change as a result of the pandemic has been significantly

understudied. The few existing models that include behavior changes do not

dynamically connect people's reactions to the outcome of the pandemic.

The features of the model that are used to guide pre-pandemic planning and

during pandemic policy must be selected with intention. It is important to know what

questions we want to address before we get into the details of our models. Some of the

questions that we hope to address in this thesis are:

* What characteristics that are present in our population affect the transmission of

pandemic flu?

* Can we use any known population attributes to mitigate the spread of influenza?

* Should control measures be uniformly applied to all individuals or should we

focus our efforts on specific member of the population?

* What kinds of control measures should we use and when should we use them?

* Can non-pharmaceutical interventions make a difference in the course of the

pandemic?

* How can voluntary behavior changes alter the course of the pandemic?

With these questions in mind we have developed a multi-community transmission

model. Our model accounts for population heterogeneities in many dimensions, but does

not have the detail of network or simulation models. When modeling one large

community we aggregate and present the expected outcomes. However, to model disease

spread amongst loosely connected communities we use Monte Carlo simulation. We have



also proposed several approaches to modeling voluntary behavior changes that reflect the

progression of the infection through the population.

The main modeling contributions of this thesis are in addressing two points:

heterogeneity and behavior changes. Chapter 3 will focus on modeling and evaluating

the impact of different types of heterogeneities. Chapter 4 will present several different

approaches to dynamically incorporating human reaction and behavior change to the

model. Understanding and evaluating the connectedness of the global interaction network

would be helpful in determining how quickly the virus would spread across the world,

but will not be deeply analyzed in this work. However, in Chapter 5 we will present our

approach to adding a spatial component to our model.

Lastly, it is important to mention that the concepts and approaches for modeling

disease transmission have also been applied in studying the propagation of computer

viruses, techniques of viral marketing and other areas. The concept of diffusion of

infection over a network is especially important and has been heavily applied in other

fields.
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CHAPTER 3:

THE BASIC MODEL &

IMPORTANCE OF HETEROGENEITY

In this chapter we will introduce the model that will be referred to and built upon

throughout the remainder of this thesis. One of the main points that we will demonstrate

in this chapter is the importance and impact of various types of heterogeneities that are

present in our population. The model that we will use throughout this and future chapters

was described by R.C. Larson in the paper titled "Simple Models of Influenza

Progression Within a Heterogeneous Population" (Larson, 2007) and further elaborated

on by K.R. Nigmatulina and R.C. Larson in a paper titled "Living with Influenza:

Impacts of government imposed and voluntarily selected interventions" (Nigmatulina &

Larson 2009).

3.1 Model Basics

The model is of one community that is divided into several groups based on their

daily social activity levels (Larson, 2007). Since influenza spreads from one person to the



next through social interaction it is important to know how much people interact amongst

each other. We assume that face-to-face contact is the major method of influenza

transmission. We will presume that face-to-face social contacts within each community

occur as a homogeneous Poisson process with rate parameters dependent on the level of

social activity of the individual. Furthermore, the interaction between people in different

groups is random and proportional to their activity levels (as described at the end of

Section 2.2). For the rest of the numerical calculations and simulations, unless otherwise

noted, we will split the population of each community into three groups: high, medium

and low activity persons. We will define:

AH - Average number of social contacts of a High activity person/day

,M - Average number of social contacts of a Medium activity person/day

AL - Average number of social contact of Low activity person/day
NH - Initial total population of High activity persons

NH (t) - Population of High activity persons active on day t

SH (t) - Number of High activity susceptible persons on day t

IH (t) - Number of High activity infective & asymptomatic persons on day t
RH (t) - Number of High activity recovered & immune persons on day t

etc

Let us clarify that throughout this work we define one day as one generation of the

infectious period of the virus. One day in the context of our model is closer to 2-3 actual

24 hour days.

We initiate the outbreak with one infectious individual who interacts normally

with people on day 0. By the end of this day the initial seeder self-isolates, recovers or

dies, and no longer infects any other individuals. Evidence of self-isolating behavior has

been observed in practice (Zeng, 2002) and reflects peoples' departure from the



infectious category. On day one, the individuals recently infected from the index case

interact normally and transmit the virus until they leave the infective group on day two. A

recovered individual never reenters the susceptible population since people gain

immunity if they survive the disease. This pattern continues for the rest of the outbreak.

From Larson's paper we know that for a random person on day t the probability that

the next interaction will be with an infected individual is:

AHIH (t) + MIM (t) + ALL (t)

2 HNH (t) + A, NM (t) + 2 LNL (t)

f8(t) is the fraction of all interactions of infected people over the total number of

interactions in the entire active population on day t. The number of people circulating on

day t is all those who have not gotten sick as well as those who have gotten sick, but also

recovered and reentered the population. Assume that d is the duration of the sickness

from the beginning of infection until the individual can reenter the population and that h

is the fraction of people who survive the virus and can reenter the population. Then,

NH (t + 1) = NH (t)- Ih (t)+ hlH (t - d) 5

Assuming homogeneous susceptibility let:

p = probability that a susceptible person becomes infected, given contact with an

infectious individual.

Using the knowledge that the number of interactions is Poisson distributed, we know that

the probability that a random susceptible High activity person gets infected on day t is:

PH(t) = H i )e l(t)I (I -(J(t)) ( - [IJ- p]J
i=which as shown in Larson can be simplified to (Larson, 2007):

which as shown in Larson can be simplified to (Larson, 2007):

5 Note, for t-d<O, I,(t-d)=O for allj.



ps (t) = 1 - e-H(tP

In Table 3.1, we present the base case parameter values that we continue to use throughout

this paper to present the results of our modeling analysis based on the above formulations.

To see the impact of varying d - the duration of sickness, and h - the percent of people

who recover and reenter the active population please refer to Appendix B.

Parameter Name

Initial size of High activity group

Initial size of Medium activity group

Initial size of Low activity group

Rate of contact of High activity persons

Rate of contact of Medium activity persons

Rate of contact of Low activity persons

Conditional probability of successful transmission

Duration of sickness from day of infection

Percent of people who recover & reenter population

Table 3.1

Parameters used as the base case for

Variable

NH

NM

NL

AH

AM

AL

P
d

h

Community A

100,000 ppl

100,000 ppl

100,000 ppl

50 ppl/day

10 ppl/day

2 ppl/day

.10

9 days

98%

the research.

The average rates of contact, AH, 2M, AL, in the different groups are based on the research

done by Yang-chih Fu. Some of the best data on the frequency distribution of daily

human contacts is a result of the survey conducted by Fu. He asked people in nine

countries and 46 different settings: on average, about how many people do you have

contact with in a typical day, including all those who you say hello, chat, talk or discuss

matters with, whether you do it face-to-face, by telephone, by mail or on the Internet, and

whether you personally know the person or not (Fu, 2005, 2007)? The results of the

survey are shown in Table 3.2.



Number of Number of Percent of Cumulative
daily contacts respondents respondents Percentage

0-4 410 13.67 13.67
5-9 426 14.20 27.87

10-19 685 22.83 50.70
20-49 792 26.40 77.10
50-99 349 11.63 88.73
100+ 338 11.27 100

Total 3,000 100.00

Table 3.2

The results of Yang-chih Fu's research on the distribution of the frequency of daily
human contacts.

The results of this study are not perfectly suited for calibrating the activity level of

people in our model because it includes human contacts that are not face-to-face such as

the telephone and the Internet. While it is unclear exactly how many relevant contacts

people have on a daily basis we can use the results of Fu's other study, which indicates

that in Taiwan 83% of all daily contacts are face-to-face (Fu, 2005). While it is unclear if

these values are best suited to describe the United States, this data is very instructive and

confirms that there is a significant amount of heterogeneity in the population.

Returning to the model, the proposed approach assumes that the contact rates per

day remain constant even as members of the susceptible population become sick and

leave the circulating population. In the context of standard compartmental models this is

known as standard incidence. Let us also consider the mass action incidence model where

as the number of active people decreases, we anticipate a reduced amount of overall

social activity. In this alternative approach X, the average number of daily contacts per

person, is proportional to the size of the remaining population in circulation. As shown by

Larson in this case all As become time dependent. For example, AH (t) - daily rate of



social contact of a High activity person on day t. Let N(t) = NH (t) + NM (t) + NL (t), and

then

2AH(t)(t +1) -AH(O)N(t +1)
nH (t + 1)= N(t) N(O)

Thus we have,

PH (t) = 1-e H(t(t)p

In Graph 3.1 we compare the two different approaches of standard and mass

action incidence. From Graph 3.1 we see that the main difference in the two approaches

arises in the later half of the outbreak. As expected, the cumulative number of infected

individuals, as well as the infection peak, is higher for the standard incidence model

where the rate of contact stays constant regardless of the size of the circulating

population. For the mass action incidence model, the biggest change in 2(t) from A(0) is

after the infection renders a large fraction of people sick which occurs around the peak of

the outbreak.

For the remainder of this chapter we will use the mass action incidence model

unless otherwise stated. It is unclear which model is better for flu modeling, but it seems

that the rate of contact is somewhat dependent on the population size. If normally a

salesman has an average of 50 contacts per day, when 25% of the population is out of

circulation his or her number of daily contacts is likely to decrease by about 25%

(Larson, 2007). Graph 3.1 gives the impression that the difference between the standard

incidence and mass action incidence models is not very significant, but for other cases

where there is a more gradual growth of infection, the epidemic curves can differ

significantly. Refer to Appendix C for a more detailed comparison of the two models and

for this chapter's graphs' equivalents for the standard incidence model.



80,00011
-- Standard Incidence

S60,000 A ---Mass Action Incidence

a \~ 230,636& 40,000

Z 20,000 198,744

0 5 10 15 20 25

Days
Graph 3.1

Comparison of the different approaches to modeling individuals' interaction and its
impact of the epidemic curve. The standard incidence model, with a fixed rate of contact,

results in higher infection rates in the second half of the outbreak.

Using the mass action incidence approach and the input values in Table 3.1 we

can model how the flu would transmit in the population. Graph 3.26 is an illustration of

average infection spread within a hypothetical community; notice that the virus spreads

faster through a population with several activity levels when compared to a homogeneous

community with an equivalent average activity level. Furthermore, it can be seen that the

high activity individuals are the first to get infected. Practically all of the high activity

people, 99.9% get infected while less than 25% of the low activity individuals get sick.

Also, as the number of high activity people is depleted by day 9, the total number of people

getting sick also starts to diminish around the same time. The high activity people are the

drivers of the influenza transmission. 7

6 To see the equivalent graph for the standard incidence model refer to Appendix C, Graph C.2.
7 These qualitative results are supported by the findings of the real-time surveillance system at Boston's
Children's Hospital. Children, compared to adults, have more contacts and increased vulnerability to be
drivers of seasonal flu; particularly, preschoolers are seen as "hotbeds of infection" (Neergaard 2005).



As discussed in Section 22, the imprecise, but widely accepted, definition of Ro is

the average number of people infected by the initial seeder in a fully susceptible population.

For the heterogeneous and uniform communities, the expected number of daily contacts of a

randomly selected person from either population will be the same, thus using one

interpretation, without more knowledge of the activity groups' dynamics; Ro is identical in

both instances. Relying singly on Ro would not have captured the possibility of these

significantly different outcomes. Ro is meaningless and often misleading without knowledge

of the societal structure of the underlying population. Graph 3.2 illustrates a fundamental

flaw in the usage one averaging parameter such as Ro (or R(t)) as the sole modeling factor.

80000
- High Activity

S---- Middle ActivityS60000 - 198,744 --- Low Activity198,744o - - Cumulative

40000 - - Homogeneous

z / 244,225
20000 -

0
0 5 10 15 20 25 30

Days

Graph 3.2
Comparing spread of infection between heterogeneously and uniformly active

communities of 300,000 individuals.

A central observation of this section is that the socially active individuals are not

only themselves more predisposed to the flu, but are also the key spreaders of infection to

the other groups.



Initially this model was represented in Microsoft Excel, but as more elements

were added to the model, it was transferred to Matlab. Please see Appendix D for the

code of the models presented in this chapter.

3.2 Modeling Diverse Susceptibility Levels

Diversity in human rate of contact is not the only heterogeneity that differentiates

individuals; we can also include heterogeneity of people's susceptibility to infection.

People who have heart conditions, asthma, chronic kidney disease or diabetes, or those

who are taking medications such as steroids are thought to be more susceptible to colds

and flu. Smokers are also more susceptible to upper respiratory tract infection (Cohen,

1993). Even stress can increase a person's susceptibility to the sickness (Drummond,

1997). Susceptibility to influenza also depends on the hygiene and other precautionary

measures that individuals employ. As described in Section 1.2, hand washing, room

ventilation and other behavioral diversity that is commonly observed in our population,

can all impact the likelihood of flu transmission.

In order to model that people have varying levels of susceptibility, we can split

the population into groups based on their vulnerability to the disease; in this case we

define different probabilities of transmission given contact with an infected individual.

We can now define a single rate of contact for the total population of 2(0)=20.66

people/day . We will divide the population into 3 groups, but this time it will be based on

their conditional probability of infection given contact. Let us define,

8 k=20.66 is the average contact rate of the whole population in the basic model presented in Section 3.1.



PH - Conditional probability of infection of the Highly susceptible individuals.

PM - Conditional probability of infection of the Medium susceptible individuals.

PL - Conditional probability of infection of the Low susceptible individuals.
NH - Initial total population of Highly susceptible persons.
NH (t) - Population of Highly susceptible persons active on day t.
SH (t) - Number of Highly susceptible, persons who have not yet been infected on day t.

IH (t) - Number of Highly susceptible infective & asymptomatic persons on day t.
RH (t) - Number of Highly susceptible recovered & immune persons on day t.
etc.

As a result of having one rate of contact for the whole population, calculating f is very

simple; it is the ratio of the number if infected people over the total number of people

circulating in the population. The probability that a random Highly susceptible person

gets infected on day t is:

ps (t) = - e-A()p((t)PH

Graph 3.39 shows how a population with varying levels of susceptibility differs

from a fully homogeneous population. For the sake of fair comparison we ensure that the

population's average susceptibility - the probability of infection given contact - is

identical in the uniform and diverse populations. Table 3.3 has the variables used for

Graph 3.3.

We find that the diverse population in this case has fewer total infections. More

importantly almost all the highly susceptible people get infected, at the end of the

outbreak; approximately 90% of the highly susceptible people get sick. The individuals

with a strong immunity, in the low susceptibility group have a little more than a 10%

chance of getting infected. The minimally susceptible individuals have a small enough

conditional probability of infection, that even if they interact with many infectious

9 To see the equivalent graph for the standard incidence model refer to Appendix C, Graph C.3.



individuals, they rarely get sick. It is important to realize that unlike with a population of

varying activity levels, the highly susceptible people do not drive the spread of infection.

The reason for the significant impact of the highly active group is that the highly active

people both get sick first and spread the virus to many other people. In this case, the

highly susceptible people get sick first, but they are not better at spreading infection then

other individuals.

60,000k

244,225

168,695

F

I
I

-,- Homogeneous
- Cumulative Heterog.
--- High Susceptibility
- Medium Susceptibility
-- Low Susceptibility

20,000

5 10 15 20 25 30 35
Days

Graph 3.3
Comparing the spread of infection between heterogeneously and uniformly susceptible

populations of 300,000 individuals. More people get infected in the homogeneous
population. The low susceptibility individuals in the heterogeneous population rarely

become ill, and as a result that group stays almost completely healthy.

Total population Susceptibility Level
Highly Susceptibility NH 100,000 PH .19
Medium Susceptibility NM 100,000 PM .1
Low Susceptibility NL 100,000 PL .01
Homogeneous N 300,000 p .1

Table 3.3
Values used to simulate immunologically diverse and homogeneous populations for

Graph 3.3.

- 0 8 0 - -- ----- - - - - r - ,_, , 1

40,000



3.3 Modeling Varying Levels of Infectivity

In addition to having individuals who are more susceptible to viruses, there are

individuals who are more efficient at transmitting the virus to other people. Observations

of some diseases have even led to the proposal of the 20/80 rule, which suggests that 20%

of the most infectious individuals are responsible for 80% of the transmission (Galvani,

2005). For instance, during the SARS outbreak in Hong Kong, evidence points to the

existence of superspreaders who contributed significantly to the overall spread of the

virus (Shen, 2004). Superspreaders are individuals who spread the virus to eight or more

people, which is unusually high for a virus such as SARS. While some of the

superspreader instances can be explained by the high activity level of the individuals,

some cases are better explained by the theory that certain people shed more of the virus

than others (Bassetti, 2005). To see the impact of superspreaders in Singapore, refer to

Figure 3.1. It is very clear that while most of the population didn't contribute at all to

transmission, a few people got dozens of others infected.

For other types of diseases, like Staphylococcus aureus, superspreading events are

caused by co-infection with other respiratory viruses. For S. aureus, it has been

demonstrated that newborns whose noses are colonized with this bacterium disperse

considerable amounts of airborne S. aureus and become highly contagious after infection

with a respiratory virus e.g. adenovirus (Eichenwald, 1960). Since the babies are literally

surrounded by clouds of bacteria, they are called "cloud babies". They act like

superspreaders and cause explosive S. aureus outbreaks in nurseries. A similar

phenomenon has more recently been identified in adults (Sherertz,1996).
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Figure 3.1
Number of direct secondary infections from probable cases of SARS in Singapore, 2003.
It is clear that a few individuals contributed much more to transmission than most others.

Over two thirds of the sick didn't spread the virus at all. (MMWR, 2003)

As for the flu, especially for the next pandemic strain, it is unclear if there will be

varying levels of infectivity, but refer to Figure 3.2 to see the heterogeneity in infectivity

for other diseases. There is evidence that the quantity of virus shed is significantly

correlated with severity of illness and fever score (Hall, 1979; Carrat, 2008). This

suggests that the degree of clinical illness may be directly related to the transmissibility

of the disease. It is reasonable to suppose that the more an infected individual coughs,

sneezes, and wipes his or her runny nose, the more of the virus he or she will be

transmitting. In addition, asymptomatic carriers of the flu also have decreased viral

shedding (Carrat, 2008). Lastly, as a result of different behaviors exhibited by

individuals, if infected they are likely to exhibit varying levels of infectivity. An



individual who sneezes into his or her hands, often touches his or her mouth, eyes or nose

and rarely washes his or her hands is likely to be efficient at spreading influenza to

others.
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Heterogeneity in infectiousness for a range of different diseases. The measure quantifies

the proportion of the transmission that results from the most infectious 20% of the

population. Confidence intervals are included where available. Diagram from article by

Galvani and May (Galvani, 2005)
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In order to model varying levels of infectivity we are going to divide the

population into 2 groups and proceed as before. We compose the first group of

individuals who spread the virus very efficiently and the second of those who transmit the

virus at "normal" levels. This implies that if infected, a member of group one is more

likely to infect a random susceptible person than an infected individual from group two.

This does not imply that individuals in group one are more susceptible to the virus. The

activity level of all the individuals in the population, regardless of their potential for

infectivity, is the same. Let, the contact rate for all individuals be 4(0)=20.66 people/day.

Also, let us define the following variables:

p, - Conditional probability of infection given contact with a highly infectious
individual - member of group 1.

N, (t)- Number of active people on day t who if infected are highly infectious.
S, (t) - Number of susceptible persons on day t who if infected will be highly infectious.
I, (t) - Number of highly infectious persons on day t.
R, (t) - Number of recovered/immune persons on day t who were highly infectious.

p2 - Conditional probability of infection given contact with a minimally infectious
individual - member of group 2.

N 2 (t)- Number of active people on day t who if infected are minimally infectious.
S, (t) - Number of susceptible persons on day t who if infected will be minimally

infectious.
12 (t)- Number of minimally infectious persons on day t.
R 2 (t) - Number of recovered/immune persons on day t who were minimally infectious.

Let us consider a random individual. The probability that a randomly selected interaction

of that individual on day t is with an infected individual from the highly infectious group

is:

A (t) I (t)
A(N, (t)+ N2 (t)) N (t)+ N2 (t )



and the probability that a randomly selected interaction on day t is with an infected

individual from the normally infectious group is:

212 (t) I 2 (t)
82 (t) - -

A(NI(t)+ N2(t)) N, (t)+ N2 (t)

We can now derive the probability that a random person, either a member of group one or

group two, gets infected on day t. Let this probability of infection on day t

be pS (t)= pS (t). The probability of getting infected is the same for members of both

groups, the individuals in the two groups only behave differently once infected. Now we

will utilize the fact that the selected random individual has a Poisson number of

interactions with rate 1. Assume that this number of interactions is i. Then the number of

contacts with infected people of high infectiousness is j and the number of contacts with

infecteds of normal infectiousness is k, and this is Multinomially distributed. Then the

conditional probability that the susceptible person gets infected is one minus the

probability that none of the interactions lead to infection. In equation form:

pS(t)= Z e  IZ j!k!(i jk) (t )  (tk t )- 2 ( t - j - k -  p l 1 - p 2

i=l * [j=O k=O

We will now simplify this formula,

-s (t)"= e-[ jp k (ip2 k! 9(t) (t)k (1 I 2 ))i-j k - 2
k

j--O =Oj~ !(i- -k P '- 1)

i=L i! j=O k=o J! k!(i-j-kf

Let us focus on the inner double sum first, and let us define m=i-j.



) k

m !
)I m kfq2(t)k (I _ 1(t)- 82 (t))m-k (I - P2 =

k=Ok! (m - k).

1 k

I m! (8 (t) +2 (t)) (t) (t))m-k 2(t)(1 -P2)

k=O k! (m - k (t)+ P2 (t)

!( ) (= !i _ ( t ) j (1 - p )p (z (Z m, 8 (t) + P2(t), Binomial) p2(t)(1-p2)

= j! (i - j Z 1(t)+2 (t)

(1-P )j ( l(t) + ~2() P2)) + (1 (0 1 2 (t))
A (t) + 2 (t)

= (i!(fl (t) + P2 (P2 Y 1 (t) - P2(t) P2
j=0! j)!

Spz(z i,f 1(t)+ P2 (t)P 2 ,Binomial) fI(t)(1-p)

I (t)+P 2 (t)p 2

= (f()+ A(t) p22

Thus,

ps(t) 1- e- (1- fl(t )p - 82 (t)p 2 ) =

i=1

= 1- p (z A, Poisson)z=l (t)Op-2(t)p 2 =

= 1 e
((1- (t)p -1 2 (t)p2 )-1)

= e
-Afl l

(t)P -A,82 (t)p2

In the above notation, pz (z n, p, Binomial) is the "z-transform", or the probability

generating function of the Binomial distribution with n trials and probability p of a "1".

Generally, for P(N=n)-pn, its discrete transform is defined as:
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and thus

p (z n, p, Binomial) = (pz +(1-p)) and p (z I, Poisson) = e(z)

For a population with multiple infectivity levels, the probability that any susceptible

individual will get infected on day t using the mass action model is:

pS(t) =-e

where 1 (t) is defined the same as in Section 3.1.

Consider a population with an average activity level of A(0)=20.66 and three

different infectiousness levels as shown in Table 3.4.

Total population Susceptibility Level

Highly Infectious N 1  100,000 P1 .19

Moderately Infectious N2  100,000 P2 .1

Minimally Infectious N 3 100,000 P3 .01

Table 3.4

Values used to simulate a population with varied infectivity levels for Graph 3.4.

In this population of varying levels of infectiousness, it is clear that the

infectiousness of the initial individual is going to impact how quickly the virus takes off.

In Graph 3.410 we show the epidemic curves dependant on whether patient zero is highly

infectious, moderately infectious or minimally infectious, and compare these curves to

what would occur in a fully homogeneous population.

10 To see the equivalent graph for the standard incidence model refer to Appendix C, Graph C.4.
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Graph 3.4
Importance of the initial infected person in the timing of the epidemic curve in a

population with varied infectivity levels. When patient zero is highly infective the initial
transmission is fastest.

As expected, if the first infective is highly efficient at transmitting the virus, the

initial spread is fast. When the initial patient is only moderately infective the virus takes a

little longer time to take off. When the initial patient is of moderate infectivity, which is

also the infectivity of the homogeneous population, the timing of the curves coincides.

The results shown on Graph 3.4 are expected values, but they do not indicate the amount

of stochasticity that will be very important in this population with diverse infectivity

groups. If the first person to get sick is minimally infective, it is highly likely that the

virus will never transmit to any other individual. Before a sizeable portion of the

population is infected the presence of minimally infectious people increases the

probability that the virus will never take off."

1 It is likely that the virus may take of at another point in time. In a pandemic the flu will be reintroduced
to fully susceptible communities. For more on this see Chapter 5.



Notice, the cumulative number of people infected stays the same for all curves.

The reason is because every individual regardless of their infectiousness has the same

susceptibility conditional on which infective they encounter. That implies that the number

of new infections in each group is the same. On any day t, the highly infectious

individuals spread the disease and "make up" for the limited amount of transmission by

the minimally infectious.

The number of infecteds on day t, is evenly split between the three different types

of infectivity levels which implies that 1(t) = 82 (t) = 83(t). Let

i (t)+ 82 (t)+ 83 (t)= f (t)

where f(t) is the probability that on day t, a random contact of a selected person is with

an infected individual. Then,

pS (t) = p = (t) = e - A(t)( (t)pI+/2 )p2 +3 (t)3 ) e3

So the heterogeneous group infects the same number as the homogeneous group of the

same size and activity level. However, if we had a second type of heterogeneity in the

model, such as varied susceptibility levels, the curves would no longer coincide. In

Section 3.5 we will provide examples of combinations of these heterogeneities to show

how together their effects amplify the changes on the epidemic curve.

3.4 Another Type of Heterogeneity: Inconsistent Behavior

Another aspect of human behavior which has never been considered in literature,

but impacts the transmission of influenza, is that people change their behavior day-to-

day. For example, in a survey study conducted by Yang-Chih Fu and Yi-Jr Lin, the



results indicated that people's average number of contacts varied based on the weather;

on rainy days individuals have fewer face-to-face contacts then during any other type of

weather (Fu, 2005). Furthermore, individuals who have significant control over the

number of daily contacts, such stay-at-home women and students, have a significantly

different number of contacts based on their mood. Those who are in a "very good mood"

when they wake up in the morning, have more daily contacts on that day (Fu, 2005).

These research findings further support the theory that people's behavior is inconsistent

from day to day. Lastly, this work points out that people who work during the normal

work week have significantly fewer contacts on Saturdays and Sundays (Fu, 2005).

There is another research approach that supports the above conclusions and does

not involve surveys. The work done at the Reality Mining lab at the Massachusetts

Institute of Technology, involves the collection of machine-sensed environmental data

pertaining to human social behavior. Using 100 Bluetooth-enabled mobile telephones the

group has measured the interaction and activity levels of the phone owners over a period

of 9 months (Eagle, 2005). They were able to identify that some individuals have much

more randomness - entropy - in their behavior and activity level, while others rarely

changed their behavior (Eagle, 2005). Their results also indicate that people have

significantly different activity levels on weekends. Most of the subjects who had the

phone were students, and it was noticed that they increased their activity levels during

finals (Eagle, 2005). They even noticed that people significantly changed their activity

levels right before a conference that most of the subjects attended (Eagle, 2005). All of

this supports the notion that people do not maintain consistent levels of activity.



We propose that a fraction of people in our model will change their activity from

day to day. For example, someone who is highly active seeing lots of colleagues at work

on Friday can become an individual of moderate activity only seeing his or her family on

Saturday. Similarly, an individual working from home could be moderately active on

Friday and could have many contacts on Saturday when he or she runs errands and

spends time with friends and family. In the model that we are going to present in this

section, we have people change their behavior from one generation of the flu to the next

generation of the flu. So instead of using 24 hour days to alter individuals' behavior we

use flu generation days that are about 2-3 24 hour days. To clarify, it would be possible to

create a model where people alter their behavior every 24 hours, but this would require

splitting up one generation of the flu into 2 or 3 days and then appropriately keeping track

of the infecteds and susceptibles. Instead of pursuing the more complex approach we

believe that we gain significant insight from our simplified generation of flu based model.

As a result, in the remainder of this section, whenever we refer to a day, we mean a

generation of the flu.

In our model, while the number of people in each activity group stays constant,

the individuals who compose each activity group can change. We define a transition

matrix Q, where qij indicates the fraction of people who will go from activity level i toj at

the end of a day. Note, that Q is a stochastic matrix and must satisfy certain properties to

ensure that all the activity groups maintain their size. If the initial size of each of the

activity groups is the same, then Q has to be a doubly stochastic matrix.

Let us continue and use some of the notation defined in Section 3.1 with the

addition of the following variables:



SH'(t) -Number of highly active susceptible people at the end of day t after all the
infections that occurred through the day, but before people have changed their
activity level.

IH'(t) - Number of highly active people who got infected during day t, but have not
yet changed their activity level.

RH'(t) -Number of highly active immune people at the end of day t before they have
changed their activity level.

Here is how we define the transition between the different activity levels and keep track

of the number of infective individuals:

IH'(t)= PHS (t)SH (t)

SH ' (t) = SH (t) - IH ' (t)

IH (t + 1) = qHHH '(t) + qHMIM'(t) + qLIL'(t)

SH(t + 1)= qHHSH'(t)+ qHMSm'(t)+ qHLSL'(t)

We define pS (t)= 1- e H(t)(t)p as before.

Transmission is slowed down by the presence of such inconsistencies in

individual behavior. Consider a population with three activity groups as described in

Section 3.1. In one extreme case, opposite of consistent behavior, all individuals

completely change their activity levels at the end of the day. For example, consider:

Q= 0 0 1
100

As we showed in Section 3.1, most of the people who get infected on any given day t

would be highly active. Thus, at the end of day t most of the infected people would

change their behavior to the moderate activity level. On the other hand, there are

significantly fewer people who get infected while in the low activity state, thus we would

have very few infected highly active individuals on day t+1. The fact that most of the

infectious individuals would be in the moderate and low activity groups is sufficient to



completely stop the transmission of the virus. In this extreme case, there would not be a

pandemic.

Another extreme, but illustrative case is when each member of the population

reselects his or her activity level for the next day independent of his or her current

activity level. In this case qij=1/3 for all i,j. This case where each individual chooses the

activity level randomly is represented as the "Random Activity" case in Graph 3.5.

Neither of the above extreme cases is likely to be representative of our actual

population; however, a population where a small fraction of the people changes their

activity level from day to day is more likely. Consider population with mostly consistent

behavior, where

17/20 1/10 1/20

Q= 3/40 17/20 3/40
1/20 1/10 17/201

The "mostly consistent activity" and "random activity" cases are compared to the base

case, where Q is the identity matrix, in Graph 3.512 . As a result of individuals changing

their activity levels from day to day, the virus spreads slower through the population. The

timing of the virus, however, is not indicative of the cumulative burden of the infection.

It is very difficult to find input data for this type of heterogeneity. At the same

time there is sufficient evidence that peoples' day to day activity levels change. We have

proposed a way of including this and have shown that this often ignored aspect of human

behavior can have a significant impact on the transmission of pandemic flu.

12 To see the equivalent graph for the standard incidence model refer to Appendix C, Graph C.5.
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Graph 3.5
The impact of inconsistent behavior in the population on the epidemic curve. If people

can change their activity levels the speed of transmission is decreased.

3.5 Combinations of all Heterogeneities

As hinted at before, the different heterogeneities analyzed separately in the above

four sections, are all present simultaneously in our population. For instance, children are

often considered to be highly active individuals, who are highly susceptible to flu and are

known to have high infectivity levels and longer durations of infectiousness. On the other

hand, we have the elderly, who are often considered to have fewer contacts, but are still

thought to be highly susceptible, but maybe not as infectious. In this section we will show

several cases of how these heterogeneities interact amongst each other.

It has been observed that infectivity and susceptibility are often coupled, so let us

consider a population with three groups that have the same activity level of

2(0)=20.66 people/day, but have varied susceptibility and infectivity levels. Let group
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one be the most susceptible and infective, so that they are 1.9 times as susceptible and 1.9

times as infectious as the average individual. Let group two be average susceptibility and

infectivity. Group three will then be the least susceptible and least infectious; 10 times

less susceptible and 10 times less infectious than the average. We define the conditional

probability of infection of an individual in group i given contact with someone in groupj

as pU. Now consider a population with the following matrix of conditional probabilities,

P:

.361 .19 .019

P = .19 .1 .01
.019 .01 .001

which averages out to a conditional probability of infection of p = 0.1. The average

susceptibility of the groups can be averaged out to give the case presented in Section 3.2.

The average infectivity of the groups can be averaged out to give the case presented in

Section 3.3. In Graph 3.613 we see how the doubly heterogeneous population compares

to the populations with one dimensional heterogeneity. It is clear that the simultaneous

presence of the two types of heterogeneities has a very significant impact on

transmission. The group of individuals who are both highly susceptible and highly

infective speeds up and drives the transmission of the virus. When infectiousness and

susceptibility are coupled the group acts a lot like the highly active people in a population

with varied activity levels. Members of this first group are not only the first to get

infected, but are also the ones who get many others infected when they are sick. In this

case, all of the highly susceptible and infective individuals get sick, a little under 90% of

13 To see the equivalent graph for the standard incidence model refer to Appendix C, Graph C. 6.



the moderately susceptible and infective individuals get sick and less than 5% of the

minimally susceptible and infectious people get sick.

120,000 --- Varied Infectivity
0Varied Susceptibility
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Graph 3.6

Heterogeneity in two dimensions: susceptibility and infectivity. The simultaneous

presence of both high susceptibility and high infectivity results in an explosive outbreak
that is driven by this doubly dangerous group.

Realistically, heterogeneity is present at all levels and susceptibility is not always

correlated with infectivity. Thus we will now present the model with heterogeneity in

three dimensions: activity, susceptibility and infectivity. We will consider the case where

there are three levels of heterogeneity in each dimension, so there will be a total of 27

groups present in the population and all combinations of high, moderate and low activity,

susceptibility and infectivity will be equally present in the population. In Graph 3.714 we

present how the triply heterogeneous population compares to the homogeneous case and

the populations with heterogeneity in one of the three dimensions. The triply

14 TO see the equivalent graph for the standard incidence model refer to Appendix C, Graph C 7.



heterogeneous population experiences a rapid growth of the epidemic curve that is driven

by the highly active individuals as well as the people who are both highly susceptible and

infectious. However, not as many people get infected because a large portion of the

population has very low susceptibility and rarely gets sick. In addition, the minimally

infective and minimally active individuals act like absorbers of transmission. When one

of these people gets infected they pass on the virus to very few other individuals.

80,000- --- Varied Infectivity

198,744 --&Varied Susceptibility
0i60,000- -p-Varied Activity

60,000 Homogeneous
-,3-D Heterogeneity

40,000 135,577 244,225
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Graph 3.7
Heterogeneity in all dimensions: activity level, susceptibility and infectivity. The highly

active, highly susceptible and highly infective individuals are the drivers of infection
spread. The low activity, low susceptibility and low infectivity individuals decrease the

cumulative impact of the outbreak on the population.

The presence of heterogeneity in many dimensions is clearly very important when

modeling the spread of infection. In this chapter we present cases where all

heterogeneous groups are equally present in the population. It is likely that when

modeling varied activity levels, it could be important to add a group that is about 1% of

the population, but hose members have over 100 contacts/day. Similarly, the number of



extremely susceptible or extremely infective people is likely to be only a small fraction of

the population. However, since there is little to no data on what values we should use, we

have presented cases where each heterogeneity level is equally prominent. We are not

arguing that this is representative of reality, but feel that this approach best allows us to

make our point.

3.6 Other Types of Heterogeneities

Our social order is very complex and this chapter does not model all the different

types of heterogeneities that exist in our population. The most commonly discussed

aspect of society that has been discussed at length in the literature is the existence of

structure within our population that contradicts random mixing. One approach to remedy

this predicament has been to create age based mixing groups since there is evidence that

people of the same age are much more likely to interact (Mossong, 2008). In addition, not

only are contacts between certain people more likely, but contacts between certain

individuals, like family members, are more intimate and longer in duration and thus more

conducive to infection transmission. To capture this level of detain and complexity we

refer the reader to network models and microsimulation briefly described in Sections 2.4

& 2.5.

Another type of heterogeneity is the duration of the infectious period for different

people. Flu virus transmission on average is less than a week, but sometimes it can last

over 2 weeks (Carrat, 2008). The duration of the incubation period also varies amongst

individuals. People can be asymptomatic spreaders for varying amounts of time. Another



type of heterogeneity is the length of time it will take for the individual to recover and

reenter the population at his or her prior levels of activity. The survival rate is also likely

to vary amongst different groups. In 1918-1919 the young adult population was hard hit,

and they are usually one of the more active groups and are the drivers of the economy.

Also, the death rate amongst pregnant women was incredibly high ranging between 20-

70% compared to the 2-2.5% mortality in other groups. There may be many other types

of heterogeneities, and we encourage people to study and incorporate them into their

modeling work.

3.7 Summary

In this chapter we have outlined some of the most noteworthy heterogeneities and

have shown that they have a significant impact on the epidemic curve and must be

included when modeling pandemic flu. Let us now summarize some of the main findings

in this chapter.

We have been able to determine that activity level is the most important type of

heterogeneity; highly active people are the biggest drivers of infection spread. One

dimensional heterogeneity in susceptibility alters the fraction of the population who

becomes infected. One dimensional heterogeneity in infectivity alters the timing of the

curve. Similarly changing activity levels doesn't play as significant a role as contact rate.

The population attribute that is another driver of infection is coupled heterogeneity in

both susceptibility and infectivity. Individuals who are both highly susceptible and highly



infective drive transmission like the highly active individuals. Here is a little more detail

on these findings:

* Contact rate heterogeneity is a major component that speeds up transmission. The

presence of highly active individuals is doubly dangerous because they are both

likely to get sick early on and they are likely to infect many people if they get sick.

* The presence of multiple levels of susceptibility does not change the speed of

transmission, but can change the cumulative burden of the virus. The individuals

with really low susceptibility rarely get sick, so that group of the population

remains mostly uninfected. On the other hand, the highly susceptible group is

almost guaranteed to get the infection.

* Heterogeneity in infectivity levels does not impact the cumulative number of

infecteds, but can be very important in the initial stages of the outbreak. If patient

zero is not efficient at transmitting the virus to others, the disease could die out with

that initial patient. 15

* Inconsistency in activity levels helps decrease the spread of infection, but is not

likely to make as large an impact as other types of heterogeneities.

* If high susceptibility is coupled with high infectivity in one group, then those

individuals are also likely to get infected early and get many others infected. This

group will drive the transmission of the flu much like the highly active individuals.

The implications of these findings are that, it is important for us to identify the

highly active individuals as well as those who are both highly susceptible and highly

infective. Both of these types of people are drivers of the flu. In order to mitigate the

15 It is likely that the virus may be reintroduced into the population and restarts again, see Chapter 5.



pandemic we will have to either change these individuals' behavior or treat them with the

limited stockpile of antivirals or the pre-pandemic partially effective vaccine.

Unfortunately, neither of these attributes is completely obvious, so the relevant groups

are difficult to identify.

Identifying the highly active individuals is somewhat realistic because people

usually know approximately how many people they interact with on a daily basis even

though that number is likely to fluctuate from one day to the next. However, in a

pandemic it would be highly unlikely that decision makers would announce "If you

interact with more than 50 people a day, get rid of half of your daily interactions."

Identifying the type of people who usually have many daily contacts as a result of their

social standing or occupation would make more sense.

We know that school children interact very closely with many other school

children; thus school children are one group that falls in the highly active category.

Furthermore, university students especially those residing on campus are also likely to be

highly active because they attend lectures and live in dorms with dozens and even

hundreds of other students. As a result one pandemic management approach could be to

temporarily close the organizations that have a high concentration of these high active

individuals; closing down schools is probably the best approach to reducing children's

contact rates. Stopping classes in universities could also be helpful, if students don't

replace class time with other social interaction 6.

Furthermore, certain types of professions: grocery store clerks, servers, salesmen,

doctors, nurses, ministers etc require more social interaction. Another approach would be

to try and identify these high risk individuals before the pandemic. In the case of a

16 For more on planning for a pandemic in a University setting see Chapter 6.



pandemic, these individuals could be educated about their high risk status and given

specifically tailored recommendations on how they could decrease their risks. During a

pandemic there will not be enough time to conduct such detailed studies and develop

customized messages. Classifying a given individual as highly active is not very difficult

because most people could know how many people they see on a daily basis. We need to

take advantage of this and identify the high activity professions and craft the tailored

messages before the pandemic hits.

Identifying the susceptibility and infectivity level of individuals is a much more

complex matter because it is not easily observable. There is some correlation between

infectivity and susceptibility with age. Usually children are considered to be more

susceptible to flu because they have less or no immunity from prior influenza infections.

In addition, children are also known to shed the virus efficiently and for a longer period

of time which makes them more infectious than adults. Another factor that is thought to

impact the susceptibility of an individual to the flu is the overall health of a person.

People with asthma, heart disease, diabetes, AIDS and other underlying medical

conditions are also potentially more susceptible for infection. Coincidentally, both

children and individuals with medical conditions usually have higher than normal

complication rates1 7. This additional factor supports the importance of trying to ensure

that members of this group do not get infected. Vaccinating these highly susceptible and

infectious individuals with an unmatched vaccine may help boost their immune systems

so that they do not get infected. Prophylactic use of antivirals could be another approach,

if sufficient stockpiles of antivirals are available.

17 This was not the case during the 1918-1919 pandemic where the healthiest age group 15-45 was hit very
hard, see Figure 1.3.



Overall, stressing the importance of non-pharmaceutical interventions ranging

from hand washing and wearing masks to decreased social contact is the most realistic

and potentially powerful strategy for protecting at risk individual and drivers of the

outbreak. In Chapter 4 we will focus on these voluntary non-pharmaceutical

interventions and the benefits that they have in slowing down or even stopping the spread

of pandemic influenza.
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CHAPTER 4:

MODELING BEHAVIOR CHANGES AND
THEIR IMPACT ON FLU TRANSMISSION

The range of possible influenza pandemic management strategies can be separated

into medical responses: vaccines 8", antivirals, and non-pharmaceutical interventions

(NPIs): closures, social distancing, self-isolation, masks, etc. Today in the Western

World, NPIs are manifested through voluntary behavior changes exhibited by the

population. Some people have a fatalistic view that nothing short of a vaccine will stop

the flu once it becomes easily transmissible and all other efforts will only slightly slow

down the virus. Unfortunately, no country in the world will have sufficient vaccine

stockpiles while antiviral effectiveness and usage is controversial. There is currently a

dearth of strong evidence illustrating the efficacy of social containment strategies in

decreasing the cumulative burden of infection, which is particularly troublesome given

that many of these interventions will carry significant economic, social, ethical, and

logistical consequences. The World Health Organization (WHO) recommends non-

pharmaceutical public health interventions as a means of containing the infection,

18 Refer to Chapter 5 for models of vaccination strategies.



delaying its spread and otherwise reducing the impact of the disease (WHO, 2004). Our

results indicate that these voluntary behavior altering strategies could be more effective

than expected and must be included in modeling efforts.

It is unlikely that society will implement measures from 1918-1919 making it

"unlawful to cough and sneeze" punishing violators with up to a year in jail (Hudson,

1999). Making it a crime to shake hands and throwing people in jail for not wearing

masks is an extreme measure that would only perpetuate panic and protest. It is expected

that even without forceful implementation people will try to decrease their likelihoods of

getting ill by improving hygiene related behaviors. Most people will not maintain their

daily routines if they discover that there is a deadly disease attacking within their city,

state, country or the world. Based on the information portrayed in the media, individuals

are likely to both limit their daily contacts and decrease the closeness of the remaining

contacts. History has provided us with multiple examples of people responding to news

of a disease by altering their daily behavior.

Recent statistical studies of the 1918 influenza pandemic in US cities have

supported the hypothesis that early implementation of multiple non-pharmaceutical

interventions could reduce transmission rates by 30-50% and lower the peak death rates

by about 50% (Bootsma, 2007; Hatchett, 2007). The timing and force of these

interventions have been attributed as some of the main reasons for the variation of

different cities' experiences (Bootsma, 2007). The array of outcomes ranges from the

Philadelphia one hump epidemic curve lasting a month and a half with a peak excess

death rate of over 250/100,000 population, to the St. Louis two wave four month

experience with a peak excess death rate of less than 75/100,000 population (Hatchett,



2007). The findings of these studies suggest that these interventions within cities helped

save lives during the 1918-1919 pandemic, and may help save future lives.

Those who still doubt the relevance of behavior changes, should consider the

recent example of the social behavior changes that occurred during SARS. One survey

indicates that during the SARS outbreak in Hong Kong 78% of the population covered

their mouths while sneezing or coughing, 76% of individuals wore masks, 65% washed

their hands after contact with possibly contaminated objects (Lo, 2005). Economic factor

studies in Hong Kong, Beijing, Singapore and Toronto indicate that there was a sharp

drop in interactive social activities as restaurants and entertainment centers suffered sharp

drops in clientele (Fan, 2003). Specifically in Hong Kong, tourism was crippled in March

when the WHO issued a rare warning for travelers to avoid Hong Kong and the

Guangdong Province. As a result of weakening demand, airlines slashed more than a

third of flights and hotels in Hong Kong reportedly were up to 90% empty (Wiseman,

2003). In Singapore sales were down about 30% as people avoided stores and malls,

some stores suffered up to 75% declines in sales (Wiseman, 2003). It is clear that

voluntary activities like tourism were strongly affected by fear of the disease. The

resulting adverse economic impact in parts of East Asia was comparable with the 1998

financial market crisis (Schoen, 2003; MSNBC News Service, 2003 a,b). It is apparent

that a lot of people took precautionary measures as a result, and the outcome in Hong

Kong was the 90% decrease in the spread of other respiratory diseases (Lo, 2005)!

Similarly, in a more Western city of Toronto, during the SARS outbreak there

was a reported drop of up to 71.5% in revenue per available hotel room for downtown

Toronto. This translates into hotel occupancy rates in the range of 30% to 40%, instead of
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the seasonal 70% average (Rosszell, 2003). At least five major citywide conventions

were called off, contributing a loss of over 20,000 attendees, and this doesn't include the

vast amount of individual-hotel convention businesses that were also cancelled (Rosszell,

2003). The long list of voluntary behavior changes in Toronto due to SARS includes over

800 bus tours, music concerts, corporate travel, and school field trips (Rosszell,

2003). All these examples are strong evidence that people will not maintain their daily

actions. We know that the effect of these "soft" and self-imposed interventions was

significant (Tang, 2003). There are significant gaps in our knowledge of these behavior

changes, but overlooking these behavior changes is indefensible.

In this section, we provide examples of behavior changes in several different

scenarios. Since there isn't an overwhelming amount of evidence for any one approach to

creating behavior models, we also propose several approaches to modeling behavior

changes that are driven by the presence of the disease in the population. We explain the

differences and motivations behind the approaches in the four models that we presented.

We conclude by extracting the insights from our models and by describing what kind of

non-medical policies and behavior changes have the potential to stop or reduce influenza

transmission.

4.1 Importance of Behavior Changes

Before we delve into how we propose to incorporate behavior changes into our

model, let us explore further why behavior changes are important and relevant. In order

to support the approach of the models that will be presented later on in this chapter we
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need to illustrate two points. First, knowledge of increased risk for a disease causes

people to change their behavior. Second the changes in behavior in turn impact the

probability that people will get the disease.

Let us elaborate on a few examples that show people altering their behavior as a

result of information that indicates that they are at risk of disease. Every couple of years

we hear that schools have shut down in response to a staph or meningitis outbreak, and

we read about the various hygiene improvement campaigns that take place as a result

(McClure, 2009; MSNBC, 2007; Zezima, 2007). Another example is people who alter

their behavior when they learn that they have a chronic disease or are genetically

predisposed for a serious illness. It has been shown that such diagnosis prompts many

people into action as they start to watch their diet, quit smoking and increase the amount

of physical activity (Boyle, 1998; MMWR, 1998). It is very natural to expect that when

they feel threatened, people will do as much as possible to decrease their risks of illness

or death.

4.1.1 STD Driven Behavior Changes & Their Impact

The best studied cases of disease driven behavior changes are sexually transmitted

diseases (STDs), and especially the Acquired Immune Deficiency Syndrome (AIDS)

caused by the Human Immunodeficiency Virus (HIV). AIDS was first identified by US

clinicians in 1981, and throughout 1982-1985 were years of "intense discovery" as

people learned more about the virus. The population group in the West that was

considered the most at risk in the 1980's was the homosexual and bisexual male
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population. Multiple studies have shown how members of this population altered their

behavior as they learned more about the virus.

There were multiple studies of the homosexual male populations in different cities

in the United States; San Francisco was one of the most studied cities. The San Francisco

Men's Health Study focuses on the years 1984-1986 and finds that the prevalence of men

who have more than 10 sexual partners in a six month period declined by more than 60%

(Winkelstein, 1987). Another study identified that the number of monogamous

relationships increased and the fraction of receptive anal intercourse (RAI) without a

condom decreased in 1983 (McKusick, 1985). In this study, the determinant and source

of these behavior changes was seeing a victim with advanced AIDS (McKusick, 1985).

Visualizing the deterioration that results from the virus led people to learn more about the

preventative measures and to become less risky in their actions. In New York, the median

number of sexual partners per year decreased from 36 in the pre-AIDS time frame, to 8 in

1985 (Martin, 1987). Throughout the 1980s, homosexual men all over the country were

taking various measures that decreased their risk of becoming sick (MMWR, 1991).

Over 80% of the AIDS cases in England and Wales have occurred in homosexual

men (Johnson, 1989). In a cohort study of 100 homosexual men in London over 1984-

1986, the researchers found that the median number of partners per month fell from three

to one. The proportion of respondents practicing RAI, with more than two partners a

year, fell from 41% to 16% (Came, 1987). Individuals all over the world were changing

their behavior to avoid AIDS. These marked changes in sexual behavior as a result of the

emergence of AIDS prove our first point: people do take precautionary measures when

their health is endangered.
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While it is difficult to identify how these behavioral changes impacted the

prevalence of AIDS, it is clear that these behavior changes decreased the transmission of

other STDs. In the years 1985-86 there was a marked reduction in rates of Gonorrhea,

syphilis and acute hepatitis B in homosexual men (Johnson, 1989). This demonstrates our

second point: behavior changes make a difference in the overall health of the population

and decrease disease transmission.

Heterosexual members of the population have also significantly altered their

behaviors as a result of HIV and STDs. In a study of female prostitutes in New York,

92% of the informants indicated that they started using condoms as a response to

concerns of herpes and other STDs (DesJarlais, 1987). More recently, the decline in HIV

in Eastern Zimbabwe between 1998-2003 is attributed to the decreased number of sexual

partners in both the male and female populations (Gregson, 2006). In the case of STDs,

there is consensus that people alter their behavior to avoid getting infected and these

actions do lead to reductions in the prevalence of STDs in the overall population (Becker,

1988).

4.1.2 SARS driven Behavior Changes & Their Impact

Possibly the best recent illustration of reactive behavior in the population is SARS

in 2003. SARS was first identified in China's southern province of Guangdong in

November 2002. By February 26, 2003 Hong Kong officials reported their first case of

SARS and no later than March 14, 2003 the virus reached Canada. Overall the virus

spread to some 37 countries all over the world, with 8,096 known infection cases and 774

deaths. During the initial several months of disease transmission in southern China, the
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government tried to deny the existence of the illness. However, in early April there seems

to have been a change in official policy when SARS started to receive much greater

prominence in the official media. Possibly this can be attributed to the death of an

American or the emergence of accusations regarding the undercounting of cases in

Beijing military hospitals. Regardless of the motivation, at that point in time people

started to realize the impact and risks associated with SARS which inspired changes to

their behaviors in order to protect themselves from infection.

Let us elaborate on the response to SARS within Hong Kong. A large number of

SARS cases in Hong Kong were first reported on March 10 th in the Prince of Wales

Hospital and continued until June 2nd (Lau, 2004). On March 2 6 th a second large scale

outbreak occurred in Amoy Gardens (Lau, 2004). As a reaction, on March 2 9th all classes

were suspended (Lau, 2003). On March 3 1st a large number of Amoy Gardens' residents

were quarantined. On April 2 nd the WHO issued a travel advisory warning for Hong

Kong. Afterwards, the situation started to improve. Classes resumed in universities on

April 14 th and while secondary schools reopened in later April, primary schools stayed

closed till May 12th or 19 th . At the end of the outbreak a total of 1,755 SARS cases were

recorded.

During that time phone surveys were conducted by several different research

groups and all groups found that public health measures, such as wearing masks, frequent

hand washing, avoidance of crowded places, disinfection of the living quarters, etc had

been practiced by most of the Hong Kong population (Lo, 2005; Lau, 2003; Lau 2004).

In one of these studies, the progression of the voluntary interventions throughout the

outbreak were recorded. Through ten sequential telephone surveys 1397 adult Hong
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Kong residents were asked about their knowledge and perceptions of the disease, its risks

and fatality as well

4.1 one can find the

as their susceptibility and practice of various interventions. In Table

results of this survey that are relevant to this research.

Initial phase Second phase
Date of interview 3/21 3/22 3/23 3/24 3/28 4/1 4/8 4/11 4/24 5/12 All
New SARS cases on 20 32 20 25 51 80 41 1 28 24 4
previous day
Perceived chance of 3.9 9.2 8.8 11.1 14.3 12.4 7.0 7.1 7.3 4.7 8.7
infection (% very
large/large)
Improved Hygiene
Wearing amask 11.5 16.7 7.7 16.7 66.9 84.3 I87.3 87.7 93.9 85.4 64.3
Hand hygiene 61.5 66.7 63.7 80.3 94.1 95.1 93.7 94.2 94.5 95.9 86.9
Disinfecting home - 36.4 56.8 69.4 72.2 80.0 83.5 73.1 70.1
Behavior
Avoid going outside 28.2 28.2 31.9 36.4 50.0 57.1 62.4 58.7 47.3 36.3 45.8
Avoid crowded 59.0 67.7 54.9 68.2 76.3 85.4 81.0 89.0 81.2 69.6 75.5
places
Avoid visiting 59.7 63.5 52.7 62.1 73.4 75.0 76.4 86.5 79.9 68.6 71.8
hospitals
Avoid using public 14.1 15.4 16.5 24.2 26.6 36.2 27.8 31.0 25.0 17.1 24.4
transportation
Avoid going to work - 2.6 2.2 4.5 6.1 8.1 7.7 7.3 5.5 1.2 4.9
Not allow kids to go - 12.5 35.7 38.1 31.0 36.7 39.6 16.3 31.6
to school

Table 4.1

Results of a telephone survey monitoring community knowledge, perceptions and
practices during the SARS outbreak in Hong Kong in 2003. (Lau, 2003).

It is clear that the perceived chance of infection fluctuated with the number of

people that became infected on the previous day. Furthermore, the various hygiene and

behavioral measures implemented by the population are correlated to the number of new

cases. In this study, the researchers found that the correlation between the number of

cases and the fraction of the population participating in the intervention was highly
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correlated 19 for the initial, escalating phase of the outbreak that lasted through April 1st

(Lau, 2003). As the perceived chance of infection increased, more people started altering

their behavior to reduce the likelihood of illness. From the experience of Hong Kong that

is captured in this study, it is clear that people not only alter their behavior in the case of a

disease outbreak, but the worse the outbreak, the more the population will react. The

importance of timely, accurate, comprehensive information about the disease becomes

vital in this scenario. The researchers conclude that "perceptions are important in

determining preventative behaviors," and that policy makers should be aware of the

importance of the public' reactions. Further in this chapter we will propose several

approaches to including these human behaviors into our model.

Beijing experiences the world's largest outbreak of SARS which began on March

5 th and was resolved within six weeks of its peak in late April. In Beijing there were

multiple government imposed control measures as well as individual driven behavior

changes, but the response seems to have been slower than in Hong Kong. The timeline of

the epidemic curve and the resulting interventions for the Beijing SARS oubreak can be

found in Appendix E. It took till April 2 0 th for the Ministry of Health (MOH) to publicaly

announce the severity of the outbreak. Once people finally recognized the significance of

the outbreak, they educated themselves about the disease. The time lag between

symptoms onset and hospitalization decreased significantly during the outbreak from a

median of 5 to 6 days before April 2 0 th, to 2 days afterwards (Pang, 2003). This

increased knowledge also made people more cautious. An example of resulting voluntary

interventions is the significantly reduced patronage of restaurants during the peak of the

outbreak, while restaurants were never ordered to close (Pang, 2003). Furthermore, in

19 r* is in the range of.85- .97 for the different interventions.
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early May, the streets of Beijing were noted to be virtually empty because people were

trying to avoid getting sick (Pang, 2003).

The first three cases of SARS in Singapore were confirmed on March 6t h and by

May 11th a total of 205 cases were confirmed. The reactions to SARS in Singapore were

also researched through a telephone survey conducted during the time of the outbreak.

The interventions practiced in Singapore were similar to other cities with the exception

that very few - 4% of the survey respondents - wore masks (Quah, 2004). The

researchers also found that those who believed they were more likely to get the disease

reported slightly more anxiety which in turn appeared to motivate preventative behaviors

(Quah, 2004). Thus in Singapore, like in Hong Kong and Beijing, people voluntarily

altered their behavior to improve their chances of staying healthy through the outbreak.

While we see that as a result of the government response, the timing of people's

reactions varied for different cities, but in all cases behavioral changes were observed. In

the next several sections we will present how to incorporate behavior changes such as

improved hygiene and decreased social contact into our model. We will now present

several appraoches that capture the different elements in behavior that have been

mentioned in this section.

4.2 Model 1: Human Concern Factor

As we have shown in the case of SARS in Hong Kong, people will react to the

news of infection spread by altering their daily routines depending on the severity of the
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news. Furthermore, the survey study of Singapore found that people who were more

anxious about becoming sick, practiced more precautionary measures (Quah, 2004).

There are several social behavior models that predict that people will alter their

behavior given knowledge of a deadly infection. Coping responses affect human

functions to moderate and decrease the negative impacts and stressors in life's

circumstances (Pearlin, 1981). Protection motivation theory, the transactional model of

stress and coping, the health belief model (HBM) and behavior intention model (BIM) all

indicate that individuals will attempt to assess their perceived risk or attitude towards the

threat based on factors like threat severity and their vulnerability (TCW, 2004).

Combining threat assessment with perceived response efficacy and level of confidence in

one's ability to react appropriately, individuals determine their intended and actual

behavior (TCW, 2004).

A comparative study of the HBM and BIM in predicting human intentions

regarding the swine flu vaccination program undertaken in October 1976 found that while

the BIM is a better predictor, practitioners can apply the concepts of either model to the

decision making process (Oliver, 1979). Motivated by social science risk perception and

health behavior models, a survey study of 5 European and 3 Asian regions revealed that

in a hypothetical pandemic precautionary measures would be taken across all regions, the

measures included avoidance of public transportation, entertainment venues and partial

isolation within the home (Sadique, 2007). If vaccines and antivirals will be unavailable,

the concern level will increase throughout the epidemic and individuals' coping options

will be to limit their daily contacts and/or decrease the probability of transmission given
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contact. Before delving into these manifestations of altered behavior we explain our

approach in evaluating the overall perceived level of community concern.

It is difficult to predict which kind of information people will use to assess their

"perceived threat". Logical choices for evaluating susceptibility will be the virus'

proximity to home and its virulence, while mortality and morbidity rates are likely to

determine perceived severity. Since we do not specify the death rate for the disease the

number of infected individuals is the best gauge that reflects both community members'

vulnerability to the disease and the severity of the threat. We apply the concepts of the

various behavior models and use this factor to gauge human reaction. While our approach

may seem primitive, there has been little progress in the field of quantitative health

behavior modeling (Weinstein, 2004). In this section we suggest one method for

incorporating behavior changes into our model and it is supported by Sadique's

questionnaire study results. In the next sections we will propose three more approaches to

modeling behavior.

In order to incorporate behavior change into our model we use rx(t) as a feedback

parameter that indicates the "concern level" within Community X on day t. If wx(t)= 1

then there is no anxiety or behavior change within the community, for rx(t)=O the

community practically shuts down. We describe three possible data sets that the

population could use to gauge their risk levels, to define their x(t) and consequently alter

their behavior. Please note, that when we use the term "day" throughout this chapter, we

are referring to one generation of the flu, which corresponds to 2-3 actual days. Since

there is no evidence suggesting one level of time granularity for tracking behavior over
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another, we use the most analytically logical time step: one generation of the flu. This

model was implemented in Microsoft Excel.

1. The first communities that experience the virus will not be able to use the lessons

learned by their neighbors. Early on, the only information people will have will be

the experience of their own community. People may use the number of

yesterday's new infections ignoring everything that happened before yesterday.

We quantify this memoryless approach of evaluating the risk factor as xr'x(t, C):

Number of infected people in Community X from day t -1

The total population in Community X

C1 an input that represents the importance of yesterday's information to the

people. For C1 =1 the number of infected individuals is linearly correlated to the

risk level. As Ci grows, the relevance and impact of yesterday's news grows

exponentially. 20

2. The media is likely to present the cumulative number of infections within the

community, this is another possible data set that people may use to estimate their

risk levels. The related concern parameter is x(t):

2 (t, c2) Number of infecteds in Community X up to and including day t - 1 2

The total population in Community X

20 The authors have not been able to find the application of the behavior forecasting models to predict

general behavior changes in the case of pandemic flu, but we have found numerous examples of HBM used

to estimate altered human interactions to reduce their risk for HIV infection. Studies in this area indicate

that there may be non-linear relationships between the factors and the dependent variable, thus we allowed

for this variability through the addition of the C parameters (Stiles, 2004).
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C2 is another input which represents the strength of impact of this cumulative

information. We acknowledge that C1 will have a smaller impact than C2 of the

exact same value. 21

3. It is also clear that if a city's adjacent communities all get infected the level of

concern within the city will be heightened to reflect the suffering of neighboring

cities. In one study of SARS in 2003 discovered that while people respond to the

events in their own city, they also become more cautious when they see that other

communities nearby are suffering (Shi, 2003).22 This presents us with another

factor in evaluating the behavior change feedback parameter, 7 3x(t):

3t, C Number of infecteds in all Communities up to and including day t - 1 C3

The total population in all Communities that have been infected

Again C3 is an input representing the impact of this information. Notice the

denominator is the population of only the infected communities, so this reflects a

human informational bias that focuses on only the infected communities.

In reality each individual is likely to change their behavior using a combination of

all three described approaches. Yesterdays' information is likely to be the most prevalent

in the mind of the community, but they are also likely to remember the events of the past

several weeks and be aware of the experiences of their neighbors. In our model we can

uniformly alter the actions of people within each group using

x(t, C1, C2, C3)= (t, C (t, C2)* 3X(t, C3)

as the feedback parameter for behavior change.

21 Studies in this area indicate that there may be non-linear relationships between the factors and the
dependent variable, thus we allowed for this variability through the addition of the C parameters.
22 To see the application of this approach where the events in neighboring communities have an impact on
the concern factor refer to Chapter 5.
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The two parameters that will incorporate 7nX(t, Cl, C2, C3) to reflect changing

behavior due to awareness and alarm over the infection are 2 and p.

One other option to determining the concern parameter is an intermediate between

individuals fully remembering all events up to and including yesterday equally or just

focusing on yesterday. This intermediate approach to evaluating the concern parameter is

by having an exponential decay of the memory of events. In this case the number of cases

who got sick yesterday is the most prominent memory, but the day before yesterday is

also remembered, just not as well, etc. For this exponential decay case we would

calculate the concern factor accordingly:

c

x (t, C, ) I Number of infected people in Community X on day t-1-i a'

i=O The total population in Community X

The parameter C as in previous cases is an input parameter that indicates how important

historical information is to the population. The parameter a is another input parameter

that determines how quickly people forget the information; the bigger the a, the faster

people forget. Note, that we will not present the results of the exponential decay model in

the following section. However, to see the graphical representation of the manifestation

of this type of behavior, refer to Appendix F.

4.2.1 Limited Contact

People in all activity levels are likely to decrease the number of contacts that they

have on a daily level. It is highly probable that children will be kept at home, public

transportation will be avoided, entertainment activities such as shopping or going to the
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movies will be temporarily suspended, even the number of contacts within the office may

decrease as conference calls replace face-to-face contacts (Sadique, 2007). All these

behavior changes were observed during the SARS outbreak (Wiseman, 2003). We model

the manifestations of altered behavior by updating the average number of contacts per

generation of the flu, A2, by multiplying it by, nx(t, C1, C2, C3), the appropriate level of

impact. So,

A' (t)= jZx (t, C1,C2,C )

As can be seen from Graph 4.1, relying on yesterday's information as the indicator for

the concern level results in a lowered peak of the epidemic but a much slower decline of

the disease. The cumulative number of infections is decreased, but the virus maintains its

presence within the community for a long period of time requiring sustained vigilance.

However, people are likely to use more than just yesterday's information to define their

behavior. The community can "remember" the number of people who were infected prior

to yesterday, then the prevalence of the virus declines much faster. Graph 4.2 illustrates

the potential success of social distancing in decreasing the cumulative number of

infecteds to a significantly smaller fraction of the total population.23 The main difference

in people's reactions presented in the two graphs is the intensity of the interventions in

the declining half of the outbreak. In Graph 4.2 the interventions are maintained at a high

level until the infection is completely depleted, so we use the second approach to find the

concern factor based on all information up to and including yesterday. For Graph 4.1 the

intensity of the interventions decreases in the later half of the outbreak; the first approach

of calculating the concern factor is applied.

23 Refer to Chapter 5 to see the importance of decreasing the number of infections for the other
communities.
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Graph 4.1:

Infection spread within a community that reacts, by proportional scaling back the average
number of contacts for all its members, to previous day's news only.

The average number of interactions is likely to decrease, but it is unlikely that the 2 's are

going to change to the same degree for each activity level. Highly active people will be

able to decrease their number of interactions drastically, but less active people may be

unable to sever their few, but vital ties to the community. For example, a politician may

decide to cancel his/her campaign rally, stay at home and contact his office through

telecommunication. On the other extreme, a retired handicapped grandmother whose only

daily contact is with her grandson who brings her daily groceries, is not likely to change

her pattern at all.

115



10000
High Activity

8000 - Medium Activity

25,887 - Low Activity
6000 --- Total

4000
Z

2000

0 5 10 15 20 25 30
Days

Graph 4.2
Infection spread within a community that reacts, by social distancing, to news

cumulative over all previous days.

This leads us to consider the scenario where only the highly active individuals, with

many voluntary contacts, limit their daily contacts. The results are presented in Graph

4.3. Just changing the behavior of the highly active individuals has a similar impact as

decreasing the behavior of the entire community. If highly active individuals decrease

their number of daily contacts by about 90% during the riskiest time, then a massive

communitywide outbreak could be prevented. This result has multiple policy

implications. It underlines the importance of closing schools since children have a high

number of non-vital daily contacts within a school setting. All individuals who act as

social focal points should decrease their average number of contacts, especially if this can

be done without disrupting the community.

116



12000 -
High Activity

10000 - - Medium Activity

38843 - Low Activity
'0 80008000--- Total

& 6000

i 4000z

2000

0
0 5 10 15 20 25 30

Days

Graph 4.3
Infection spread within a community that reacts by social distancing only in the highly

active group, to news over all previous days.

4.2.2 Decreased Probability of Transmission

Reduced closeness of contact and improved hygiene are coping mechanisms that

will decrease the probability of transmission given contact between an infected and

susceptible individual. In order to reflect this phenomenon we update the probability of

transmission given contact on a flu generation basis by multiplying p' by the appropriate,

7rx(t, C1, C2, C3), level of impact. So,

pj (t)= pj 'x (t, C,,C2 )

In our model the impact of decreased susceptibility is the same as the impact of

decreased contact. Since our model provides us with the expected number of infecteds,

we incorporate decreased probability of transmission by integrating a multiple of the risk

factor in the exponent. As before, if people start taking precautions based solely on

yesterday's information, they will lower the peak and extend the length of the epidemic
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curve, as seen in Graph 4.1. If the probability of transmission is dependent on all

information up to and including yesterday then the length of the epidemic is shorter; see

Graph 4.2. Also, we can combine the two protective approaches and decrease the average

number of contacts and limit the probability of transmission. For example, to

significantly curb the impact of the outbreak, highly active individuals need to decrease

their number of average daily contacts to 6 and their transmission parameter to about 3%;

the result is presented in Graph 4.3. It is also important to point out that highly active

individuals who cannot limit their contact rate will have to rely tremendously on these

improved hygiene measures, if the want to stay well. To make up for their incredibly high

level of interaction, the high actives will have to use hand sanitizer, avoid shaking hands,

start wearing masks and implement other protective measures.

The timing of the reaction is one of the most important factors in determining the overall

impact of the disease. The benefit of these behavioral effects can be amplified if the

community reacts preemptively before the virus enters their population. For information

on infection spread in a multi community model refer to Chapter 5.

4.3 Model 2: Balancing Tradeoffs

We are now going to shift gears by proposing a different approach to modeling

reactionary behavior. This method considers why people change their behavior and what

drives their actions on any given day. An individual who learns about the presence of a

highly infective and potentially deadly virus spreading through the population will face

the tradeoff between:
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* Maintaining a socially active lifestyle and thus an increased probability of getting

sick.

" The inconvenience or even impossibility of limiting their social interactions, but

also decreasing their probability of getting sick.

In this section we will present a model in which people select their behavior level based

on this tradeoff. In this approach we will not assume that all people alter their behavior,

but only a fraction of the population changes its actions.

For this model we are going to simplify the structure of our population. Let us

consider a uniform population with 300,000 individuals all with the same rate of social

contacts 2=30 contacts/day and a conditional probability of infection p=O. 05. A fraction

of this population will recognize that there is an outbreak of infection and will therefore

alter their behavior. We will call this the "reactive group". Let the fraction of the

population initially in the reactive group be known as y. Let us define the following

variables:

NN (t) - Number of active individuals who are Non-reactive on day t.
SN (t) - Number of susceptible Non-reactive persons on day t.

IN (t) - Number of infective & asymptomatic Non-reactive persons on day t.
NR (t) - Number of active individuals who are in the Reactive group on day t.

SR (t) - Number of susceptible persons in the Reactive group on day t.
IR (t) - Number of infective & asymptomatic persons in the Reactive group on day t.

On every single new generation of the flu, members of the reactive group will be

able to select their activity level between a set of A possible activity level options. For the

rest of this section when we refer to a day we imply a generation of the flu which is

equivalent to approximately 2-3 actual 24 hour days. These activity level options will all

be equal to or less than the rate of social contact in a non-pandemic scenario. While
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several individuals may have more contacts as a result of the pandemic, only decreases in

activity are logical and will be observed at the overall population level. Consider the case

where the reactive group will be selecting their activity out of the following set of contact

rates:

A = {30,20,15,10,5

We will use the following notation: A = 30,..., A 5 = 5. Also, if the activity level

selected is jE= J, then we will use A, as the selected contact rate.

The reason that we do not create a behavior level where 0 contacts are made on a

daily basis is because this type of behavior would be almost impossible for most

individuals. Most people live in homes with their families or roommates. Those who live

alone usually live in apartment buildings. These living situations would make it almost

impossible to avoid all contact unless the government stepped in and isolated people in

separate facilities.

From our A options we can define, pf (t) the probability that an individual will

get infected on day t if they select activity levelj. We assume that all individuals in the

reactive group will be selecting the same behavior. From prior calculations we know that:

pR(t) = -e-Ajl,(t)p

where,

AIR (t)+ AIN(t)

(t) NR(t)+ANN(t)

Now that we have determined the probability of infection associated with each

behavior option, we need to identify the actual benefits and drawbacks of each type of

behavior.
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First, let us define the function u(x) which is the benefit, or utility that an

individual from the reactive group receives on a given day24 when their daily rate of

contact is x. The benefit function, u(x) is likely to be either a linear or a concave function

because each additional contact is likely to have marginally decreasing benefit. We will

first assume that u(x) is a linear function and then change this assumption to evaluate its

impact. This type of function would be accurate for a salesman who receives a fixed

commission for each sale that he or she makes; the more people the salesman sees, the

bigger the commission he expects to receive. Initially let u(x)= x utils.25

If an individual becomes sick, he or she will experience several losses. First, the

person will not be active for the duration of their illness. As in Chapter 3 we define d as

the duration of the sickness. For the sake of numerical examples, let d= 2 days. In

addition to the loss of social contacts during the illness, there is a general loss to a sick

individual. Not only is the flu an unpleasant experience, it can be deadly. So we define

A - the balloon cost of becoming sick. Note, the units for the benefit function and for the

balloon cost should be the same. Let us define A = 1000 utils.

In this case, the objective of the reactive group on a daily6 basis becomes to select

the activity levelj such that:

max (A,)+ p (t)(u(A)d + A)
jeJ

where A is the average of all possible contact rates. For a given epidemic curve we can

determine pRf (t), the probability of infection on a daily basis. As a result, for a given

curve we can determine the behavior that will be chosen by the reactive group. In Graph

24 Day refers to one generation of the flu, equivalent to approximately 2-3 24 hour days.
25 We define a benefit unit - util. Utils are used in economic studies. In future work $ units could be used to
replace utils.
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4.4 you can see the epidemic curve and behavior selection of the reactive group for that

specific curve.

100,000 100,000 -Epidemic curve
Behavior/Isolation level

80,000
cn CD

60,000 Maximal isolation <

.4--
C 0

40,000 4

20,000- ° 2

0 5 10 15 20 25 30
Days

Graph 4.4
The behavior of the reactive group over the course of the outbreak.

You may notice that in this case the behavior of the reactive group is either

maximally isolated or completely normal - a "Bang-Bang" behavior. The reason for this

extreme selection is the linearity of the benefit function, u(x). We will provide an

example of how this changes when the benefit function is concave later on in this section.

If the reactive group is a significant enough portion of the population and if these

individuals change their behavior according to the above predicted approach, then the

epidemic curve is going to change. Therefore, the next step is to recalculate our epidemic

curve assuming that the non-reactive group maintains their behavior and the reactive

members change their daily contact levels according to the pattern predicted by the

original epidemic curve. A new epidemic curve in turn means that the behavior of the

reactive group may be different than for the original outbreak. The next step is to find the
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appropriate behavior pattern for the new epidemic curve, and so we reiterate the process.

For a reactive group that makes up 50% of the total population, the epidemic curve

converges after 2-4 iterations as can be seen in Graph 4.5. Unless the size of the reactive

group is big enough to completely stop the spread of the virus, the number of iterations

till conversion increases with the size of the group. The smaller sized reactive groups

require only 1-2 iterations.

100,000
-Original
-- 1st Iteration

80,000- --- 2nd Iteration
..... 3rd Iteration

a)
• 60,000-

40,000/

..... -W -- 1

5 10 15 20 25 30
Days

Graph 4.5

For a reactive group that makes up 50% of the overall population
converges after 3 iterations.

the epidemic curve

The size of the reactive group is a crucial factor in determining the actual

epidemic curve. As we saw with SARS, it is unlikely that everyone in the population will

alter their behavior. Studies of peoples' perception of avian flu also indicate that peoples'

attitudes and perceptions of risk differ from country to country (Zwart, 2007). Also,

depending on the timing of the community outbreak within the scope of the global

outbreak the size of the reactive group is likely to vary. In the 1918-1919 pandemic, the
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cities that experienced the outbreak at a later period, had more people reactively changing

their behavior (Markel, 2007). One thing is clear: a certain fraction of the population will

change their behavior. As can be seen in Graph 4.6 even for a reactive group which is

only 25% of the overall population, the cumulative infection rate is decreased, and the

peak of epidemic curve is lowered. If the reactive group is 75% of the population, the

transmission of the influenza never takes off; a large enough fraction of people limit their

interactions early enough in the outbreak. While the overall infection rate decreases, it is

important to notice that the duration of the outbreak increases for a larger reactive group.

As long as the susceptible pool is big enough, the virus will persist.26

By altering their behavior during the risky, high-transmission days of the outbreak

the reactive group significantly improves their own chances of never becoming infected,

thus their actions are justified. Furthermore, the change in behavior of the reactive

individuals has some marginal benefit on the infection rate of the non-reactive group.

This is somewhat similar to the concept of herd immunity, which specifies that in order to

stop transmission only a certain fraction of the population needs to be vaccinated.

Similarly in the case of behavior change, as long as a large enough fraction of population

is decreasing overall transmission, those who don't change their behavior still benefit. To

see the infection rates in the reactive and non-reactive groups refer to Table 4.2.

26 The size of the susceptible pool necessary to maintain transmission is different for each of the scenarios.
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Graph 4.6

The impact of varying sized reactive groups on the epidemic curve. The larger the
reactive group the less the burden of the infection. However, unless the virus dies out like

in the case of 75% reactive group, a larger reactive group leads to a longer outbreak.

0% reactive
10% reactive
25% reactive
50% reactive
75% reactive

Infection rate for Non-
Reactive group (%)

68.8
67.4
65.0
61.1
-0

Infection rate for
Reactive group (%)

26.1 *
26.3
27.1
33.6
-0

Cumulative Infection
rate (%)

68.8
63.3
55.5
47.4
-0

Table 4.2

The infection rate in the different groups based on the overall size of the reactive
population.

* If I individual changes his or her behavior, the probability of infection for that individual will be 26.1%

Notably, as can be seen in Table 4.2 as the size of the reactive group increases the

benefit experienced by the reactive group decreases. The probability of becoming

infected for a member of the reactive group that is 50% of the population is 33.6%. While

if only one individual thought to change his or her behavior, that person would have a
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26.1% chance of infection. It occurs because a larger reactive group leads to a longer

outbreak and the increase in duration makes up for the decreased daily infection rate.

This type of decreasing benefit pattern is not consistent for all populations. Refer to

Appendix G for another example where this is not the case. However, this phenomenon

may imply that future studies can consider some game theory applications.

As we mentioned before, the type of benefit function used to determine the

importance of contacts determines whether non-extreme behaviors are ever selected.

Consider the case where the daily2 7 benefit is the concave function u(x)= 5-x .28 Such a

concave benefit function is a very reasonable assumption because for most people seeing

their direct family members is very valuable, while contact with the 3 0th coworker

doesn't bring them much benefit. In this case, as seen in Graph 4.7, the members of the

reactive group decrease their contacts to a level of maximum isolation more gradually

and ramps down the isolations in two steps. Refer to Table 4.3 to see the impact of a

concave benefit function on the infection rate within the different groups.

27 Day refers to one generation of the flu, equivalent to approximately 2-3 24 hour days.
28 The multiplicative of 5 is to ensure that the scales of the linear and concave functions are comparable; the
two function intersect at 25 contacts.
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Graph 4.7

Comparing the behaviors of the reactive groups with linear and concave benefit
functions. A nonlinear benefit function allows for non-extreme behavior choices.

Infection rate for Non- Infection rate for Cumulative
Reactive group (%) Reactive group (%) Infection rate (%)

0% reactive 68.8 22.3* 68.8
10% reactive 67.2 22.2 62.7
25% reactive 64.2 22.2 53.7
50% reactive 59.9 30.3 45.1
75% reactive -0 -0 -0

Table 4.3

The infection rate in different groups based on the size of the reactive population.
* If I individual changes his or her behavior, theprobability of infection for that individual will be 22.3%

In the case of the u(x)= 5x benefit function, the behavior choices of the

individuals are earlier and last longer and thus fewer people become infected. This is not

always the case, and sometimes a concave function can lead to slightly slower reactions.

In either case, the rate of infection and the epidemic curves in Graph 4.8 are comparable

for either type of benefit function. There is very little data that indicates which benefit
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function would be appropriate for the reactive group. While it is likely that a concave

function may be more appropriate for each particular individual, it is unclear if this would

hold for the whole reactive group. We suggest that using a linear benefit function may be

easier for initial studies.

30,000
-Original

25,000 -- 10% reactive
*.25% reactive

20,000 - -50% reactive
,000 -75% reactive

i 15,000

S10,000
Z

5,000 /

0 10 20 30 40 50 60 70 80 90
Days

Graph 4.8
The epidemic curve for different sized reactive groups with concave benefit functions.
The epidemic curves are very similar to those resulting from a linear benefit function.

The main insight from this approach to modeling behavior change is that by

altering their contact levels, people can change transmission dynamics. While the

duration of the outbreak is lengthened, the cumulative burden of infection as well as the

peak rate of infection are significantly decreased. There is even the potential to stop the

outbreak completely.

The models and graphs presented in this section were created in Matlab, refer to

Appendix H for the coding of this model.

128



4.4 Model 3: Behavior Constraints and their Impact

As we have reiterated throughout this chapter, behavior changes will occur in an

influenza pandemic. In the two models that we presented earlier, we argue that people

will alter their behavior and isolate during the "high risk" days of the pandemic. The

question that quickly comes up is: realistically, can people actually isolate for a long

period of time? Is it accurate to assume that those who alter their behavior will do so

consistently during the whole time? As we have seen with the two previous models, the

more forcefully the community responds and changes its behavior, the longer the

outbreak will persist in the community. This idea is also supported by some of the

instances in 1918-1919 pandemic, where cities that were very effective at managing the

infection experienced outbreaks that were twice as long or even longer (Markel, 2007).

As a result the "high risk" days may last for multiple weeks.

Lack of essential items such as food, water and medication reduces the length of

time that people could stay at home in isolation, and increases the burden and urgency

with which the government would need to deliver supplies (Williams, 2005). In Toronto

during the SARS outbreak of 2003 there were large scale quarantines. Through

interviews as well as telephone polling one study focused on the issues that affected the

population's willingness to comply with quarantine (DiGiovanni, 2004). They identified

that sometimes workers had to leave their homes and break quarantine to go to work and

that the continuation of their wages, salaries and other forms of income while they were

not working were important factors in their willingness to comply (DiGiovanni, 2004).

People were also concerned about how they would be supplied with groceries and other

services for daily living (DiGiovanni, 2004). Another study of a mumps outbreak that
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occurred in 2006 on a Kansas college campus found that the longer students were asked

to stay in isolation, the less likely they were to fully comply with the quarantine (Soud,

2009). In addition, a study of London's citizens indicated that less than half of the

population has the emergency supplies necessary for an emergency (Page, 2008). All this

indicates that peoples' behavior would not be consistently isolationist in a pandemic.

In order to incorporate this aspect we develop another approach to modeling

peoples' behavior. As in the model described in Section 4.3 we will have a fraction of the

population - y, be reactive and alter their behavior in order to minimize their risks of

infection. Instead of balancing tradeoffs as before, this reactive group will be attempting

to minimize their risk of infection subject to the constraints that they have on their

behavior. Constraints may be that the individual needs to attend work and go to the

grocery store every couple of days. We will represent that as a constraint on the minimal

number of contacts that the individual will have to make throughout several days, but

other types of constrains could also be modeled using a similar tactic.

We define our model with the same variables as before:

NN (t) - Number of active individuals who are Non-reactive on day t

SN (t) - Number of susceptible Non-reactive persons on day t
I N (t) - Number of infective & asymptomatic Non-reactive persons on day t
NR (t) - Number of active individuals who are in the Reactive group on day t
SR (t) - Number of susceptible persons in the Reactive group on day t
IR (t) - Number of infective & asymptomatic persons in the Reactive group on day t

On every new generation of the flu, members of the reactive group will select their

activity level between a set of Aj possible activity level options. As before whenever we

refer to a day in this section, we imply one generation of the flu, which is approximately
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2-3 actual 24 hour days. For the purpose of numerical examples consider the following

contact rate options:

A = {30,20,10]

Again, we will use the following notation: A1 = 30,..., A3 =10. If the activity level

selected is je J, then we will use A, as the selected contact rate. As before, we do not

create a behavior level where 0 contacts are made on a daily basis. We assume all

individuals in the reactive group will be selecting the same behavior. Yet again, for a

given epidemic curve we can define, p (t) the probability that an individual will get

infected on day t if they select activity levelj:

pR (t)= le-AP,(t)p

where,

AjlIR (t)+AIN (t)
() ANR(t)+ 

N(t)

Unlike before, members of the reactive group have a constraint on their behavior. We can

model different types of constraints in this format, but for the sake of simplicity, consider

the case where the number of contacts that an individual needs to make in 4 days29 has to

be greater than or equal to X contacts. The objective of the reactive group is to minimize

the likelihood of becoming infected, or maximize the probability of staying healthy, over

the entire outbreak while following the above mentioned constraint.

This can be formulated as a dynamic program (DP). Let us define:

F(t,S(t)) - the probability of staying healthy from day t till the end of the outbreak

given that the state on day t is S(t).

29 Four days in the context of our model is 4 generations of the flu or 1-1.5 weeks of actual 24 hour days.

131



The state on day t is defined based on the constraints that the reactive group has imposed

on their behavior. In the case of our example the state S(t) has 4 components - the

behavior selections over the past 4 days including day t. Thus, S(t) = {i, j, k, l} -indicates

that the behavior choice on day t is 1, on day t-1 it is k, on t-2 it isj and on day t-3 it is i.

We will use the F(t, {ij,k,1}) and the F(t,S(t)) notation in our calculations. Lastly, let us

define the set A of combinations {ij,k,l} such that the contact rate over the four days is

greater than or equal to X. So, i,j,k,} E A if Ai + A + Ak + Al 2 X .

Let us call the last day of the outbreak day T, then we know that,

F(T,{i,j,k,1J)= 1- pl (T)

and

F(t -1,{i, ji.k, 1)) [F(t,{j,k,1, m)) * (- p (t)
m, s.t. [i,j,k,mJeA

Using this approach we can find the objective function value max F(O,S(O)) and the

behavior pattern necessary to achieve maximal probability of staying healthy. In Graph

4.9 we show what the behavior pattern would look like for values of X =80, 90, 100.

Notice that when the constraint is a minimum of 80 contacts over 4 days, the better

behavior is to isolate maximally to 10 contacts per day on two days and to be normally

active on the other two days instead of maintaining a constant 20 contacts per day.30 The

"Bang-Bang" approach is better for minimizing the cumulative risk of infection. In this

case the only times that the intermediate behavior is exhibited is when the individual has

to observe a specific constraint and thus cannot isolate maximally. For example, to satisfy

a 90 contact minimum, the behavior pattern is one day of maximal isolation, one of

intermediate isolation and two of normal behavior.

30 Day refers to one generation of the flu, the equivalent of approximately 2-3 24 hour days.
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As before, if the reactive group makes up a significant portion of the population

and its members alter their behavior following the above behavior pattern, then the

epidemic curve is going to change. Thus, we iterate the process of determining the

epidemic curve and the behavior pattern until it converges.

30,000 -Epidemic Curve
25,000 100 contact minimum

80 contact minimum
S 60 contact minimum

S20,000 -

,15,000 - + ++ ++ ++ + + + - 30cts/day

Days

Graph 4.9

Behavior patterns that are selected to maximize the probability of staying healthy
throughout the entire outbreak while satisfying the minimal contact rate.

Let us now see the impact of this type of on and off isolationist behavior on the

epidemic curve. Consider the scenario where the minimal number of contacts in 4 days,

X = 80, so the behavior is two days of maximal isolation followed by two days of

maximally social behavior 31. Depending on the size of the reactive group within the

overall population the epidemic curve is going to vary significantly as can be seen in

Graph 4.10. The corresponding cumulative infection rates for the different sized reaction

groups are presented in Table 4.4.

3 Day refers to one generation of the flu, the equivalent of approximately 2-3 24 hour days.
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Graph 4.10
The epidemic curve for different sized reactive groups that throughout the outbreak

follow the 2 days of maximal isolation followed by two days of active behavior pattern.

Infection rate for Non- Infection rate for Cumulative Infection
Reactive group (%) Reactive group (%) rate (%)

0% reactive 68.8 53.9* 68.8
10% reactive 66.5 51.4 65.0
25% reactive 62.3 47.0 58.4
50% reactive 51.8 37.0 44.4
75% reactive -0 -0 -0

Table 4.4
The Infection rate for different groups based on the size of the reactive group.

* If 1 individual changes his or her behavior, theprobability of infection for that individual will be 53.9%

An important assumption in our model is that all the individuals in the reactive

group isolate and interact in synch. Not only do all the people in reactive group have the

same behavior pattern, but they isolate and interact on the same days as everyone else.

This assumption is the reason that there are oscillations in the epidemic curve, especially

for the case where the reactive group is large. For example when the reactive group is

50% of the total population, the epidemic curve is jagged. This occurs because on certain
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days half of the population isolates simultaneously and this causes the temporary drop in

transmission. When as a result of their behavioral constrain everyone in the reactive

group returns to their normal behavior the transmission rebound to a higher level, thus

creating the jagged pattern in the curve.

Realistically, while there may be some overlap, people will not perfectly

coordinate their isolation behavior. This is somewhat reminiscent of the heterogeneity

presented in Section 3.4. While a fraction of the reactive group will be isolating, different

individuals will be staying at home on different days. If people react and isolate out of

synch, then the epidemic curve will be smoothed out as different individuals stay at home

on different days.

The infection rate is lower in the reactive group, but the difference in the infection

rates for the two groups is not as significant as for model 2. The reason is that even one

day of not following precautions can result in infection. This is especially true for the

cases where the reactive group is small and at the peak of the outbreak the number of

infecteds is very high and any activity during the peak days is very likely to cause

infection. However, the benefit of the reactive group is still significant and translates to a

marginal benefit for the non-reactive group as well. Moreover, if the fraction of

individuals altering their behavior is high enough, in this case 75%, the infection dies out

without infecting a substantial fraction of the population. Lastly, the larger the reactive

group the longer the outbreak persists in the population.

The next question is: what is the impact of the behavioral constraint on the

epidemic? What if the population is prepared with stockpiles of food and other essential

items and can stay at home for a somewhat longer period of time? Let us focus on the
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case where the reactive group makes up 50% of the overall population. The impact of the

constraint on the epidemic curve can be seen in Graph 4.11 and the corresponding

infection rates in Table 4.5; we vary X from 40 contacts to 100 contacts. When the

individuals need only 40 contacts in any four day segment, they maximally isolate, so we

call that the "No restrictions" case.

-Original
-**.100 contact minimum

-- 80 contact minimum
.... 60 contact minimum
-No restrictions

1 10 20 30 40
Days

50 60 70 80

Graph 4.11

Impact of different behavior constrains on the epidemic curve when 50% of the
population is in the reactive group.

Infection rate for Non- Infection rate for Cumulative Infection
Reactive group (%) Reactive group (%) rate (%)

100 min 58.0 50.4* 54.2
80 min 51.8 37.0 44.4
60 min 43.9 24.1 34.1

No restriction 44.3 17.7 31.0
Table 4.5

The infection rates for different types of behavioral constraints, for a population where
50% are in the reactive group.

* If1 individual changes his or her behavior, theprobability of infection for that individual will be 50.4%
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There are several important observations. Consider the most demanding constraint

of 100 contacts; it allows the reactive individuals to maximally isolate only one day out

of four. This one day of isolation not only decreases the peak infection rate by almost a

factor of two, but also decreases the cumulative infection rate from 68.8% down to

54.2%. Also, by requiring people to be active one out of four days, the case of 60

contacts, the cumulative infection rate is 34.1% which is not much worse than the case

where there are no restrictions and the resulting infection rate is 31%. When the size of

the reactive group is small the benefits are significantly diminished. For example even if

25% of the population maximally isolates throughout the entire outbreak, the cumulative

infection rate is still 49%.

What this model reveals is that even inconsistent behavior changes can decrease

the infection burden significantly as long as a sufficient number of people are altering

their behavior. Even if people can't maximally isolate throughout the entire outbreak, it is

very important that as many people as possible attempt to alter their behavior as much as

they can. The implication for the policy perspective is that it is important to focus

resources on educating as many people as possible and encouraging them to change their

behavior. Changing the behavior of the mass is more important than focusing resources

on a few individuals and putting them into maximally restrictive quarantine32

The numerical calculations and graphs presented in this section were developed in

Matlab. Refer to Appendix I for the coding of this approach.

32 Note, in this section we do not have highly active individuals. In the case of highly active individuals
who contribute a disproportionally high fraction to the infection rate, focusing resources may be helpful.

137



4.5 Combination of Models 2 & 3: Balancing Tradeoffs while Following
Constraints

Before we summarize the insights from our different approaches to modeling

behavior changes in the population, there is one more model that we would like to

propose. This method is simply the combination of the two models presented in Sections

4.3 & 4.4: because in reality people both consider the tradeoffs of isolation and

interaction and are not able to isolate indefinitely.

We model this by first determining the behavior pattern according to the dynamic

programming approach described in Section 4.4. Second, for each day that the reactive

individuals consider isolation they also perform the tradeoff analysis presented in Section

4.3. For the days that the individual can't isolate because of their prior isolationist

behavior, the tradeoff analysis is not performed because the constraint on behavior

overrides the tradeoff analysis. In Graph 4.12 you can see the behavior isolation level

that is selected by the reactive group for the epidemic curve shown.

The resulting epidemic curve given this type of behavior pattern for different

sized reactive groups can be seen in Graph 4.13. The corresponding infection rates for

the reactive and non-reactive groups are shown in Table 4.6.

As before, we assume that all the individuals in the reactive group isolate and

interact in synch. Again this assumption causes the oscillations in the epidemic curve that

can be seen for larger sized reactive groups. Realistically, individuals are not likely to

coordinate their behavior strategies, thus the more appropriate epidemic curve will be

smoothed out to a certain degree.
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Days

Graph 4.12
The behavior selection that both balances the tradeoff and follows behavioral constraints

for the shown epidemic curve. The parameters used in this graph are A = {30,20,10},
p=0.05, X=80, u(x)=x, A = 1000, d=2.

30,000

Days
Graph 4.13

The epidemic curve for the case where the reactive group both considers the tradeoffs of
their activity level and satisfies the constraints that they have on their behavior. For this

graph, the reactive groups isolated for a total of 6 days (flu generations).
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Infection rate for Non-
Reactive group (%)

Infection rate for
Reactive group (%)

Cumulative Infection
rate (%)

0% reactive 68.8 56.5* 68.8
10% reactive 66.7 53.6 65.4
25% reactive 63.2 50.4 60.0
50% reactive 56.2 44.8 50.5
75% reactive 0 0 0

Table 4.6

The infection rates for the different groups that both evaluate the tradeoffs of their
activity level and satisfy all behavioral constraints.

* If I individual changes his or her behavior, theprobability of infection for that individual will be 56.5%

For the epidemic curves and infection rates presented in this model, the reactive

group only isolates for a total of 6 days33 out of about 50 days. Even this limited amount

of isolation, significantly decreases the peak and cumulative rates of infection, as long as

the size of the reactive group is large enough. This further supports our previous

statement that it is important to encourage a large number people to alter their behavior.

Furthermore, it is important to coordinate the behavior change so that it coincides with

the peak of the epidemic curve. An early response is great, however it may be dangerous

if it causes people to lower their guards during the peak times of the outbreak.

The model presented in section was implemented in Matlab; refer to Appendix J

for the code.

4.6 The Reproductive Number and Behavior Changes

One of the reasons that the basic reproductive number - Ro is not the best

approach to guide policy is because it doesn't take into account the fact that people are

33 6 flu generation days, which corresponds to 10-18 normal 24 hour days.
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likely to change their behavior during the pandemic. The effective reproductive number -

R(t) is the average number of secondary cases from a typical infective on day t. When it

comes to modeling pandemic flu, there are practically no instances of including the

behavioral response in evaluating R(t). In our case we can determine R(t) for the models

that include behavior changes. The approximation of R(t) for our model is just:

Ij (t + 1)

R(t)= t)
Ij(t)

which is just the number of people who end up infected tomorrow over the number of

people who are infected today.

Using this approach the reader can calculate the reproductive number for all the

models present in this chapter. One of the findings is that R(t) will not be monotonically

decreasing for these models of behavior change. Since peoples' reaction will not be

constant throughout the outbreak, and may even oscillate between maximal isolation and

relatively social behavior, like in Section 4.4, the effective number in certain cases will

also go up and down.

4.7 Other Factors That Will Change Peoples' Behavior

There are several factors that have not been explicitly mentioned in the above

models, but will clearly influence how people will react in the case of an influenza

pandemic. One of the most important assumptions that we made in the above models is

that people will react rationally: decrease their contact rates and improve their hygiene

practices. Actions of this type imply that the population will understand how influenza
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transmits, know how to avoid the infection and respond to the information regarding the

presence of the infection.

An important factor in the Behavior Intention Model (BIM) is the perceived

behavioral control - the ability to perform the behavior (TCW, 2004). If individuals

believe that they can easily fulfill the necessary requirements they are much more likely

to act accordingly (TCW, 2004).This implies that the relevant institutions should be

prepared to implement appropriate leave-of-absence laws and help citizens maintain high

levels of hygiene during the pandemic. BIM also emphasizes the importance of

subjective norms - humans' actions reflect what others believe is the right thing to do

(TCW, 2004). In the course of a pandemic, public figures from local and federal

governments could influence their constituents by explaining the importance of control

measures to the public. The transaction model of stress and coping indicates that in a

stressful situation individuals will demonstrate "information seeking behavior", implying

that the media must portray information in a constructive manner (TCW, 2004).

Educating the public can ensure the cooperation of individuals; when people don't

understand the risks they do not act (Hong, 2006). The main conclusion we draw from

these behavior feedback models is that the information people receive, both about the

extent of the epidemic and our ability to manage the situation, will help determine

peoples' reactions and thus directly impact the course of the pandemic.

As of today, people do not have a very good understanding of pandemic

influenza, how it differs from seasonal flu and what can be done to protect oneself from it

(Janssen, 2006). Educating the public about the modes of influenza transmission should

encourage people to decrease their activity levels. Furthermore, people will need to learn
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the importance of hand and cough hygiene. Knowledge and understanding of the disease

is not sufficient, people must also be capable of changing their behavior. Improved

hygiene measures imply that soap, hand sanitizer and other protective measure supplies

will be available to the public. Limiting social contact assumes that some people will

have the ability to telecommute to work - that the internet and other communication lines

will be up. While we hope that these conjectures will hold in a pandemic, no one can

guarantee that their local WalMart will have a sufficient stockpile of hand sanitizer, or

that our electricity and communication lines will be functional.

In addition to knowledge, understanding and capability to implement the behavior

changes, the public needs to hear a unified and timely message from different sources

informing them about the outbreak. In 1918-1919 Philadelphia city officials denied the

presence of the Spanish Flu while simultaneously people were dying from the virus that

was ravaging their city. While the government's intent was to try and calm the public, the

result was the complete opposite as panic broke out, doctors and nurses were kidnapped

from hospitals and bodies piled up on the streets. On the other hand, during the SARS

outbreak in 2003, the public health officials in Hong Kong very quickly and efficiently

informed the population about the seriousness and extent of the disease. As a result the

population of Hong Kong was motivated to alter their daily actions to avoid becoming

infected.

The results of one study indicate that people will rely on the information provided

by the CDC, information found through the Google search engine as well as general

media (Janssen, 2006). If people focus on the information seen in the media there is a

danger that there may be miscommunication and somewhat conflicting messages
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amongst different sources. Sometimes the news provided by the media can be

sensationalist; this type of approach may cause panic instead of a controlled response.

Today there are many media outlets, and an individual living in New York can very

easily access the Boston news sources to learn about the events in other cities. If people

access different sources for information and find conflicting messages, the results could

be very problematic. If one school district closes its schools, while the neighboring

school district does not, the result could be of confusion and frustration about the

discrepancy. It has also been observed that some individuals are somewhat distrustful of

the government in this type of scenario (Janssen, 2006). People will turn to their

physicians and other sources for information. Quickly and accurately educating

healthcare workers will help reinforce the message presented to the general public. It is

important that all people hear a unified message and coordinated response plan in the

case of a pandemic.

Another issue that is important to take into account and that uniquely applies to

the United States is that this is a country that brings together many cultures. Because of

language barriers and cultural perceptions there are people in the US who do not turn to

American news sources for information. According to the 2000 US census 18% of US

citizens do not speak English in their homes. Approximately 17 million Americans, who

by their own acknowledgement cannot speak English very well, could at worst miss the

entire informational announcement or at best have difficulty understanding the

informational content. Moreover, in certain states like California where 2 out of 5 people

do not speak English in their homes the concentration of non-English speakers is very

high. In a pandemic those individuals are just as susceptible to infection, and it becomes
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important to instruct and inform these people in a way that they will understand. This

means producing the educational materials in different languages. Language is not the

only important factor, sensitivity to cultural and religious differences will also be

important. For example, in the UK there have been instances where Muslim healthcare

workers refused to use hand sanitizer because of its alcohol content (MacAllen, 2007). In

a pandemic, cultural and religious differences are bound to surface and should be

anticipated.

Another issue that could become prominent in determining people's behavior in a

pandemic is the socioeconomic status of individuals. In a pandemic the financially well

established individuals have more control over their work schedules and usually have an

easier time negotiating working remotely or even taking some time off with their

employers (Blain, 1993). This means that reducing contact levels may be very difficult

for certain portions of the population. It has also been pointed out that closing schools

would not burden the middle and upper class, but would create significant burden on the

population in the lower economic levels. Not only will these parents struggle trying to

stay home with the kids while not losing their jobs, but they would also lose the school

lunches that their children receive. Sensitivity to the socioeconomic diversities and

understanding of their impact will also be important in crafting the message to the public.

Another important aspect revealed by a study of the response to the SARS

outbreak is that people respond differently based on the way that the information about

the disease is presented to them. Presenting negative information about the impact of the

disease: the number of cases and deaths, causes people to worry and potentially panic

unnecessarily (Shi, 2003). Presenting positive information like the number of recoveries
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and other success stories in battling the infection helps reinforce positive action in the

population (Shi, 2003). To the extent possible, it is important to pair positive actions that

the public can take to protect themselves and their families with the descriptions of

pandemic influenza and its consequences. A study by Janssen et al. determined that the

usage of extremely negative terms in fact sheets should be used sparsely or edited out and

balanced with positive elements to encourage peoples' cooperation (Janssen, 2006).

Influenza does not see borders, differentiate by ethnicity or socioeconomic level,

thus if we want to successfully mitigate the impact of the flu, the education of and

communication with all of these different groups should create a unified response.

4.8 Implications of Behavior Models

The behavior models presented in this section have multiple implications in the

policy arena. While we presented different models, we were able to make several

overarching observations. Let us recap these different insights.

From the first model that we presented, we saw the importance of the highly

active individuals in the population. Simply by altering the behavior of these very

socially interactive individuals we could significantly alter the course of the outbreak and

decrease the overall infection rate. School children are one example of individuals with a

high level of activity; by shutting down schools and keeping kids at home the overall

infection rate will diminish. Those who have to stay highly active throughout the

outbreak will have to alter their actions in other ways to stay healthy. Doctors and nurses
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but also grocery clerks and other similarly active people will need to rely on hand

sanitizers, masks and other protective hygiene measures.

From all of the models that we have presented in this chapter we have seen that

the timing of the behavior changes is very important in determining their effectiveness.

The results of the first model have indicated that early behavior changes can be incredibly

effective, but only if the measures are maintained throughout the entire outbreak. The

timing of the end of behavior changes is just as important as the timing of their

beginning. If people do not maintain their precautions, a second wave of the outbreak is

likely to occur.

For individuals who cannot self isolate for the entire duration of the epidemic, the

best approach is to isolate during the peak infection period of the outbreak. While in the

context of our model we can easily say which days are the best for isolation, in real life it

is difficult for individuals to identify when the outbreak is about to reach its peak. People

have various responsibilities - work, groceries, other errands - that will require that they

leave their home. Our recommendation is to minimize the risk of infection by staying and

isolating at home for as many days as possible and running all errands during as few days

as possible. Also, the each individual should strive to time his or her outing on the day

with the fewest number of infected people. This strategy of maximal isolation is not

guaranteed to keep the individual healthy, but it does reduce the transmission within the

overall population.

It is important for public health officials to be aware that behavioral changes will

increase the length of the epidemic. While there is a large enough pool of susceptibles left

in the population, influenza can still persist within the community. This is why the timing
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of the return to normal behavior is important. If behavior changes are maintained then the

peak of the epidemic curve is lowered and the cumulative rate of infection is significantly

diminished. Some researchers argue that behavior changes simply "flatten" the epidemic

curve without decreasing the total burden of the infection, but we have shown that this is

not the case. Hopefully, the extra time we gain as a result of these voluntary interventions

will help us buy some time until we have the vaccine for those who have not yet gotten

sick. On the other hand, as a result of this longer outbreak the economic impacts may be

increased.

We have also found that in an outbreak it is important to get as many people to

implement at least minor behavior changes as possible; in this case it is about quantity

rather than quality. From a public health standpoint this means that it is very important to

reach and educate as many people as possible about the disease. The whole population

does not have to turn into qualified doctors overnight. Simply knowing how easily the flu

transmits and how it can be prevented should compel most people to change their

behavior in minor ways and make a difference on a large scale. If the majority of the

population started avoiding crowded public areas, using hand sanitizer and switching to

virtual interaction such as telephone and internet whenever possible, the outcome of the

outbreak could be significantly reduced.

An interesting finding is that the benefit of changing behavior impacts the entire

population. This is somewhat reminiscent of herd immunity. As long as a sufficiently

large number of people alter their behavior the risks of infection for the rest are also

reduced. It is clear that by becoming more cautious, people are less likely to get sick, but
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as a result of never becoming sick they also never have the potential to infect anyone

else. Thus the rate of infection is diminished for everyone in the population.

The most important point that we would like to make in this chapter is that

behavior changes such as limited social contact and improved hygiene must be included

in future pandemic flu models. Behavior is considered to be a decisive factor in modeling

sexually transmitted disease, but has been neglected in the context of other infections. We

have focused on developing ways of relating how people change their behavior in

relation to the epidemic curve. Unfortunately, there is very limited data that we can use to

calibrate and validate our model. While there is a lot of evidence of people altering their

behavior in various outbreaks there exist very few studies that quantify and relate the

changes in behavior to the progression of the disease. Hopefully sociologists,

epidemiologists and other interdisciplinary researchers will record these observations in

the future, and we can improve the accuracy and validity of our models.
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CHAPTER 5:

MULTICOMMUNITY MODEL &

OTHER INTERVENTIONS

In this chapter we will present several features that can be added on to our basic

model: spatial spread and vaccination. Geographical spread of the virus allows us to

estimate the usefulness of travel restrictions. In addition, we can model behavioral

changes that are more gradual and only become more prominent as the virus transmits to

its neighboring communities and becomes a globally recognized threat. We will show

how these strengthening behavioral responses can eventually slow down or stop the

outbreak.

We will also present an approach to modeling vaccination of individuals, to show

the importance of vaccination timing.

Both spatial spread and vaccination have been studied previously in the context of

standard compartmental models. Our findings regarding travel restrictions and

vaccination strategies are in line with work done by other researchers.
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5.1 Multiple Layered Interventions

In the case of an influenza pandemic, it is highly unlikely that any single

intervention will be sufficient to stop the outbreak, but a combination of several measures

may have the chance of halting the spread of infection. Hand hygiene measures are

effective at slowing down transmission, but if the virus is highly virulent and has a

reproductive number, R0z 2 or higher, hygiene improvements may be insufficient unless

people also socially distance themselves. Many interventions that can be implemented

within a community are not mutually exclusive, and need to be assessed and implemented

together. In fact, the CDC has put out a document titled "Interim Pre-pandemic Planning

Guidance: Community Strategy for Pandemic Influenza Mitigation in the United States.

Early, Targeted, Layered Use of Nonpharmaceutical Interventions" discussing the

importance of implementing multiple NPIs early on in the outbreak. We believe that this

can be taken a step further; NPIs, as well as pre-pandemic low efficacy vaccines,

antivirals, and other measures should all be considered and evaluated by modelers as

bundles of interventions.

While we do not evaluate the interplay of these different interventions in this

thesis, we do look at many of the interventions separately, and suggest an approach to

presenting their combined efficacy. It is important to note that the effectiveness of the

interventions will not be additive. For example, using alcohol based hand sanitizer is not

going to be as incrementally beneficial to someone who already washes his or her hands,

but is still likely to be somewhat useful. Each additional measure will decrease the

reproductive number until eventually Ro is below the pandemic causing threshold of 1.

We propose creating a multidimensional boundary defining "tent" that illustrates what
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bundles of interventions are sufficient to lower the reproductive number to below 1. The

effectiveness of various interventions will be on the different axes. All the points below

the boundary tent will be combinations of interventions that are unable to stop

transmission, and the points above are all the bundles of measures that will lead to

disease extinction.

Consider the following simple, two dimensional example. First, we know from

Chapter 2 that the reproductive number, Ro = Ap, where A is the average rate of contact

and p is the conditional probability of infection. Both of these parameters are not disease

specific constant and can be altered through various hygienic, social distancing or even

medical measures. In order to avoid an outbreak, the reproductive number needs to

become less than 1, so the objective is to get to a scenario where as a result of all

interventions Ap<1. In Figure 5.1 one can see the two dimensional threshold tent. It is the

thick red line where Ro= 1, and any points in the gray area under that tent would cause a

disease to die out in the population. Consider a flu strain that is comparable in virulence

to the 1918-1919 pandemic 34 and, without any interventions, has an Ro = 2.0. Thus

without any interventions, the scenario can be described by a point on the green dashed

line in Figure 5.1. In order to stop the transmission, the combination of NPIs and medical

interventions needs to decrease either A or p or both to the gray area, where Ro< 1 and the

virus will die out.

Our crude example can be extended to multiple dimensions, where each

dimension represents a specific type of intervention rather than the aggregate. If

developed, this type of tool would be tremendously helpful for decision makers who

34 The reproductive number for the 1918-1919 pandemic was estimated to be somewhere in the range of 1.8
to 3 (Mills, 2004).
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could test out their multiple intervention policies. We encourage future research in this

area.

100
I" DR0=1
I --- RO=2

80 I .... R0=3
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Figure 5.1

The two dimensional tent where Ro< 1. In order to stop a pandemic, the set of

5.2 Spatial Spread in Past Pandemics

Historical examples show that one infected traveler is enough to infect a whole

population. During the 1918-1919 flu, many Alaskan villages were completely devastated

by influenza because the man who brought the villagers their mail also brought the flu

(Underwood, 2005). In China's remote Shanxi province, the spread of the 1918

pandemic was traced to a single woodcutter, tramping from village to village (Greger,

2006). In Canada, the virus wore the uniform of a stubborn Canadian Pacific Railways

official who flouted quarantine, dropping off infected repatriate soldiers from Quebec all

the way west to Vancouver (Greger, 2006). Some of the only places to escape unscathed
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during the 1918 pandemic were 3 small islands completely shut off from the outside

world; they even refused mail delivery (Herda, 1995). On the mainland one successful

case was a resort town in New Zealand, which went to the extreme of cutting itself off

from the world by using a "rotating roster of shotgun-wielding vigilantes" (Greger,

2006).

There are more recent examples of one traveler sparking a large outbreak; a

pilgrim returning from Mecca was the source of a large smallpox outbreak in Yugoslavia

in the early 1970s. The outbreak resulted in 174 cases and 35 deaths in Yugoslavia

(WHO, 1972). The pilgrim contracted the infection in Baghdad while visiting a religious

site, but because his symptoms were mild, he was never confined to bed and was able to

continue his travels, return home and start an outbreak.

Finally, in the case of SARS, studies indicate that thermal screening and health

declarations of travelers didn't significantly stop the flow of determined travelers or the

spread of SARS (Bell, 2004). Within a matter of weeks in early 2003, SARS spread from

the Guangdong province of China to rapidly infect individuals in some 37 countries

around the world (Smith, 2006).

While travel restrictions appear to be a somewhat intuitive response to stopping

the spread of infection, the examples above indicate that they may not be sufficiently

strict and generally ineffective. The above described scenarios suggest that it would be

useful to develop a model that captures geographical dispersion of infection resulting

from traveling infected people.
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5.3 Fully Connected Multi-Community Model

5.3.1 Two Communities Model.

We are going to add another layer of realism to the basic model presented in

Section 3.1; and that layer is spatial complexity. We developed a loosely connected

multi-community structure using Monte Carlo simulation to model disease spread

between cities. In a two community model each community - Community A and

Community B - has its own demographic and epidemiological composition. In our case

we will construct two communities with identical compositions: 100,000 people in the

high activity, medium activity and low activity groups in each 300,000 people

community. The populations are loosely connected by very few random daily travelers. A

certain number of randomly selected people from each activity level j, TABj , travel

overnight from A to stay exactly one day in B before returning home the next night. In

the base case TABj = TBAj =2, giving us a total of 12 travelers going back and forth

between two communities. During a visitor's one-day stay in the adjacent community his

interaction level is unchanged from what it was within his/her home community.

We initiate the outbreak with an infectious seed in Community A, and the disease

propagates to other individuals within this community (Graph 3.2). Since travelers

continue their movement between communities, eventually it is likely that one of the

travelers becomes infected, thus he becomes the passageway for the transition of the

infection from one community to another. Let us emphasize that there are 2 ways that

Community B can get the infection:
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1. An infected individual residing in A travels from A to B and infects people in

Community B which instigates the outbreak in B (even though the traveler returns

to A at the end of the day)

2. A susceptible individual residing in B travels from B to A and gets infected while

visiting Community A. The newly infected individual returns home to

Community B and becomes the initial spreader within his community.

We have two processes competing to bring the pandemic to Community B. After the

pandemic is in both populations, we assume that the few individuals traveling back and

forth, with or without the infection, will not change the disease dynamics in either of the

communities.

This structure allows us to apply large population-based averaging techniques to

model the infection spread within the community. At the same time, we use Monte Carlo

simulation to model the stochastic person-to-person transmission of infection to reflect

the intra community spread of infection. Using this structure, we address the question: if

the initial case occurs on day 0 within Community A, on average how quickly will it

spread to an adjacent community?

The probability of the virus spreading to a new community changes with every

generation of the flu. Whenever we refer to a day in the remainder of this chapter we

imply one generation of the flu which is equivalent to approximately 2-3 actual 24 hour

days. In order to find the probability that on day t at least one infectious individual from

activity levelj visits Community B, we can "identify" this random individual and find the

probability that this traveler gets infected during day t-1. The probability that exactly k
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infected individuals of activity level j travel from A to B and bring in the virus on day t

is:

jAB (k, t) = (B eAfA (t_1)p )k (eAA A(t_)p TB-k

Thus the probability that none of day t's travelers from A to B are infectious is:

1AB (0, t) =1 e -A8A (t)P TAB

J J

Symmetrically, as long as TABj = TBA for all j, the probability that a traveler from

Community B gets infected and brings back home the infection on day t is the same. So

pAB (k,t) = pA (k,t). Lastly the probability of having the infection enter for the first time

on day i is:

P(i is the lst day of infectionin B)= 1 A(0,t)pA(O,t)* 1- p B(0,i)A(0,i)
t=O j

Notice that the probability of never infecting a neighboring community is greater

than 0, thus the expected time till the next community gets contaminated is infinity. As a

result we can't rely on expected value, instead it is helpful to know the probability that

day t is the first day of infection entering into the neighboring community. From Graph

5.1 we see the probability of infection spread is almost certain if the twelve travelers

maintain their trips and if the virus is relatively transmissible amongst individuals. This

occurs because the high activity travelers are very likely to be infected during the peak

times of the community outbreak.
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Graph 5.1

Probability of having all healthy travelers between the infection source and the
neighboring community on day t.

Performing sensitivity analysis on the transmissibility parameter, we find that if p

is low enough, not only will the infection die out quickly within Community A, but the

probability of spreading to Community B also decreases. As long as the virus does not

achieve epidemic status within the initial community, it is not likely to transfer to

neighboring towns, but heterogeneous communities make the infection more persistent. If

the initial seed community had a homogeneous population where all individuals had a

contact rate of 20.67 contacts per day, a conditional probability of transmission p<0.0484

should be sufficient to stop the pandemic. Given a heterogeneous population such as the

one presented in this section, the conditional probability of infection has to be p<0.03 for

the infection to die out. The presence of highly active individuals not only drives the

spread within the initial Community A, but also the highly active travelers end up driving

the infection spread to other communities.

162



5.3.2 Travel Restrictions

During SARS, some governments forced travel restrictions, and even simple

travel advisories decreased the number of voluntary travelers to SARS infected

communities (Bell, 2004). This suggests that travel patterns will change in the case of flu,

so it is interesting to further consider the potential effect of travel restrictions. We varied

the number of travelers between the cities from our baseline number of 12 daily35

travelers to between 1 and 120 daily travelers. In the case of one daily traveler, the person

is a highly active individual. Realistically, highly active individuals are more likely to

travel outside of their community than the recluses. Notice that the direction of the

traveler, whether it's A to B, or B to A, is not important.

Our results for a varied number of travelers are summarized in Graph 5.2. As the

number of travelers increases, the infection becomes more likely to reach the adjacent

community earlier. This suggests that Japan's plan to fly home all of its citizens in the

event of a pandemic (Shimbun, 2009) may cause it to be one of the earlier countries to

become infected. The startling finding is that even with one daily highly-active traveler

between the two communities, the disease still spreads to the adjacent community with an

incredibly high probability. This indicates that travel restrictions, unless 100% effective,

will fail to stop infection spread. During the outbreak, the number of sick grows

exponentially while the restriction only decreases travel by a fixed factor. As a result,

incomplete travel controls only delay the spread by one or two days, until the

exponentially growing number of sick becomes high enough and any traveler is highly

likely to become sick.

35 Day refers to one generation of the flu, equivalent to approximately 2-3 24 hour days.
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In order to stop the disease from moving into a neighboring city, all travel must be

stopped and the intervention must be initiated early on (-Day 5) and sustained beyond the

peak of the epidemic (-Day 15) until the threat of the transition is small (Graph 5.1).

Since travel restrictions need to last during the peak of the epidemic, the more virulent

strains of the virus, which flame out faster, would require earlier, but shorter travel

restrictions. Travel restrictions would be more burdensome when used in combination

with other interventions and behavior changes that spread out the virus over a longer

period. Lastly, once a travel restriction fails and an infected individual enters a fully

susceptible town, the travel restriction becomes totally useless because it does not change

the dynamics of the disease within the newly infected town. Overall, travel restrictions

are expensive, almost impossible to implement and are often ineffective.

0.5- 1 traveler/day
0.4 12 travelers/day

S120 travelers/day

" 0.3

2 0.2

0.1

0-
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 oo

First Day

Graph 5.2

A histogram of the first day of infection spread in Community B which is adjacent to the
source community. Even if the number of travelers is decreased from 120 to 1 person a

day, influenza is still highly likely to spread.
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5.3.3 Three Communities Model

Consider a fully interconnected three community model with one initially infected

community and two neighboring susceptible communities; this is shown in Figure 5.2.

This model was also implemented in Microsoft Excel.

0 TAB
Community A TBA Community B

TBC

TCA
TAC TC

Community C

Figure 5.2
The fully interconnected three community model

As can be seen from Graph 5.3, in this case the disease spreads almost

concurrently to all of its adjacent communities. In the scenario where susceptible cities

are connected to multiple sources of infection, the community experiencing a more

severe outbreak will dominate infecting new cities. Today the number of commuters

between nearby cities is high; management consultants are an example of people who are

likely to criss-cross the world in the course of a week. Given the highly connected nature

of our society, unless preventative measures are put in place, the virus will spread very

rapidly attacking many cities in a very short time. This could be a catastrophe for

emergency systems that would face the equivalent to 50 Hurricane Katrinas hitting the

165



United States all at once. This scenario would leave no one immune and capable of

helping out others; communities will have to fend for themselves.

160,000 - cnmm init,, A

120,000

80,000

40,000

0 5 10 15 20 25 30
Days

Graph 5.3

In a fully connected three community model, the virus is likely to spread to both the
adjacent communities at approximately the same time. Given the interconnected nature of
our country, this implies that all cities are likely to be hit within a short time period, and

no one will be immune and able to help out others.

5.3.4 Chain Community Model

Next we address how the infection spreads to an indirectly connected community

over a longer period of time. We create a chain model where the population consists of 5

communities labeled A through E and all travel is restricted between "adjacent"

communities. (i.e., A residents can only visit B, B residents can only visit A or C, etc).
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We implemented this multi-community model in Microsoft Excel. Figure 5.3 is a

depiction of this chain model.

TBA TCB TCD TDE

A B C D E
TAB TBC TDC TED

Figure 5.3
A five community chain model

This stylized model allows us to study the spatial disease propagation through a set of

towns along the river, interstate or trade route. We avoid creating complicated

community connection schematics that would be area specific, but detailed

geographically tailored models exist (Ford, 2006; Colizza, 2007).

In addition to insight on infection spread on a larger scale, we can use this model

to consider the effectiveness and timing of interventions impacting several communities

over time. As seen in Graph 5.4, for our base case with no interventions, once the

infection enters a new community, the outbreak scenario is repeated from one community

to the next. However in real life, communities that experience the outbreak later on, such

as Community E in our model, will react differently than the first community to get

infected. As the government and the public learn more about the disease, they will apply

the lessons learned in the early infected communities to control and alter the course of the

epidemic. A model should incorporate these response and control strategies that occur

over the course of the global infection transmission. This provides a direct segway into

the next section: modeling preemptive behavior changes that reflect the events of

neighboring communities.

167



Graph 5.4

Default case of infection spread through a chain of communities that do not implement
any interventions; the same outbreak scenario repeats over and over again.

5.4 Modeling Preemptive Behavior Changes

In the case of SARS, researchers recorded that even in regions which were not

affected by the disease, people changed their behavior because they were concerned that

the infection will eventually enter their community (Shi, 2003). This type of preemptive

behavior can be modeled using the concern parameter approach that was presented in

Section 4.2. As we mentioned in that section, the outbreak related events occurring

within neighboring communities are likely to spur on a response within a community

even it has not been infected.

Now that we have a multi community model, we can present the numerical

examples of the previously mentioned neighbor based concern factor in evaluating the

behavior change feedback parameter, Z3x(t):
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3 (t, C3)= - Number of infecteds in all Communities up to and including day t - I C3

The total population in all Communities that have been infected

C3 is an input representing the impact of this information. Notice that the denominator is

the population of only the infected communities: this reflects a human informational bias

that focuses on only the infected communities. It is also important to remember that the

concern parameter is a multiplicative factor that decreases the populations' contact rates -

As - and conditional probability of infection -p.

We implemented this multi-community concern factor model in Microsoft Excel

and had the following results. In Graph 5.5 we present the case where Community B

responds to the outbreak that occurs in Community A. For the horizontal time axis in this

graph, day 0 is the first day of flu transmission within Community A, the initial seeder.

For the case shown in the graph, the virus enters Community B through one highly active

traveler on day 7. Note that since the spread of infection is a Monte Carlo simulation, in

other trials the virus could have entered Community B on an earlier or later day. By day

7, the members of Community B have already significantly changed their behavior. By

day 11, the third day of infection transmission within Community B, the population has

already almost maximally isolated. This very early and maintained behavioral response is

the reason that the outbreak only impacts a small fraction of Community B. When

comparing this to the scenarios presented in Section 4.2, it is clear that the most cautious

communities that change their behavior prior to the infection entrance are the most

successful. This voluntary public action will also decrease the probability of the infection

entering the community in the first place. However, if the behavioral response is not

maintained, the virus can reenter the community and instigate another outbreak.
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Graph 5.5
Infection spread within a community that reacts, by social distancing, to news

cumulative over all previous days across all communities.

Timely and maintained behavioral changes are an important strategy for

mitigating the impact of the pandemic. However, it is highly unlikely that people will

drastically alter their behavior based on the experiences of one neighboring community.

The behavior changes are likely to be more gradual as communities learn from each

others' mistakes. Refer to Graph 5.6 to see how the experiences of prior infected

communities can benefit the communities further down the infection chain. This gradual

decline in transmission in the communities that experience the outbreak later on was

observed in 1918-1919. In the United States, the East coast which was hit first, suffered a

higher rate of infection than the West coast. It is impossible to prove that behavior

changes and not viral mutations were the reason for this decrease in infection spread.

However, the behavior changes observed on the West coast were more dramatic than on

the East coast and this could have contributed to the decrease in infection rate over time.
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Graph 5.6

Infection spread in a linked chain of five communities where each implements an

intermediate level social distancing based on experiences of the previous communities.

While the behavior changes may not be immediately sufficiently stringent, they

do have the potential to stop or at least mitigate the impact of an influenza pandemic.

Every single individual in the population has the power to alter his or her behavior and

change the course of the outbreak. When compared to other intervention strategies,

behavior changes are the only approach that empowers the public without relying on

medical supplies.

5.5 Vaccination

No country in the world will have sufficient vaccine stockpiles that are ready

before the onset of the epidemic to cover the entire population. Given the current

practical considerations for vaccine development - manufacturing capacity, ability of
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candidate vaccine strains to grow in eggs, and the biological safety containment of parent

strains - at least four to six months after the isolation of the virus will be needed to

produce the first doses of vaccine (Stohr, 2004). At the same time, many believe that if

we are able to slow down or prevent infection spread for those 4 to 6 months, eventually

the vaccine will be the ultimate cure for the epidemic (Monto, 2005; GlaxoSmithKline,

2007). New cell based production lines give people hope that the wait for an effective

vaccine may be shorter. Since a large fraction of experts are relying on vaccine

effectiveness, we briefly propose a method to incorporate vaccination strategies into our

model.

We implemented the following vaccination model in Microsoft Excel. In our

simple model we assume that vaccination equally changes the conditional probability of

infection given contact with an infected individual - p - for all vaccinated individuals. In

this model, vaccine efficacy is determined by the parameter Veff. Thus the probability of

becoming infected on any given day for a highly active and vaccinated individual from

Community A becomes:

vA - AA(t

PH (t) 1-e

Note, we acknowledge that there are no vaccines which offer perfect protection, or

vaccination strategies that perfectly identify individuals' activity levels. Also, vaccine

effectiveness can sometimes manifest itself through a less severe infection in an

individual who got infected regardless of the vaccination. Unfortunately there is very

limited data that can indicate how effective the pandemic flu vaccine is going to be. Our

goal in this section is to gain insight that can be applied to develop reasonable policy

recommendations even without precise parameter data.
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Since the amount of vaccine, especially early on, will be limited, vaccination

plans require judicious and preplanned distribution of this minimal supply. We consider

targeting certain population groups as a possible strategy for better vaccine allocation.

Before addressing the tradeoffs between vaccine efficacy, vaccine quantity and the

delivery time, we confirmed that the most beneficial allocation of limited vaccine is the

prioritized distribution of the vaccine to the most socially active individuals, who have

not been infected, as early as possible. As discussed in Chapter 4, during a pandemic

scenario many members of the community will self isolate. At the same time certain

people may not be able to significantly decrease their average daily number of contacts.

Doctors, nurses even grocery store cashiers are all likely to still have many contacts and

these individuals are the ones that should be the first to receive the limited vaccine. This

prioritized distribution will not only ensure the least number of infected individuals, but

also provide the most resilient social structure for the duration of the pandemic.

Next we found that given a limited vaccine supply, it is best to focus on stopping

the infection in specific cities rather than equally dividing the vaccine amongst all

potentially susceptible cities. For example, suppose there is sufficient vaccine for either

1) vaccinating 90% of the highly active population in Community A or 2) vaccinating

45% of the highly active individuals in both communities A and B. While the first

vaccination strategy may seem unethical or unfair to members of Community B, it is the

better strategy in the sense that it will result in fewer cumulative infections. It will also

decrease the likelihood of Community B ever getting infected. While this raises moral

concerns, we do not address them in this paper. This implies that in the unlikely case that

the United States manages to avoid or delay the spread of influenza until vaccines are
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available, the best strategy would be to focus vaccination efforts on major hub cities such

as New York, Washington DC, Los Angeles, Chicago, etc. These cities are highly likely

to be the first to become infected due to the high number of travelers and commuters. If

the infection rates become high in these cities, it becomes very probable that they will

cause the infection to spread to many other communities.

Another tradeoff that should be considered is between a larger quantity of less

effective vaccine versus a smaller quantity of more effective vaccine. The precise

antigenic properties of a nascent pandemic strain cannot be predicted ahead of time;

however, stockpiles of vaccine for the expected strain are often created ahead of time.

There is even talk of a universal vaccine. This vaccine supply is likely to be poorly

antigenically matched to the actual pandemic virus, but it will be available in larger

quantities earlier on. First we address the question of quality of effectiveness versus

quantity of the vaccine. We compared the pandemic curves between communities where

the vaccine effectiveness was the vaccine quantity and vice-versa. For example, we

compared a vaccine that is 30% effective and is distributed to 85% of the individuals to a

scenario where a vaccine of 85% efficacy is distributed to 30% of the population. The

results are practically identical for the two cases. This suggests that stockpiling simply for

the sake of quantity may not be the best strategy.

The true benefit of stockpiling lies in the ability to have readily available vaccine

very early on. It is clear from Graph 5.7, which depicts the effect of vaccination timing,

that the vaccine will only be effective if it takes effect in less than seven days after the

virus enters the population. Mass vaccine production takes several months and several

weeks are necessary before an administered vaccine becomes effective. This suggests that
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unless we can have stockpiled quantities of a viable vaccine we will not be able to rely on

vaccination.

0 5 Days 10  15 20

Graph 5.7

In all cases 50% of the highly active individuals are inoculated with a 75% effective

vaccine. The varying factor is the day that the vaccine starts protecting the vaccinated

individuals. In order to significantly reduce the total number of infected individuals
vaccination has to be administered very early on.

Since there is no guarantee that the vaccine will be equally effective in all

individuals, we consider a possibility where a certain portion of the vaccinated people

experiences lesser benefits of the vaccine either as a result of improper administration or

biological diversity. This is also similar to administering two types of vaccine: the

stockpiled less effective vaccine and the antigenically matched vaccine. We incorporate

this by splitting the vaccinated population into further groups, of those who experience

the full benefits of the vaccine and those who feel a lesser benefit. Now we define two

parameters: VHeff high vaccine efficacy, VLeff low vaccine efficacy. The remaining

calculations are identical. We compare scenarios where the average vaccine efficacy is
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the same regardless of the uniformity of the efficacy. We find that the vaccine that is

uniformly effective in all vaccinated individuals is slightly worse than the vaccine that

has different benefits for different people. For example, it is preferable to have a vaccine

that offers 100% protection in 50% of the vaccinated individuals and 0% protection for

the rest then to have a vaccine that provides 50% protection in all of the vaccinated

people. It is also clear that the gap defined between these two scenarios grows if we

assume optimal allocation and larger quantities of the vaccine.

Given our current egg based production vaccines it is highly unlikely that

vaccines will be available early enough. If vaccine manufacturing capability is

revolutionized through the usage of cell based vaccine production technology, using

vaccines to protect the population becomes a much more important strategy. Regardless,

it is clear that in the first months of the outbreak the population will have to rely on

behavior changes and other types of NPIs to keep the levels of infection low since

initially vaccines will not be available.

5.6 Policy Implications

In this section let us quickly review the policy implications of our spatial spread

and vaccination models.

Travel restrictions are impossible and useless once the infection is circulating

within the country. There is no easy way to regulate the travel patterns of all individuals

through all transportation networks including cars, buses, trains, etc, so the restrictions

will be imperfect. Imperfect travel restrictions are extremely costly, but even worse, they

are futile. Our recommendation regarding travel restrictions is to avoid government
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enforced travel restrictions, but possibly create early travel advisories before the virus

enters the country to prevent recreational and voluntary travel and potentially delay the

pandemic without severe economic losses.

From our research we find that while these advisories may slightly delay the

spread of the flu, they will not stop it from reaching the US. Virtually every community

in the US should be prepared that they will become infected. The focus of these

communities' mitigation strategies must be inner-community interventions and behavior

changes: social distancing, hygienic steps, etc. If communities are able to decrease their

maximum number of daily infected individuals they will reduce the probability of intra-

community infection transmission as a byproduct of the inner community action.36 Our

findings are encouraging and support the hypothesis that limited interaction will decrease

the effect of the pandemic. The deeper insight of this result is that these interventions are

effective because they attack the source of the problem by decreasing the exponential

growth factor. Preventing exponential explosion of the number of infecteds will prevent

the pandemic.

Preemptive behavior is effective in decreasing transmission. It is critical for all

people to remember the effect of the epidemic and maintain their distance beyond the

peak of the outbreak. The media should present information regarding the events over the

whole duration of the epidemic, remind communities about the state of other

communities, educate individuals and empower them to take preventative action. These

informative messages will help shape human behavior and ultimately that will determine

the course of the pandemic.

36 The reverse is not true. Travel restrictions have no impact on inner community infection dynamics.
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Vaccination will only be effective if it is administered early on in the outbreak

before transmission explodes exponentially. Obviously there is no reason to vaccinate

already infected or recovered individuals. Vaccines don't become immediately effective

after inoculation, so the population needs to be vaccinated before the virus even enters

the community. If the virus is already present in the population, then behavior changes

will still need to be maintained for a certain period after the inoculation.

One of the other reasons that we do not put as much focus on vaccination in this

thesis is because any vaccination strategy has significant ethical implications. There are

three different potential objectives for a vaccination strategy. Two of these are tradeoffs

that have been argued in the context of seasonal flu are: 1) protect and vaccinate the

individuals who are most likely to die if they become infected or 2) vaccinate the

individuals who are the biggest spreaders of infection. The third objective in a pandemic

is 3) protect the social infrastructure. In 1992 for seasonal flu, individuals 65 years of age

and older accounted for 89% of influenza deaths (MMWR, 15); the elderly consistently

have some the highest mortality rates. The age group known to drive the spread of

seasonal flu is school aged children, but children are not known to have death rates that

are as high as of the elder population. Lastly, the individuals who support the social order

and structure are working adults - doctors, policemen, firemen, nurses etc. In order to

develop a vaccination strategy one has to rank these objectives. We do not attempt to

resolve this ethical debate.
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CHAPTER 6:

PANDEMIC PREPAREDNESS AT UNIVERSITIES:

CASE STUDY OF MIT

There are about 17.5 million students attending colleges and universities in the

United States. In an influenza pandemic, universities - much like companies and other

institutions - would have to make multiple decisions about how to protect their

organizations and assets while managing their operations with a limited number of

employees, enduring supply chain disruptions and suffering financial losses. Many

private firms across the US have begun to acknowledge the potential difficulties that they

would encounter in a pandemic and have started to develop preparedness plans in case an

outbreak occurs. Universities differ significantly from other private businesses. One

substantial distinction is that universities are responsible for a large number of students

who are highly active; they attend multiple lectures, participate in clubs, eat in dining

halls and live in residential halls, etc. This high level of social and face-to-face academic

activity makes university populations highly vulnerable, so academic institutions should

create their own pandemic preparedness plans that are tailored to their unique

environments.
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In order to assist universities and frame the preparations for a pandemic the

Department of Health and Human Services (HHS) and the Centers for Disease Control

and Prevention (CDC) have developed a checklist for colleges and universities. The

checklist is split up into four sections:

1. Planning and Coordination
2. Continuity of Student Learning and Operations
3. Infection Control Policies and Procedures
4. Communications Planning

While this checklist does bring up some very relevant issues that must be addressed by

planners at universities, it provides more questions than answers. Furthermore, this

checklist provides much more guidance in sections 1 and 4. While it is crucial that

universities designate decision making roles and establish communication channels with

their own community as well as with outside public health and other government

officials, these are only the first steps in a thorough plan. The most challenging aspects

are the logistics and implications of various a decisions. Unfortunately, on these matters

the HHS and CDC provide little to no guidance.

In this chapter we discuss in detail some of the difficult questions that universities

encounter when creating their pandemic flu policies. We use Massachusetts Institute of

Technology (MIT) as a concrete example to illustrate our observations and provide

analysis. Given that the author of this thesis is a graduate student at MIT, personal

insights and experiences are used to support certain claims. In addition, the author's

position as a Graduate Resident Tutor for an undergraduate residence hall gives her a

unique view into undergraduate dorm life at MIT. Throughout this chapter we will utilize

these personal experiences, insights from emergency planners at MIT: Bill

VanSchalkwyk, Peggy Enders, Philip Walsh, David Barber and Susan Leite, and
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discussions from the Boston Consortium Pandemic Flu Readiness Workshop held on

January 23, 2009.

We proceed by first outlining the main priorities of universities in a pandemic.

After an initial discussion over a wide range of issues, the chapter focuses upon the

difficult, yet pivotal decision regarding where the student body of a university should go;

i.e. should the students be sent home or kept on campus? We conclude by mentioning

some of the technical difficulties of developing a pandemic plan and provide some

possible approaches to encourage the preparation of universities for pandemic influenza.

6.1 What Makes Universities Different?

Most organizations care about the well being of their constituents, but few

institutions have the same responsibility over hundreds or thousands, and in some cases

tens of thousands of students as colleges or universities do. Unlike a typical employer, a

university can not always send a student back home at the end of a day because the

university dormitory is their home. The uniqueness of this situation where individuals are

on campus day and night is only rivaled by military or penal institutions. Furthermore,

these students are usually very active individuals with high contact rates because they

attend lectures with dozens of people, participate in club activities, study together and

share living quarters. From personal experience, as a graduate student who no longer

attends lectures with a hundred or more people in the audience, the author's average

number of face-to-face contacts is approximately 40 people/day. Thus according to our

findings in Chapter 3, university students are at high risk for early infection. Assuming
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there are no radical age group dependencies in susceptibility or infectivity, the

reproductive number, Ro of most university populations is likely to be significantly higher

than that of the overall population. In order to stop or reduce transmission, the behavior

changes in the university population will have to be more drastic than in the overall

population.

One substantial core difference between universities and private companies is the

mission statement. While firms focus on making profit, the intentions of a university are

to educate students and advance knowledge. Consequently, in a pandemic, the objectives

of a for-profit firm and an academic institution differ. In Figure 6.1 we present the main

objectives of a university in a pandemic and provide examples of how to achieve them.

As mentioned earlier, the well being of the community is the primary priority of any

organization. In addition to maintaining the buildings, equipment and other facilities, the

next priority of a research university, such as MIT, is to not lose decades of research.

This may mean keeping thousands of laboratory animals alive or making sure that the

nitrogen tanks are sufficiently full and maintained to cool sensitive laboratory equipment.

Any academic institution will also have to determine how to best continue their

educational and research missions given the importance of limiting interactions in an

outbreak. While the financial burdens for universities are likely to be very significant,

Longwood University even says that the "continuations of ... teaching, research and

service activities will be a foremost goal of [pandemic] planning and policymaking"

(Longwood, 2006).

Lastly, in order to ensure that people understand the situation and comply with the

necessary policies, the universities need to establish clear, non-conflicting and timely
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communication with the entire community. Communication will be a critical component

of a successfully implemented pandemic flu plan at a university. The university culture of

consensus and decision making by committees is not suited for emergency situations. In a

pandemic, a clear line of emergency decision making authorities will need to ensure rapid

and appropriate communication. The student body is likely to stay very active unless they

are properly informed about the risks of infection. Educating the students will be vital in

encouraging effective behavior changes that we presented in Chapter 4. Canceling

classes, suspending on-campus research, stopping club activities and decreasing the

interaction within dorms by sending some students home are also approaches to reducing

contact rates.

Wellbeing of students, faculty, staff and other community affiliates
* Decrease influenza illness incidence through social distancing
. Provide food, shelter, medical help and other forms of support

Maintain Campus Facilities & the Intellectual Property of Researchers
* Protection and maintenance of labs, equipment, buildings, etc.
• Sustaining power; feeding research related animals; etc

Continue Educational & Research Objectives of the University
Offer online courses and provide credit for self-study work

* When possible support research efforts at home

Figure 6.1
Priorities of a University in a Pandemic

During the 1918-1919 pandemic, priorities were skewed by World War I, but

even then some universities implemented non-pharmaceutical precautionary measures to

reduce flu transmission. The main focus at MIT during the fall of 1918 seemed to be on

the war and the completion of new barracks (The Tech, 1918). Registration was delayed
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till mid October because of the flu, but there were several pneumonia deaths later on in

the semester (The Tech, 1918). Harvard University implemented partial quarantines, but

still had two students die of influenza (Bernstein, 2008). Princeton University used a

strategy known as protective sequestration which is designed to protect the healthy

people from contacting the infection that is present elsewhere. Princeton was one of the

luckiest schools to escape with no deaths on campus. Why some schools were spared any

deaths and others had dozens is still a matter of some question, but there does appear to

be some evidence that students at schools with well implemented NPIs may have been

less severely afflicted by the flu. This suggests that in order to mitigate the impact of the

next pandemic, universities need to develop response plans for the flu.

6.2 MIT

Before we dive into the problems that universities will have to address in a

pandemic, let us describe the academic institution that we will be using as an example to

illustrate our ideas. The Massachusetts Institute of Technology (MIT) is a world-

renowned research institution that strives to "advance knowledge and educate students in

science." The Institute is located in Cambridge, Massachusetts and has a student body of

over 4,000 undergraduate and 6,000 graduate students, including approximately 3,000

international students. Most undergraduates - about 3,000 - live on campus in one of

MIT's 11 Institute residential halls or 36 affiliated fraternities, sororities and living

groups. More than 2,000 graduate students also reside in one of the 7 houses on campus.

The Institute employs about 11,500 individuals on campus, including about 1,000 faculty
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members and many staff members in research, administrative, libraries and other support

areas.

MIT's location and proximity to Boston places it in an urban center with more

than 40 other colleges and universities including Harvard University, Boston College,

Boston University, Northestern University and Tufts University (Wikipedia, 2009).

Example sizes of the student bodies from some of the larger schools are included in

Table 6.1. The overall student body in the state of Massachusetts is close to half a million

spread over more than 100 institutions; the number of students in the Boston and

Cambridge areas alone exceeds two hundred thousand (Wikipedia, 2009). Appendix K

contains a map of some of the educational institutions in the area. As an educational

Mecca, the area houses many students who are far away from their families and would

not be able to get home in the case of a pandemic. From Chapter 5 we know that

quarantining the university populations from the rest of the city will be ineffective.

Accordingly, if the universities and colleges in the area have a high number of sick and

infectious students because of poor planning, Boston and Cambridge populations will

also have higher risks of infection.

University Size of Student Body
Boston University 32,735 (BU, 2009)
Northeastern University 24,752 (Northeastern, 2009)
Harvard University 20,222 (Harvard, 2008)
Boston College 14,395 (BC, 2009)
Massachusetts Institute of Technology 10,299 (MIT, 2009)
Tufts University 10,030 (ASEE, 2009)
Total of 6 schools 112,433
Student body in Boston/Cambridge Area >200,000

Table 6.1

Student Body in the Boston and Cambridge Universities
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When compared to other universities, MIT is an intermediate sized school, but

there are several aspects about the Institute that distinguish it from the average university

and are relevant in pandemic planning. For example, MIT is highly research focused with

many research grants and contracts supporting many hundreds of researchers and

students. A large fraction of the student body, about 30%, is international students. In

addition, the University has residential halls that house about half of the student body.

These and other characteristics that a university needs to take into account when

developing its plan are described in Appendix L.

Like other organizations, MIT is a complex structure with multiple stakeholders

and players who will all have to take part in managing the situation in the case of a

pandemic. Figure 6.2 is a diagram of the main structures within MIT that will be

involved in pandemic planning. While the Emergency Executive Council, comprised of

senior level administrators, would be responsible for making decisions in a pandemic, to

be successful, all the different units would have to depend on each other. For instance,

without the facilities department electric power could go out and the medical facilities

would not be able to function, or the heat could go out and students in dormitories would

be left to freeze. If the campus police were not able to perform their duties, looting of

medical supplies and food and other crimes could become frequent on campus and cause

panic and employee absenteeism. A breakdown in the medical department could lead to

unnecessary deaths in any of the described departments, further decreasing the employee

base. The common factor is that all of these units depend on their human assets and will

suffer from a shortage of employees in an outbreak. It is clear that in order to best
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mitigate a serious outbreak, all the key units must be identified, individually prepared, but

also ready to coordinate and help each other.

----------------------

Employees
'---------------'

Figure 6.2
Different organizational units within MIT, which would be involved in managing a

pandemic. A vital asset to all of these structures is the employees.

In a pandemic, MIT would also depend on multiple outside structures and

decisions that are beyond its control. Figure 6.3 identifies some of the important services,

supplies and policies that come from outside of MIT. Supplies including lab equipment,

food, cleaning or medical supplies are all necessary, but may become unavailable during

a crisis, such as an influenza outbreak, that disrupts the supply chains. While MIT

generates about 80% of its own power needs at its Cogeneration plant, it still uses city

water and other services such as postal and waste disposal. In a pandemic, these outside

services may be disrupted because of high levels of worker absenteeism. Furthermore,

local, state and federal public health and other government offices are likely to implement
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pandemic policies that will impact MIT. Whether the local government requests that MIT

helps by assembling and equipping an Influenza Specialty Care Unit (ISCU) on its

campus or implements quarantine and isolation policies for the region, MIT is obliged to

comply. While internal preparation is important, many issues will be unpredictable and

outside of the university's control.

Figure 6.3
MIT relies on the provisions of many outside services and supplies, some of the major

ones are included in this diagram.

6.3 Preparing for a Pandemic in a University

There are several difficult questions that universities have to answer when

developing a preparedness plan for a pandemic. Should a university suspend normal

campus activities in order to encourage contact limiting behavior changes? Should

students be kept on campus or asked to leave? What is the appropriate timing for these
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decisions? What are the obligations of the university to the outside community? How

does a university continue vital operations with a limited employee base?

Smaller schools may have the ability to completely shut down and thus may not

have to deal with all of these complications. For example, Craig Andrade and John

Sullivan, planners at Wheaton College, assert that the faculty and decision makers agreed

to cancel classes, euthanize laboratory animals and do everything necessary to close

down the college in the case of a pandemic (Boston Consortium, 2009). Middlebury

College also plans almost a complete shut down of their campus (Middlebury, 2007). At

the same time, according to Bill VanSchalkwyk of MIT, for most universities, including

MIT, shutting down completely is not an option.

In this section, we list some of the complex issues that MIT has been attempting

to resolve. This section can serve as an attachment to the HHS/CDC checklist to help

catalyze and advance the discussion for university planners. We also provide some

potential options for resolving some of these challenges which will inevitably come up in

contingency planning discussions in Appendix M.

6.3.1 Suspending Classes

Emergency planners at most universities and colleges, including MIT, expect that

in a pandemic they will have to cancel classes for a protracted period of time. This is a

very reasonable course of action especially given how often we have stressed the

importance of decreasing peoples' activity levels throughout this thesis. Suspending

classes should theoretically lead to the effective behavior changes described in Chapter

4. Some schools, such as Longwood University, expect that even without official class
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cancellations, students will choose to skip classes and/or leave the university to shield

themselves from the flu (Longwood, 2006). There are many logistical implications of

either formally suspending or just having high student absentee rates at lectures. Below

we list some of the resulting complications. Refer to Appendix M for some potential

resolutions to these issues.

* At what point should classes be suspended? Should all classes be canceled
simultaneously or should the largest lectures be the first to cease in-class sessions?

" How does a university continue its educational mission in the absence of in-class
sessions?

* How should a university assign credit for courses when classes are suspended
before the end of the semester?

* How can students stay on track to graduate without completing the full term of
course credits?

* Will the university refund tuition for partial loss of term? What happens to the
tuition of students on various forms of financial aid?

* Should the university postpone or cancel special events such as orientation
programs, preview weekends, or exams?

* How and when should the university resume the educational program?

" If classes are cancelled, what will students do to occupy their time? Will it
decrease their interaction levels?

In addition to the logistical challenges of suspending classes, there is an implicit

assumption that as a result students will decrease their number of daily contacts. This

assumption is highly suspect in the case of MIT, and other residential schools, since

many students reside in dormitories. If students are not occupied with course work, the

increased interaction in dorms could make up for the decreased interaction from

cancelled lectures. In order to achieve the necessary behavior changes, the university may

need to take further steps.
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6.3.2 Closing Laboratories and Suspending Research

In order to reduce the contact rates of the university community and thereby

decrease transmission, labs are likely to be shut down which will result in a lot of

suspended research. The findings in Chapter 4 underline the potential value of these

behavior changes especially during the peak of the outbreak. There are numerous

implications of this action, especially for research universities that have a large graduate

student community. In the case of MIT, this decision is likely to be met with some

resistance on the behalf of both some graduate students and some faculty. As a

consequence of suspending research, the university would have to address the following

issues:

* Who prioritizes research continuation and how?

* What are the triggers for suspending and resuming research?

* What are the obligations of externally funded projects? What happens when the
research team cannot meet their deadlines?

* Would the university discontinue research assistantship (RA) and teaching
assistantship (TA) stipends?

* What happens to tenure track professors who lose their research as a result?

* How can the university attempt to prevent the loss of legacy research?

* What is the procedure, if students or faculty do not comply?

6.3.3 Student Life on Campus

A primary concern of planners when considering the impact of a pandemic is the

effect on the student body. What will happen when supply chains are disrupted, students

get sick and housing accommodations aren't sufficient to isolate the sick students from
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the healthy ones? For example, Columbia University plans on having social isolation

sites to decrease transmission and mentions that relocation of students in residence halls

may be necessary to accomplish this goal (Columbia, 2009). However the report provides

no further details regarding the logistics of such relocation. Overall, ensuring the

wellbeing of the student population is a complex task requiring the cooperation of many

individuals. Below is a list of issues that the student life offices at MIT have been

attempting to resolve.

Dining:

* Currently MIT only has enough food on campus for 3-5 days. In the case of a
pandemic the supply chain is likely to be broken, so how should the university
feed the students who remain on campus?

* If the university establishes contracts with suppliers in the case of an emergency
how can they guarantee that the suppliers will not renege on those contracts?

* Where on campus can the university store a significant amount of food?
Refrigerated space limitations may imply that food requiring refrigeration is not
appropriate.

* How can food be distributed while preserving social distancing measures for
students?

Housing:

* How can dormitories accommodate both healthy and sick students?

* What is the procedure if a healthy student's roommate gets sick?

* Should the university allocate certain residence halls for quarantined and isolated
students?

* Students who currently reside off-campus may choose to come and stay on campus
if they feel the university is better protected. At MIT, fraternities, sororities and
independent living groups may shut down and cause a large number of students to
seek shelter in residential halls. How can the school accommodate the influx of
these students?
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Other Issues:

* What is the best way to provide attention for sick students who do not require
hospitalization?

* How can the school promote non-pharmaceutical measures such as hygiene
practices and social distancing without inciting panic?

* What kind of hygiene related supplies should the university stockpile?

* What is the best way to provide mental and emotional support for students?

* How can the university use students as volunteers? What kinds of tasks would
student volunteers be asked to do? What are the legal and ethical ramifications of
this action?

* Which student facilities should remain open and which should be closed? (e.g.
athletic facilities, student center, dining halls, etc.)

* What can the university do to occupy students remaining on campus while limiting
their interaction and decreasing transmission?

6.3.4 Medical Facility Preparations

An influx of sick patients in a pandemic is sure to overwhelm any university's

medical infrastructure. Since a pandemic is a public health crisis, it is clear that

preparations in the medical department are vital. In the case of MIT, the medical facility

on campus serves the population of the entire university including students, faculty, staff

and often their respective families. At the same time many of the doctors and other staff

at MIT Medical are also affiliated with other medical institutions and hospitals, and it is

unclear where they would provide their highly sought after services in a pandemic.

Furthermore, uninfected individuals who come to the medical facility, to visit a loved one

or seek non-flu treatment, may end up having a high number of contacts with the crowd

of individuals possibly sick with the flu. It would be important to ensure that the medical
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facility does not become a breeding ground for infection. Here are some of the problems

that any university with a medical facility will have to address in a pandemic:

* What is the best way to continue operations and treat patients given capacity
limitations, from lack of cots to limited supplies and medications?

* While supplies and cots can be purchased and stockpiled, what can the university
do when the number of doctors and nurses is insufficient?

. It is likely that many voluntary visits and treatments will be postponed, but what is
the best way to continue first aid treatment and other vital care to non-influenza
patients without exposing them to the virus?

* How can the university continue distributing pharmaceutical supplies and
medicines when there are disruptions in the supply chain?

" What is the best approach to diagnosing people who do not feel well without
creating unnecessary contact that furthers the spread of infection?

* Should the triage policies change? If so, how?

* When should people come to the medical facility for treatment and when should
they stay at home?

* What is the best way for the university to provide medical and emotional support
to grieving or upset students?

. What should be the policy if an unaffiliated individual seeks medical help at the
facility? What if the individual is a resident of the local region? What if the
individual is a guest or visitor of the university?

6.3.5 Administrative and Operational Issues

One of the biggest challenges for maintaining university operations in a pandemic

will be the shortage of able-bodied and willing employees. Not only will many be at

home because of their own illness, but many will be at home providing care to ill family

members. Some may be too afraid to come to work and risk becoming infected. The US

government projections forecast that up to 40% of employees will remain at home at the

height of the outbreak (HHS, 2009). It is important to realize that employee absenteeism
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will not be evenly distributed amongst all the departments. Some groups may be hit much

worse than others, thus coordination amongst various groups within the university will be

necessary. At the same time some employees may insist on coming to work even when

indicated to stay at home; employee "presenteeism" presents its own set of challenges.

Below are a set of issues that will need to be resolved by administrative offices to ensure

the continuation of vital operations.

Payroll and Human Resources

* How can the university encourage the vital employees to come to work in a
pandemic?

* Should the university alter its sick leave policy during a pandemic? If so, what
kind of policy should it be?

* What should be the changes in policies for job termination, furlough, extended
sick leave, union contracts and need based hiring?

" If employees are quarantined or isolated, what will the pay policies be during
extended confinement?

" Many universities employ union workers, but union contracts often do not include
anything about a pandemic scenario. How can the university ensure that it does not
break any union agreements?

* What will the policy be on employee cross training? How will the university
compensate and motivate employees to attend pandemic or pre-pandemic cross
training? How and when should the university decide that cross training is
necessary?

* How will the decision be made to redistribute employees to other workplace areas
in the university? Should such employees receive additional pay?

* What should happen if a worker gets sick as a result of their work requirements?
Should he or she be compensated?

Administrative offices will have to also manage other problems that will emerge

because of various pandemic related decisions. We describe some of the questions that

different offices are likely to encounter:
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Payroll Office

* If research is suspended, how will payroll compensate staff and students who were
paid through grants and outside contracts? For example, if a graduate student's RA
came from an outside research grant, would the university cover the RA stipend if
research of the externally funded project was suspended?

* What will the impact be of research and class suspension on the student payroll?

Finance Office

* Will students' tuition be reimbursed? Will this money be withdrawn from the
university's general funds? Will tuition credit be kept on record to cover next
semester?

* What policies should be in place for students who receive financial aid from inside
or outside of the university?

* How will this change the situation for students who depend on financial aid to
cover living and/or residential expenses? What will the university do to help these
students if their financial aid is revoked?

Registrar, Undergraduate and Graduate Offices

* As students chose or are asked to leave campus, how will the university stay aware
of their status?

* How will the university keep track of student wellbeing?

* What will happen to conference participants or other university visitors who are on
campus in an outbreak?

Study Abroad Office

* How should students be prepared in advance to cope with the possibility of a

pandemic while they are abroad?

* What should the office tell students who are studying abroad? Should they stay
abroad? Should they return to the university? Should they return home?

* What will the office advise international students who are visiting the university
on an exchange program?

Legal and Ethical Concerns

* What kind of legal responsibility does the university have to its community and
visitors in this emergency?
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* What kind of ethical responsibility does the university have to its community and
visitors in this emergency?

* What is the university's responsibility to the surrounding community?

* What level of preparation will ensure that the university would not be held liable
for being "unprepared" for a pandemic?

6.3.6 Overall

In conclusion, there are several takeaways from this section. First, it is important

to think deeper about the logistical and other implications of any policy

recommendations. For example, we showed how the decision to suspend classes has

multiple cascading effects that will have to be addressed as well. Second, adequate

infrastructure must be put in place ahead of time: student information databases,

emergency communication channels, etc should be created before a pandemic hits. Third,

university planners need to think beyond the HHS/CDC checklist when creating their

pandemic preparedness plans.

At the same time, it is impossible to predict all the unusual circumstances that will

come up in a pandemic. Many decisions will be made at the spur of the moment and

cannot be planned out ahead of time. Some decisions may even be reversed as more

information becomes available. No plan can cover and have contingency procedures for

every possible scenario. This does not mean that planning is unimportant. Decision

makers must think about the pandemic ahead of time, but also be prepared to think on

their feet.

It is vital that all members of the decision making group know each other and

know the university. Small emergencies help bring together first responders and keep

them aware of and familiar with each other and their responsibilities. Drill operations and
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decision making simulation exercises are valuable because they act in a similar fashion,

bringing together the same people as would a real emergency. These exercises should

include not only university decision makers and students, but also government decision

makers. BIRDFLUPLEX is an example of such a simulation drill that was held at Boston

University (Vanderschmidt, 2006). Additionally, it is important to have individuals who

could step into the role of current first responders. Some decision makers may get sick

and backup individuals, who are familiar with all the issues, should be able to step in if

necessary. The university with the most cohesive, responsive and collaborative decision

making team, and not the university with the most thorough plan, will be best prepared

for a pandemic.

Finally, we would like to point the interested reader to review the University of

Minnesota Twin Cities pandemic plan for some general preparation practices and the

University of North Carolina plan for suggestions on how to address administrative issues

that are likely to arise in a pandemic (UM, 2008; UNC, 2008).

6.4 Evacuate or Shelter-In-Place?

All universities will have to make the pivotal decision in a pandemic of what to

do with the student body in the case of an outbreak - evacuate or shelter-in-place. This

question is likely to come up early in the outbreak, and the outcome from this decision

will have multiple implications. While some universities may have a large number of

local students who do not rely on the school's resources, this is not the case for MIT.

Reducing the size of the student body is very important because otherwise the capabilities
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of the Institute functioning with a reduced staff would be overwhelmed in a pandemic. At

the same time, putting students on trains, buses and planes in the middle of an outbreak

may result in many of them getting ill and spreading the infection. It is unclear that by

sending students home, the university is ensuring that they will be in a better environment

than if they remained on campus. In this section, we will discuss the benefits, drawbacks,

implications, timing and logistics of the decision to decrease the size of the student on

campus population.

6.4.1 Benefits and Drawbacks of an Evacuation

Benefits:

Since university resources will be limited in a pandemic, many decision makers

believe that it would be beneficial to send students back home. They believe that this will

not only ensure that the remaining members of the university community will be better

served, but that the students who go home will receive better care in their home

community. Food supplies may be dwindling at university campuses, if food distributor

supply chains are disrupted; at MIT there would only be enough food for 2-4 days. The

belief is that in this crisis, parents will be able to provide these basic care and necessities

to their children better than the university. Furthermore, it is expected that if students

become ill without requiring hospitalization in their home, their family members are

more likely to provide better care than the university, if they stayed on campus. The

mental and emotional support that family can provide is also likely to be superior to the

thinly stretched capacity of the university. Lastly, removing students from the university
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dorm environment where students are highly interactive, theoretically, should change

their behavior enough that their chances of becoming infected are reduced.

When focusing on MIT, diminishing the size of the population on campus would

also improve the level of service for those who remain on campus. For example, the MIT

Medical Department, which serves the entire MIT community as well as the families of

many MIT affiliates, only has about 30 beds and is likely to be overwhelmed in a

pandemic regardless of the number of students on campus. However, if all students

remain on campus, the shortage in the medical department would be even more severe,

and it is likely that as a result all patients would receive a lower level of treatment.

Mental health support services are also likely to be in high demand in a pandemic, and

while pastoral and other guidance services can be used to manage the demand, it is likely

that MIT Mental health will still be overwhelmed. Planners at MIT also believe that some

remaining students who currently live in non-campus housing, including fraternities,

sororities and independent living groups, will attempt to seek shelter at MIT. It would be

very convenient, if some number of students had gone home, leaving their dorm rooms

available to accommodate this surge. All of these points argue for the need to evacuate

the students. Schools such as Stanford University, St. Lawrence University and many

others use these reasons to support their policy of sending a sizeable fraction of their

students back home (Stanford, 2008; St. Lawrence, 2009). Other schools, such as

Middlebury College take this as far as to state that "a pandemic will warrant a complete

closure and all students will be required to vacate the campus until it is deemed safe to

return" (Middlebury, 2009).
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Drawbacks:

The main argument for keeping students on campus is that requiring students to

travel back home in a pandemic will subject them to additional exposure to infection.

Planes, trains and buses are confined spaces that transport many individuals and are

believed to have increased levels transmission. Forcing students to travel home during an

outbreak of a virulent virus puts them in danger of becoming sick. From the multi-

community model presented in Chapter 5 we can infer that students traveling home may

become carriers of infection. By returning home these students could pose greater risks of

infection to their home communities. While as shown in Chapter 5, geographical

disparity in the transmission of the flu is not likely to be sustained for a long time,37 it

could present problems for evacuation. If influenza is widespread on the West coast,

schools on the East coast would put their West coast students in a dangerous

environment, if they were to send them back home. For the same scenario, schools on the

West coast could be contributing to transmission, if they sent their potentially infected

students back home to the East coast. Overall, requiring students to leave the safety of

campus may be unethical and even present legal problems.

The other reason supporting the decision to shelter-in-place is that it would be

impossible to send the entire student body back home. At MIT many undergraduate

students would feel comfortable returning home to their families, but many graduate

students would not be able to leave since they consider Boston or Cambridge their home.

Financial restrictions may also make it impossible for certain students to return home. In

a pandemic, international travel is likely to be severely restricted, so the international

37 In Chapter 5 we have shown that travel restrictions are not effective if the virus is widespread in the seed
population.
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contingent at MIT - that is 30% of its student body - would be unable to leave the area.

Transportation infrastructure capacity restrictions may make it impossible to send

domestic students home. Airports, train and bus stations - and even interstate highways -

could be shut down in an attempt to decrease intra-city transmission. Many campuses are

likely to attempt sending their students home at approximately the same time, so any

remaining modes of transportation in a city with many schools, such as Boston, may be

insufficient to handle the surge in demand.

Recommendation:

Considering all the arguments for and against an evacuation suggests that the best

policy is to advise, but not require, students to leave campus. This is not a binary, yes or

no, decision. Students should be well informed of the drawbacks and risks of remaining

at the university, but they should have the option to stay on campus if they feel that it is

in their best interest. The university should also attempt to help the students who want to

return home, but aren't able to do so on their own devices. It is anticipated that many

parents will choose to come and take their children back home before the university even

makes a decision to evacuate the student body. For example, when there was a meningitis

scare at the University of Richmond, some parents quickly summoned their children

home (Schachter, 2007). A certain degree of reduction of the student body would be

unavoidable, but evacuating the entire student population would be virtually impossible.

At the same time, it is almost guaranteed that there will be some deeper,

potentially unanticipated complexities after the university advises that willing members

of the student body leave campus. One example is that certain students, who are over the
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age of 18 and are therefore legally considered adults, may disagree with their tuition

paying parents regarding whether to stay on campus or return home. It is unclear who the

university should support in this scenario, but having unaccounted for students staying

around in their friends' dorm rooms is highly undesirable. Another example of a

challenging situation would be if instead of leaving campus, some students decided not

only to remain, but also attempt to provide shelter for friends or family members who are

not affiliated with the university. This type of behavior would increase the population

residing on campus and blur the responsibility of the university to the guest individuals.

While we attempt to provide specific suggestions in an attempt to provide clarity about

how to reduce the student population, it is clear that there are many additional

complexities that will come up and cannot be anticipated ahead of time.

6.4.2 Timing ofEvacuation

The drawbacks described above suggest that the best way to get around the

difficulties of an evacuation is to send students home very early on, potentially before the

virus enters the country. At the same time, in the early stages of transmission people may

misinterpret the potential of a novel strain of influenza. It is possible that initial

transmission may die out on its own without becoming widespread or damaging. On the

other hand, it could spread quickly and kill many people. There is no simple indicator of

what an emergent strain will do, and decision makers do not want to trigger a false alarm.

Given these considerations, what should the trigger be to send students home?

Universities have determined different trigger points for an evacuation. Some,

such as University of Minnesota Twin Cities, will send students home if there are cases
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of the flu in the local region, while others, such as Middlebury College, plan on initiating

the evacuation as soon as there are pandemic influenza cases anywhere in North America

(UM, 2008; Middlebury, 2007). Carnegie Mellon University is considering the trigger of

a case discovered at an international airport in a major American city (Schachter, 2007).

By waiting for the virus to become a local problem, universities increase the size of the

student body that will remain on campus, but reduce the risk of triggering an unnecessary

student exodus. Given our conclusions regarding the ineffectiveness of travel restrictions,

our recommendation is that the evacuation needs to occur earlier. Unless incredibly high

tech surveillance and rapid educational measures are put in place, initially people will not

be aware of the seriousness of the infection and maintain normal behavior which allows

the virus to transmit to a significant number of people. Even with SARS the disease

quickly spread to multiple countries, in the case of the flu this global transmission is even

more likely. The potential speed of global influenza transmission supports an early

trigger for initiating the student exodus.

Overall, it will not be easy to send the students back home, and we believe that

the formation of this decision will span over several days and the implementation will be

somewhat gradual. It may be very helpful to prepare the student body for this type of

scenario as soon as sizeable clusters of human influenza are found anywhere in the world,

so in case it becomes necessary, students are prepared to leave. Asking students to think

about a contingency plan, in case they are advised to leave campus may be helpful.

Suggesting that they prepare a just-in-case suitcase and organize their dorm rooms ahead

of time in case their rooms will have to be occupied by someone else will help speed up

the process. Requesting that students review their emergency contact or evacuation
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relevant information in the university database will help maintain current records. While

it is important not to create an unnecessary panic, preparing students for the possible risks

in advance should help manage the situation if the spread of infection starts to accelerate.

It is likely that early on in the pandemic there will be a certain degree of

resistance to a formal request that students leave campus, but the trickle of people leaving

campus can be initiated by the university before the advisory to leave campus is made

official. It would be most sensible and effective, if the recommendation for returning

home was to follow or coincide with the suspension of classes. However, even a public

announcement of canceling or postponing all conferences hosted on campus would send a

message to the public. Some parents are likely to use such an announcement as an

indictor the campus is not safe and take their children home before the university makes

the decision.

6.4.3 Facilitating the Student Evacuation

In many cases even if a university initiated a voluntary student evacuation, certain

students who want to go home would not be able to without the help of the university. It

would be very challenging to ensure that students return home, if their homes are far

away. Additionally, in a university such as MIT, the majority of students do not have cars

on campus and even students from nearby cities such as New York would have a difficult

time returning home. Financial constraints may also hinder certain students from

returning home.

We have several suggestions on steps that especially larger universities may want

to take to further facilitate the student exodus. Financial support for travel expenses
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would help increase the number of students returning home. Providing students on

financial aid with $100-$500 debit cards that can be used to cover travel expenses will

provide these financially constrained students with the option to go home.

In the case of MIT, many students are from the New York City area. In order to

ensure the safe return of these students home it would be beneficial for MIT to charter

several buses that transport them to an easily accessible location in New York where

parents could pick them up. Chartering buses to several other cities that are within several

hundred miles - one days drive, such as Philadelphia, Hartford and maybe even

Washington DC and Buffalo will help many students get home. By providing

transportation, the university can make returning home not only more convenient, but

also cheaper and safer. In order to implement this plan, it is essential that universities that

plan to charter buses establish contracts with bus companies before the outbreak becomes

a widespread problem. We also suggest that certain smaller schools collaborate and

charter buses to the same locations together. Even larger schools could collaborate to

charter one bus to a town that is home to several students from each of the schools.

However, this will not help international or other students who live more than 500

miles away. Some students, whose parents are far away, have other relatives in the

nearby area. While these students shouldn't be forced to leave the campus to stay with

their relatives, they should be reminded of this option and encouraged to take it. Another

approach to decrease the student population is to encourage students from the area to take

home a friend who is not able to return home - an emergency buddy system. Some host

families could be asked to accommodate international students. It may be helpful to

extend this further and suggest that university staff house students for the duration of the
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outbreak. While it is clear that given the contagious nature of the infection many people

will refrain from taking in people who are not members of their family. However, even if

only one person benefits, it is worth suggesting these options to the community. No one

policy, but the combination of them all is necessary to most effectively reduce the size of

the student population.

6.4.4 Student Database

Most of the decisions regarding how to best address the needs of the students will

depend on information regarding the nature of the virus and will thus have to be made

during the outbreak. However, certain preparations and principles can be developed now

to ensure smoother execution of decisions made in a pandemic. In a crisis situation such

as a pandemic, parents may attempt to contact the university to find out the location and

wellbeing of their children. Regardless of whether the university is able to send the

students home or decides to shelter-in-place, it is the school's responsibility to keep track

of the students.

We suggest that all universities develop and maintain an easily updatable student

emergency information database. The information in this database would be beneficial in

other emergencies in addition to a pandemic. This database should contain the name and

contact information of every student as well as the emergency contact information for all

students. MITAlert is this type of database, however it may benefit from the addition of a

section that enables students to register an evacuation contingency plan. Such a plan

would provide students the opportunity to indicate that they do not have any family or

friends in the nearby area and would not be able to leave campus without the help of the
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university. When possible, students would be able to indicate where they could go, if they

were asked to leave campus.

This database should also be accessible by students in an emergency. In a

pandemic, students should be queried about their current location and health status. When

students leave campus they should promptly notify the university of their departure

through this system. Students, especially those remaining on campus, should regularly

update their health status in the database. Stressing that students keep their database

information current is vital. If current, this information will not only help keep track of

the students and their status, but help in the overall decision making process. As a live

census it would help track the progression of infection, be used by the medical staff for

triage, utilized by the housing staff to move students to empty available rooms, used by

dining to determine food distribution demands, etc. Since having accurate information is

critical for making good decisions, this type of database would be a very valuable

resource.

6.5 General Recommendations

The reason that preparing for a pandemic is very challenging for all organizations

is that there are so many unknown parameters about the next pandemic. The next

pandemic strain is still unknown, and as a result no one knows how contagious, virulent

or deadly it is going to be. It is unclear whether the virus will target any portion or age

group in the population. How quickly will it spread across the globe and will there be any

warning time before it enters the US? The durations of outbreaks at the local and global
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levels are also uncertain. The most vexing question of all is, in any given year how likely

is a pandemic and is it even worth preparing for something that is so improbable and

depressing?

We strongly believe that in advance preparation will help decision makers

manage the consequences of a pandemic outbreak. Since it is very difficult to motivate

planners to focus on pandemic flu given the low probability of this emergency, some

have proposed taking an all hazards approach and simply preparing for any emergency.

While taking an all hazards approach battles "flu fatigue" it is not specific enough

because there are several aspects that differentiate a pandemic from other emergencies:

* It has the potential to be a long lasting crisis that results in an extended outage for

the university.

* The contagiousness of the flu is likely to result in people avoiding social contact

and having less desire to help others.

* The universal impact of the virus is likely to leave no one immune; everyone will

have to fend for themselves.

While overall emergency planning is a very unpleasant experience, the above reasons

make a pandemic one of the worst case scenarios for any institution.

One potential motivation to focus on pandemic preparedness is if we are ready for

the worst case, we can handle everything else. Section 6.2 provides a list of specific

questions that require careful thought and deliberation. While we do not claim that this

list is exhaustive nor that answering those questions will ensure pandemic preparedness,

it will help familiarize the decision makers with the real issues. In order to motivate

planners to develop possible solutions for this set of seemingly unlikely dilemmas, we
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suggest identifying several different crises that would cause the same problem. A

pandemic is not the only possible trigger for a student body evacuation; a terrorist attack

in the Boston/Cambridge area, a nuclear power plant meltdown or a natural disaster are

other examples that would require reducing the student presence on campus.

We would also like to encourage universities to educate their students about the

importance of proper hygiene on a regular basis, so that people automatically wash their

hands and cough into their elbows. It would be even better if this type of behavior was

instilled in the population early on in their lives, such as elementary school. However, for

now universities can step up their hygiene campaigns and ensure that hygiene supplies

such as soap or hand sanitizer are found throughout campus.

Lastly, we encourage universities to continue developing their plans, but also

recommend that the government provide more guidance to universities on triggers for

campus closure and evacuation, materials to stockpile, policies for refunding tuition,

adjusting credits for missed coursework, legal concerns, as well as other issues described

in this chapter. Information on how government financial aid and grant policies may be

adjusted during protracted emergencies would also be very valuable. Successful

management of the pandemic at universities will not only help the 17.5 million students

in this country, but also the people in cities and towns that have high student populations.

Preparing for a pandemic has the potential to save lives in the case of a global outbreak.

Such preparation may even be helpful in dealing with many other emergencies that could

strike any place and at any time.
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CHAPTER 7:

CONCLUSIONS &

FUTURE WORK

"How would a nation so greatly moved and touched
by the 3, 000 dead of September 11th react to half a

million dead? ... to 5 or 50 million dead?"
- Bill Frist3 8

7.1 Summary

Human deaths due to infection with the highly pathogenic H5N1 avian influenza

A virus have elicited the specter of a catastrophic flu pandemic like that of 1918-1919.

Regardless of whether H5N 1 or another flu strain mutates to become easily transmissible

among humans, most experts agree that the next pandemic is inevitable. Pandemic

preparedness at all levels will be essential in mitigating the flu, but existing plans often

lack details and implementation logistics, often skirting the complex issues. Precise

planning is hampered by some unknowns including the virulence, morbidity and speed of

transmission of the next pandemic strain. Since there is no way to test run a pandemic,

policy makers must often rely on models to guide their decision making.

In this thesis we have developed a simple analytical model of disease transmission

in a heterogeneous population. Diversities in activity, susceptibility and infectivity were

integrated individually and collectively in order to reveal the most significant population

38 Talking about pandemic influenza in 2005.
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distributional attributes. Our results indicate that activity level is likely to be the most

important driver; individuals with high contact rates are likely to be the first to become ill

and consequently spread the infection to many others. It appears that heterogeneity in

either susceptibility or infectivity independently also has the potential to change the

course of the outbreak. Yet the individuals who are both highly infective and highly

susceptible are the ones to really propel the spread of the flu. Given the challenge of

identifying the highly susceptible and infectious persons, we believe that initially

focusing on the highly active individuals may be a better strategy.

In a severe outbreak people are likely to dynamically alter their behavior,

including reducing their contact rates, thus we extended our model to include behavior

changes. Since very limited work exists in the area of influenza based behavioral

responses, data on STDs and SARS driven behavior was used to support some anecdotal

observations of what occurred in the 1918 pandemic. From this information, four

completely novel approaches to modeling peoples' behavior changes were proposed.

Simple algebraic formulations, cost-benefit balancing calculation and dynamic

programming approaches were used in these behavior change models. Our results show

that behavior changes ranging from reduced interaction to improved hygiene have the

potential to significantly decrease the transmission of the virus.

The model was also expanded to include a spatial component, where several

communities were linked through a few traveling individuals. Monte Carlo simulation

was employed to establish how quickly the virus would spread from one community to

the next. Varying the number of travelers between communities demonstrated that
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realistic, but imperfect, travel restrictions are not effective at stopping the spread of

infection.

The last facet that we added to our model is vaccination strategies; the goal was to

evaluate the importance of vaccine efficacy, quantity and timing in decreasing influenza

transmission. The findings indicate that unless vaccination occurs very early on in the

outbreak, it can be ineffective. Since current egg based production technologies require a

minimum of six months to produce the initial doses, it is unlikely that vaccines will be

available in time, so well executed NPIs are likely to be indispensable.

After developing and building on our model, the focus of the thesis shifted to

analyzing the potential impact of a pandemic on universities. The objective was to use

insights gained from the modeling work to help make specific recommendations that

would help assure the wellbeing of the uniquely active student population. The question

of whether students should be evacuated home or allowed to stay on campus is one of the

most pressing for university emergency planners. We suggest that a degree of reduction

in the size of the student population is inevitable and should be encouraged; however, the

university should also be prepared to support and care for a large portion of remaining

students. Furthermore, universities should cope with and address the ethical and other

complex pandemic driven dilemmas now; otherwise, they will consume crucial time

when our society should be taking action. Overall, many organizations could benefit from

a new mindset of emergency preparedness.

216



7.2 Policy Implications

Detailed and thorough plans that are prepared and reviewed before the outbreak,

should be implemented immediately at the first sign of a dangerous easily transmissible

flu strain. While it is impossible to validate any model with experimental trials, they do

provide an approach to systematically evaluating different policies and scenarios. The

results and insights developed from models proposed in this thesis can be used to

carefully guide some pandemic policies.

Even highly effective travel restrictions, unless airtight, are likely to be useless

once the infection is circulating in several communities. There is no easy way to regulate

the travel patterns of all individuals through all transportation networks including planes,

cars, buses, trains, etc, so the restrictions will be imperfect, costly and futile. We

recommend avoiding government-enforced travel restrictions, but possibly creating early

travel advisories before the virus enters the country to prevent recreational and voluntary

travel and potentially delay the pandemic without severe economic losses.

From our research we find that while these advisories may slightly delay the

spread of the flu, they are not likely to stop it from reaching the US. Virtually every

community in the US should be prepared for infection. The focus of these communities'

mitigation strategies should be a combination of inner-community interventions: social

distancing, hygienic steps, closings, pre-pandemic vaccine inoculation, etc. No one

intervention is likely to be the silver bullet that stops the pandemic, but a layered

combination of multiple measures has a high likelihood of successfully decreasing

infection incidence. If communities are able to decrease their maximum number of daily
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infected individuals, they will reduce the probability of intra-community infection

transmission as a byproduct of the inner community action.39

The large scale findings are encouraging and support the assumption that limiting

interaction within the population will decrease the effect of the pandemic. The deeper,

mathematical insight of this result is that social distancing is effective because it attacks

the source of the problem by decreasing the exponential growth factor. Preventing

exponential explosion of the number of infecteds has the potential to prevent the

pandemic.

Another result is that the focus should be on the group most culpable for infection

spread: highly active individuals as well as people who are both highly susceptible and

highly infectious. They are the drivers of the flu and it is important to ensure that these

people alter their behavior in an outbreak. Most children are highly active, infective and

susceptible, thus school closures and other ways of socially distancing children are likely

to be instrumental in mitigating the flu.

At the same time, the overall goal should be to get as many people to alter their

behavior as possible. Even small changes in behavior, implemented on a global scale, can

make a very big difference. The government should educate as many people as possible

about appropriate flu prevention measures. It may be helpful to explain to people that by

avoiding infection, they not only protect their own wellbeing, but they also prevent their

ability to spread the disease to their loved ones at home.

The most effective timing of these measures, in the absence of vaccines, is

preemptive and maintained implementation of non-pharmaceutical interventions. As long

as neighboring communities are infective, a community would need to maintain

39 The reverse is not true. Travel restrictions have no impact on inner community infection dynamics.

218



preventative measures to avoid entry or reentry of the infection. However, for those

communities that are not able to drastically alter and maintain their behavior changes,

even altering behavior only during the peak days of the infection should decrease the

overall infection rate.

Lastly, our conclusion regarding vaccines is that while they have the potential to

be tremendously helpful if people are inoculated early, current production makes this

highly improbable. In the case that pre-pandemic less effective vaccine is available, we

recommend focusing those limited doses on doctors, nurses, law enforcement personnel,

etc; these individuals will be important in ensuring the sustainability of social order.

However, if researchers master the use of cell-based vaccine production or create a

universal vaccine, the importance of vaccination will be significantly higher.

7.3 Future Work

There are several different areas of research that we suggest for future study.

There is significant work to be done ranging from quantitative research such as data

collection and modeling to biological studies and policy analysis.

One of the biggest areas for future research is in the area of developing and

validating models of reactive behavior change. This thesis is one of the first attempts at

dynamically modeling human behavior, and the lack of data makes it impossible to

compare the usefulness or reliability of our four different approaches. At the same time,

we were able to show that behavior changes are going to significantly alter the course of

the epidemic, and thus must be studied further.
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The rarity of influenza pandemics makes it difficult to collect data on human

behavior in a flu pandemic. We looked at the data from the 1918-1919 Spanish flu, but

unfortunately it was very limited and more anecdotal in nature. Future work could focus

on the more recent 1957-1958 Asian and 1968-1969 Hong Kong pandemics which seem

somewhat understudied. Furthermore, data on human behavior as a result of other

infectious diseases from measles to cholera could be helpful in identifying standard

patterns in reactive behavior.

The development of other reactive behavior models is another area of research

that requires the collaboration of social scientists and modelers. Existing models are

qualitative - they describe which factors are important, but do not quantify the

importance of these factors. More data on human behavior will act as a catalyst in the

development of these more quantitative models.

More data on human activity levels, similar to the research done by Yang-chih Fu

in Taiwan, will help quantify the impact of highly active individuals. In our research, we

have shown that highly active individuals act as drivers of transmission, however there is

limited data quantifying the activity levels of the US population. Identifying the members

of the highly active group by profession or some other easily identifiable characteristic

will help target and educate these individuals in an outbreak.

An idea, which was briefly described in Chapter 5, that we believe merits further

research and development, is the creation of the multidimensional tent-like boundary for

sets of interventions that will result in a Ro less than 1. It is unlikely that any one

intervention will be implemented to the extreme necessary to stop the flu, but

combinations of several measures may be able to decrease Ro to below 1. There has been
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limited research analyzing the interplay of layered interventions. We suggest an approach

to visualizing these results through the creation of a tool that decision makers could use

to test out possible policies.

Another promising area of research is in the fields of biology and particle physics.

Currently, the mode of transmission for influenza is highly debated. It is unclear whether

large droplet, and the resulting contact based transmission, or aerosol transmission is the

predominant form of transmission. Understanding how each type of transmission

contributes to overall disease spread will allow researchers to develop more accurate

mathematical models and appropriate intervention strategies.

Lastly, we have identified a significant lack of understanding of and preparation

for a pandemic at the organizational level. We do not suggest that institutions should

scare their respective members about the possibility and impact of a pandemic. However,

many organizations have not thought about the details and implications of their decisions

and actions. We encourage businesses, law enforcement offices, utilities, universities,

churches and other organizational structures to develop emergency plans including one

for pandemic flu.

7.4 Conclusions

The irony of a pandemic is that it is a worldwide catastrophe that will be felt

intensely at the local level since there is no one who will be "outside" of the pandemic to

send help (Greger, 2006; USDA., 2006). Communities will have to use their own

resources to cope with the pandemic. Therefore, it is vital that all levels of society:
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families, businesses, cities, states, countries, are all prepared for the pandemic. The best

plan will require the cooperation of the American people. In order to gain the trust and

understanding of 300 million people, we must be prepared to educate the public on the

important factors of the infection.

While epidemiologists sometimes refer to a lack of parameter knowledge as

reason to avoid adding complexity to models, we believe that an intuitive understanding

of disease dynamics can only be improved by looking at lessons learned from experience,

logic, and most importantly well structured models. We hope that the findings described

in this thesis not only advance the field, but are also helpful in case there is a pandemic.

In the end we also acknowledge the limitations of our work, mathematical models remain

just that - models, not real life. All models use assumptions and simplifying approaches

and no approach should be thought of as the only modeling strategy. Even the most

established modeling approaches should not be seen as boundaries, but rather as starting

points for future work. By moving beyond the highly used Ro parameter in our modeling

work, we were able to observe the importance of highly active individuals and include a

dynamic feedback component to describe reactive behavior changes. This research

provides actionable insights on the effectiveness of mostly non-pharmaceutical

interventions in reducing illness and death from pandemic influenza. In case of a

pandemic, hopefully this work can help save peoples' lives.
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APPENDIX A
MODEL FLOW CHARTS FOR INFLUENZA
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Figure A.1
Vaccination model flow chart.

Assumptions:

1. An average member of the population makes fN contacts per unit of time.

2. The probability of infection spreading from an infected to a susceptible individual per

contact is p.

3. A fraction of the population is vaccinated and is in the T compartments.

4. Infected individuals leave the I group at a rate of a! and the IT group at a rate of aTIT.

5. Asymptomatic individuals leave groups A and AT at rates qA and rTAT respectively.

6. Members of the vaccinated group marked as T has susceptibility, infectivity in I and A

reduced by 4s, i, 4A.

7. The recovery rates arefandf.

8. Vaccination decreases the fraction of latent members who develop symptoms by T.
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APPENDIX A

(CONTINUED)
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Figure A.2
Antiviral treatment model flow chart.

Assumptions:

1. An average member of the population makes fN contacts per unit of time.

2. The probability of infection spreading from an infected to a susceptible individual per

contact is p.

3. There is a treatment rate of <p and a 0 rate of relapse in the different compartments.

4. Infected individuals leave the I group at a rate of al and the IT group at a rate of aTIT

5. Asymptomatic individuals leave groups A and AT at rates IqA and 1AT respectively.

6. Antivirals decrease the fraction of latent patients who go to the infectious rate by T.

7. Members of the treated group marked as T has infectivity in I and A reduced by 4,, A.

8. The recovery rates arefandf.
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APPENDIX B

IMPACT OF VARYING THE DURATION OF ILLNESS - Dq OR THE

PERCENTAGE OF PEOPLE WHO RECOVER - H.

Consider a population where the rate of contact for the entire population is

X=20.666 people/day and the conditional probability of infection is p=O.1 for the entire

population. (Note, we will be considering the standard incidence model).

Let us vary the duration of the sickness, from d=9 days, down to d=1 day40 while

keeping the fraction of recovering people who reenter the population at h=98%. As

shown in Graph B. 1, we see that the number of people infected is reduced.

80,000

) OU,UUU

2 40,000

) 20,000
Z 20,000

299,542

262,145
-d=9 days
-&-d=1 day

5 10 15 20 25 30 35
Days

Graph B.1
Varying the duration of illness.

Let us vary the fraction of people who recover from h=98% down to h=50%

while keeping the duration of sickness at d=1. As shown in Graph B.2 we see that the

number of infected individuals is increased.

40 The duration of illness starting the day of infection, d cannot be less than 1. So for the case where d=- 1,
the individual does not stay at home as a result of the virus, but returns right away with immunity to the
active population after surviving the virus.
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-h=50%
--- h=98%

15 20
Days

Graph B.1
Varying the percentage of people who recover and reenter the population.

For both cases, decreasing d and increasing h, the effect is that the active population is

diluted by individuals who are no longer susceptible nor infectious. This immune

population "absorbs" some of the interactions with the infectious individuals and as a

result reduces the infection rate for the overall population.
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APPENDIX C
STANDARD INCIDENCE MODEL

The difference between the two modeling approaches is significant in cases where

there is a slower initial growth of the infection. For example when we have a completely

homogeneous population as in Graph B.1A the initial spread of the flu is slower than in a

heterogeneous population as shown in Graph 3.1. If we shorten the duration of sickness

to only 1 day, or increase the mortality rate from 2% to 50%, the difference between the

two models is a little smaller, but still significant.

80,000

60,01

40,000

20,000

299,542

244,225

-Standard Incidence
-&-Mass Action Incidence

5 10 15 20 25 30 35
Days

Graph C.1
Comparison of the Standard and Mass Action Incidence models for a homogeneous

population. The rate of contact for the entire population is X= X (0)=20.666 people/day.
The conditional probability of infection is p=O.1 for the entire population. The duration of

illness since infection is 9 days.
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Graph C.2

The equivalent of Graph 3.2 for the Standard Incidence Model. Comparing spread of
infection between heterogeneously and uniformly active communities of 300,000

individuals. The homogeneous population has a rate of contact 20.66 people/day. The rest
of the input data can be found in Table 3.1. All the highly active, 91% of the medium

activity and 39% of the low activity people get sick.
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Graph C.3

The equivalent of Graph 3.3 for the Standard Incidence Model. Comparing spread of
infection between heterogeneously and uniformly susceptible population of 300,000
individuals. The susceptibility of the individuals in the heterogeneous population is

shown in Table 3.3 and for the homogeneous population p=1.Compared to 20% of the
low susceptibility group, over 98% of the high susceptibility group become infected.
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Heterogeneous,
highly infective

.... Heterogeneous,
normal infectivity

Heterogeneous,
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Graph C.4
The equivalent of Graph 3.4 for the Standard Incidence Model. The cumulative number
of people infected is constant regardless of the heterogeneous or homogeneous model;

299,542 people get infected.

230,636
-*-Consistent activity levels
--- Mostly consistent activity
-- Random activity level

279,717

294,779

10 15
Days

30 35

Graph C.5
The equivalent of Graph 3.5 for the Standard Incidence Model. The impact of

inconsistent behavior in the population on the epidemic curve. If people can change their
activity levels the speed of transmission is decreased.

231

APPENDIX C

(CONTINUED)

80,000

60,000

40,000

20,000

1 5 10

u)

0 40,000

e 20,000Z



APPENDIX C

(CONTINUED)

60,000
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20,000i

-- Varied Infectivity
-a-Varied Susceptibility
- Doubly Heterogeneous
--- Highly Infective & Susceptible
...... Moderately Infective & Susceptible
--- Minimally Infective & Susceptible

Days

Graph C.6

The equivalent of Graph 3.6 for the Standard Incidence Model. Heterogeneity in two
dimensions: susceptibility and infectivity. The simultaneous presence of both high

susceptibility and high infectivity results in an explosive outbreak that is driven by this
doubly dangerous group.

80,000 80,000- ,-Varied Infectivity
230,636 --Varied Susceptibility

~. -- Varied Activity
S60,000 .... Homogeneous
a -3-D Heterogeneity

40,000 149,582
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Graph C. 7

The equivalent of Graph 3.7 for the Standard Incidence Model. Heterogeneity in all
dimensions: activity level, susceptibility and infectivity. The highly active, highly

susceptible and highly infective individuals are the drivers of infection of spread. The low
activity, low susceptibility and low infectivity decrease the cumulative impact of the

outbreak on the population
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APPENDIX D
MATLAB CODES FOR CHAPTER 3

function OneCommunityBasicProporationalBeta
% allows for both standard and mass action incidence model
% heterogeneity in activity levels: different lambda's
% heterogeneity in susceptibility evpl;s: different p's

n=3; %number of activity groups

lambda = [50, 10, 2];
p = [0.1, 0.1, 0.1];
N = [100000, 100000, 0];

t=l; % day
T=30;

duration=9;

survive=.98;

beta=zeros(T,1);
prop=zeros (T, 1) ;
prob=zeros (T,n);
I=zeros (T, n);
S=zeros (T, n);
Active=zeros(T,n);
I Total =zeros(T,1);

% average number of contacts
% conditional probability of infection
% number of people in each category

%duration of sickness till reentry into
circulation population

%fraction of people to survive and
reenter into circulation

%impact of population size on lambda

I(t, 1)= =1;
I(t,2)=0;
I(t,3)=0;

S(t,1)= N(1) - I(t,1);
S(t,2)= N(2) - I(t,2);
S(t,3)= N(3) - I(t,3);

Active(t,1)=N(1);
Active(t,2)=N(2);
Active(t,3)=N(3);

I Total(t)= sum(I(t,:));

while I Total(t)>.l
beta(t) = (I(t,:) * lambda')/((Active(t,:)) * lambda');
%prop(t)=sum(Active(t,:))/sum(N); %used for mass action incidence

model
prop(t)=l; %used for standard incidence

model

for i=l:n % The interactions throughout the day that result in
new infections
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(CONTINUED)

prob(t,i) = 1 - exp(-lambda(i) * beta(t)*prop(t) * p(i));
I(t+l,i) = prob(t,i) * S(t,i);
S(t+l,i) = S(t,i) - I(t+l,i);
if t-duration>0

Active(t+l,i)=Active(t,i)-I(t,i)+survive*I(t-duration, i);
else

Active(t+l,i)=Active(t,i)-I(t, i);
end

end
t=t+l;
I Total(t)= sum(I(t,:));

end

hold on
plot (I_Total,'g');
% plot(I (:,1), 'b')
% plot(I(:,2),'m')
% plot(I(:,3),'g')
sum(ITotal);

function CommVariedInfectivityModel
% allows for both standard and mass action incidence model
% heterogeneity in infectivity levels: different p's

%number of activity groups

lambda = [20.66, 20.66, 20.66];
p = [0.19, 0.1, 0.01];
N = [100000, 100000, 100000];

% average number of contacts
% conditional probability of infection
% number of people in each category

t=l; % day
T=55;

duration=9;

beta=zeros(T,n);
prop=zeros (T, 1);
power=zeros (T, 1);
prob=zeros (T,n);
I=zeros (T, n);
S=zeros (T, n);
Active=zeros (T,n);
I Total =zeros(T,1);

%beta for each infection level group

I (t, 1)=1;
I(t,2)=0;
I(t,3)=0;
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(CONTINUED)

S(t,l)= N(1)
S(t,2)= N(2)
S(t,3)= N(3)

- I(t, 1);
- I(t,2);
- I(t,3);

Active (t,l)=N(1);
Active (t,2)=N (2);
Active (t,3)=N (3);

I Total(t)= sum(I(t,:));

while I Total(t)>.l
for i=l:n

beta(t,i)=I(t,i)*lambda(i)/((Active(t,:)) * lambda');
end

for i=l:n
power(t)=power(t)+beta(t,i)*p(i);

end

%prop(t)=sum(Active(t,:))/sum(N);
prop(t)=1;

for i=l:n % interactions throughout the day resulting in new
infections

prob(t,i) = 1 - exp((-lambda(i)*prop(t)) * power(t));
I(t+l,i) = prob(t,i) * S(t,i);
S(t+l,i) = S(t,i) - I(t+l,i);
if t-duration>0

Active(t+l,i)=Active(t,i)-I(t,i)+.98*I(t-duration, i);

else
Active(t+l,i)=Active(t,i)-I(t,i);

end
end
t=t+l;
I Total(t)= sum(I(t,:));

end

hold on

plot (I_Total,'k');

% plot(I(:,1),'b')
% plot(I(:,2),'m')
% plot(I(:,3),'g')
sum(ITotal)
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(CONTINUED)

function ModelingInconsistentBehavior
%modeling inconsistent behavior
%allows for standard and mass action incidence model

n=3; %number of activity groups

lambda = [50, 10, 2]; % average number of contacts
p = [0.1, 0.1, 0.1];
N = [100000, 100000, 100000]; % number of people in each category

t=1; % day
T=35;
duration=9;
survive=.98;

beta=zeros (T, 1);
prop=zeros (T, 1);
prob=zeros (T, n);

I Start=zeros(T,n);
S Start=zeros(T,n);
I End=zeros(T,n);
S End=zeros(T,n);
I Total Start=zeros(T,1);
R Start=zeros(T,n);
R End=zeros(T,n);
Active Start=zeros(T,n);
Active End=zeros(T,n);

I Start(t,1)=1;
I Start(t,2)=0;
I Start(t,3)=0;
S Start(t,l)= N(1) - I Start(t,l);
S Start(t,2)= N(2) - I Start(t,2);
S Start(t,3)= N(3) - I Start(t,3);
R Start (t,1)= 0;
R Start (t,2)= 0;
R Start (t,3)= 0;

Active Start(t,l)= N(1);
Active Start(t,2)= N(2);
Active Start(t,3)= N(3);

I Total Start(t)= sum(I Start(t,:));

%Q=eye (n, n);
%Q=[17/20, 2/20, 1/20; 3/40, 17/20, 3/40; 1/20, 2/20, 17/20; ];
%Q=[2/3, 1/3, 0; 1/3, 2/3, 0; 0, 0, 1; ];
Q=[1/3, 1/3, 1/3; 1/3, 1/3, 1/3; 1/3, 1/3, 1/3; ];
%Q=[1/3, 2/3, 0; 2/3, 1/3, 0; 0, 0, 1; ];
%Q=[0, 1, 0; 0, 0, 1; 1, 0, 0; ];
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(CONTINUED)

while I Total Start(t)>.5
beta(t) = (I Start(t,:) * lambda')/((Active Start(t,:)) * lambda');
prop(t)=l; %used for standard incidence

model
%prop(t)=sum(Active Start(t, :))/sum(N); %used for mass action

incidence model

for i=l:n % The interactions throughout the day that result in
new infections

prob(t,i) = 1 - exp(-lambda(i) * beta(t)* prop(t)* p(i));
I End(t,i) = prob(t,i) * S Start(t,i);
S End(t,i) = S Start(t,i) - I End(t,i);
if t-duration>0

R End(t,i)=R Start(t,i)+ survive * I Start(t-duration,i);
else

R End(t,i)=R Start(t,i);
end
ActiveEnd(t,i)=Active Start(t,i)-I Start(t,i)+ R End(t,i);

end

for i=l:n % People changing behavior overnight
I Start(t+l,i) = Q(l,i)*I End(t,l) + Q(2,i)*I End(t,2) +

Q(3,i)*I End(t,3);
S Start(t+l,i) = Q(1,i)*S End(t,l) + Q(2,i)*SEnd(t,2) +

Q(3,i)*S End(t,3);
R Start(t+l,i)= Q(1,i)*R End(t,1) + Q(2,i)*R End(t,2) +

Q(3,i)*R End(t,3);

Active Start(t+l,i)= S Start(t+l,i) + I Start(t+l,i) +
R Start(t+l,i);

end
t=t+l;
ITotalStart(t)= sum(IStart(t,:));

end

hold on
plot (I Total Start, 'k');
x=sum(ITotalStart)

function OneCommunityBasicThreeHeterogeneities27_WORKS
%allows for both standard and mass action incidence models
%heterogeneity in all three different dimensions

n=27; %number of activity groups

%lambda = [50, 10, 2]; % average number of contacts
%p = [.361, .19, .019; 0.19, 0.1, 0.01; 0.019, 0.01, 0.001;];
% conditional probability of infection
%N = [100000, 100000, 100000]; % number of people in each category
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p=zeros (n,n);
lambda=zeros (n, 1);
N=zeros (n, 1);

t=l; % day
T=35;

duration=9;

beta=zeros(T,n); %beta for each infection level group
prop=zeros (T,n);
power=zeros (T, n);
prob=zeros (T,n);
I=zeros (T, n);
S=zeros (T, n);
Active=zeros (T,n);
I Total =zeros(T,1);

I (t, 1) =1;

for i=1:27
if i<10

lambda (i)=50;
elseif (i>9 && i<19)

lambda (i) =10;
else

lambda (i) =2;
end

N(i)=lllll;
Active (t, i) =N (i);
S(t,i)= N(i) - I(t,i);

for j=1:27
if (i==ll i==41 Ii==71 1i== 13ll 11=131i==161i==191 i==221 i==25)

if ((j<4)I (j<13&&j>9) I (j<22&&j>18))
p(i,j)=0.361;

elseif((j<7&&j>3) II (j<16&&j>12)II (j<25&&j>21))
p(i, j)=.19;

else
p(i,j)=.019;

end

elseif(i==21 Ii==511 i==81 Ii==11 Ii==1411i==1711i==201 i==2311i==26)
if ((j<4)11 (j<13&&j>9)I1 (j<22&&j>18))

p(i,j)=0.19;
elseif((j<7&&j>3)11 (j<16&&j>12)II (j<25&&j>21))

p(i,j)=.1;
else

p(i,j)=.001;
end
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else
if ((j<4)11 (j<13&&j>9)11 (j<22&&j>18))

p(i,j)=0.019;
elseif((j<7&&j>3) I (j<16&&j>12)11 (j<25&&j>21))

p(i,j)=.01;
else

p(i,j)=.001;
end

end
end

end

I Total(t)= sum(I(t,:));

while I Total(t)>.l
for i=l:n

beta(t,i)=I(t,i)*lambda(i)/((Active(t,:)) * lambda);
end

for i=l:n
for j=l:n

power(t,j)=power(t,j)+beta(t,i)*p(i,j);
end

end

%prop(t)=sum(Active(t,:))/sum(N);
prop(t)=1;

for i=l:n % The interactions throughout
new infections

prob(t,i) = 1 - exp((-lambda(i)*prop(t))
I(t+l,i) = prob(t,i) * S(t,i);
S(t+l,i) = S(t,i) - I(t+l,i);
if t-duration>0

Active(t+l,i)=Active(t,i)-I(t,i)+.98

the day.that result in

* power(t,i));

*I(t-duration, i);

else
Active(t+l,i)=Active(t,i)-I(t,i);

end
end
t=t+l;
I Total(t)= sum(I(t,:));

end

hold on

plot (I_Total,'b');

x=sum(I Total)
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APPENDIX E
SARS OUTBREAK IN BEIJING

22 Unlverstties and 2610 Schools Closed (Apr 24)

Fever Checks at Airports Begin (Apr 22)
Quarantine of Close Contacts (Apr 21)

Outbreak Announced Pubbly by
Government (Apr 20)

HCW Training In PPE and Management of
Patients With SARS (Apr 18)

Joint SARS Group Formed, Fever CIInoas
Open (Apr 17)

SARS Made Reportle (Apr 10)
Contact Tracing Begins (Ap 9)

Li

-Lbraries, Bars, Theaters Closed (Ap 26)

Start to Group Patients With SARS In
Designated Wards (Apr 27)

New 1000-Bed SARS Hosptal
Opens (May 1)

MOH Infection Control
Guidelines (May 4)

66 Designated Fever
Cinics (May 6)

All Palents With SARS
in Designated Hospitals

_ (May )

Mar 7 Mar 14 Mar 21 Mar 28 Apr 4 Apr 11
I I I

Apr 18 Apr25 May2 May g May 16 May 23 May 30

Date of Hospitalization

Epidemic Curve for Beijing SARS Outbreak and Timeline of Major Control Measures from March 5 to May 29, 2003.
(Timeline from Pang, 2003)
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APPENDIX F
MODELING EXPONENTIALLY DECAYING MEMORY

We will present the result of modeling behavior using the concern factor

approach, where people's memories of past events decay exponentially. We will use the

following approach to calculate the concern parameter:

C

rx (t,C,a)=nil Number of infected people in Community X on day t-1-i a'

i=O The total population in Community X

We will now assume that people reduce their contact rate in accordance to their concern

level, so the effective contact rate becomes:

A(t)= AZx (t, C, a)

The impact of this type of behavior change is shown in Graph F.1.
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u. 3000 ............-.... .................. Low Activity
48,368 - Total
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Graph F.1
For a concern factor that has an exponentially decaying memory of what happened in the
past the outbreak persists for a long period of time. In this case, after the initial drop in
contact rates, the contact rates rebound and stay around 2 1l5 , 2 7, 2H1. 5 while the

conditional probability of infection is held constant at p=O.1.
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If people over time forget the anxiety that they initially experienced, the virus can

persist in the population as long as the susceptible pool is large enough. In the case where

people only remember yesterday's events they don't react as strongly as they do here and

as a result in the other model, the number of susceptibles is depleted. In the extreme case

where people remember everything, their behavior changes are extreme enough to

completely stop the outbreak. This case is intermediate: the behavior changes are

significant at first when the virus takes off, and it seems like the flu is under control. But

as time passes people start to forget the seriousness of past events and start behaving

somewhat cautiously, so that the virus never takes off; but not cautiously enough to stop

its spread. Thus the epidemic persists until the number of susceptibles is finally

diminished.
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APPENDIX G
ANOTHER EXAMPLE OF THE TRADEOFF MODEL

Another example of the tradeoff model presented in Section 4.3. The parameters

for this model are Al=25 contacts/day; the conditional probability of infection is p=0.1 and

A = {25,20,15,10,5 .

100,00C

80,000

60,000
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)rII I I
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5% reactive
)% reactive
5% reactive
)% reactive/ -8(

I -

008

0 5 10 15 20 25 30
Days

Graph G.1
The impact of varying sized reactive groups on the epidemic curve. The larger the

reactive group the less the burden of the infection.

Infection rate for Non- Infection rate for Cumulative Infection
Reactive group (%) Reactive group (%) rate (%)

0% reactive 97.1 52.4* 97.1
10% reactive 96.9 50.9 92.3
25% reactive 96.3 49.4 84.6
50% reactive 94.2 45.4 69.8
75% reactive 85.5 34.2 47.0
77% reactive 84.4 34.6 46.1
80% reactive - 0 -0 - 0

Table G.1
The infection rates for different groups of the population. Notice that in this case the rate
of infection within the reactive group is not decreasing as the size of the reactive group
increases, in fact it is almost the opposite. However, the relationship is not completely

monotonic and the rate of infection is a tiny bit higher in the case of a 77% reactive group
than for a 75% reactive group.

* Ifl individual changes his or her behavior, theprobability of infection for that individual will be 52.4%
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APPENDIX H
BEHAVIOR CHANGE MATLAB CODE FOR TRADEOFF MODEL

function RunFiveIterations(fraction)

hold off
hold on
decision = Individual NO Feedback();
IndividualDecision = IterationOfGroupDecision(decision, fraction,

':g');
IndividualDecision = IterationOfGroupDecision(IndividualDecision,

fraction, ':g');
IndividualDecision = IterationOfGroupDecision(IndividualDecision,

fraction, ':g');
IndividualDecision = IterationOfGroupDecision(IndividualDecision,

fraction, '-r');

function [decision]=Individual NO Feedback()

N=300000; %population total
n=5; %number of choices an individual has
lambda = 30;
Ind lambda = [30, 20, 15, 10, 5]; %decision maker's options
p=.05;

t=l; %start day
T=50; %end day

duration illness = 2;
delta = 1000; %balloon cost of illness
survival rate=.98;
cost_per_interaction = 5;

% Code, not to be changed during sensitivity analysis
I=zeros(T,1); % # infecteds at the start of day t
S=zeros(T,1); % # susceptibles at the start of day t
R=zeros(T,1); % # newly recovered at the END of day t
Active_Pop=zeros(T,1); % # of people interacting on day t

(susceptibles, infecteds and recovereds)
Ind_prob = zeros(n,T); %probability of getting infected given choice n

and day T
Ind beta = zeros(n,T);
prob = zeros(T,1);
beta = zeros(T,1);
prop = zeros(T,1);

I(t)=l; %day 0, 1 person initiates the virus
S(t)= N - I(t); %day 0, all but initial case susceptible
Active Pop(t)= N; %day 0, everyone is active
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(CONTINUED)
for i=l:duration illness

R(i)=0; % there are no recovered people until the first
person recovers

end

RewardHealthy=zeros(n, 1);
Reward Ill=zeros(n, );
decision=ones(T,1);
decision (1) =1;
IndProbHealth=l;

for i=l:n
%benefit from choice (of lambda) 1

%Reward_Healthy(i) = Ind_lambda(i)*cost_per_interaction;
%Reward_Ill(i) = Indlambda(i)*cost_per_interaction-

(duration_illness * (mean(Ind_lambda))*cost_per_interaction) - delta;

Reward_Healthy(i) = sqrt(Ind_lambda(i))*cost_per_interaction;
%benefit from choice (of lambda) 1

Reward_Ill(i) = sqrt(Ind_lambda(i))*cost_per_interaction-
(duration_illness * sqrt((mean(Ind_lambda)))*cost_per_interaction) -
delta;

end

E Reward=zeros(n, );
Max_Reward=zeros(T,1); % maximum expected reward on day t

while I(t)>.5

%prop(t)=sum(Active_Pop(t))/N;
prop(t)=1;

for i=l:n
Ind_beta(i,t) = lambda*(I(t)) /(lambda*(Active_Pop(t)));
Ind_prob(i,t) = 1 - exp(-Ind_lambda(i) * prop(t) *

Ind beta(i,t) * p);
E_Reward(i)= Ind_prob(i,t)*Reward_Ill(i) +(l-Ind_prob(i,t)) *

Reward_Healthy(i); %expected reward for choice i on day t
end

[x,choice] = max(E Reward(:,l));
decision(t)=choice;
Max Reward(t)=x;

IndProbHealth=IndProbHealth*(l-Ind_prob(decision(t),t));

beta(t) = lambda*(I(t)) /(lambda*(Active_Pop(t)));
prob(t)= 1 - exp(-(lambda)*beta(t)*p);
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(CONTINUED)

I(t+l)= S(t) * prob(t); %number to actually getsick

S(t+l)= S(t) - I(t+l); %number to be susceptible

if t > duration illness
R(t)=I(t-durationillness)*survival_rate;

end
Active_Pop(t+l)=Active_Pop(t)-I(t)+R(t); %yesterdays actives

without the
t=t+1;

end

hold on
plot(I,'LineWidth', 6)
plot(decision*2500,'r.')
PopulationHealth=l-sum(I)/N
IndProbHealth

function [IndividualDecision] = IterationOfGroupDecision(GroupDecision,
fraction, iteration);
N=300000; %population total
n=5; %number of choices an individual has
lambda = 30;
LengthLastTime=length(GroupDecision);

Ind lambda = [ 30, 20, 15, 10, 5]; %decision maker's options

p=.05;

t=l; %start day
T=50; %end day

duration illness = 2;
delta = 1000; %baloon cost of illness
survival rate=.98;
cost_per_interaction = 1;

% Code, not to be changed during sensitivity analysis
I=zeros(T,1); % # infecteds at the start of day t
S=zeros(T,1); % # susceptibles at the start of day t
R=zeros(T,1); % # newly recovered at the END of day t
I_Group=zeros (T, 1);
S_Group=zeros(T, 1);
R_Group=zeros(T, 1);
Active Pop=zeros(T,1); % # of people interacting on day t

(susceptibles, infecteds and recovereds)
Active_Group=zeros(T,1);
Active Tot=zeros(T,1);
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Ind_prob = zeros(n,T); %probability of getting infected given choice n
and day T used by the INDIVIDUAL

Indbeta = zeros(n,T); %USED BY THE INDIVIDUAL

prob = zeros(T,1);
prop = zeros(T,1);
prob_Group = zeros(T,1);
beta = zeros(T,1);

I(t)=l; %day 0, 1 person initiates the virus
S(t)= N * (1-fraction) - I(t); %day 0, all but initial case susceptible
ActivePop(t)= N * (1-fraction); %day 0, everyone is active

I_Group(t)=O;
S_Group(t)= N - I_Group(t) - I(t) - S(t);
Active_Group(t)=N * (fraction);

Active Tot(t)=Active Pop(t)+Active Group(t);

for i=l:duration illness
R(i)=0; % there are no recovered people until the first

person recovers
R_Group(i)=O;

end

Reward_Healthy=zeros(n, );
Reward Ill=zeros (n, 1);
decision=ones(T,1);
decision (1) =1;

for i=l:n
Reward_Healthy(i) = Ind_lambda(i)*cost per interaction;

%benefit from choice (of lambda) 1
Reward Ill(i) = Ind lambda(i)*costper_interaction-

(duration_illness * (mean(Ind_lambda))*cost_per_interaction) - delta;
%RewardHealthy(i) = sqrt(Ind_lambda(i))*cost_per_interaction;

%benefit from choice (of lambda) 1
%RewardIll(i) = sqrt(Ind_lambda(i))*cost_per_interaction-

(duration_illness * sqrt((mean(Ind_lambda)))*cost_per_interaction) -
delta;
end

E Reward=zeros(n, );
MaxReward=zeros(T,1); % maximum expected reward on day t

while I(t)>.5
if t>LengthLastTime

GroupDecision(t) =1;
end
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%prop(t)=sum(Active_Pop(t))/N;
prop(t) =1;

for i=l:n
-Ind beta(i,t) = (lambda*(I(t))+
Indlambda(GroupDecision(t))*I_Group(t))/( lambda*

(Active_Pop(t))+ Indlambda(GroupDecision(t))*Active_Group(t));
Ind_prob(i,t) = 1 - exp(-Ind_lambda(i) * Indbeta(i,t) * p);
E_Reward(i)= Ind prob(i,t)*RewardIll(i) +(1-

Ind_prob(i,t))*RewardHealthy(i);
%expected reward for choice i on day t

end

[x,choice] = max(EReward(:,l));
decision(t)=choice;
MaxReward(t)=x;

beta(t) = (lambda*(I(t))+
Indlambda(GroupDecision(t))*I_Group(t)) / (lambda* (Active_Pop(t))+
Indlambda(GroupDecision(t))*Active_Group(t));
prob(t)= 1 - exp(-(lambda)*beta(t)*p);
prob_Group(t)=l-exp(-Indlambda(GroupDecision(t))*beta(t)*p);

I(t+l)= S(t) * prob(t); %number to actually getsick
S(t+l)= S(t) - I(t+l); %number to be susceptible
I_Group(t+l) = S_Group(t) * prob_Group(t);
S_Group(t+1) = S_Group(t) - I_Group(t+1);

if t > duration illness
R(t)=I(t-duration illness)*survival rate;
R_Group(t)=I_Group(t-durationillness) *survivalrate;

end
Active_Pop(t+l)=Active_Pop(t)-I(t)+R(t); %yesterdays actives

without the
Active_Group(t+l)=Active_Group(t)-I_Group(t)+RGroup(t);
t=t+l;

end

IndividualDecision = decision;

Itotal=I+I_Group;

plot(I_total, iteration, 'LineWidth', 1.75)
%plot(decision*10000, '*r')
%plot(I)

ReactiveGroupInfected=sum(I_Group)/(N*fraction)
NonReactiveInfected=sum(I)/ (N*(1-fraction))

CumulativeInfected=sum(Itotal)/N;
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function RunFivelterationsDP(fraction)

%initialize
N=1000000; %population total
n=3; %choices a person has
lambda = [30, 20, 10];
p=.05;

t=1; %start day
T=50; %end day
durationillness = 2;
delta = 10000; %baloon cost of illness
survival rate=.98;
cost interaction=l;

% Code, not to be changed during sensitivity analysis
I=zeros(T,1); % # infecteds on day t
S=zeros(T,1); % # susceptibles on day t
R=zeros(T,l); % # recovered on day t
Active_Pop=zeros(T,1); % # of people interacting on day t
(susceptibles, infecteds and recovereds)
prob = zeros(n,T); %probability of getting infected given choice n and
day T
beta = zeros (n,T);

I(t)=l; %day 0, 1 person initiates the virus
S(t)= N - I(t); %day 0, all but initial case susceptible
Active_Pop(t)= N; %day 0, everyone is active

for i=l:duration illness
R(i)=0; % there are no recovered people until the first

person recoveres
end

while I(t)>=l.0

for i=l:n
beta(i,t) = lambda(i)*I(t) /(lambda(i)*Active_Pop(t));
prob(i,t) = 1 - exp(-lambda(i) * beta(i,t) * p);

end
I(t+l)= S(t) * prob(l, t); %number to actually getsick
S(t+l)= S(t) - I(t+l); %number to be susceptible
if t > duration illness

R(t)=I(t-duration illness)*survival rate;
end
Active_Pop(t+l)=Active_Pop(t)-I(t)+R(t); %yesterdays actives

without the
t=t+l;

end

sum(I)/N
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%At this point we have our initial epidemic curve

%Lets program in that people can't stay at home for more than 3 days
out of
%4 days
T=t-l;
k=4; %number of days you need to carry with you
f=ones(T,n,n,n,n); %the number of n's should be the number of k's
% f(t,i,j,l,r) is the probability that the individual will stay healthy
% from day t till the end of the epidemic while his current state is r
% and his overall state is (i,j,l,r)
pred=zeros(T,n, n, n,n);

for i=l:n %initialize all the states for the final day
for j=l:n

for l=1:n
for r=l:n

if i+j+l+r<=8
f(T,i,j,l,r)= l-prob(r,T);

else
f(T,i,j,l,r)= 0; % this is not allowed (4 days out

of 4 at home not acceptable)
pred(T,i,j,l,r)=1000;

end
end

end
end

end

for t=T-l:-l:l %recalculate the behavior at each step
for i=l:n

for j=l:n
for l=1:n

for r=l:n
if i+j+l+r<=8

[x,choice]=max(f(t+l,j,l,r,:));
pred(t,i,j,, r)=choice;
f(t,i,j,, r)=(l-prob(r,t))*x;

else
f (t,i,j,l,r)= 0;

end
end

end
end

end
end

behavior=zeros(T,1);

for t=l:k
behavior(t) =1;

end
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for t=k+l:T

behavior(t)=pred(t-1, behavior(t-k), behavior(t-(k-1)), behavior(t-
(k-2)), behavior(t-(k-3)));
end

plot (I)

IndProbHealth=l;

for t=l:T
IndProbHealth=IndProbHealth*(l-prob(behavior(t),t));

end

IndProbHealth

%initialization is complete
%plot(behavior*10000, 'r.');

IndividualDecisionDP = IterationOfGroupDecisionDP(behavior, fraction,
'm');

IndividualDecisionDP = IterationOfGroupDecisionDP(IndividualDecisionDP,
fraction, '--c');

IndividualDecisionDP = IterationOfGroupDecisionDP(IndividualDecisionDP,
fraction, '-g');

IndividualDecisionDP = IterationOfGroupDecisionDP(IndividualDecisionDP,
fraction, '--k');

--o... -.-..... -......- . .... ................ . ....... .--. -.oo.o..................o--

function [IndividualDecision] =
IterationOfGroupDecisionDP(GroupDecision, fraction, iteration);

N=1000000; %population total
n=3; %number of choices an individual has
lambda = 30;
LengthLastTime=length(GroupDecision);

Ind lambda = [30,20,10]; %decision maker's options

p=.05;

t=l; %start day
T=50; %end day

duration illness = 2;
delta = 1000; %balloon cost of illness
survival rate=.98;
cost_per_interaction = 1;
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% Code, not to be changed during sensitivity analysis
I=zeros(T,1); % # infecteds at the start of day t
S=zeros(T,1); % # susceptibles at the start of day t
R=zeros(T,1); % # newly recovered at the END of day t
I_Group=zeros(T,1);
S_Group=zeros(T,1);
R_Group=zeros (T, 1);
ActivePop=zeros(T,1); % # of people interacting on day t

(susceptibles, infecteds and recovereds)
Active Group=zeros(T,1);
Active Tot=zeros(T,1);

Ind_prob = zeros(n,T); %probability of getting infected given choice n
and day T used by the INDIVIDUAL

Indbeta = zeros(n,T); %USED BY THE INDIVIDUAL

prob = zeros(n,T);
prob_Group = zeros(T,1);
beta = zeros(n,T);

I(t)=l; %day 0, 1 person initiates the virus
S(t)= N * (1-fraction) - I(t); %day 0, all but initial case susceptible
Active_Pop(t)= N * (1-fraction); %day 0, everyone is active

I_Group(t)=O;
S_Group(t)= N - I_Group(t) - I(t) - S(t);
Active_Group(t)=N * (fraction);

ActiveTot(t)=ActivePop(t)+Active_Group(t);

for i=l:duration illness
R(i)=0; % there are no recovered people until the first

person recovers
R_Group(i)=O;

end

while I(t)>.5
if t>LengthLastTime

GroupDecision(t) =1;
end

beta(t) = (lambda*(I(t))+
Ind_lambda(GroupDecision(t))*I_Group(t))/(lambda*(Active_Pop(t))+
Ind_lambda(GroupDecision(t))*Active_Group(t));

prob(t)= 1 - exp(-(lambda)*beta(t)*p);
prob_Group(t)=l-exp(-Ind_lambda(GroupDecision(t))*beta(t)*p);

for i=l:n %This is to determine the individual's behavior which
is used later on
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%Indbeta(i,t) = (lambda*(I(t))+
Ind_lambda(GroupDecision(t))*I_Group(t)) / (lambda*
(Active Pop(t)) + Ind_lambda(GroupDecision(t))*
Active Group(t));

Ind_prob(i,t) = 1 - exp(-(Indlambda(i))*beta(t)*p);
end

I(t+l)= S(t) * prob(t); %number to actually get sick
S(t+l)= S(t) - I(t+l); %number to be susceptible
I_Group(t+l) = SGroup(t) * prob Group(t);
S_Group(t+l) = S_Group(t) - I_Group(t+l);

if t > duration illness
R(t)=I(t-duration illness)*survival rate;
R_Group(t)=IGroup(t-durationillness)*survivalrate;

end
Active_Pop(t+l)=Active Pop(t)-I(t)+R(t); %yesterdays actives

without the
Active_Group(t+l)=Active_Group(t)-I_Group(t)+R_Group(t);
t=t+l;

end

I_total=I+IGroup;

plot(I_total, iteration, 'LineWidth', 1.75)
%plot(I)
%plot(I_Group)
sum(I_total)

%At this point we have our initial epidemic curve

%Lets program in that people can't stay at home for more than 3 days
% out of 4 days
T=t-l;
k=4; %number of days you need to carry with you
f=ones(T,n,n,n,n); %the number of n's should be the number of k's
% f(t,i,j,l,r) is the probability that the individual will stay healthy
% from day t till the end of the epidemic while his current state is r
% and his overall state is (i,j,l,r)
pred=zeros (T,n,n,n,n) ;

for i=l:n %initialize all the states for the final day
for j=l:n

for l=1:n
for r=l:n

if i+j+l+r<=8
f(T,i,j,l,r)= 1-Ind_prob(r,T);

else
f(T,i,j,l,r)= 0; % this is not allowed (4 days out

of 4 at home not acceptable)
pred(T, i, j, , r) =1000;
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end
end

end
end

end

for t=T-1:-1:1 %recalculate the behavior at each step
for i=l:n

for j=l:n
for 1=1:n

for r=l:n
if i+j+l+r<=8 %(i==1) II (j==1) (1==1) (r==l)

[x, choice] =max (f (t+1, j, 1, r,:));
pred (t, i, j, , r) =choice;
f (t, i, j,, r) = (1-Ind_prob (r, t) ) *x;

else
f(t,i,j,1,r)= 0;

end
end

end
end

end
end

behavior=zeros(T,1);

for t=l:k
behavior(t) =1;

end

for t=k+l:T
behavior(t)=pred(t-l, behavior(t-k), behavior(t-(k-l)), behavior(t-

(k-2)), behavior(t-(k-3)));
end

IndividualDecision = behavior;
ReactiveGroupInfected=sum(I_Group)/(N*fraction)
NonReactiveInfected=sum(I)/(N*(1-fraction))
CumulativeInfected=sum(I total)/N
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BEHAVIOR CHANGE MATLAB CODE FOR BOTH SELECTING TRADEOFFS AND

FULFILLING BEHAVIORAL CONSTRAINTS

function RunFiveIterationsCombo (fraction)
%initialize
N=1000000; %population total
n=3; %choices a person has
lambda = [30, 20, 10];
p=.05;

t=1; %start day
T=50; %end day
duration illness = 2;
delta = 10000; %baloon cost of illness
survival rate=.98;
cost_per_interaction=1;

Reward_Healthy=zeros(n, );
Reward Ill=zeros(n,l);

for i=l:n
Reward_Healthy(i) = lambda(i)*cost per_interaction;

%benefit from choice (of lambda) 1
Reward_Ill(i) = lambda(i)*costperinteraction- (duration_illness *

(mean(lambda))*cost_per_interaction) - delta;
end

% Code, not to be changed during sensitivity analysis
I=zeros(T,1); % # infecteds on day t
S=zeros(T,1); % # susceptibles on day t
R=zeros(T,1); % # recovered on day t
Active Pop=zeros(T,1); % # of people interacting on day t

(susceptibles, infecteds and recovereds)
prob = zeros(n,T); %probability of getting infected given choice n and

day T
beta = zeros(n,T);

I(t)=l; %day 0, 1 person initiates the virus
S(t)= N - I(t); %day 0, all but initial case susceptible
ActivePop(t)= N; %day 0, everyone is active

for i=l:durationillness
R(i)=0; % there are no recovered people until the first

person recovers
end

while I(t)>=l.0
for i=l:n

beta(i,t) = lambda(i)*I(t) /(lambda(i)*Active_Pop(t));
prob(i,t) = 1 - exp(-lambda(i) * beta(i,t) * p);

end
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I(t+l)= S(t) * prob(l, t); %number to actually getsick
S(t+l)= S(t) - I(t+l); %number to be susceptible
if t > duration illness

R(t)=I(t-duration illness)*survival rate;
end
Active_Pop(t+l)=Active_Pop(t)-I(t)+R(t); %yesterdays actives

without the
t=t+l;

end

sum(I)/N;

%At this point we have our initial epidemic curve

%Lets program in that people can't stay at home for more than 3 days
out of
%4 days
T=t-l;
k=4; %number of days you need to carry with you
f=ones(T,n,n,n,n); %the number of n's should be the number of k's
% f(t,i,j,l,r) is the probability that the individual will stay healthy
% from day t till the end of the epidemic while his current state is r
% and his overall state is (i,j,l,r)
pred=zeros(T,n,n,n,n);

for i=l:n %initialize all the states for the final day
for j=l:n

for l=1:n
for r=l:n

if i+j+l+r<=10
f(T,i,j,l,r)= l-prob(r,T);

else
f(T,i,j,l,r)= 0; % this is not allowed (4 days out

of 4 at home not acceptable)
pred(T,i,j,, r)=1000;

end
end

end
end

end

for t=T-l:-l:l %recalculate the behavior at each step
for i=l:n

for j=l:n
for l=1:n

for r=l:n
if i+j+l+r<=10

[x,choice]=max(f(t+l,j,l,r,:));
pred(t,i,j,, r)=choice;
f (t, i, j, , r) = (1-prob (r, t) ) *x;
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else
f(t,i,j,l,r)= 0;

end
end

end
end

end
end

behavior=zeros(T,1);

for t=l:k
behavior(t) =1;

end

for t=k+l:T
behavior(t)=pred(t-1, behavior(t-k), behavior(t-(k-1)), behavior(t-

(k-2)), behavior(t-(k-3)));
end

E Reward=zeros(n,T);

for t=l:T
if behavior(t)-=l

for l=1:behavior(t)
E Reward(l,t)= prob(l,t)*RewardIll(1) +(l-

prob(l,t))*Reward_Healthy(l);
%expected reward for choice i on day t

end
[x,choice] = max(EReward(:,t));
if behavior(t)-~=choice

behavior(t)=choice;
end

end
end

hold off
hold on
plot(I,'k')
%plot(behavior*10000, 'm.')

IndProbHealth=l;

for t=l:T
IndProbHealth=IndProbHealth*(l-prob(behavior(t),t));

end

IndProbHealth

%initialization is complete
%plot(behavior*10000, 'r.');
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IndividualDecisionCombo = IterationOfGroupDecisionCombo(behavior,
fraction, '.w');

IndividualDecisionCombo = IterationOfGroupDecisionCombo
(IndividualDecisionCombo, fraction, '.w');

IndividualDecisionCombo = IterationOfGroupDecisionCombo
(IndividualDecisionCombo, fraction, '.w');

IndividualDecisionCombo = IterationOfGroupDecisionCombo
(IndividualDecisionCombo, fraction, '--g');

function [IndividualDecision] = IterationOfGroupDecisionCombo
(GroupDecision, fraction, iteration);

n=3; %number of choices an individual has
N=1000000; %population total
lambda = 30;
LengthLastTime=length(GroupDecision);

Ind_lambda = [30,20,10]; %decision maker's options

p=.05;

t=1; %start day
T=50; %end day

duration illness = 2;
delta = 1000; %baloon cost of illness
survival rate=.98;

% Code, not to be changed during sensitivity analysis
I=zeros(T,1); % # infecteds at the start of day t
S=zeros(T,1); % # susceptibles at the start of day t
R=zeros(T,1); % # newly recovered at the END of day t
I_Group=zeros (T, 1);
S_Group=zeros(T,1);
R_Group=zeros (T, 1);
Active_Pop=zeros(T,1); % # of people interacting on day t
(susceptibles, infecteds and recovereds)
Active_Group=zeros(T,1);
Active Tot=zeros(T,1);

Ind_prob = zeros(n,T); %probability of getting infected given choice n
and day T used by the INDIVIDUAL
Ind beta = zeros(n,T); %USED BY THE INDIVIDUAL

prob = zeros(n,T);
prob_Group = zeros(T,1);
beta = zeros(n,T);
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Reward_Healthy=zeros(n, );
Reward Ill=zeros(n,l);
cost_per_interaction=1;

for i=l:n
RewardHealthy(i) = Ind_lambda(i)*cost_per_interaction;

%benefit from choice (of lambda) 1
Reward_Ill(i) = Ind_lambda(i)*costper_interac ion-

(duration illness * (mean(nd lambda)) *
cost_per_interaction) - delta;

end

I(t)=l; %day 0, 1 person initiates the virus
S(t)= N * (1-fraction) - I(t); %day 0, all but initial case susceptible
Active_Pop(t)= N * (1-fraction); %day 0, everyone is active

I Group(t)=0;
S_Group(t)= N - I_Group(t) - I(t) - S(t);
ActiveGroup(t)=N * (fraction);
Active_Tot(t)=Active_Pop(t)+Active_Group(t);

for i=l:duration illness
R(i)=0; % there are no recovered peopl until the first

person recovers
R_Group(i)=0;

end

while I(t)>.5
if t>LengthLastTime

GroupDecision(t) =1;
end

beta(t) = (lambda*(I(t))+ Ind lambda(GroupDecision(t))*
I_Group(t))/(lambda*(Active_Pop(t))+
Ind_lambda(GroupDecision(t))*Active_Group(t));

prob(t) = 1 - exp(-(lambda)*beta(t)*p);
prob_Group(t)=l-exp(-Ind_lambda(GroupDecision (t))*beta(t)*p);

for i=l:n %This is to determine the individual's behavior which
is used later on

%Ind beta(i,t) = (lambda*(I(t))+ Ind lambda(GroupDecision(t))*
I_Group(t))/(lambda*(Active_Pop(t))+
Ind lambda(GroupDecision(t))*Active_Group(t));

Ind_prob(i,t) = 1 - exp(-(Ind_lambda(i))*beta(t)*p);
end

I(t+l)= S(t) * prob(t); %number to actually getsick
S(t+l)= S(t) - I(t+l); %number to be susceptible
I_Group(t+l) = S_Group(t) * prob_Group(t);
SGroup(t+1) = S Group(t) - I_Group(t+l);
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if t > duration illness
R(t)=I(t-durationillness)*survivalrate;
R_Group(t)=IGroup(t-duration illness)*survival rate;

end
Active_Pop(t+l)=Active_Pop(t)-I(t)+R(t);

%yesterdays actives without the
ActiveGroup(t+l)=Active Group(t)-I_Group(t)+RGroup(t);
t=t+1;

end

I total=I+IGroup;
plot(Itotal, iteration, 'LineWidth', 1.75)
sum(Itotal)

%At this point we have our initial epidemic curve

%Lets program in that people can't stay at home for more than 3 days
% out of 4 days
T=t-l;
k=4; %number of days you need to carry with you
f=ones(T,n,n,n,n); %the number of n's should be the number of k's
% f(t,i,j,l,r) is the probability that the individual will stay healthy
% from day t till the end of the epidemic while his current state is r
% and his overall state is (i,j,l,r)
pred=zeros(T,n,n,n,n);

for i=l:n %initialize all the states for the final day
for j=l:n

for l=1:n
for r=l:n

if i+j+l+r<=10
f(T,i,j,l,r)= l-Ind_prob(r,T);

else
f(T,i,j,l,r)= 0; % this is not allowed (4 days out

of 4 at home not acceptable)
pred(T,i,j,l,r)=1000;

end
end

end
end

end

for t=T-1:-l:l %recalculate the behavior at each step
for i=l:n

for j=l:n
for l=1:n

for r=l:n
if i+j+l+r<=10 %(i==1l)I(j==l)jI (l==1) j(r==l)

[x,choice]=max(f(t+l,j,l,r,:));
pred(t,i,j,l,r)=choice;
f(t,i,j,,r)=(1-Ind_prob(r,t))*x;
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else
f (t,i,j,l,r)= 0;

end
end

end
end

end
end

behavior=zeros(T,1);

for t=l:k
behavior(t) =1;

end

for t=k+l:T
behavior(t)=pred(t-1, behavior(t-k), behavior(t-(k-1)), behavior(t-

(k-2)), behavior(t-(k-3)));
end

E Reward=zeros (n, T);

for t=1:T
if behavior(t)~=1

for 1=1:behavior(t)
E Reward(l,t)= Indprob(l,t)*Reward_Ill(1) +(1-

Indprob(l,t))*Reward_Healthy(1); %expected reward for choice i on day
t

end
[x,choice] = max(E_Reward(:,t));
if behavior(t)-~=choice

behavior(t)=choice;
end

end
end

IndividualDecision = behavior;
ReactiveGroupInfected=sum(I_Group)/(N*fraction)
NonReactiveInfected=sum(I) / (N*(1-fraction))
CumulativeInfected=sum(Itotal)/N
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APPENDIX K
MAP OF COLLEGES AND UNIVERSITIES IN THE BOSTON, MASSACHUSETTS AREA
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APPENDIX L
UNIVERSITY CHARACTERISTICS THAT ARE IMPORTANT WHEN DEVELOPING A PANDEMIC

PREPAREDNESS PLAN.

Size
1. Size of university (large/moderate/small).
2. Fraction of student body residing on campus.
3. Fraction of student body who comes from farther than 150 miles.

Location
4. Location of campus (urban/rural/near a metropolis).
5. Proximity to train or bus stations and airports.
6. Presence of other colleges or universities in the area (many/few/none).

Research
7. Importance and size of the research mission (crucial/important/flexible).
8. Graduate students in the population (majority/minority/none).

Medical
9. Medical facilities on campus (fully functioning medical

facility/infirmary/none).
10. Academic program in medicine (medical school/veterinary school/none).

Internal
11. Identify all the different administrative and operational departments.

External
12. Identify all the different supplies and services that the university receives from

outside.
13. Characterize the relationship with the local community and other colleges in

the area.
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APPENDIX M

POSSIBLE SUGGESTIONS FOR UNIVERSITY RELATED QUESTIONS

Issue Possible Resolution
Canceling Classes
How does MIT continue the * Use existing online educational tools such as:
educational mission of the OpenCourseWare, Stellar, etc.
university without ongoing * Continue classes through remote lecture and online
classes? assignment submission.

* Encourage students to start independent work or
research that can be done remotely and presented to
a willing faculty member for credit.

. Provide credit for volunteer work.
How to assign credit for courses . If classes are cancelled in the first third of a
when classes are canceled semester, give no credit.
before the end of the semester? . If classes are cancelled in the middle third of a

semester encourage students to prepare and submit
relevant independent work for credit on a case-by-
case basis.

. If classes are canceled in the last third of the
semester before finals, use existing student scores to
assign P/D/F style grades.

How can students stay on track . Ask departments to review their requirements and
to graduate at the same time as determine a "forgiveness policy" when appropriate.
before without the appropriate * Create summer courses to make up for loss of term.
course credit? While this is an option it may be difficult to

coordinate amongst faculty, graduate teaching staff
and students.

Will the university refund . Use the same division of the semester into 3 parts
tuition? What happens to the are provide full, half or no refund according to
tuition of students on financial which portion of the semester classes are cancelled.
aid?
Should the university postpone - Make case by case decisions, but universities should
or cancel special events such as expect that many participants are likely to withdraw
orientation programs, preview from attending any voluntary events such as
weekends or exams? Campus Preview Weekend.
How and when should the * Classes should not resume until the outbreak has
university resume the flared off and there is no fear that it will resume.
educational program? * Another trigger point for recommencing educational

programs is when the majority of the student body
has been vaccinated.

Student Life on Campus
In the case of a pandemic the * One solution could be to provide students with debit
food supply chain is likely to be cards with a fixed amount of money to be used for
broken, so how should the food at local establishments.

264



university feed the student body . Establishing contracts with local restaurants to feed
remaining on campus? students with university IDs may be another

approach.
How can food be distributed . If the dining staff limitation forces students to
while implementing social receive food in dining halls, several lunch shifts
distancing measures for could be established to de-crowd the dinning halls.
students? * A distribution system of leaving food at the door

could be used to feed the sick and quarantined
students.

How can the school promote * It is important to instill good hygiene practices in
NPIs, such as hygiene practices the population before a pandemic strain emerges.
and social distancing, without . In a pandemic, students could be asked to take an
inciting panic? online tutorial on how to avoid the flu.

• The university could encourage students to learn
more about the flu by creating some motivation for
them to research information about the virus. For
example, the university could develop a prize
contest of the best paper that describes how to avoid
the flu. Maybe course credit can be given to
students who do research projects about the flu and
how one can avoid it.

Administrative and Operational Issues
How can the university . Compensating essential employees with time and a
encourage the right employees half pay should help encourage them to come in.
to come to work? . Advice and policies to discourage "presenteeism"

will help discourage non-vital worked from coming
in unnecessarily.

* Union contracts should be renegotiated to allow
other employees and volunteers to do some union
work in an emergency.

What should the sick leave * Anyone who is sick should remain at home until
policy be? their symptoms have subsided and they are no

longer infectious.
* There should be some additional flexibility for

employees who have to stay at home to take care of
sick family members.

* Nonessential employees with sick family members
could be asked to self quarantine, if they are unsure
about their health status.

How can the university keep . Please refer to Section 6.4.4.
track of students as they leave
campus?
What will happen to conference * Conferences and other events that bring non-
participants? affiliates individuals to campus should be canceled

or postponed early on in the outbreak.
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