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1. Introduction 

In this talk, addressed mainly to accelerator 
physicists, we will describe the existing (and nearly 
existing) large detectors for hadron colliders (Sec
tion 2). From the experience with the CERN SppS Col
lider, we will attempt to draw a lesson both in terms 
of physics (Section 3) and in terms of hardware capabi
lities (Section 4). We will then outline the main 
challenges for the near future (Section 5) , And we 
will finally conclude that our present detectors may be 
the prototypes of a class of detectors for 20-40 TeV 
colliders, 

No mention will be made of e+e- or ISR detectors, 
although the success of MARK I at SPEAR had a pre
dominant influence on the design of collider detectors, 
and most of the techniques used have been developed at 
the ISR, PEP or PETRA. 

2. Existing pp Detectors 

2.1 General Pciociples 

The aim of the experimental physicists working at 
a collider is to describe individual collisions in as 
much detail as possible. What are the types of par
ticles produced? What is their charge, their angle of 
emission, their energy, etc.? 

In order to approach that goal, they enclose the 
interaction point with concentric sets of detectors, 
each specialized in a particular task. The classical 
structure is to surround the beam pipe by a central 
detector which shows the trajectories of charged par
ticles. If it is immersed in a magnetic field, it will 
allow the measurement of the momenta of the particles. 
Around it, shower counters will reconstruct the elec
tromagnetic energy distribution. This electromagnetic 
calorimeter is itself surrounded by a hadron calori
meter measuring hadron energy. Outside, behind the 
shielding provided by the two calorimeters and perhaps 
additional iron, track-sensitive chambers measure 
emerging muons. 

In this "Russian doll" arrangement, each particle 
type has a specific signature. 

Fig. l Artist's view of the UAl detector 

A charged hadron will have its angles of emission 
and its momentum measured by the central detector. It 
will then initiate a fat shower, with a typical dia
meter of 20 cm (for 90% energy containment at shower 
maximum), starting usually late in the calorimeters. 

An electron (or positron) will have its momentum 
measured in the central detector and its energy deter
mined by the calorimeter. The two measurements should 
be compatible. The shower in the calorimeters has very 
striking characteristics. It starts early in the elec
tromagnetic part and, if the electromagnetic calori
meter is deep enough, it dies before the hadronic 
calorimeter. The shower is very slim (typical diameter 
equal to 2 cm f o~ 90% energy containment at shower 
maximum) and its position should agree with the extra
polation from the central detector. 

A muon, on the other hand, should not have any in
teraction in the electromagnetic or the hadronic 
calorimeters. After depositing energy by dE/dx in 
these two detectors, it will emerge in the muon cham
bers. The measurement of angle and position in these 
chambers should agree with those extrapolated from the 
central detector. 

A photon (either produced directly or from n° 
decay) will of course not leave any track in the cen
tral detector. In the electromagnetic calorimeter it 
will initiate a shower, which is very similar to that 
of an electron. In particular, it does not reach the 
hadron calorimeter. 

A jet is a mixture of charged hadrons and n°•s. 
Its charged component will be measured in the central 
detector and a superposition of fat and slim showers 
will be detected in the c·alorimeters, 

Finally, high-energy colliders allow the study of 
weak interactions in which neutrinos are produced. 
Unfortunately, they do not have significant inter
actions with matter and the only way to detect them is 
by observing an imbalance of energy in the rest of the 
event. Since it is easy to lose energy along the beam 
pipe, missing transverse energy is used as a signature . 

2.2 UAl 

The UAl detector 1 at the CERN SppS Collider uses 
all these signatures. An artist's view, as shown in 
Fig, 1, allows identification of the various elements . 
Figure 2 gives a view along the beam, where the 

Fig. 2 UAl detector as seen along the beam 
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Fig. 3 Elevation view of UAl detector 

"Russian doll" structure can be recognized. An at
tempt to capture as much energy as possible leads to 
a complex structure in the forward directions as ex
emplified in Fig. 3. 

2.3 UA2 

The UA2 team at the CERN SppS Collider searched 
for simplifications which cut the construction costs 
by roughly a factor of 2 with respect to the UAl de
tector. The main emphasis 2 (Fig, 4) has been put on 
the central calorimeter, which has a tower structure 
and better segmentation in azimuth than UAl (240 cells 
instead of 20 in the polar region 40°-140°), In order 
to make a compact device, no magnetic field is used 
in that region. The consequent loss of the power to 
reject pions when selecting electrons is partially 

- I !ti -

Fig. 4 The UA2 detector. 
around the beam. 

FORWARD CALORIMETER 

It is rotationally symmetric 

compensated by a position detector (CS) locating the 
electromagnetic shower after 1.5 radiation lengths. 
In the polar region 20°-40° (140°,160°) momentum mea
surement is provided by toroids, but no hadron calori
meter is instrumented. No measurement is attempted 
below 20°, Therefore, transverse energy can escape 
easily and v detection capability is limited. No at
tempt is made to detect muons. 

2.4 GDF 

For Tevatron I at Fermilab, a general facility 
(the Collider Detector Facility 3

, CDF) is under design 
and construction. Figure 5 gives a general overview. 
The basic structure is the same as the UAl detector, 

--l 

Fig. 5 Artist's view of the Fermilab CDF 

Fig. 6 Elevation view of half the CDF 

some iron toroids allow measurement of the muons in 
the forward directions. Figure 6 shows the e.levation 
view of half of the detector. The design of the cen
tral calorimeter is similar to that of UA2 with a 
tower structure of comparable segmentation. 

3. What Have we Learned 
from h e. CC:ftil SppS Colllde.r? 

These two years of operation of the CERN SppS Col
lider have deeply transformed our view of physics with 
high-energy hadron colliders, 

3.1 Importance of Weak Interactions 

For the first time weak interactions appear to 
play a major role in hadronic reactions. The dis
covery' of the W (Fig. 7) and z0 (Fig. 8) is a specta
cular illustration. The top quark t, if it exists, 
will also decay via weak interaction, for instance in 
the reaction 
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--
although the magnetic field is parallel to the beam and Fig. 7 A W ~ ev event as seen by the UA2 Collaboration 
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t + b + e + v , 

where the electron e and the neutrino v have large 
transverse momentum (~ 10 GeV/c) with respect to the 
beauty quark b. It is therefore important for the de
tectors to be able t o identify and measure well charged 
leptons (electrons and muons) and neutrinos with sig
nificant transverse energy, as they are a good s i gna
ture of weak interactions. Moreover, the decay path 
may be sizeable (see Section 5.2). 
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Fig. 8 A z0 + e+e- event as seen by the UAl Collabora
tion. a) No threshold; b) Central detector raw digiti
zings. The 'electrons are indicated by arrows; c) Pr > 
> 2 GeV/c in central detector, Er > 2 GeV in calori
meter cells. 

3.2 Hi gh-energy Hadron Colliders are Clean 

In contrast with common expectations, hadron col
liders are producing extremely clean events. As an 
example, we show in Figs. Sa and b a z0 event observed 
by UAl with all tracks and all hits in the calori
meters. Obviously there are many low transverse energy 
particles which obscure the picture. However, as soon 
as a moderate threshold in transverse energy is imposed 
(pr > 2 GeV/c in the central detector, Er > 2 GeV in 
the calorimeter) only the two electrons from the z0 

decay are left (Fig. Sc). Their transverse energy is 
of the order of 40 GeV. 

This cleanliness of large transverse momentum 
events is quite general . These events are also the 
most interesting since they are believed to be due to 
the interactions of "elementary" constituents of the 
hadrons: quarks and gluons. Since their size is much 
smaller, they give rise to large-angle scattering. In 

fact, high-energy hadron colliders can be considered 
as quark-quark or gluon-gluon or g luon-quark colliders 
(in 10- 4 of the cases!) and in tha t respect quite com
plementary to e+e- machines. 

Of course, the "evaporation" particles of low 
transverse momentum, which are essentially irrelevant, 
have to be filtered out. The ab ove example shows the 
power of a magnet i c field for that purpose. 

3.3 Jets are the Interesting Objects 

In quantum chromodynamics, it is believed that 
these quarks and gluons cannot es cape from t he inter
action volume because they carry a forbidden quantum 
number ("colour"). They will "dress" themselves with 
surrounding quarks from the vacuum and manifest them
selves as tight "jets" of hadrons. Such jets are in
deed observed 5 • 

Figure 9a shows a two-jet event in the UAl detec
tor (with a 1 GeV threshold). The "Lego plot" of 
Fig. 9b shows that the transverse energy deposition is 
indeed very concentrated in two polar angle regions 
back to back in azimuth. Figure 10 shows a UA2 event 
with three jets where presumably one of the s cattered 
quarks or gluons has radiated an additional gluon in a 
process similar t o that of bremsstrahlung in electro
dynamics. 
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Fig. 9 A two-jet event seen in the UAl detector 
(threshold of 1 GeV on transverse momentum for charged 
particles and on transverse energy); b) The correspond
ing transverse energy deposition in the calorimeter1 
as a function of the polar angle (more precisely thd 
pseudorapidity) and the azimuth. 

Fig. 10 Transverse en
ergy deposition of a 
three-jet event in the 
UA2 calorimeter. l,W>fOfl [ ytNl"""l<QlJ:<.J 

r~R I«). 212•U 
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It appears then that the fundamental objects to 
study and to det ect are less the single hadrons than 
the jets. This shift of emphasis would require fine
grain calorimetry. In that respect the segmentation of 
the UAl calorimeter is marginal. That of UA2 and CDF 
may even be insufficient, and more advanced de s igns 
will have to be considered such as those propos ed for 
UA1 4 or for the LEP or SLC detectors. 

4 . Exper ience with Existing Detectors 

In addition to the three physics messages that we 
have outlined above, the experience with exi s ting de
tector s has taught us fundamental lessons: the need for 
redundancy, the importance of visualization, and the 
necessity of hermetic energy measurement. 

Because of the personal involvement of the author, 
the examples given will be taken from the UAl detector. 
Most of the conclusions, however, are general and apply 
equally well to UA2. 

4.1 Redundancy 

The need for redundancy can be exemplified by the 
W or z O detection. In 8 x 10 9 interactions, UAl has 
triggered 2 x 106 times, and selected 10 5 events among 
which fifty-five W + e±v and four z0 + e+e- have been 
found. Thus extremely large rejection factors have to 
be reached. 

In order to illustrate the methods used, we will 
describe the UAl selection4 of W + e±v . Because of a 
clean situation, only "rough" criteria are needed. We 
require the observation of an electromagnetic cluster 
with a transverse energy larger than 15 GeV and negli
gible energy deposition in the hadron calorimeter as is 
expected for an electromagnetic shower. We request, in 
addition, that a fast isolated track points to this 
cluster and that no jet is observed back to back in 
azimuth. 

These simple rules are sufficient to isolate 55 
events. But how do we know that we have indeed extrac
ted the W + ev events ? That is where the redundancy of 
the UAl detector comes in. 

Looking just at the missing transverse energy dis
tribution (Fig. 11), we observe that 52 events have 
missing transverse energy significantly larger than the 
expected background. This is a clear indication that 
neutrinos are present. 

We can also check that the charged particle be
haves as an electron. 

Figure 12 shows that the longitudinal profile of 
the shower is indeed that expected from an electron 
(both for the W candidates and the z0 which are ob
tained in a similar fashion). 

The position observed in the electromagnetic 
calorimeter should agree with the extrapolation from 
the central detector. This is the case (Fig. 13). 

Fig. 11 
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Missing transverse 
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Fig. 12 Comparison of position for the W candidates: 
a) in azimuth; b) along the beam of the e lectron as mea
sured by the electromagnetic calorimeter and by the 
central detector (UAl). 
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Fig. 13 Longitudinal profile of the electromagnetic 
shower for W + ev or Z + e+e-. a) Energy deposited in 
the first electromagnetic segment (minimum ionizing 
expected for non-interacting n); b) Ratio of energy de
posited in the fourth electromagnetic s egment to total 
energy (curve shows expectation); c) Energy deposited in 
hadron calorimeter. 

Finally, the energy measured in the electromag
netic calorimeter should be compatible with that of 
the central detector. This is shown in Fig. 14, which 
displays the difference of the inverse of the energy 
and the inverse of the momentum, normalized by its 
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Fig. 14 Comparison of l/E and l/p of the electrons as 
measured in the electromagnetic calorimeter and in the 
central detector (UAl). 
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The slight deviation from a Gaussian expected 
curve) from internal or external bremsstrahlung 
electrons is even observed: 

Therefore, the redundancy of the UAl detector al
lows extremely convincing arguments of the observation 
of events of the type W + ev to be put forward. The 
identification of top jets will presumably be more dif
ficult and will require the use of all the tools des
cribed above at the selection stage and not only as a 
posteri ori checks. 
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4.2 Visualization 

We have also found it extremely useful to have a 
great redundancy in the central detector giving a 
"visual" picture of the complete event. 

The first reason is that the events themselves are 
very complex (see, for instance, Fig. 15) with addi
tional tracks due to secondary interactions, o rays, 
and y conversions. To have an overall picture of the 
events is helpful, especially since as explained above 
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Fig. 15 A two-jet event (the same as in Fig. 9) as observed in the UAl central detector. 

the magnetic field allows irrelevant low-pT particles 
to be discarded. 

The presence of jets requires a good two-particle 
resolution leading to a large number of cells. This 
is reasonably done by the UAl central detector. On 
the other hand, the UAl calorimeter is quite insuffi
cient. 

A final reason for visualization is that it is 
very useful for rare events to follow the interesting 
particles all through their lifetime in order to re
ject artefacts due to interactions, accidental overlap, 
decays, etc. Figures 16a and b show, for instance, the 
residuals in the central detector of the two muons for 
a z0 event. They can be contrasted clearly with a muon 
candidate in another event which is obviously a decay 
in flight (Fig. 16c). 

•' ---- r r ~ z"- 1.1 ~ - µ' 
!. Kink ilH i I 7) <'" 
~ 

~" ~" ~ ,, 
< < • • • ~ l 2~ !"' I"' § 

"' 
.. '-L~~=i= ~-r ~ --fJ-1..--

/t.r R(~IDU E5 (~t.t) ~ ( Rt: Sl')t(S ( t.tt.t ) :r: 1 R(~Oun (t.tll) 

a) b) c) 

Fig. 16 a),b) Residuals of a circle fit to theµ+ and 
µ- traiectories in the UAl central detector for a 
z0 + µ µ- event. c) Similar residuals for an obvious 
decay. 

4.3 Hermetic Closure 

We have already stressed the importance of total 
(transverse) energy measurement for the detection of 
neutrinos. This requires a hermetic closure of the 
detector, which should capture energy over the greatest 
possible fraction of the 4rr solid angle. 

The calorimetry in the UAl detector goes down to 
an angle of 0.2° with respect to the beam. In this 
way, it is able to measure missing transverse energy 
with a typical r.m.s. of 3 to 4 GeV (Fig. 17). 

In addition to detection of neutrinos, such a good 
"hermeticity" improves considerably the physics output. 
Let us give three significative examples. 

When no neutrino is expected to be present, such 
as in z0 + µ+µ- the requirement of zero missing trans
verse energy gives two constraints which allow, as in 
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Fig. 17 Missing transverse energy in the y direction 
as a function of the scalar sum of transverse energy 
in the UAl detector for minimum bias events. 
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Fig. 18 The neutrino transverse energy balances the 
electron transverse energy (UAl). 
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Fig. 19 The W cos e* distribution, 
where e* is the angle of the elec
tron (positron) with respect to the 
antiproton (proton) outgoing direc
tion in the W centre of mass (UAl). 

bubble chambers, improvement in the accuracy of the 
muon momenta and of the mass. 

Figure 18 gives another example of the use of 
total energy measurement when a neutrino is produced. 
It shows that in the W + ev candidates the neutrino 
balances in azimuth the electron energy, giving a good 
indication that a two-body process is indeed observed. 

An even more striking use of "hermeticity" is the 
possibility of solving the ambiguity of the determina
tion of the W longitudinal momentum. This quantity is 
the solution of a second-degree equation requiring that 
the momentum of the electron (completely measured) and 
the momentum of the neutrino (measured only in its 
transverse component) combine to give the W mass. In 
the UAl experiment, for 60% of the cases, the W energy 
of one solution is too big to be compatible with the 
energy observed for the rest of the event and therefore 
only one solution exists. This allows, for these 
events, to go unambiguously to the W centre of mass and 
extract the cos e* distribution, e* being the angle of 
the electron (positron) with respect to the antiproton 
(proton) outgoing direction in that frame. Such a dis
tribution (Fig. 19) shows clearly that pari ty is vio
lated, that the spin of the observed particle is one, 
and that its coupling is compatible with V-A (or V+A). 
This is the ultimate proof that indeed it is the inter
mediate vector boson which has been observed. 

5. Challenges 

In spite of their power, illustrated in the pre
vious section, existing collider detectors face many 
c~allenges, some of them already present, some linked 
With the expected improvement of colliders. 

2.:l__ Ac cur acv 

The demands of a high-energy collider in terms of 
a;curacy, two-particle resolutions and absolute calibra
tion are quite high. 

Looking first at charged-particle detectors we can 
give an idea of the magnitude of the problem by noting 
that a 1 m track of 50 GeV (with useful length ~ 80 cm) 
in a 7 kG magnetic field has a sagitta of only 350 µm. 
This indicates the need for fiducial marks or calibra
tion beams. It has been suggested to use a UV laser 
beam ionizing the chamber gas by two-photon absorption 6 , 

However, to date, no reliable system has been imple
mented in an experiment. The two-particle resolution 
of the UAl central detector will have also to be im
proved with pulse shaping. 

As far as calorimeters are concerned, we have al
ready stressed that a finer segmentation would be 
needed for all experiments. The core size of a jet is 
typically 0.1 rad (half width at half maximum around 
~T = 40 GeV/c) around 90°. For good jet reconstruction 
the cell size should be of the same order of magnitude 
and located at a distance such that the hadronic shower 
size is comparable or smaller (~ 1.5-2 m). Moreover, 
cracks lead to loss of energy and lack of "hermeticity" • 
Such effects are present both in UAl and in UA2. More
over, a real jet calorimetry would require similar re
sponse for the electromagnetic and hadronic components 
of the showers. This iR possible with uranium7

• 

Finally, the absolute calibration may be crucial • 
For instance, the UAl + UA2 mass difference of W and Z 
is at present 4 12.1 ± 1.5 GeV, which is slightly outside 
the standard theory bounds 8 of 10.8 ± 0.5. A more pre
cise measurement would be a crucial test for the stan
dard model. This would require in turn very stable 
calorimeters with excellent calibration (~ 0.1%). The 
best candidates may be devices based on liquid argon or 
tetramethyl silane 9 • 

5.2 Flavour Identification 

In addition to detecting the jets, one would like 
to identify their nature ("flavour"). This topic is 
discussed in detail by Wiik 10 at this conference. 

We should like to stress the importance of micro
vertex detectors. Secondary vertices are expected when 
bottom or charm quarks are produced. The UAl Colla
boration9 are planning to install a high-pressure drift 
chamber with 16 wires, each having an accuracy of 25 µm. 
Combined with a small 1 mm thick beryllium vacuum cham
ber of 50 mm diameter, such a device will be able to see 
secondary vertices in a large fraction of the cases 
(more than 50% for W + tb or Higgs + bb with present 
estimates of lifetimes). 

5.3 Luminosity 

The challenges of luminosity are surmnarized in the 
talk of Loken 11 at this conference: superposition of 
events, pile-up in individual detecting elements, dis
torsions due to positive ions, d.c. shift, etc. In 
general, one can get around these limitations by using 
a large enough number of cells. Inversely a given de
tector is limited: for instance the large drift gaps 
used in the UAl central detector exclude operation above 
its design of a few 10 30 cm2 /s, a value which may even
tually be reached by the SppS Collider. 

Another important consequence of luminosity is the 
need for "smart" triggers. Already at 2 x 1029 cm 2 /s, 
we feel the necessity of going from "local" triggers 
(e.g. local high-ET deposition or muon track) to "global" 
triggers (such as e +jet orµ+ jet). This requires 
rather flexible and complex systems based on powerful 
on-line computers (68000, 168E, etc.). 

5 . 4 Size a nd Comp lexity 

But, perhaps the most fundamental challenge faced 
by experiments at.high-energy colliders is that of size 
and complexity. 
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curve) from internal or external bremsstrahlung 
electrons is even observed: 

Therefore, the redundancy of the UAl detector al
lows extremely convincing arguments of the observation 
of events of the type W + ev to be put forward. The 
identification of top jets will presumably be more dif
ficult and will require the use of all the tools des
cribed above at the selection stage and not only as a 
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Fig. 15 A two-jet event (the same as in Fig. 9) as observed in the UAl central detector. 

the magnetic field allows irrelevant low-pT particles 
to be discarded. 

The presence of jets requires a good two-particle 
resolution leading to a large number of cells. This 
is reasonably done by the UAl central detector. On 
the other hand, the UAl calorimeter is quite insuffi
cient. 
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very useful for rare events to follow the interesting 
particles all through their lifetime in order to re
ject artefacts due to interactions, accidental overlap, 
decays, etc. Figures 16a and b show, for instance, the 
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a z0 event. They can be contrasted clearly with a muon 
candidate in another event which is obviously a decay 
in flight (Fig. 16c). 
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Fig. 16 a),b) Residuals of a circle fit to theµ+ and 
µ- traiectories in the UAl central detector for a 
z0 + µ µ- event. c) Similar residuals for an obvious 
decay. 

4.3 Hermetic Closure 

We have already stressed the importance of total 
(transverse) energy measurement for the detection of 
neutrinos. This requires a hermetic closure of the 
detector, which should capture energy over the greatest 
possible fraction of the 4rr solid angle. 

The calorimetry in the UAl detector goes down to 
an angle of 0.2° with respect to the beam. In this 
way, it is able to measure missing transverse energy 
with a typical r.m.s. of 3 to 4 GeV (Fig. 17). 

In addition to detection of neutrinos, such a good 
"hermeticity" improves considerably the physics output. 
Let us give three significative examples. 

When no neutrino is expected to be present, such 
as in z0 + µ+µ- the requirement of zero missing trans
verse energy gives two constraints which allow, as in 
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Fig. 17 Missing transverse energy in the y direction 
as a function of the scalar sum of transverse energy 
in the UAl detector for minimum bias events. 
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Fig. 19 The W cos e* distribution, 
where e* is the angle of the elec
tron (positron) with respect to the 
antiproton (proton) outgoing direc
tion in the W centre of mass (UAl). 
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Figure 18 gives another example of the use of 
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balances in azimuth the electron energy, giving a good 
indication that a two-body process is indeed observed. 
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possibility of solving the ambiguity of the determina
tion of the W longitudinal momentum. This quantity is 
the solution of a second-degree equation requiring that 
the momentum of the electron (completely measured) and 
the momentum of the neutrino (measured only in its 
transverse component) combine to give the W mass. In 
the UAl experiment, for 60% of the cases, the W energy 
of one solution is too big to be compatible with the 
energy observed for the rest of the event and therefore 
only one solution exists. This allows, for these 
events, to go unambiguously to the W centre of mass and 
extract the cos e* distribution, e* being the angle of 
the electron (positron) with respect to the antiproton 
(proton) outgoing direction in that frame. Such a dis
tribution (Fig. 19) shows clearly that pari ty is vio
lated, that the spin of the observed particle is one, 
and that its coupling is compatible with V-A (or V+A). 
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mediate vector boson which has been observed. 

5. Challenges 

In spite of their power, illustrated in the pre
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With the expected improvement of colliders. 
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This indicates the need for fiducial marks or calibra
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calorimeters with excellent calibration (~ 0.1%). The 
best candidates may be devices based on liquid argon or 
tetramethyl silane 9 • 
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In addition to detecting the jets, one would like 
to identify their nature ("flavour"). This topic is 
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We should like to stress the importance of micro
vertex detectors. Secondary vertices are expected when 
bottom or charm quarks are produced. The UAl Colla
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chamber with 16 wires, each having an accuracy of 25 µm. 
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The challenges of luminosity are surmnarized in the 
talk of Loken 11 at this conference: superposition of 
events, pile-up in individual detecting elements, dis
torsions due to positive ions, d.c. shift, etc. In 
general, one can get around these limitations by using 
a large enough number of cells. Inversely a given de
tector is limited: for instance the large drift gaps 
used in the UAl central detector exclude operation above 
its design of a few 10 30 cm2 /s, a value which may even
tually be reached by the SppS Collider. 
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we feel the necessity of going from "local" triggers 
(e.g. local high-ET deposition or muon track) to "global" 
triggers (such as e +jet orµ+ jet). This requires 
rather flexible and complex systems based on powerful 
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We have seen that a large number of cells is neces
sary both for charged-particle detectors and calori
meters. One way to limit the cost and complexity is to 
use clever multiplexing schemes. The concept of the 
time projection chamber allowed UAl to divide a 20 m3 

volume into 8 x 10 5 pixels with only 6200 wires, pro
viding a picture of bubble chamber quality. A similar 
idea is needed to instrument fine-grain calorimeters. 
With cell sizes given above, a few times 10 4 elements 
are easily reached. This large number of cells re
quires good reliability. Continuous monitoring and de
tailed diagnostics with the help of minicomputers are 
becoming common practice. 

Last, but not least, the size of the collaborations 
becomes worrying. The UA2 group consists of SO physi
cists, UAl of 130, some LEP collaborations have more 
than 250 physicists. At these sizes, the problems of 
organization are far from trivial. In particular, the 
productivity of a team of physicists is strongly depen
dent on the flow of information, and the balance between 
personal initiative and consistent group action may be 
delicate. 

6. Conclusion: Prospects for a 20-40 TeV detector 

Will a detector for a 20-40 TeV machine be a 
"monster" which will be difficult financially to build, 
and hard physically to maintain and to manage? We do 
not think so. 

The main reason is the shift of emphasis outlined 
in Section 3 towards jets and calorimetry. The size of 
calorimeters increases typically logarithmically with 
energy, while their relative accuracy improves as l/IE. 
Calorimeters have, therefore, obvious advantages with 
respect to magnetic detectors, which have to increase 
in dimensions as IE in order to maintain a constant re
lative accuracy. 

However, because of the match between shower size 
and jet size mentioned in Section 5.1, the calorimeters 
cannot be too close to the interaction region. In the 
1.5-2 m region available one would obviously place a 
charged particle detector in a moderate magnetic field, 
which would mainly be used as a filter to tag low-energy 
particles. Figure 20, taken from the Proceedings of the 
DPF Workshop at Berkeley 12

, shows a possible sketch of 
such a detector. This may be too conventional compared 
to the possibilities which will he opened up in ten 
years from now. It just shows that detectors for 
20-40 TeV machines will not necessarily be "dinosaurs" 
and that the collaborations involved could be maintained 
at a manageable size. 

Fig. 20 A 20 TeV detector (from Ref. 12). 
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