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Abstract

This dissertation presents techniques and tools for improving software reliabil-
ity, by using an expressive string-constraint solver to make implementation-based
testing more effective and more applicable. Concolic testing is a paradigm of
implementation-based systematic software testing that combines dynamic sym-
bolic execution with constraint-based systematic execution-path enumeration. Con-
colic testing is easy to use and effective in finding real errors. It is, however, limited
by the expressiveness of the underlying constraint solver. Therefore, to date, con-
colic testing has not been successfully applied to programs with highly-structured
inputs (e.g., compilers), or to Web applications.

This dissertation shows that the effectiveness and applicability of concolic test-
ing can be greatly improved by using an expressive and efficient string-constraint
solver, i.e., a solver for constraints on string variables. We present the design, im-
plementation, and experimental evaluation of a novel string-constraint solver. Fur-
thermore, we show novel techniques for two important problems in concolic test-
ing: getting past input validation in programs with highly-structured inputs, and
creating inputs that demonstrate security vulnerabilities in Web applications.
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Chapter 1

Introduction

Software is everywhere. In today’s world, software flies spacecraft, monitors power
plants, controls heart pacemakers, drives cars, and plays music. Unreliable soft-
ware can make many aspects of life miserable and incur gigantic cost to the econ-
omy [57]. Therefore, companies and governments spend billions of dollars every
year on ensuring the reliability of the software we use. This dissertation is part of
the effort to reduce the cost of ensuring software reliability.

Testing is the primary approach to software reliability used in the software in-
dustry. Companies spend at least half of their development budget on testing [57].
Even when it is assisted by automated tools, software testing is often largely man-
ual, which makes it expensive. To be effective, a suite of test inputs must exercise
software in many different ways, and test engineers usually construct such test
suites by hand. Often, software errors get revealed only for unusual inputs that
rarely occur during normal use, and test engineers need significant skill in creat-
ing such inputs. This dissertation aims at lowering the cost of testing by automat-
ing the creation of good test inputs, thus reducing the time and effort required to
discover errors.

White-box, or implementation-based, testing uses the program’s code to create
test inputs for the program. To gather information about the program under test,
white-box testing techniques can analyze the program either statically (i.e., exam-
ine the text of the program), or dynamically (i.e., run the program and observe the
execution). This dissertation presents novel dynamic white-box testing techniques
and demonstrates their effectiveness.

Concolic testing (also known as directed testing, or whitebox fuzzing) is a new
paradigm of dynamic white-box testing [17, 46, 102] that has been implemented
in a number of tools [2, 16, 18,48,60]. This dissertation presents novel concolic
testing techniques and tools. Concolic testing combines concolic execution (also
known as dynamic symbolic execution) with execution-path enumeration.

Concolic execution blends concrete and symbolic execution [65]. Given a pro-
gram and an input, concolic execution records how the input affects the control
flow in the program. The result of concolic execution is a path constraint: a logic
formula that is satisfied by the input and also by any other input that will drive
the program’s execution along the same execution path. Symbolic variables in the
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path constraint refer to bytes in the program’s input.

Concolic testing enumerates execution paths in the program by specifying al-
ternative paths as logic formulas and using a constraint solver to find inputs that
correspond to those alternative paths. A constraint solver is a program that com-
putes solutions to logic formulas in a given logic. Concolic testing tools often use
solvers for linear arithmetic [33] or bit-vector arithmetic [42]. This dissertation
presents concolic testing techniques that work by enhancing the expressiveness of
the constraint solver.

The key idea of this dissertation is that the effectiveness and applicability of
concolic testing can be greatly improved by using an expressive and efficient string-
constraint solver, i.e., a solver for constraints on string variables. We present the
design, implementation, and experimental evaluation of a novel string-constraint
solver. Furthermore, we show novel techniques for two important problems in
concolic testing: getting past input validation in programs with highly-structured
inputs, and creating inputs that demonstrate security vulnerabilities in Web appli-
cations.

1.1 Hampi: A Solver for String Constraints

We present HAMPI [63], a novel solver for constraints over fixed-size string vari-
ables. HAMPI is designed to be used as a component in automatic software testing,
analysis, and verification applications. Many such applications, including concolic
testing, can be reduced to constraint generation followed by constraint solving.
This separation of concerns leads to more effective and maintainable tools. The
increasing efficiency of off-the-shelf constraint solvers makes this approach even
more compelling. However, there are few effective and sufficiently expressive off-
the-shelf solvers for string constraints generated by analysis techniques for string-
manipulating programs.

HAMPI constraints express membership in regular languages and fixed-size
context-free languages. The constraints may contain context-free-language defi-
nitions, regular-language definitions and operations, and the membership pred-
icate. Given a set of constraints, the solver outputs a string that satisfies all the
constraints, or reports that the constraints are unsatisfiable.

1.2 Grammar-Based Concolic Testing

We present grammar-based concolic testing [45], a novel concolic testing technique for
programs with structured inputs. Even though concolic testing exercises different
execution paths systematically, the execution-path exploration is unguided. Often,
some parts of the code are tested repeatedly, while others remain untested. In such
cases, concolic testing spends its time exercising the easy-to-reach parts of the code,
but it has a hard time generating inputs that exercise long execution paths in the
program [45,63,72]. This is particularly a problem for programs that have highly-
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structured inputs — only a tiny fraction of all inputs exercise long paths and reach
the core functionality, while a vast majority of inputs get quickly rejected. For
example, a Web-service checks that a request is in a required format. Similarly,
a compiler checks that the input satisfies a set of grammatical rules. However,
the constraint solvers that underlie current concolic testing tools do not know the
specification of the input format. Our insight is that, by using a solver enhanced
with the input-format specification, concolic testing can explore non-error paths in
the program’s early stages.

Grammar-based concolic testing enhances the constraint solver with a specifi-
cation of valid inputs, expressed as a formal grammar. This enhancement com-
bines implementation-based testing with specification-based testing: the specifica-
tion of the input format guides the concolic-testing tool towards harder-to-reach,
later areas of the code. In grammar-based concolic testing, concolic execution gen-
erates grammar-based constraints and checks their satisfiability using a custom
string-constraint solver. Our custom solver, when searching for a satisfying as-
signment, only considers assignments that satisfy the input format specification.
Technically, the solver computes the intersection of the language of inputs that
satisfy the constraint and the language of inputs that satisfy the specification.

1.3 Concolic Security Testing

We present concolic security testing [64], a novel concolic testing technique for find-
ing security vulnerabilities in Web applications. SQL Injection (SQLI) and cross-
site scripting (XSS) are widespread security vulnerabilities. To exploit them, the
attacker crafts the input to the application to access or modify user data and ex-
ecute malicious code. In the most serious attacks (called second-order XSS), an
attacker can corrupt a database and cause subsequent users of the Web application
to execute malicious code.

Concolic security testing systematically generates program inputs, runs each
input using concolic execution (including dynamically tracing symbolic values
through database accesses), and uses a string-constraint solver to find inputs that
produce concrete exploits. Our technique is, as far as we know, the first to precisely
addresses second-order XSS attacks.

Concolic security testing creates real attacks, has few false positives, incurs no
runtime overhead for the deployed application, works without requiring modifica-
tion of application code, and handles dynamic programming-language constructs.

1.4 Contributions and Results

This dissertation contributes novel techniques and tools that improve effectiveness
and applicability of concolic testing.

1. HAMPI [63], a novel solver for string constraints (Chapter 3). HAMPI is ex-
pressive and efficient, and can be successfully applied to testing and analysis
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of real programs. Our experiments used HAMPI in a static analysis for find-
ing SQL injection vulnerabilities in Web applications, and compared HAMPI
with another string-constraint solver. To facilitate further research in string-
constraint solvers, we made HAMPI’s source code, documentation, and the
experimental data available.

2. Grammar-based concolic testing [45], a novel concolic testing technique for
programs with structured inputs (Chapter 4). We have implemented the
technique and evaluated it in two case studies.

(i) Systematic testing of UNIX programs. Our experiments show that our
technique led to up to 2x improvements in line coverage (up to 5x cov-
erage improvements in parser code), eliminated all illegal inputs, and
enabled discovering 3 distinct, previously unknown, inputs that led to
infinitely-looping program execution.

(ii) A large security-critical application, the JavaScript interpreter of Inter-
net Explorer 7 (IE7). Our technique explores deeper program paths and
avoids dead-ends due to non-parsable inputs. Compared to regular
concolic testing, our technique increased coverage of the code gener-
ation module of the IE7 JavaScript interpreter from 53% to 81% while
using three times fewer tests.

3. Concolic security testing [64], a novel concolic testing technique (Chapter 5).
We created ARDILLA, a tool that implements this technique for PHP and ap-
plied ARDILLA to finding security vulnerabilities in Web applications. We
evaluated the tool on five PHP applications and found 68 previously un-
known vulnerabilities (23 SQLI, 33 first-order XSS, and 12 second-order XSS).

This dissertation begins with a description of concolic testing (Chapter 2). The
next three chapters form the core of this dissertation and present the main con-
tributions. Specifically, we present our solver for string constraints (Chapter 3),
describe grammar-based concolic testing (Chapter 4), and describe concolic secu-
rity testing (Chapter 5). We conclude with potential directions for future work
(Chapter 6).
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Chapter 2

Concolic Testing

The purpose of concolic testing is to find program inputs that expose errors. The
idea of concolic testing is to run the program on an input, observe the program
execution on that input, and create additional inputs derived from the original.
The additional inputs are perturbed versions of the original input and exercise
execution-flow paths that are similar to that of the original input.

We illustrate the high-level idea of concolic testing. Running the program on
the seed input (l;) exercises a particular concrete execution path. In the following
figure, the arrow denotes the execution path. The small circles denote the dynamic
execution of conditional statements (e.g., 1 f) that depend on the program input.

ly

Concolic testing automatically generates inputs that exercise different execution-
flow paths. Consider the following path that corresponds to a different input, I,.
This path agrees on the original path up to the last conditional, and then the exe-
cution takes the opposite branch. Concolic testing automatically finds such an input

l,.

In the same way, from the original input |;, concolic testing creates additional
inputs |3, I3, and |5 that exercise alternative execution-flow paths in the program.
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Each path agrees on the original path up to the last conditional, and then the exe-
cution takes the opposite branch. Note that an alternative path need not be of the
same length as the original path.

Each of the newly-created inputs is then executed, and thus concolic testing
generates additional inputs. For example, executing |, allows concolic testing to
generate lg and |; (for clarity, paths exercised by previously-generated inputs have
been shortened). Thus, concolic testing runs the program multiple times, each time
with a different input. Each newly-generated input may lead to the generation of
additional inputs.

Concolic testing continues the process of running inputs and generating new
inputs, until all execution-flow paths have been exercised, or until the time limit is
reached.

In principle, concolic testing can exercise every feasible path in the program.
In practice, however, concolic testing is usually incomplete because the number of
feasible control paths may be astronomical (or even infinite) and because the preci-
sion of concolic execution, constraint generation, and solving is inherently limited.
Nevertheless, concolic testing has been shown to be very effective in finding errors
in programs [16,17,46,102].

Algorithm

Now, we discuss the concolic testing algorithm in more detail. Concolic test-
ing [17, 46, 102] combines concolic execution with execution-path enumeration.
Given a sequential deterministic program £ under test and a set of initial (seed)
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program inputs, concolic testing finds inputs for # that expose errors. The algo-
rithm performs concolic execution of program # with each input, collects con-
straints generated during the execution, and generates new inputs by modifying
and solving the constraints. Each such newly-generated input aims to exercise a
different execution-flow path in $. The algorithm repeats concolic execution and
input generation, thus executing the program multiple times, each time with a dif-
ferent input. Each newly generated input may lead to the generation of additional
inputs. The algorithm terminates when a testing time limit is reached or no more
inputs can be generated (i.e., all execution paths in the code have been exercised).

parameters: Program P, seed inputs
result : Error reports for P

procedure concolicTesting(P, inputs):

errors .= @

worklist '= emptyQueue()

enqueueAll(worklist, inputs)

while not empty(worklist) and not timeExpired() do
input ‘= dequeue(worklist)
errors = errors U Run& Check(P, input)
pc = concolicExecution(P, input)
newlnputs := createNewlInputs(pc)
enqueueAll(worklist, newlnputs)

return errors

o @ N Ul e W

=
- O

Figure 2-1: Concolic testing algorithm.

First, the worklist of inputs is initialized with the seed inputs (line 4). Then,
the algorithm loops until there are no more inputs to explore, or the time limit is
reached (line 5). In the loop, the algorithm takes an input from the worklist (line 6),
and checks whether running # with the input triggers a runtime error (line 7).
The program is then executed concolically (procedure concolicExecution, explained
below). The result of concolic execution is a path constraint, which concolic testing
uses to generate new inputs (procedure createNewlnputs, explained below).

Concolic Execution

Concolic execution (procedure concolicExecution) combines concrete and symbolic
execution [65]. Concolic execution is also known as dynamic symbolic execution,
because it is carried out while the program is running on a particular concrete
input. Dynamic execution allows any imprecision in symbolic execution to be alle-
viated using concrete values: whenever symbolic execution does not know how to
generate a symbolic expression for a runtime value, it can simplify the expression
by using the concrete runtime value [46].

Concolic execution records how the input affects the control flow in the pro-
gram. The result of concolic execution is a path constraint that is a logic formula

13



parameters: Program P, concrete input
result : Path condition pc

12 procedure concolicExecution(P, input):

13 path constraint pc = rrue

14 foreach instruction inst executed by P with input do
15 update the symbolic store

16 switch inst do

17 case input-dependent conditional statement

18 ¢ := expression for the executed branch
19 pci=pcAc

20 otherwise

21 if inst reads byte from input then

22 mark input byte as symbolic variable

23 return pc

Figure 2-2: Concolic execution algorithm.

that is satisfied by the currently executed concrete input and any other concrete in-
put that will drive the program’s execution along the same control path. Symbolic
variables in the path constraint refer to bytes in the program’s input. The path
constraint represents the equivalence class of all inputs that drive the execution of
the program along the same control path as the original input. By memoizing the
path constraints (or by using generation search [48]), concolic testing can guaran-
tee executing at most one input from each equivalence class.

The algorithm keeps a symbolic store which is a map from concrete runtime val-
ues to symbolic expressions over symbolic variables. The algorithm updates the
symbolic store whenever the program manipulates input data (line 15). At every
conditional statement that involves symbolic expressions, the algorithm extends
the current path constraint pc with an additional conjunct ¢ that represents the
branch of the conditional statement taken in the current execution (line 19). At
every instruction that reads a byte from the input, a fresh symbolic variable is as-
sociated with the input byte (line 22).

Implementation strategies for concolic execution include source rewriting [18,
27,46,101,102], binary rewriting [84], and modifying the execution environment [2,
16,48, 60,110]. Concolic execution tools exist for C [18,27,46,102], Java [60,101],
NET [110], and PHP [2,116].

Execution-Path Enumeration

Concolic testing creates new test inputs (procedure createNewlInputs in Figure 2) by
modifying the path constraint. For each prefix of the path constraint, the algo-
rithm negates the last conjunct (line 28). A solution, if it exists, to such an alterna-
tive path constraint corresponds to an input that will execute the program along
the prefix of the original execution path, but take the opposite branch of the condi-
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parameters: Path condition pc
result : New inputs

24 procedure createNewlInputs(pc):

25 CitA...ANc, =pC

26 inputs = @

27 fori:=1...ndo

28 pc=ci AN NG A

29 newlnput = solve(pc)

30 if newlnput # L then

31 inputs = inputs U {newlnput}
32 return inputs

Figure 2-3: Creating new inputs in concolic testing.

tional statement corresponding to the last constraint in that prefix (assuming con-
colic execution and constraint solving have perfect precision, otherwise the actual
execution may diverge from this path). The algorithm calls the constraint solver
to find a concrete input that satisfies the alternative path constraint (line 29). If the
constraint solver can find such a value (line 30), this new test input is generated
(line 31).

Example

We illustrate concolic testing on an example program (from Godefroid et al. [48]).
The program takes a 4-character array as input and has an error that can be ex-
posed by only one input, bad! (for readability, we print the character array as
a string). Finding this error without examining the implementation is hard —
assuming 8-bit characters, only 1 input in 2% (more than 4 billion) exposes the
problem. Thus, randomly sampling the input space is unlikely to lead to quickly
exposing the error. Concolic testing is implementation-based and finds the error-
causing input very quickly, in a few program executions.

Concolic testing starts with an arbitrary seed input, and executes that seed in-
put to collect constraints and create additional inputs. Then, concolic testing exe-
cutes the program repeatedly with newly generated inputs. The process continues
until all execution paths are explored, or until the time limit is reached.

Execution 1. Concolic testing starts with an arbitrary input, e.g., good, and per-
forms concolic execution of the program on the input. Concolic execution marks
each character in the input as symbolic. We denote the symbolic marks i,...,i3
(corresponding to input [0],...,input [3]). When the execution reaches the first
if statement (line 3), the path constraint (initially set to true) gets extended with
conjunct iy # b. This expression corresponds to the branch that is taken in the
execution (in this case, the else branch of the conditional because the concrete
value of iy is g). When the program execution finishes, the path constraint is:

15



void main(char input[4]) {

int count=0;

if (input[0] == 'b’)
count++;

if (input[l] == "a’)
count++;

if (input[2] == ’d’")
count++;

if (input[3] == 7!'")
count++;

if (count >= 3)
abort (); // error

(o #D)A (@1 #a)A (i # d) A (i3 # !). Concolic testing generates four new in-
puts by systematically negating conjuncts in the path constraint and solving the
resulting constraint.

PCi Go#b)AGHrFAOAGFADAG=!) — goo'!
pc: (Go#b)A( #a)A (2 =4d) — godd
pcs (o #b)A (G =a) — gaod
pcs (o =Db) — bood

For simplicity of exposition, we assume that all generated inputs are of the
same length as the original input, and that the constraint solver prefers the con-
crete values from the original input to other concrete values. For example, there
are many solutions to (iy # b) A (i; = a), and we assume that the solver chooses
gaod. This assumption does not change the technique. In fact, this assumption is
commonly used in the implementation of concolic testing [16,48,60].

Each newly generated input explores a unique execution path. Each path shares
a prefix with the original path, up to the conditional that corresponds to the negated
conjunct, and then the new paths diverge. For example, the original input good ex-
ecutes the path (numbers indicate line numbers in the example program): 2,3,5,7,9,11.
Input gaod executes the path 2,3,5,6,7,9,11. The two paths agree on the prefix 2,3,5
and then diverge.

Execution 2. Concolic testing executes one of the generated inputs, etc. bood.
Concolic execution of this input results in path constraint: (i, = b) A (i} # a) A
(i # d) A (i3 # !). By systematically negating conjuncts in this path constraint and
solving the resulting formulas, concolic testing creates three additional inputs.

PCa Go=b)AG#a)A(L#DAGE="!) — Dboo!
PCs Go=D)A{ #a)A (i, =d) —> bodd
PCs (lo = b) A (11 = a) —> baod

Execution n < 16. After a few more iterations, concolic testing generates the
error-exposing input bad!. The exact number of iterations depends on the algo-
rithm for selecting the next input to execute but, in this example, the number is not
larger than 16, i.e., the number of feasible execution paths in the program. This is
much fewer than 2% possible inputs.
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Chapter 3

Hampi: A Solver for String
Constraints

Many automatic testing [18, 46, 102], analysis [50, 118], and verification [22, 23,
59] techniques for programs can be effectively reduced to a constraint-generation
phase followed by a constraint-solving phase. This separation of concerns often
leads to more effective and maintainable tools. Such an approach to analyzing
programs is becoming more effective as the efficiency of off-the-shelf constraint
solvers for Boolean SAT [35, 86] and other theories [33, 42] continues to increase.
Most of these solvers are aimed at propositional logic, linear arithmetic, or the
theory of bit-vectors.

Many programs, such as Web applications, take string values as input, manip-
ulate them, and then use them in sensitive operations such as database queries.
Analyses of string-manipulating programs in techniques for automatic testing [12,
36,45], verifying correctness of program output [103], and finding security faults [41,
116] produce string constraints, which are then solved by custom string solvers
written by the authors of these analyses. Writing a custom solver for every appli-
cation is time-consuming and error-prone, and the lack of separation of concerns
may lead to systems that are difficult to maintain. Thus, there is a clear need for an
effective and sufficiently expressive off-the-shelf string-constraint solver that can
be easily integrated into a variety of applications.

We designed and implemented HAMPI, a solver for constraints over fixed-size
string variables. HAMPI constraints express membership in regular and fixed-
size context-free languages'. HAMPI constraints may contain a fixed-size string
variable, context-free language definitions, regular-language definitions and op-
erations, and language-membership predicates. Given a set of constraints over a
string variable, HAMPI outputs a string that satisfies all the constraints, or reports
that the constraints are unsatisfiable. HAMPI is designed to be used as a compo-
nent in testing, analysis, and verification applications. HAMPI can also be used

LAll fixed-size languages are finite, and every finite language is regular. Hence, it would suffice
to say that HAMPI supports only fixed-size regular languages. However, it is important to empha-
size the ease-of-use that HAMPI provides by allowing users to specify context-free languages.
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to solve the intersection, containment, and equivalence problems for regular and
fixed-size context-free languages.

A key feature of HAMPI is fixed-sizing of regular and context-free languages.
Fixed-sizing makes HAMPI different from custom string-constraint solvers used in
many testing and analysis tools [36]. As we demonstrate, for many practical appli-
cations, fixed-sizing the input languages is not a handicap. In fact, it allows for a
more expressive input language that allows operations on context-free languages
that would be undecidable without fixed-sizing. Furthermore, fixed-sizing makes
the satisfiability problem solved by HAMPI tractable. This difference is similar to
that between model-checking and bounded model-checking [11], and it has been
previously explored in automated decision procedures for integer arithmetic [24]
and relational logic [58].

HAMPI's input language can encode queries that help identify SQL injection
attacks, such as: “Find a string v of size 12 characters, such that the SQL query
SELECT msg FROM messages WHERE topicid=v is a syntactically valid SQL
statement, and that the query contains the substring OR 1=1" (where OR 1=1 is
a common tautology that can lead to SQL injection attacks). HAMPI finds a string
value that satisfies the constraints, or answers that no satisfying value exists (for
the above example, string 1 OR 1=1 is a solution).

HAMPI works in four steps: First, normalize the input constraints, and gen-
erates what we refer to as the core string constraints. The core string constraints
are expressions of the form v € Ror v ¢ R, where v is a fixed-size string variable,
and R is a regular expression. Second, translate these core string constraints into
a quantifier-free logic of bit-vectors. A bit-vector is a fixed-size, ordered, list of
bits. The fragment of bit-vector logic that HAMPI uses contains standard Boolean
operations, extracting sub-vectors, and comparing bit-vectors. Third, hand over
the bit-vector constraints to STP [42], a constraint solver for bit-vectors and arrays.
Fourth, if STP reports that the constraints are unsatisfiable, then HAMPI reports
the same. Otherwise, STP reports that the input constraints are satisfiable, and
generates a satisfying assignment in its bit-vector language. HAMPI decodes this
to output a string solution.

Experimental Evaluation

We evaluated HAMPI in four experiments. We used HAMPI in testing and analy-
sis applications and evaluated HAMPI’s expressiveness and efficiency: (i) We used
HAMPI in a tool for identifying SQL injection vulnerabilities in PHP Web applica-
tions using static analysis [114]. (ii) We compared HAMPI’s performance to CFG-
Analyzer [4], a solver for analyzing context-free grammars. (iii) We used HAMPI
in ARDILLA [64], a tool for creating SQL injection attacks using dynamic analysis
of PHP Web applications. (iv) We used HAMPI in Klee [16], a concolic-testing tool.

Our results indicate that HAMPI is efficient, and its input language can express
string constraints that arise from a variety of real-world analysis and testing tools.
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Contributions and Results

e A decision procedure for constraints over fixed-size string variables, support-
ing regular language membership, context-free language membership, and
typical string operations such as concatenation.

e HAMPI, an open-source implementation of the decision procedure. HAMPI's
source code and documentation are available at: http://people.csail.
mit.edu/akiezun/hampi.

e Downloadable (from HAMPI website) experimental data that can be used as
benchmarks for developing and evaluating future string-constraint solvers.

o Evaluation of application of HAMPI to a static analysis. We used HAMPI in
the static analysis tool [114], which we applied to 6 PHP Web applications
(total lines of code: 339,750). HAMPI solved all constraints generated by the
analysis, and solved 99.7% of those constraints in less than 1 second per con-
straint. All solutions found by HAMPI for these constraints were less than 5
characters long. These experiments on real applications bolster our claim that
fixed-sizing the string constraints is not a handicap.

o Comparison of HAMPI’s performance to another solver. We ran HAMPI and
CFGAnalyzer [4] on 100 grammar intersection problems. On those bench-
marks, HAMPI is, on average, 6.8x faster than CFGAnalyzer. Furthermore,
HAMPI’s speedup increased with the problem size.

We present the evaluation of HAMPI in ARDILLA and in Klee in the respective
chapters (Section 5.4 and Section 4.4).

We introduce HAMPI using an example (Section 3.1), then present HAMPI's in-
put format and solving algorithm (Section 3.2), discuss speed optimizations (Sec-
tion 3.2.6), and present the experimental evaluation (Section 3.3). We finish with
related work (Section 3.4).

3.1 Example: SQL Injection

SQL injections are a prevalent class of Web-application vulnerabilities. This section
illustrates how an automated tool [64,116] could use HAMPI to detect SQL injection
vulnerabilities and to produce attack inputs.

Figure 3-1 shows a fragment of a PHP program that implements a simple Web
application: a message board that allows users to read and post messages stored in
a MySQL database. Users of the message board fill in an HTML form (not shown
here) that communicates the inputs to the server via a specially formatted URL,
e.g., http://www.mysite.com/?topicid=1. Input parameters passed inside
the URL are available in the $_GET associative array. In the above example URL,
the input has one key-value pair: topicid=1. The program fragment in Figure 3-1
retrieves and displays messages for the given topic.
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Smy_topicid = $_GET[’topicid’];

$sglstmt = "SELECT msg FROM messages WHERE topicid=’S$my_topicid’";
Sresult = mysqgl_query ($sglstmt);

//display messages
while ($Srow = mysqgl_fetch_assoc(Sresult)) {
echo "Message " . Srow[’msg’];

}

Figure 3-1: Fragment of a PHP program that displays messages stored in a MySQL
database. This program is vulnerable to an SQL injection attack. Section 3.1 dis-
cusses the vulnerability.

This program is vulnerable to an SQL injection attack. An attacker can read all
messages from the database (including ones intended to be private) by crafting a
malicious URL such as

http://www.mysite.com/?topicid=1’ OR ’'1’'="'1
Upon being invoked with that URL, the program reads
1” OrR "1’="1

as the value of the $my_t opicid variable, and submits the following query to the
database in line 4:

SELECT msg FROM messages WHERE topicid='1’ OR "1/='1’

The WHERE condition is always true because it contains the tautology "1’ ="1".
Thus, the query retrieves all messages, possibly leaking private information.

A programmer or an automated tool might ask, “Can an attacker exploit the
topicid parameter and introduce a tautology into the query at line 4 in the code
of Figure 3-1?” The HAMPI solver answers such questions, and creates strings that
can be used as exploits.

HAMPI constraints can formalize the above question (Figure 3-2). Automated
vulnerability-scanning tools [64,116] can create HAMPI constraints via either static
or dynamic program analysis (we demonstrate both static and dynamic techniques
in our evaluation in Section 3.3.1 and in Chapter 5). Specifically, a tool could create
the HAMPI input of Figure 3-2 from analyzing the code of Figure 3-1.

We now discuss various features of the HAMPI input language that Figure 3-2
illustrates. (Section 3.2.1 describes the input language in more detail.)

e Keyword var (line 2) introduces a string variable v. The variable has a fixed
size of 12 characters. The goal of the HAMPI solver is to find a string that,
when assigned to the string variable, satisfies all the constraints. HAMPI can
look for solutions of any fixed size; we chose 12 for this example.

¢ Keyword cfg (lines 5-10) introduces a context-free grammar, for a fragment of
the SQL grammar of SELECT statements.
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//string variable representing ’S$my.-topicid’ from Figure 3-1
var v : 12; // size is 12 characters

//simple SQL context-free grammar

cfg SglSmall := "SELECT " (Letter)+ " FROM " (Letter)+ " WHERE " Cond;
cfg Cond := Val "=" val | Cond "™ OR " Cond";

cfg Val := (Letter)+ | "'" (LetterOrDigit)x "’" | (Digit)+;

cfg LetterOrDigit := Letter | Digit;

cfg Letter := ['a'-"z'] ;

cfg Digit := ["0"-"9"]

//the SQL guery ’$sqglstmt’ from line 3 of Figure 3-1
val g := concat("SELECT msg FROM messages WHERE topicid="", v, "'");

//constraint conjuncts
assert q in SglSmall;
assert q contains "OR 71'="1"'";

Figure 3-2: The HAMPI input that finds an attack vector that exploits the SQL in-
jection vulnerability from Figure 3-1.

e Keyword val (line 13) introduces a temporary variable g, declared as a con-
catenation of constant strings and the string variable v. This variable repre-
sents an SQL query corresponding to the PHP $sglstmt variable from line 3
in Figure 3-1.

e Keyword assert defines a regular-language constraint. The top-level HAM-
PI constraint is a conjunction of assert statements. Line 16 specifies that the
query string g must be a member of the regular language SqlSmallFixed-
Size. Line 17 specifies that the variable v must contain a specific substring
(e.g., a tautology that can lead to an SQL injection attack).

HAMPI can solve the constraints specified in Figure 3-2 and find a value for v,
such as 1’ OR ’1’=’1, which is a value for topicid that can lead to an SQL
injection attack. This value has exactly 12 characters, since v was defined with that
fixed size. By re-running HAMPI with different sizes for v, it is possible to create
other (usually related) attack inputs, such as 999’ OR ’1’='1.

3.2 The Hampi String-Constraint Solver

HAMPI finds a string that satisfies constraints specified in the input, or decides that
no satisfying string exists. HAMPI works in four steps (Figure 3-3):

1. Normalize the input constraints to a core form (Section 3.2.2).
2. Encode the constraints in bit-vector logic (Section 3.2.3).

3. Invoke the STP bit-vector solver [42].

4. Decode the results obtained from STP (Section 3.2.3).
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Figure 3-3: Schematic view of the HAMPI string solver. Section 3.2 describes the
HAMPI solver.

3.2.1 Input Language for String Constraints

We discuss the salient features of HAMPI's input language (Figure 3-4) and illus-
trate them on examples. HAMPI’s input language enables encoding of string con-
straints generated from typical testing and security applications. The language
supports declaration of fixed-size string variables and constants, regular-language
operations, membership predicate, and declaration of context-free and regular lan-
guages, temporaries and constraints.

Declaration of String Variable — var

A HAMPI input must declare a single string variable and specify the variable’s size
in number of characters. If the input constraints are satisfiable, then HAMPI finds
a value for the variable that satisfies all constraints. Line 2 in Figure 3-2 declares a
variable v of size 12 characters.

Sometimes, an application of a string-constraint solver requires examining strings
up to a given length. Users of HAMPI can deal with this issue in two ways: (i) re-
peatedly run HAMPI for different fixed sizes of the variable (can be fast due to the
optimizations of Section 3.2.6), or (ii) adjust the constraint to allow “padding” of
the variable (e.g., using Kleene star to denote trailing spaces). It would be straight-
forward to extend HAMPI to permit specifying a size range, using syntax such as
var v:1..12.
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Input = Var Stmtx HAMPI input
Stmt = Cfg|Reg | Val | Assert statement
Var = varld:Int string variable
Cfg = cfg Id := CfgProdRHS context-free lang.
Reg := regld := RegElem regular-lang.
RegElem:= StrConst constant

| Id var. reference

|  fixsize( Id , Int) CFG fixed-sizing

|  or(RegElem* ) union

|  concat( RegElem * ) concatenation

|  star( RegElem ) Kleene star
Val »= val Id :=ValElem temp. variable
ValElem == Id | StrConst | concat( ValElem * )
Assert = assert Id [not]? in Id membership

|  assert Id [not]? contains StrConst substring

Figure 3-4: Summary of HAMPI's input language. Terminals are bold-faced,
nonterminals are italicized. A HAMPI input (Input) is a variable declaration, fol-
lowed by a list of statements: context-free-grammar declarations, regular-language
declarations, temporary variables, and assertions. Some nonterminals are omitted
for readability.

Declarations of Context-free Languages — c£fg

HAMPI input can declare context-free languages using grammars in the standard
notation, Extended Backus-Naur Form (EBNF). Terminals are enclosed in double
quotes (e.g., "SELECT"), and productions are separated by the vertical bar symbol
(1). Grammars may contain special symbols for repetition (+ and ) and character
ranges (e.g., [a-z]).

For example, lines 5-10 in Figure 3-2 show the declaration of a context-free
grammar for a subset of SQL.

HAMPI's format of context-free grammars is as expressive as that of widely-
used tools such as Yacc/Lex; in fact, we have written a simple syntax-driven script
that transforms a Yacc specification to HAMPI format (available on the HAMPI web-
site).

Declarations of Regular Languages — reg

HAMPI input can declare regular languages. The following regular expressions
define regular languages: (i) a singleton set with a string constant, (ii) a concate-
nation/union of regular languages, (iii) a repetition (Kleene star) of a regular lan-
guage, (iv) a fixed-sizing of a context-free language. Every regular language can
be expressed using the first three of those operations [105].

For example, (bxabxab«) « is a regular expression that describes the language
of strings over the alphabet {a, b}, with an even number of a symbols. In HAMPI
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syntax this is:

reg Bstar := star("b"); // ’'helper’ expression
reg EvenA := star(concat (Bstar, "a", Bstar, "a", Bstar));

HAMPI allows construction of regular languages by fixed-sizing context free
languages. The set of all strings of a given size from a context-free language is
regular (because every finite language is regular).

For example, in Figure 3-2, to describe the regular language that consists of all
syntactically correct SQL strings of length 53 (according to the SqlSmall gram-
mar) we would write fixsize (SqlSmall, 53). Using the fixsize operator is
more convenient than writing the regular expression explicitly.

HAMPI can infer the correct size and perform the fixed-sizing automatically.
For example, in line 16 in Figure 3-2, HAMPI automatically infers that 53 is the
correct size for q (sum of the size of the string-variable and the constant strings in
the declaration of q: 12+40+1).

Temporary Declarations — val

Temporary variables are shortcuts for expressing constraints on expressions that
are concatenations of the string variable and constants.

Line 13 in Figure 3-2 declares a temporary variable val g that denotes the SQL
query, which is a concatenation of two string constants (prefix and suffix) and the
string variable v. Using q is a convenient shortcut to put constraints on that SQL
query (lines 16 and 17).

Constraints — assert

HAMPI constraints (declared by the assert keyword) specify membership of vari-
ables in regular languages. For example, line 16 in Figure 3-2 declares that the
string value of the temporary variable q is in the regular language defined by Sq1-
SmallFixedSize.

3.2.2 Core Form of String Constraints

After parsing and checking the input, HAMPI normalizes the string constraints to
a core form (Figure 3-5). The core string constraints are an internal intermediate
representation that is easier to encode in bit-vector logic than raw HAMPI input is.

A core string constraint specifies membership (or its negation) in a regular lan-
guage. A core string constraint is in the form StrExp € RegExp or StrExp ¢ RegExp,
where StrExp is an expression composed of concatenations of string constants and
occurrences of the string variable, and RegExp is a regular expression.

HAMPI normalizes HAMPI input in 3 steps:

1. Expand all temporary variables, i.e., replace each reference to a temporary
variable with the variable’s definition (HAMPI forbids recursive definitions
of temporaries).
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S 2= Constraint

| S A Constraint conjunction
Constraint = StrExp € RegExp membership

|  StrExp ¢ RegExp non-membership
StrExp = Var variable

| Const constant

|  StrExp StrExp concatenation
RegExp u= Const constant

|  RegExp + RegExp union
|  RegExp RegExp concatenation
|  RegExpx star

Figure 3-5: The grammar of core string constraints. Nonterminals Const and Var
have the usual definitions.

2. Expand all context-free grammar fixed-sizing expressions. The algorithm
converts fixsize terms to regular expressions (see below for the algorithm).
This step involves inference of sizes for cases in which the fixsize is not ex-
plicitly used. The inference is straightforward and we omit the details here.

3. Expand all regular-language declarations, i.e., replace each reference to a
regular-language variable with the variable’s definition.

Fixed-Sizing of Context-free Grammars

HAMPI uses the following algorithm to create regular expressions that specify the
set of strings of a fixed length that are derivable from a context-free grammar:

1. Expand all special symbols in the grammar (e.g., repetition, option, character
range).

2. Remove € productions [105].

3. Construct the regular expression that encodes all fixed-sized strings of the
grammar as follows: First, pre-compute the length of the shortest and longest
(if exists) string that can be generated from each nonterminal (i.e., lower and
upper bounds). Second, given a size n and a nonterminal N, examine all pro-
ductions for N. For each production N := §;...S;, where each §; may be
a terminal or a nonterminal, enumerate all possible partitions of n charac-
ters to k grammar symbols (HAMPI takes the pre-computed lower and up-
per bounds to make the enumeration more efficient). Then, create the sub-
expressions recursively and combine the subexpressions with a concatena-
tion operator. Memoization of intermediate results (Section 3.2.6) makes this
(worst-case exponential in k) process scalable.
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Example of Grammar Fixed-Sizing

Consider the following grammar of well-balanced parentheses and the problem
of finding the regular language that consists of all strings of length 6 that can be
generated from the nonterminal E.

Cfg E s = "()" I E E | "(" E ")"

The grammar does not contain special symbols or € productions, so first two
steps of the algorithm do nothing. Then, HAMPI determines that the shortest string
E can generate is of length 2. There are three productions for the nonterminal E,
so the final regular expression is a union of three parts. The first production, E
:= " ()", generates no strings of size 6 (and only one string of size 2). The sec-
ond production, E := E E, generates strings of size 6 in two ways: either the
first occurrence of E generates 2 characters and the second occurrence generates 4
characters, or the first occurrence generates 4 characters and the second occurrence
generates 2 characters. From the pre-processing step, HAMPI knows that the only
other possible partition of 6 characters is 3-3, which HAMPI tries and fails (because
E cannot generate 3-character strings). The third production, E := " (" E ")",
generates strings of size 6 in only one way: the nonterminal £ must generate 4
characters. In each case, HAMPI creates the sub-expressions recursively. The re-
sulting regular expression for this example is (plus signs denote union and square
brackets group sub-expressions):

ofoo + ] + [oo+ mlo + Joo + )

3.2.3 Bit-vector Encoding and Solving

HAMPI encodes the core string constraints as formulas in the logic of fixed-size
bit-vectors. A bit-vector is a fixed-size, ordered list of bits. The fragment of bit-
vector logic that HAMPI uses contains standard Boolean operations, extracting sub-
vectors, and comparing bit-vectors (Figure 3-6). HAMPI asks STP for a satisfying
assignment to the resulting bit-vector formula. If STP finds an assignment, HAMPI
decodes it, and produces a string solution for the input constraints. If STP cannot
find a solution, HAMPI terminates and declares the input constraints unsatisfiable.

Every core string constraint is encoded separately, as a conjunct in a bit-vector
logic formula. HAMPI encodes the core string constraint StrExp € RegExp recur-
sively, by case analysis of the regular expression RegExp, as follows:

e HAMPI encodes constants by enforcing constant values in the relevant ele-
ments of the bit-vector variable (HAMPI encodes characters using 8-bit ASCII
codes).

e HAMPI encodes the union operator (+) as a disjunction in the bit-vector logic.

e HAMPI encodes the concatenation operator by enumerating all possible dis-
tributions of the characters to the sub-expressions, encoding the sub-expressions
recursively, and combining the sub-formulas in a conjunction.

26



Formula = BitVector = BitVector equality
| BitVector < BitVector inequality
|  Formula vV Formula  disjunction
|  Formula A Formula  conjunction
|

—~Formula negation
BitVector = Const bit-vector constant
| Var bit-vector variable
| Var[Int] byte extraction

Figure 3-6: Grammar of bit-vector logic. Variables denote bit-vectors of fixed
length. HAMPI encodes string constraints as formulas in this logic and solves using
STP.

e HAMPI encodes the * similarly to concatenation — a star is a concatenation
with variable number of occurrences. To encode the star, HAMPI finds the
upper bound on the number of occurrences (the number of characters in the
string is always a sound upper bound).

After STP finds a solution to the bit-vector formula (if one exists), HAMPI de-
codes the solution by reading 8-bit sub-vectors as consecutive ASCII characters.

3.24 Complexity

The satisfiability problem for HAMPI's logic (core string constraints) is NP-complete.
To show NP-hardness, we reduce the 3-CNF (conjunctive normal form) Boolean
satisfiability problem to the satisfiability problem of the core string constraints in
HAMPI's logic. Consider an arbitrary 3-CNF formula with n Boolean variables
and m clauses. A clause in 3-CNF is a disjunction (V) of three literals. A literal
is a Boolean variable (v;) or its negation (-v;). For every 3-CNF clause, a HAMPI
constraint can be generated. Let £ = {T,F} denote the alphabet. For the clause
(vo V v1 V =»y), the equivalent HAMPI constraint is:

Ve(TX---X + XTX---X + XXF---X)

where the HAMPI variable V is an n-character string representing the possible as-
signments to all n Boolean variables satisfying the input 3-CNF formula. Each of
the HAMPI regular-expression disjuncts in the core string constraint shown above,
such as TIX - - - I, is also of size n and has a T in the i” slot for v; (and F for —v,), i.e.,

The total number of such HAMPI constraints is m, the number of clauses in the
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input 3-CNF formula (here m = 1). This reduction from a 3-CNF Boolean formula
into HAMPI is clearly polynomial-time.

To establish that the satisfiability problem for HAMPI’s logic is in NP, we only
need to show that for any set of core string constraints, there exists a polynomial-
time verifier that can check any short witness. The size of a set of core string con-
straints is the size k of the string variable plus the sum r of the sizes of regular
expressions. A witness has to be of size , and it is easy to check, in time polyno-
mial in k + r, whether the witness belongs to each regular language.

3.2.5 [Example of Solving

This section illustrates how, given the following input, HAMPI finds a satisfying
assignment for variable v.

var v:2;

cfg E :="(O)" | EE | "("E "";

val g := concat( "((" , v, "))" );

assert g in E; // turns into constraint el
assert g contains "())"; // turns into constraint e2

HAMPTI follows the solving algorithm outlined in Section 3.2 (The alphabet of the
regular expression or context-free grammar in a HAMPI input is implicitly re-
stricted to the terminals specified):

step 1. Normalize constraints to core form, using the algorithm in Section 3.2.2. In
this example, the size inference required to normalize the first assert gives size 6
for g (computed as 2+2+2 from the declarations of v and g). The core constraints
are:

] +

i ((v)) € [() + ((

(
[O

(
c2: ((v)) € [

))
]
()() + (()
+ ) ]x ) +)]*

,\,—‘,\ ~

step 2. Encode the core-form constraints in bit-vector logic. We show how HAM-
PI encodes constraint ¢1; the process for ¢2 is similar. HAMPI creates a bit-vector
variable bv of length 6*8=48 bits, to represent the left-hand side of ¢1 (since Ef i xed
is 6 bytes). Characters are encoded using ASCII codes: ’(’ is 40 in ASCII, and
") " is 41. HAMPI encodes the left-hand-side expression of ¢1, ( (v ) ), as formula
Ly, by specifying the constant values: L; : (bv[0] = 40) A (bv[1] = 40) A (bv[4] =
41) A (bv[5] = 41). Bytes bv[2] and bv[3] are reserved for v, a 2-byte variable.

The top-level regular expression in the right-hand side of ¢l is a 3-way
union, so the result of the encoding is a 3-way disjunction. For the first dis-
junct () [ OO0 + (0 )], HAMPI creates the following formula: Dy,: bv[0] =
40 A bv[1] = 41 A ((bvI2] = 40 A by[3] = 41 A by[4] = 40 A bY[S] = 41) v (bv[2] =
40 A bvl3] = 40 A bv[4] = 41 A by[5] = 41)).
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Formulas D, and D, for the remaining conjuncts are similar. The bit-vector
formula that encodes c1is €; = LiA(D1oV D15V Dy ). Similarly, a formula C, (not shown
here) encodes ¢2. The formula that HAMPI sends to the STP solver is (C; A C3).

step 3. STP finds a solution that satisfies the formula: bv[0] = 40, bv[1] = 40, bv[2] =
41, bv[3] = 40, bv[4] = 41, bv[5] = 41. In decoded ASCII, the solution is “ ( () ())”
(quote marks not part of solution string).

step 4. HAMPI reads the assignment for variable v off of the STP solution, by de-
coding the elements of bv that correspond to v, i.e., elements 2 and 3. It reports the
solution for v as “) (”. (String “ () ” is another legal solution for v, but STP only
finds one solution.)

3.2.6 Optimizations

Optimizations in HAMPI aim at reducing computation time.

Memoization

HAMPI stores and reuses partial results during the computation of fixed-sizing of
context-free grammars (Section 3.2.2) and during the encoding of core constraints
in bit-vector logic (Section 3.2.3).

Example. Consider the example from Section 3.2.5, i.e., fixed-sizing the context-
free grammar of well-balanced parentheses to size 6.

cfg E = "()" | E E | "(" E ")" ,.

Consider the second production E := E E. There are two ways to construct a
string of 6 characters: either construct 2 characters from the first occurrence of E
and construct 4 characters from the second occurrence, or vice-versa. After creat-
ing the regular expression that corresponds to the first of these ways, HAMPI cre-
ates the second expression from the memoized sub-results. HAMPI's implementa-
tion shares the memory representations of common subexpressions. For example,
HAMPI uses only one object to represent all three occurrences of () () + (()) in
constraint c1 of the example in Section 3.2.5.

Constraint Templates

Constraint templates capture common encoded sub-expressions, modulo offset
in the bit-vector. This optimization is related to the template mechanism pro-
posed by Shlyakhter et al. [104], and to the sharing detection in the KodKod model
finder [111]. During the bit-vector encoding step (Section 3.2.3), HAMPI may en-
code the same regular expression multiple times as bit-vector formulas, as long
as the underlying offsets in the bit-vector are different. For example, the (con-
stant) regular expression ) ( may be encoded as (bv[0] = 41) A (bv[1] = 40) or as
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(bv[3] = 41) A (bv[4] = 40), depending on the offset in the bit-vector (0 and 3, re-
spectively).

HAMPI creates a single “template”, parameterized by the offset, for the encoded
expression, and instantiates the template every time, with appropriate offsets. For
the example above, the template is T(p) = bv[p] = 41 A bv[p + 1] = 40, where pis
the offset parameter. HAMPI then instantiates the template to 7(0) and 7'(3).

As another example, consider ¢1 in Section 3.2.5: The subexpression () ()+ (())
occurs 3 times in c1, each time with a different offset (2 for the first occurrence, 0
for the second, and 1 for the third). The constraint-template optimization enables
HAMPTI to do the encoding once and reuse the results, with appropriate offsets.

Server Mode

The server mode improves HAMPI's efficiency on simple constraints and on re-
peated calls. Because HAMPI is a Java program, the startup time of the Java virtual
machine may be a significant overhead when solving small constraints. Therefore,
we added a server mode to HAMPI, in which the (constantly running) solver ac-
cepts inputs passed over a network socket, and returns the results over the same
socket. This enables HAMPI to be efficient over repeated calls, for tasks such as
solving the same constraints on string variables of different sizes.

3.3 Evaluation

We experimentally tested HAMPI's applicability to practical problems involving
string constraints, and to compare HAMPI's performance and scalability to another
string-constraint solver.

Experiments

1. We used HAMPI in a static-analysis tool [114] that identifies possible SQL
injection vulnerabilities (Section 3.3.1).

2. We compared HAMPI's performance and scalability to CFGAnalyzer [4], a
solver for bounded versions of context-free-language problems, e.g., inter-
section (Section 3.3.2).

Additionally, we used HAMPI in ARDILLA, a concolic testing tool that cre-
ates attacks on Web applications (Section 5.4), and in Klee, a concolic testing tool
for UNIX programs (Section 4.4). We present these two experiments in the respec-
tive chapters.

Unless otherwise noted, we ran all experiments on a 2.2GHz Pentium 4 PC
with 1 GB of RAM running Debian Linux, executing HAMPI on Sun Java Client
VM 1.6.0-b105 with 700MB of heap space. We ran HAMPI with all optimizations
on, but flushed the whole internal state after solving each input to ensure fairness

30



in timing measurements, i.e., preventing artificially low runtimes when solving a
series of structurally-similar inputs.

The results of our experiments demonstrate that HAMPI is expressive in en-
coding real constraint problems that arise in security analysis and automated test-
ing, that it can be integrated into existing testing tools, and that it can efficiently
solve large constraints obtained from real programs. HAMPI's source code and
documentation, experimental data, and additional results are available at http:
//people.csail.mit.edu/akiezun/hampi.

3.3.1 Identifying SQL Injection Vulnerabilities Using Static Anal-
ysis

We evaluated HAMPI's applicability to finding SQL injection vulnerabilities in the
context of a static analysis. We used the tool from Wassermann and Su [114] that,
given source code of a PHP Web application, identifies potential SQL injection
vulnerabilities. The tool computes a context-free grammar G that conservatively
approximates all string values that can flow into each program variable. Then, for
each variable that represents a database query, the tool checks whether L(G) N L(R)
is empty, where L(R) is a regular language that describes undesirable strings or
attack vectors (strings that can exploit a security vulnerability). If the intersection is
empty, then Wassermann and Su’s tool reports the program to be safe. Otherwise,
the program may be vulnerable to SQL injection attacks. An example L(R) that
Wassermann and Su use — the language of strings that contain an odd number of
unescaped single quotes — is given by the regular expression (we used this R in
our experiments):

Using HAMPI in such an analysis offers two important advantages. First, it
eliminates a time-consuming and error-prone reimplementation of a critical com-
ponent: the string-constraint solver. To compute the language intersection, Wasser-
mann and Su implemented a custom solver based on the algorithm by Minamide [83].
Second, HAMPI creates concrete example strings from the language intersection,
which is important for generating attack vectors; Wassermann and Su’s custom
solver only checks for emptiness of the intersection, and does not create example
strings.

Using a fixed-size string-constraint solver, such as HAMP], has its limitations.
An advantage of using an unbounded-length string-constraint solver is that if the
solver determines that the input constraints have no solution, then there is indeed
no solution. In the case of HAMPI, however, we can only conclude that there is no
solution of the given size.
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Experiment. We performed the experiment on 6 PHP applications. Of these, 5
were applications used by Wassermann and Su to evaluate their tool [114]. We
added 1 large application (claroline 1.5.3, a builder for online education
courses, with 169 kLOC) from another paper by the same authors [115]. Each of
the applications has known SQL injection vulnerabilities. The total size of the ap-
plications was 339,750 lines of code.

Wassermann and Su’s tool found 1,367 opportunities to compute language in-
tersection, each time with a different grammar G (built from the static analysis) but
with the same regular expression R describing undesirable strings. For each input
(i.e., pair of G and R), we used both HAMPI and Wassermann and Su’s custom
solver to compute whether the intersection L(G) N L(R) was empty.

When the intersection is 7ot empty, Wassermann and Su'’s tool cannot produce
an example string for those inputs, but HAMPI can. To do so, we varied the size
N of the string variable between 1 and 15, and for each N, we measured the total
HAMPI solving time, and whether the result was UNSAT or a satisfying assign-
ment.

Results. We found empirically that when a solution exists, it can be very short.
In 306 of the 1,367 inputs, the intersection was not empty (both solvers produced
identical results). Out of the 306 inputs with non-empty intersections, we mea-
sured the percentage for which HAMPI found a solution (for increasing values of
N): 2% for N = 1, 70% for N = 2, 88% for N = 3, and 100% for N = 4. That is, in
this large dataset, all non-empty intersections contain strings with no longer than 4
characters. Due to false positives inherent in Wassermann and Su’s static analysis,
the strings generated from the intersection do not necessarily constitute real attack
vectors. However, this is a limitation of the static analysis, not of HAMPI.

HAMPI solves most queries quickly. Figure 3-7 shows the percentage of inputs
that HAMPI can solve in the given time, for 1 < N < 4, i.e., until all satisfying
assignments are found. For N = 4, HAMPI can solve 99.7% of inputs within 1
second.

We measured how HAMPI’s solving time depends on the size of the grammar.
We measured the size of the grammar as the sum of lengths of all productions
(we counted e-productions as of length 1). Among the 1,367 grammars in the
dataset, the mean size was 5490.5, standard deviation 4313.3, minimum 44, max-
imum 37955. We ran HAMPI for N = 4, ie, the length at which all satisfying
assignments were found. Figure 3-8 shows the solving time as a function of the
grammar size, for all 1,367 inputs.

Our experimental results, obtained on a large dataset from a powerful static
analysis and real Web applications, indicate that HAMPI's fixed-size solving algo-
rithm is applicable to real problems.
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Figure 3-7: Percentage of queries solvable by HAMPI, in a given amount of time,
on data from Wassermann and Su [114]. Each line represents a distribution for a
different size of the string variable. All lines reach 99.7% at 1 second and 100%
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Figure 3-8: HAMPI solving time as function of grammar size (number of all
elements in all productions), on 1,367 inputs from the Wassermann and Su
dataset [114]. The size of the string variable was 4, the smallest at which HAM-
PI finds all satisfying assignments for the dataset. Each point represents an input;
shapes indicate SAT/UNSAT. Section 3.3.1 describes the experiment.
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3.3.2 Comparing Performance to CFGAnalyzer

We evaluated HAMPI's utility in analyzing context-free grammars, and compared
HAMPI's performance to a specialized decision procedure, CEFGAnalyzer [4]. CF-
GAnalyzer is a SAT-based decision procedure for bounded versions of 6 problems
(5 undecidable) that involve context-free grammars: universality, inclusion, inter-
section, equivalence, ambiguity, and emptiness (decidable). We downloaded the
latest available version® (released 3 December 2007) and configured the program
according to the manual.

Experiment. We performed experiments with the grammar-intersection prob-
lem. Five of six problems handled by CFGAnalyzer (universality, inclusion, in-
tersection, equivalence, and emptiness) can be easily encoded as HAMPI inputs —
the intersection problem is representative of the rest.

In the experiments, both HAMPI and CFGAnalyzer searched for strings (of
fixed length) from the intersection of 2 grammars. To avoid bias, we used CF-
GAnalyzer’s own experimental data sets (obtained from the authors). From the
set of 2088 grammars in the data set, we selected a random sample of 100 gram-
mar pairs. We used both HAMPI and CFGAnalyzer to search for strings of lengths
1 < N < 50. We ran CFGAnalyzer in a non-incremental mode (in the incremen-
tal mode, CFGAnalyzer reuses previously computed sub-solutions), to create a
fair comparison with HAMPI, which ran as usual in server mode while flushing
its entire internal state after solving each input. We ran both programs without a
timeout.

25

20

CFGAnalyzer

time (sec.)

20 30
string size (characters)

Figure 3-9: Solving time as a function of string size, on context-free-grammar in-
tersection constraints. Results are averaged over 100 randomly-selected pairs of
context-free grammars. Section 3.3.2 describes the experiment.

Results. HAMPI is faster than CFGAnalyzer for all sizes larger than 4 characters.
Figure 3-9 shows the results averaged over all pairs of grammars. Importantly,

’http://www.tcs.ifi.lmu.de/-mlange/cfganalyzer
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HAMPI's win grows as the size of the problem increases (up to 6.8x at size 50). For
the largest problems (N = 50), HAMPI was faster (by up to 3000x) on 99 of the 100
grammar pairs, and 1.3x slower on the remaining 1 pair of grammars. The HAMPI
website contains all experimental data and detailed results.

HAMPI is faster also on grammar-membership constraints. We performed an
additional experiment we: searching for any string of a given length from a context-
free grammar. The results were similar to those for intersection: e.g., HAMPI finds
a string of size 50, on average, in 1.5 seconds, while CFGAnalyzer finds one in 8.7
seconds (5.8x difference). The HAMPI website contains all experimental data and
detailed results.

3.4 Related Work

Decision procedures have received widespread attention within the context of pro-
gram analysis, testing, and verification. Decision procedures exist for theories
such as Boolean satisfiability [35, 86], bit-vectors [42], quantified Boolean formu-
las [8, 10], and linear arithmetic [33]. In contrast, there has been relatively little
work on practical and expressive solvers that reason about strings or sets of strings
directly.

Solvers for String Constraints

MONA [66] uses finite-state automata and tree automata to reason about sets of
strings. However, the user still has to translate their input problem into MONA'’s
input language (weak monadic second-order theory of one successor). MONA also
provides automata-based tools, similar to other libraries [38—40]. Fido [66, 67] is
a higher-level formalism implemented on top of the MONA solver to concisely
represent regular sets of strings and trees.

Word equations [12,96] describe equality between two strings that contain string
variables. Rajasekar [96] proposes a logic programming approach that includes
constraints on individual words. His solver handles concatenation but not regu-
lar language membership. Bjerner et al. [12] describe a constraint solver for word
queries over a variety of operations, and translate string constraints to the lan-
guage of the Z3 solver [33]. If there is a solution, Z3 returns a finite bound for the
set of strings, that is then explored symbolically. Alonso et al. [1] describe a solver
for word equations, based on genetic algorithms. However, unlike HAMPI, these
tools do not support context-free grammars directly.

Hooimeijer and Weimer [54] describe a decision procedure for regular language
constraints, focusing on generating sets of satisfying assignments rather than in-
dividual strings. Unlike HAMPI, the associated implementation does not easily
allow users to express fixed-size context-free grammars.
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Custom String Solvers

Many analyses use custom solvers for string constraints [7,15,20,36,41,45,83,114~
116]. All of these approaches include some implementation for language inter-
section and language inclusion; most, similarly to HAMPI, can perform regular-
language intersection. Each of these implementations is tightly integrated with
the associated program analysis, making a direct comparison with HAMPI imprac-
tical.

Christensen et al. [20] have a static analysis tool to check for SQL injection vul-
nerabilities that uses automata-based techniques to represent over-approximation
of string values. Fu et al. [41] also use an automata-based method to solve string
constraints. Ruan et al. [97] use a first-order encoding of string functions occurring
in C programs, and solve the constraints using a linear arithmetic solver.

Besides the custom solvers by Wassermann et al. [114], the solver by Emmi
et al. [36] is closest to HAMPI. Emmi et al. used their solver for automatic test
case generation for database applications. Unlike HAMPI, their solver allows con-
straints over unbounded regular languages and linear arithmetic, but does not
support context-free grammars.

Many of the program analyses listed here perform similar tasks when reasoning
about string-valued variables. This is strong evidence that a unified approach, in
the form of an external string-constraint solvers such as HAMPI, is warranted.

Theoretical Work on String Constraints

A variety of problems involve strings constraints, and there is an extensive liter-
ature on the theoretical study of these problems [31,32,49,73,91, 93, 95,100]. Our
work is focused on efficient techniques for a practical string-constraint solver that
is usable as a library and is sufficiently expressible to support a large variety of
applications.

3.5 Conclusion

We presented HAMPI, a solver for constraints over fixed-size string variables. HAM-
PI constraints express membership in regular and fixed-size context-free languages.
HAMPI constraints may contain a fixed-size string variable, context-free language
definitions, regular-language definitions and operations, and language-membership
predicates. Given a set of constraints over a string variable, HAMPI outputs a string
that satisfies all the constraints, or reports that the constraints are unsatisfiable.
HAMPI works by encoding the constraint in the bit-vector logic and solving using
STP.

HAMPI is designed to be used as a component in testing, analysis, and veri-
fication applications. HAMPI can also be used to solve the intersection, contain-
ment, and equivalence problems for regular and fixed-size context-free languages.
We evaluated HAMPI's usability and effectiveness as a component in static- and
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dynamic-analysis tools for PHP Web applications. Our experiments show that
HAMPTI is expressive enough to easily encode constraint arising in finding SQL
injection attacks, and in systematic testing of real-world programs. In our experi-
ments, HAMPI was able to find solutions quickly, and scale to practically-relevant
problem sizes.

By using a general-purpose freely-available string-constraint solver such as
HAMPI, builders of analysis and testing tools can save significant development
effort, and improve the effectiveness of their tools.
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Chapter 4

Grammar-Based Concolic Testing

Grammar-based concolic testing enhances concolic testing with a grammar-based
specification of valid inputs. The effectiveness of concolic testing is limited when
testing programs with highly-structured inputs. Such programs (e.g., compilers
and interpreters) process their inputs in stages, such as lexing, parsing, and evalua-
tion. Due to the enormous number of control paths in early processing stages, con-
colic testing rarely reaches parts of the program beyond these first stages. For ex-
ample, there are many possible sequences of blank-spaces, tabs, carriage-returns,
that separate tokens in most structured languages, and each sequence corresponds
to a different control path in the lexer. In fact, for programs with highly-structured
inputs, concolic testing is often not much better than simple fuzzing, i.e., creating
test inputs by randomly modifying well-formed inputs.

Concolic execution itself may be defeated already in the first processing stages.
For example, lexers often detect language keywords by comparing the pre-computed,
hard-coded hash values of keywords with hash values of strings read from the in-
put. This effectively prevents concolic testing from ever generating input strings
that match those keywords since hash functions cannot easily be inverted (e.g.,
given a constraint x == hash (y) and a value for x, one cannot compute a value
for y that satisfies this constraint).

Grammar-based concolic testing uses a grammar as an input-format specifica-
tion. In grammar-based concolic testing concolic, execution generates grammar-
based constraints, whose satisfiability is checked using a custom grammar-based
constraint solver. The algorithm has two key components:

1. Generation of higher-level symbolic constraints, expressed in terms of sym-
bolic grammar tokens returned by the lexer, instead of the traditional [18,46,
48] symbolic bytes read as input.

2. A custom solver for constraints on symbolic grammar tokens. The solver
looks for solutions that satisfy the constraints and are accepted by a given
(context-free) grammar.

Our technique offers two key benefits: (i) The technique avoids dead-ends (error
paths) in the lexer and parser; assuming the grammar accepts only parsable inputs,
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the technique generates only parsable inputs. (ii) The grammar-based constraint
solver can complete a partial set of token constraints into a fully-defined valid input,
hence avoiding exploring many possible non-parsable completions. By restrict-
ing the search space to valid inputs, grammar-based concolic testing can exercise
longer paths, and focus the search on the harder-to-test, deeper processing stages.

Contributions and Results

e Grammar-based concolic testing, a novel algorithm for effective concolic test-
ing of programs with highly-structured inputs.

e Evaluation of grammar-based concolic testing. We have implemented the
technique and evaluated it in two case studies.

(i) Concolic testing of UNIX programs. Our technique led to up to 2x im-
provements in line coverage (up to 5x coverage improvements in parser
code), eliminated all illegal inputs, and enabled discovering 3 distinct,
previously unknown, inputs that led to infinitely-looping program exe-
cution.

(ii) A large security-critical application, the JavaScript interpreter of Inter-
net Explorer 7 (IE7). Compared to regular concolic testing, our tech-
nique increased coverage of the code generation module of the IE7 Ja-
vaScript interpreter from 53% to 81% while using only one third of the
test inputs.

We introduce grammar-based concolic testing using an example (Section 4.1),
then explain the technique (Section 4.2). We present two experimental studies:
JavaScript interpreter (Section 4.5), and concolic testing of UNIX programs (Sec-
tion 4.4). We finish with related work (Section 4.6).

4.1 Example: Concolic Testing an Interpreter

We present grammar-based concolic testing on an example interpreter. Consider
the JavaScript interpreter sketched in Figure 4-1 and the JavaScript grammar par-
tially defined below. (Nonterminals are italicized, terminals are in tele-type font.
Symbol € denotes the empty string. The starting nonterminal is FunDecl.)

FunDecl := function id ( Formals ) FunBody
FunBody := { SrcElem*}

Formals = 1id(, Formals)*

SrcElem =

By tracking the tokens returned by the lexer (i.e., the function nextToken,
line 3 in Figure 4-1) and considering those as symbolic inputs, our concolic-testing
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// Lexer: Reads and returns next token from file.
// Terminates on erroneous inputs.
Token nextToken () {

readInputByte();
}
// Parser: Parses the input file, returns parse tree.
// Terminates on erroneous inputs.
ParseTree parse () {
Token t = nextToken();
}
void main () {

ParseTree t = parse();

Bytecode code = codeGen(t);
. // Execute code

Figure 4-1: Sketch of an interpreter. The interpreter processes the inputs in stages:
lexer (function nextToken), parser (function parse), and code generator (func-
tion codeGen). Next, the interpreter executes the generated bytecode (omitted
here).

algorithm generates constraints in terms of such tokens. For example, running the
interpreter on the valid input

function £(){ }
may correspond to the sequence of symbolic token constraints

tokeny = function

token; = id
token, = (
token; =)
tokeny = {
tokens = }

Negating the fourth constraint in this path constraint leads to the new sequence of
constraints:

tokeny = function
token; = id

token, = (

token; # )

There are many ways to satisfy this constraint, but most solutions lead to non-
parsable inputs. In contrast, our grammar-based constraint solver can directly
conclude that the only way to satisfy this constraint while generating a valid input
according to the grammar is to set
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token; = id

and to complete the remainder of the input with, for example,

token, =)
tokens = {
tokeng = }

Thus, the generated input that corresponds to this solution is
function f(id){ }

where id can be any identifier.
Similarly, the grammar-based constraint solver can immediately prove that negat-

ing the third constraint in the previous path constraint, thus leading to the new
path constraint

tokeny = function
token; = id
token, # (

is unsolvable, i.e., there are no inputs that satisfy this constraint and are recognized
by the grammar. Grammar-based concolic testing prunes in one iteration the en-
tire sub-tree of lexer executions corresponding to all possible non-parsable inputs
matching this case.

4.2 Concolic Testing of Programs with Structured In-
puts

In this section, we introduce grammar-based concolic testing. We then discuss
how to check grammar-based constraints for context-free grammars (Section 4.2.1).
Finally, we discuss additional aspects of our approach and some of its limitations
(Section 4.2.2).

Grammar-based concolic testing (Figure 4-2) extends concolic testing (Section 2)
as follows:

e The new algorithm requires a grammar G that describes valid program in-
puts (line 1).

e Grammar-based concolic testing marks tokens returned from a tokenization
function such as next Token in Figure 4-1 as symbolic (line 18). Thus, grammar-
based concolic testing associates a symbolic variable with each token', and
symbolic execution tracks the influence of the tokens on the control path
taken by the program #.

1Symbolic variables could also be associated with other values returned by the tokenization
function for specific types of tokens, such as the string value associated with each identifier, the
numerical value associated with each number, etc.
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parameters: Program P, seed inputs, grammar G
result : Error reports for $

Procedure grammarBasedConcolic(P, inputs, G):
errors = @
worklist := emptyQueue()
enqueueAll(worklist, inputs)
while not empty(worklist) and not timeExpired() do
input = dequeue(worklist)
errors = errors U Run&Check(P, input)
pc = concolicExecution(P, input)
newlnputs = createNewlInputs(pc, G)
enqueueAll(worklist, newlnputs)
return errors

Procedure symbolicExecution(P, input):
path constraint pc := true
foreach instruction inst executed by P with input do
update the symbolic store
switch inst do
case return from tokenization function

mark token as symbolic variable

case input-dependent conditional statement
¢ = expression for the executed branch
pc=pcAhc

otherwise
if false A inst reads byte from input then

mark input byte as symbolic variable;

return pc

Procedure createNewlInputs(pc, G):
CiIN...AN¢cp, =pcC
inputs = @
fori:=1...ndo

pc=ci AN...ANCi-1 N\ ¢

newlnput := solve(pc, G)

if newlnput # 1 then

inputs = inputs U {newlnput)}

return inputs

Figure 4-2: Grammar-based concolic testing. Changes from concolic test-
ing are underlined. Grammar-based concolic testing requires the constraint
solver (auxiliary procedure solve) to handle grammar constraints (Figure 4-3).
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e The algorithm uses the grammar G to require that the new input satisfy the
alternative path constraint and be in the language accepted by the grammar
(line 31). As the examples in the introduction illustrate, this requirement
gives two advantages to grammar-based concolic testing: it enables pruning
of the search tree corresponding to invalid inputs (i.e., inputs that are not ac-
cepted by the grammar), and it enables direct completion of satisfiable token
constraints into valid inputs.

4.2.1 Context-free Constraint Solver

This section presents an algorithm for the constraint solver that is invoked in
line 31 of Figure 4-2. The constraint solver implements the procedure solve and
computes a language intersection: the solver checks whether the language L(pc)
of inputs satisfying the path constraint pc contains an input that is in the language
accepted by the grammar G. By construction, the language L(pc) is regular, as we
discuss later in this section. If G is context-free, then language intersection with
L(pc) can be computed. If G is context-sensitive, then a sound and complete proce-
dure for computing language intersection may not exist (but approximations are
possible). In what follows, we assume that G is context-free.

A context-free constraint solver takes as inputs a context-free grammar G and
a regular expression R, and returns either a string s € L(G) N L(R), or L if the
intersection is empty.

The HAMPI string-constraint solver (Chapter 3) can be used as a context-free
constraint solver. However, the solver described in this section uses a simpler
algorithm that works well in practice. Moreover, HAMPI is limited to fixed-size
solutions, while the algorithm described here can complete partial solutions of any
length. For our case studies, we used both HAMPI (Section 4.4) and the algorithm
described here (Section 4.5).

Figure 4-3 presents an algorithm for a context-free constraint solver. The algo-
rithm iteratively “unrolls” the productions for the start symbol (i.e., exposes pre-
fixes of terminal symbols for each production), and “prunes” productions that do
not conform to the regular expression R. Thus, the algorithm exploits the fact that,
by construction, any regular language R constrains only the first n tokens returned
by the tokenization function, where n is the highest index i of a token variable
token; appearing in the constraint represented by R.

The algorithm starts by converting the path constraint pc into a regular expres-
sion R (line 2). The language L(pc) is regular. We assume that the set of tokens that
can be returned by the tokenization function is finite. Therefore, all token vari-
ables token; have a finite range, and satisfiability of any constraint on a finite set of
token variables is decidable. Given any such constraint pc, one can sort its set of
token variables foken; by their index i, representing the total order by which they
have been created by the tokenization function, and build a regular expression
(language) R representing L(pc) for that constraint pc.

Line 3 eliminates recursion for the start symbol S. This is done by duplicating
productions for the start symbol and renaming the start symbol in the duplicated
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parameters: Path constraint pc, grammar G with start symbol §
result : String s € L(pc) N L(G) or L

1 Procedure solve(pc, G):
2 R := buildConstraint(pc)
3 G = eliminate recursion on starting nonterminal §
a4 n = highest index i of token; variable in R
5 fori:==1...ndo
// loop invariant: first i—1 symbols in productions
for § are terminals

6 let ¢; denote the constraint in R on variable token;
7 worklist W := productions for S in G’
8 while not empty(W) do
9 prod = dequeue(W)
10 S; == i symbol in prod.rhs
1 if S; does not exist then
12 prune: remove prod from G’
13 else if S; is nonterminal N then
14 unroll: remove prod from G’, add copies of prod to W and G’, with
S; expanded using all productions for N in G’
15 else
16 prune: remove prod from G’ if S; does not satisfy c;

17 if L(G') = @ then

18 return L

19 else

20 return generate s from G’

Figure 4-3: Procedure solve(pc, G) implements a context-free constraint solver.
The auxiliary function buildConstraint(pc) converts the path constraint pc to
a regular expression. Notation prod.rhs denotes the right hand side of the
production prod.

productions and in the right-hand sides of the original productions for S. The algo-
rithm employs a simple unroll-and-prune approach: in the i iteration of the main
loop (line 5), the algorithm unrolls the right-hand sides of productions to expose
a 0...i prefix of terminals (line 14), and prunes those productions that violate the
constraint ¢; on the i” token variable token, in the regular expression R (line 16).
During each round of unrolling and pruning, the algorithm uses the worklist W to
store productions that have not yet been unrolled and examined for conformance
with the regular expression.

Finally, the algorithm produces a result string. After the unrolling and pruning,
the algorithm checks emptiness [55] of the resulting language L(G’) and generates
a string s from the intersection grammar G (line 20). For speed, our implementa-
tion uses a bottom-up strategy that generates a string with the shortest derivation
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tree (i.e., tree of smallest height) for each nonterminal in the grammar, by com-
bining the strings from the right-hand sides of productions for nonterminals. This
strategy is fast due to memoizing strings during generation. Section 4.2.2 discusses
alternatives and limitations of the algorithm in Figure 4-3.

Solving Example

We illustrate the algorithm on an example, a simplified S-expression grammar.
Starting with the initial grammar, the algorithm unrolls and prunes productions
given a regular path constraint. The grammar is (S is the start symbol, nonterminals
are italicized)

N (let ((id ) S)1(Op S S) | num | id

Op = +|-

and the regular path constraint R (created by buildConstraint(pc), line 2) is

token; € {(}

token, € {+}

token; € {(}

tokeny; € {(,),num,id,let}

Before the main iteration (line 5), the grammar is:

S == (let(@dS)S)|IOpS S)|num|id
Op == +|-
S = (let ((id §)S) | (Op S §’) | num | id

Next, the main iteration begins. The first conjunct in the grammar constraint is
token; € {(}, therefore the algorithm (line 16) removes the last two productions for
the start symbol S. The result is the following grammar (execution is now back at
the top of the loop in line 5).

S = (let(dS)S)|(OpS§ §)|num|id
Op = +|-
S = (let ((id S$")) S)|(Op S S)

In the next iteration of the for loop, the algorithm examines the second con-
junct in the regular path constraint, token; € {+). The algorithm prunes the first
production rule from S since let does not match + (line 16), and then expands the
nonterminal Op in the production § := (Op §’ §’) (line 14). The production is re-
placed by two productions, S = (+ §' §') and § = (- §’ §’), which are added to the
worklist W. The grammar G’ is then

S = (et ((idS) S)1(Op S ') |num|id
Op = +|-
S = +=INIESSY)
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In the next iteration of the while loop, the second of the new productions is
removed from the grammar (line 16) because it violates the grammar constraint.
After the removal, the execution is now again at the top of the loop in line 5.

S == (let((@dS)S)|I(OpS S)|num|id
Op == +|-
S = 5

After 2 more iterations of the for loop, the algorithm arrives at the final gram-
mar

S = (let(@dS)S)|(OpS §)|num|id
Op = +|-
S = +det(@ds)SS)

As the last two steps, the algorithm checks that L(G") # @ (line 17) and generates
a string s from the final grammar G’ for the intersection of G and R (line 20). Our
bottom-up strategy generates the string (+ (1et (( id num )) num) num). From this
string of tokens, our tool generates a matching string of input bytes by applying
an application-specific de-tokenization function.

4.2.2 Discussion and Limitations
Computing Language Intersection

Computing the intersection of a context-free grammar with a regular expression is
a well-known problem. A standard polynomial-time algorithm consists in translat-
ing the grammar into a pushdown automaton, translating the regular expression
into a finite-state automaton, computing the product of these two automata to ob-
tain another pushdown automaton, and finally translating the resulting pushdown
automaton back into a context-free grammar. Alternatively, the intersection can be
computed without the explicit automata conversion [114], by an adaptation of the
context-free reachability algorithm [80]. The HAMPI solver (Chapter 3) can also be
used.

The unroll-and-prune algorithm from Section 4.2.1 is simpler than HAMPI or
the context-free reachability. Moreover, unlike HAMPJ, the algorithm can be used
for completing a partial solution of any length (HAMPI only finds fixed-size solu-
tions). The algorithm (Section 4.2.1) exploits the structure of the regular language
that describes the path constraint on only the first n tokens returned by the tok-
enization function, where 7 is the highest index i of a token variable token; appear-
ing in the constraint represented by R. This algorithm is not polynomial in general,
but performs satisfactorily in practice for n around 50-60. By exploiting the special
structure of the regular language, this algorithm can be faster than HAMPI (but it is
less general). If the grammar is left-recursive, the algorithm in Figure 4-3 may not
terminate. However, context-free grammars for file formats and programming lan-
guages are rarely left-recursive, and left-recursion can be efficiently removed [85].
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Approximate Grammars

Grammar-based concolic testing can be used with approximate grammars. Let us
call an input parsable if the parser successfully terminates when run on that input. If
the grammar accepts all parsable inputs or over-approximates the set of parsable
inputs, then the algorithm in Figure 4-2 is sound: it does not prune any of the
feasible paths for which the parser successfully terminates.

In practice, grammar membership only approximates validity. The set of valid
inputs specified by a grammar is an approximation of the set of parsable inputs. In-
deed, parsers typically implement additional validation (e.g., simple type-checking)
that is not part of the grammar description of the language. Other grammars may
have some “context-sensitive behaviors” (as in protocol description languages, in
which a variable size parameter k is followed by k records), that are omitted or
approximated in a context-free or regular manner. Other grammars, especially
for network protocols, are simplified representations of valid inputs, and do not
require the full power of context-sensitivity [13,29,90].

Domain Knowledge

Grammar-based concolic testing requires a limited amount of domain knowledge.
Specifically, applying the technique requires identifying the grammar of the input
format and the tokenization function. Also a de-tokenization function needs to be
provided, that generates byte strings from token strings generated by the context-
free constraint solver.

We believe these are not severe practical limitations. Indeed, grammars are typ-
ically available for many input formats, and identifying the tokenization function
is, in our experience, rather easy, even in unknown code, provided that the source
code is available or that the tokenization function has a standard name, such as
token, nextToken, scan, etc. For example, we found the tokenization function
in the JavaScript interpreter of Internet Explorer 7 in a matter of minutes, by look-
ing for commonly used names in the symbol table.

Lexer and Parser Errors

Using a grammar to filter out invalid inputs may reduce code coverage in the lexer
and parser themselves, since the grammar explicitly prevents the execution of code
paths handling invalid inputs in those stages. For testing those stages, traditional
concolic testing can be used. Moreover, our experiments (Sections 4.5—4.4) indicate
that grammar-based concolic testing does not decrease coverage in the lexer or
parser.

Grammar-based concolic testing approach uses the actual lexer and parser code
of the program under test. Indeed, removing these layers and using automatically
generated software stubs simulating those parts may feed unrealistic inputs to the
rest of the program.
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4.3 Grammar-Based Concolic Testing Case Studies

We performed two case studies to evaluate grammar-based concolic testing. For
the case studies, we implemented our technique in two existing concolic-testing
tools, Klee [16] (Section 4.4) and SAGE [48] (Section 4.5). For each case study, we
designed experiments with the following goals:

e Measure whether test inputs generated by grammar-based concolic testing
are effective in exercising long execution paths in the program, i.e., reaching
beyond the lexer and parser.

o Compare grammar-based concolic testing to other approaches, in particular
concolic testing.

The results of our case studies show that grammar-based concolic testing is a
general and powerful technique. In each case study, we were able to successfully
implement grammar-based concolic testing in a tool with which we were initially
unfamiliar (though we did interact with the tools” authors). Moreover, in each case
study, grammar-based concolic testing significantly improved the effectiveness of
the testing tool (in terms of code coverage), for programs with highly-structured
inputs.

4.4 Case Study: Concolic Testing of UNIX Programs

We enhanced Klee [16], a concolic testing tool for UNIX programs, with grammar-
based concolic testing. We aimed to improve Klee’s ability to create valid test cases
for programs that accept highly structured inputs.

In this study, we used the HAMPI string-constraint solver (Chapter 3) and not
the solver from Section 4.2.1. HAMPI was more suited for this study because: (i)
Klee, like HAMPI, works on fixed-size string input, and (ii) Klee is integrated with
the STP [42] solver and HAMPI encodes string constraints in STP.

The rest of this section describes our experiments and discusses the results.

Summary of Results

Compared to concolic testing, grammar-based concolic testing led to up to 2x im-
provements in line coverage (up to 5x coverage improvements in parser code),
eliminated all illegal inputs, and enabled discovering 3 distinct, previously un-
known, inputs that led to infinitely-looping program execution. These results
show that using HAMPI can improve the effectiveness of automated test-case gen-
eration and testing tools.

4.4.1 Experiment

We compared the coverage achieved and numbers of legal (and rejected) inputs
generated by running Klee with and without HAMPI string constraints. While
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previous studies used custom-made string-constraint solvers, we are able to apply
HAMPI as an “off-the-shelf” solver for Klee without modifying Klee at all.

Klee provides an Application Programming Interface (API) for target programs
to mark inputs as symbolic and to place constraints on them. The code snippet
below uses klee_assert to impose the constraint that all elements of buf must
be numeric before the target program runs:

char buf[10]; // program input
klee_make_symbolic(buf, 10); // make all 10 bytes symbolic

// constrain buf to contain only decimal digits
for (int i = 0; i < 10; i++)
klee_assert (('0’ <= buf[i]) && (buf[i] <= "9"));

run_target_program(buf); // run target program with buf as input

HAMPI simplifies writing input-format constraints. Simple constraints, such as
those above, can be written by hand, but it is infeasible to manually write more
complex constraints for specifying, for example, that buf must belong to a par-
ticular context-free language. We use HAMPI to automatically compile such con-
straints from a grammar down to C code, which can then be fed into Klee.

We chose 3 open-source programs that specify expected inputs using context-
free grammars in Yacc format (a subset of those used by Majumdar and Xu [72]).
cueconvert converts music playlists from . cue format to . toc format. logic-
tree is a solver for propositional logic formulas. bc is a command-line calculator
and simple programming language. All programs take input from stdin; Klee
allows the user to create a fixed-size symbolic buffer to simulate stdin, so we did
not need to modify these programs.

For each target program, we ran the following experiment on a 3.2GHz Pen-
tium 4 PC with 1GB of RAM running Fedora Linux:

1. Automatically convert its Yacc specification into HAMPI's input format (de-
scribed in Section 3.2.1), using a script we wrote. To simplify lexical analysis,
we used either a single letter or numeric digit to represent certain tokens,
depending on its Lex specification (this should not reduce coverage in the
parser).

2. Add a bounded-length restriction to limit the input to N bytes. Klee (simi-
larly to, for example, SAGE [48]) actually requires a fixed-size input, which
matches well with HAMPTI’s fixed-size input language. We empirically picked
N as the largest input size for which Klee does not run out of memory. We
augmented the HAMPI input to allow for strings with arbitrary numbers of
trailing spaces, so that we can generate program inputs up to size N.

3. Run HAMPI to compile the input grammar file into STP bit-vector constraints
(described in Section 3.2.3).

4. Automatically convert the STP constraints into C code that expresses the
equivalent constraints using C variables and calls to klee_assert (), with
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a script we wrote (the script performs only simple syntactic transformations
since STP operators map directly to C operators).

5. Run Klee on the target program using an N-byte input buffer, first marking
that buffer as symbolic, then executing the C code that imposes the input
constraints, and finally executing the program itself.

6. After a 1-hour time-limit expires, collect all generated inputs and run them
through the original program (compiled using gcov) to measure coverage
and legality of each input.

7. As a control, run Klee for 1 hour using an N-byte symbolic input buffer (with
no initial constraints), collect test cases, and run them through the original
program to measure coverage and legality of each input.

Program ELOC input size | strategy line coverage % generated inputs
(bytes) total parser legal/all (%)

concolic 32 21 0/14 (0%)

cueconvert 939 28 concolic+grammar 51 77 146/146 (100%)
combined 56 79  146/160 (91%)

concolic 31 12 70/110 (64%)

logictree 1,492 7 concolic+grammar 63 65 98/98 (100%)
combined 67 65  188/208 (81%)

concolic 27 12 2/27  (5%)

be 1,669 6 concolic+grammar 43 40  198/198 (100%)
combined 47 43 200/225 (89%)

Table 4.1: The result of using HAMPI grammars to improve coverage of test cases
generated by the Klee systematic testing tool. ELOC lists Executable Lines of Code,
as counted by gcov over all . ¢ files in the program (whole-project line counts are
several times larger, but much of that code does not directly execute). Each trial
was run for 1 hour. Klee generates a new input only when it covers new lines
that previous inputs have not yet covered (to create minimal test suites); the total
number of explored paths is usually hundreds of times greater than the number of
generated inputs. Rows concolic show results for runs of Klee without a HAMPI
grammar. Rows concolic+grammar show results for runs of Klee with a HAM-
PI grammar. Rows combined show accumulated results for both kinds of runs.
Section 4.4 describes the experiment.

We made four sets of measurements
e total line coverage,

e line coverage in the Yacc parser file that specifies the grammar rules along-
side C code snippets denoting parsing actions,

e the numbers of inputs (test cases) generated, and

¢ the number of legal inputs (i.e., not rejected by the program as a parse error).
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4.4.2 Results

Table 4.1 summarizes our experimental setup and results. The run times for con-
verting each Yacc grammar into HAMPI format, fixed-sizing to N bytes, running
HAMPI on the fixed-size grammar, and converting the resulting STP constraints
into C code are negligible; together, they took less than 1 second for each of the 3
programs.

Grammar-based concolic testing improved coverage. Constraining the inputs
using a HAMPI grammar resulted in up to 2x improvement in total line coverage
and up to 5x improvement in line coverage within the Yacc parser file. Also, as
expected, it eliminated all illegal inputs.

Grammar-based concolic testing can be combined with traditional concolic test-
ing. Using both sets of inputs (combined rows) improved upon the coverage achieved
using the grammar by up to 9%. Upon manual inspection of the extra lines cov-
ered, we found that it was due to the fact that the runs with and without the gram-
mar covered non-overlapping sets of lines: The inputs generated by runs without
the grammar (concolic rows) covered lines dealing with processing parse errors,
whereas the inputs generated with the grammar (concolic+grammar rows) never
had parse errors and covered core program logic. Thus, combining test suites is
useful for testing both error and regular execution paths.

Grammar-based concolic testing uncovered unknown errors. Using the gram-
mar, Klee generated 3 distinct inputs for logictree that uncovered (previously
unknown) errors where the program entered an infinite loop. We do not know how
many distinct errors these inputs identify. Without the grammar, Klee was not able
to generate those same inputs within the 1-hour time limit; given the structured na-
ture of those inputs (e.g., oneis “@x $y z”), itis unlikely that Klee would be able
to generate them within any reasonable time bound without a grammar.

We manually inspected lines of code that were not covered by any strategy.
We discovered two main hindrances to achieving higher coverage: First, the in-
put sizes were still too small to generate longer productions that exercised more
code, especially problematic for the playlist files for cueconvert; this is a limita-
tion of Klee running out of memory and not of HAMPI. Second, while grammars
eliminated all parse errors, many generated inputs still contained semantic errors,
such as malformed bc expressions and function definitions (again, unrelated to
HAMPI).

4.5 Case Study: JavaScript Interpreter

We extended SAGE [48], a concolic-testing tool for Windows programs, with grammar-
based concolic testing. We aimed to improve SAGE'’s ability to create valid test
cases for programs that accept highly structured inputs. We focused the case study

on the JavaScript interpreter in Internet Explorer 7. In addition to the goals stated

in Section 4.3, our experiments had the following goals:

e Measure how the set of inputs generated by each technique compares. In
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particular, do inputs generated by grammar-based concolic testing exercise
the program in ways that other techniques do not?

e Measure the effectiveness of token-level constraints in preventing path ex-
plosion in the lexer.

e Measure the performance of the grammar-based constraint solver of Sec-
tion 4.2.1 with respect to the size of test inputs.

e Measure the effectiveness of the grammar-based approach in pruning the
search tree.

The rest of this section describes our experiments and discusses the results.
Naturally, because they come from a limited sample, these experimental results
need to be taken with caution. However, our evaluation is extensive and per-
formed with a large, widely-used JavaScript interpreter, a representative “real-
world” program.

Summary of Results. Compared to regular concolic testing, our technique in-
creased coverage of the deepest of analyzed modules from 53% to 81% while using
three times fewer tests. At least 27% of instructions covered by grammar-based
concolic testing were not covered by any other automated strategy. Using the
grammar-based constraint solver was effective: in 29% of cases, using the solver
enabled pruning the search tree. The solver was efficient: at most 58% of total time
was spent in the solver (comparable to concolic testing’s 62%).

4.5.1 Subject Program

We performed the experiments with the JavaScript interpreter embedded in the
Internet Explorer 7 Web-browser. We ran the interpreter with no source modifica-
tions. The total size of the JavaScript interpreter is 113562 machine instructions.
The interpreter has three main modules: code generator, parser, and lexer. The
code generator (3693 instructions) is the “deepest” of the examined modules, i.e.,
every input that reaches the code generator also reaches the other two modules
(but the converse does not hold). The parser (18535 instructions) and lexer (10410
instructions) are equally deep, because the parser always calls the lexer.

We used the official JavaScript grammar? with 189 productions, 82 terminals
(tokens), and 102 nonterminals.

4.5.2 Test-Generation Strategies

We evaluated the following test input generation strategies, to compare them to
grammar-based concolic testing.

2http://www.ecma-international.org
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fuzzing generates test inputs by randomly modifying an initial input. We used a
Microsoft-internal widely-used fuzzing tool.

fuzzing+grammar generates test inputs by creating random strings from a given
grammar. We used a strategy that generates strings of a given length uni-
formly at random [79], i.e., each string of a given length is equally likely.

concolic generates test inputs using the concolic testing algorithm of Section 2. We
used SAGE [48], an existing tool that implements concolic testing for Win-
dows programs.

concolic+tokens extends concolic testing with only the lexical part of the gram-
mar, i.e,, marks token identifiers as symbolic, instead of individual input
bytes, but does not use a grammar. This strategy was implemented as an
extension of SAGE.

concolic+grammar is our the main strategy, i.e., the grammar-based concolic test-
ing. This strategy extends concolic testing with both symbolic tokens and an
input grammar. This strategy was implemented as an extension of SAGE.

Figure 4-4 tabulates the strategies used in the evaluation and shows their char-
acteristics.

strategy seed random tokens
inputs

fuzzing v v

fuzzing+grammar v v

concolic v

concolic+tokens v v

concolic+grammar v v

Figure 4-4: Test input generation strategies evaluated and their characteristics. The
seed inputs column indicates which strategies require initial seed inputs from
which to generate new inputs. The random column indicates which strategies
use randomization. The tokens column indicates which strategies use the lexi-
cal specification (i.e., tokens) of the input language. Each technique’s name indi-
cates whether the technique uses a grammar and whether is it concolic testing or
fuzzing.

Other strategies are conceivable. For example, concolic testing could be com-
bined directly with the grammar, without tokens. Doing so requires transform-
ing the grammar into a scannerless grammar [99]. Another possible strategy is
bounded exhaustive enumeration [72,108]. We have not included the latter in our
evaluation because, while all other strategies we evaluated can be time-bounded
(i.e., can be stopped at any time), exhaustive enumeration up to some input length
is biased if terminated before completion, which makes it hard to fairly compare
to time-bounded techniques.
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4.5.3 Methodology

We used randomly generated seed inputs. To avoid bias when using test gener-
ation strategies that require seed inputs (see Figure 4-4), we used 50 seed inputs
with 15 to 20 tokens generated randomly from the grammar. Section 4.5.4 provides
more information about selecting the size of seed inputs. Also, to avoid bias across
all strategies, we ran all experiments inside the same test harness.

The concolic+tokens and concolic+grammar strategies require identifying the tok-
enization function that creates grammar tokens. Our implementation allows doing
so in a simple way, by overriding a single function in our framework.

For each of the examined modules (lexer, parser, and code generator), we mea-
sured the reachability rate, i.e., the percentage of inputs that execute at least one
instruction of the module. Deeper modules always have lower reachability rates.

We measured instruction coverage, i.e., the ratio of the number of unique exe-
cuted instructions to all instructions in the module of interest. This coverage met-
ric seems the most suitable for our needs, since we want to estimate the error-
finding potential of the generated inputs, and blocks with more instructions are
more likely to contain errors than short blocks. In addition to the total instruction
coverage for the interpreter, we also measured coverage in the lexer, parser, and
code generator modules.

We ran each test input generation strategy for 2 hours. The 2-hour time in-
cluded all experimental tasks: program execution, symbolic execution (where ap-
plicable), constraint solving (where applicable), generation of new inputs, and cov-
erage measurements.

For reference, we also include coverage data and reachability results obtained
with a “manual” test suite, created over several years by the developers and testers
of this JavaScript interpreter. The suite consists of more than 2,800 hand-crafted
inputs that exercise the interpreter thoroughly.

As an additional control, we used a test suite with full production coverage, cre-
ated by using Purdom’s algorithm [74, 94], which gives a set of strings that cover
all grammar productions.

4.5.4 Seed Size Selection

Four of our generation strategies require seed inputs (Figure 4-4). To avoid bias
stemming from using arbitrary inputs, we used inputs generated randomly from
the JavaScript grammar. The length of the seed inputs may influence subsequent
test input generation. To select the right length, we generated inputs of different
sizes and measured the coverage achieved by each of those inputs as well as what
percentage of inputs reaches the code generator. For each length, we generated 100
inputs and performed the measurements only for those inputs.

The findings (Figure 4-5) are not immediately intuitive: longer inputs achieve,
on average, lower total coverage. The reason is that the official JavaScript gram-
mar is only a partial specification of what constitutes syntactic validity. The gram-
mar describes an over-approximation of the set of inputs acceptable by the parser.
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size reach average maximum
(tokens) code gen. % coverage % coverage %

6 100 9 9
10 76 8 9
20 67 8 10
30 38 8 10
50 9 7 10

100 1 6 10
120 0 6 7
150 0 6 7
200 0 6 7

Figure 4-5: Coverage statistics for nine sets of 100 inputs each, generated
randomly from the JavaScript grammar using the same uniform generator as
fuzzing+grammar. The reach code gen. column displays the percentage of the gen-
erated inputs that reach the code generator module. The two right-most columns
display the average and the maximum coverage of the whole interpreter for the
generated inputs.

Longer, randomly generated, inputs are more likely to be accepted by the grammar
and rejected by the parser. For example, the grammar specifies that break state-
ments may occur anywhere in the function body, while the parser enforces that
break statements may appear only in loops and switch statements. Enforcing
this is possible by modifying the grammar but it would make the grammar much
larger. Another example of over-approximation concerns line breaks and semi-
colons. The standard specifies that certain semicolons may be omitted, as long
as there are appropriate line breaks in the file®. However, the grammar does not
enforce this requirement and allows omitting all semicolons.

We selected 15 to 20 as the size range, in tokens, of the input seeds we use in
other experiments. The results in Figure 4-5 indicate that this length makes the
seed inputs variable without sacrificing the reachability rate (i.e., reachability of
the code generation module).

4.5.5 Results
Coverage and Reachability

Figure 4-6 tabulates the coverage and reachability results for the 2-hour runs with
each of the five automated test generation strategies previously discussed. For
comparison, results obtained with the manually-written test suite are also included,
even though running it requires between 2 and 3 hours (the 2,820 input JavaScript
programs are typically much larger).

3Gee Section 7.9 of the specification: http://interglacial.com/javascript_spec/
a-7.html#a—-7.9

56



strategy inputs coverage % reachability %
total lexer parser gen. | lexer parser gen.

fuzzing 8658 | 14 25 25 52 99 99 18
fuzzing+grammar 7837 | 12 22 24 61 100 100 72
concolic 6883 | 15 26 29 54 99 99 17
concolic+tokens 3086 | 16 35 39 53 100 100 16
concolic+grammar | 2378 | 20 25 42 82 | 100 100 81
seed inputs 5 | 11 18 21 51 100 100 66

full prod. coverage 15 12 20 27 52 | 100 100 53
manual test suite 2820 | 59 62 76 92 | 100 100 100

Figure 4-6: Coverage and reachability results for 2-hour runs (in %). The seed inputs
row lists statistics for the seed inputs used by some of the test generation strate-
gies (see Sections 4.5.3 and 4.5.4). The manual test suite takes more than 2 hours
(less than 3 hours) to run and is included here for reference. The inputs column
gives the number of inputs tested by each strategy. The coverage columns give
the instruction coverage for lexer, parser, and code generator (gen.) modules. The
reachability columns give the percentage of inputs that reach the module’s entry-
point.

Our main strategy, concolic+grammar, achieved the best total coverage, as well
as the best coverage in the deepest examined module, the code generator. It achieved
results that are closest to the manual test suite, which predictably provides the best
coverage. The manual suite is diverse and extensive, but was developed at the cost
of many man-months of work. In contrast, concolic+grammar requires minimal hu-
man effort, and quickly generates relatively good test inputs. We can also observe
the following.

o Grammar-based concolic testing achieved much better coverage than regular
concolic testing.

o Grammar-based concolic testing performed significantly better than grammar-
based fuzzing (fuzzing+grammar). Even though the latter strategy achieved
good coverage in the code generator, concolic strategies outperformed fuzzing
ones in total coverage.

o Grammar-based concolic testing achieved the highest coverage using the fewest
inputs, which means that this strategy generates inputs of higher quality.

o Concolic testing was not much better than simple fuzzing. When testing pro-
grams with highly-structured inputs, concolic testing, with the power of sym-
bolic execution and constraint solving, did not improve much over simple
fuzzing. Furthermore, in the code generator, neither strategy improved cov-
erage much above the initial set of seed inputs.

e Full production coverage did not correspond to high code coverage. How-
ever, our results show that a combination of specification-based and implementation-
based testing (such as our grammar-based concolic testing) can perform bet-
ter than either approach alone.
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o Almost all tested inputs reached the lexer. A few inputs generated by the
fuzzing and concolic strategies contained invalid (e.g., non-ASCII) characters
and the interpreter rejected them before using the lexer. To exercise the in-
terpreter well, inputs must reach the deepest module, the code generator.
The results show that concolic+grammar had the highest percentage of such
deep-reaching inputs.

In summary, the results of these experiments validate our claim that grammar-
based concolic testing is effective in reaching deeper into the tested application
and exercising the code more thoroughly than other automated test-generation
strategies.

Relative Coverage

Grammar-based concolic testing creates test input that cover code not covered by
other strategies. Figure 4-7 compares the instructions covered with concolic+grammar
and the other analyzed strategies. The numbers show that the inputs generated by
concolic+grammar covered most of the instructions covered by the inputs generated
by the other strategies (see the small numbers in the § — GBC column), while cov-
ering many other instructions (see the relatively larger numbers in the GBC - §
column).

strategy § S-GBC GBCnS GBC-S§
fuzzing 1 13 7
fuzzing+grammar 0 12 9
concolic 2 13 7
concolic+tokens 2 14 6

Figure 4-7: Relative coverage in % compared to concolic+grammar (GBC). The col-
umn S — GBC gives the percentage of instructions covered by each strategy but not
by GBC. The column GBC N § gives the percentage of instructions covered by both
strategies. The last column gives the percentage of instructions covered by GBC
and notby S.

Combined with the results of Section 4.5.5, this shows that concolic+grammar
achieved the highest total coverage, highest reachability rate, and highest coverage
in the deepest module, while using the smallest number of inputs.

Context-Free Constraint Solver Performance

Grammar-based constraint solver was efficient. To measure the performance of the
solver, we repeated the 2-hour concolic+grammar run 9 times with different sizes of
seed inputs (between 10 and 200 tokens). The average number of solver calls per
symbolic execution was between 23 and 53 (with no obvious correlation between
seed input size and the average number of solver calls). The results were that up
to 58% of total execution time was spent in the constraint solver (with no obvious
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correlation between seed size and solving time). Such solving times are typical in
concolic testing (e.g., a recent report [47] indicates up to 62% of the test generation
time spent in the constraint solver).

Grammar-based Search Tree Pruning

Grammar-based concolic testing was effective in identifying dead-end inputs. In
our 2-hour experiments, 29% of grammar constraints were unsatisfiable. When a
grammar constraint is unsatisfiable, the corresponding search tree is pruned be-
cause there is no input that satisfies the constraint and is valid according to the
grammar.

Statistics on Concolic Executions

strategy created constraints % symbolic avg. avg.
lexer parser codegen. | execs | symb.vars | constraints
concolic 67 33 0 131 57 298
concolic+tokens 0 98 2 170 12 67
concolic+grammar | 0 98 2 143 21 113

Figure 4-8: Concolic execution statistics for 2-hour runs of concolic strategies. The
created constraints columns shows the percentages of all symbolic constraints cre-
ated in the three analyzed modules of the JavaScript interpreter. The symbolic
execs column gives the total number of symbolic executions during each run. The
two right-most columns give the average number of symbolic variables per sym-
bolic execution and the average number of symbolic constraints per symbolic exe-
cution.

Figure 4-8 presents statistics related to the concolic executions performed dur-
ing the 2-hour runs of each of the three concolic strategies evaluated. We make the
following observations.

e All three concolic strategies performed roughly the same number of symbolic
executions.

¢ However, the concolic strategy created a larger average number of symbolic
variables because it operated on characters, while the other two strategies
worked on tokens (cf. Figure 4-4).

e The concolic+tokens strategy created the smallest average number of symbolic
variables per execution. This is because concolic+tokens generated many un-
parsable inputs (cf. Figure 4-6), which the parser rejected early and therefore
no symbolic variables were created for the tokens after the parse error.

Token-based strategies avoided path explosion in the lexer. Figure 4-8 shows
how constraint creation was distributed among the lexer, parser, and code gen-
erator modules of the JavaScript interpreter. The two token-based strategies (con-
colic+tokens and concolic+grammar) generated no constraints in the lexer. This helped
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to avoid path explosion in that module. Those strategies did explore the lexer
(indeed, Figure 4-6 shows high coverage) but they did not get lost in the lexer’s
error-handling paths.

All strategies created constraints in the deepest, code generator, module. How-
ever, there were few such constraints because the parser transforms the stream of
tokens into an Abstract Syntax Tree (AST) and subsequent code, such as the code
generator, operates on the AST. When processing the AST in later stages, symbolic
variables associated with input bytes or tokens are largely absent, so symbolic exe-
cution does not create constraints from code branches in these stages. The number
of symbolic constraints in those deeper stages could be increased by associating
symbolic variables with other values returned by the tokenization function such
as string and integer values associated with some tokens.

4.6 Related Work

Concolic testing [18,46,102] finds errors without generating false alarms and re-
quires no domain knowledge. Our work enhances concolic testing by taking ad-
vantage of a formal grammar representing valid inputs, thus helping the genera-
tion of test inputs that exercise longer execution paths.

Miller’s pioneering fuzzing tool [81] generated streams of random bytes, but
most popular fuzzers today support some form of grammar representation, e.g.,
SPIKE?, Peach?®, FileFuzz®, Autodafé’. Sutton et al. [109] present a survey of fuzzing
techniques and tools. Work on grammar-based test input generation started in
the 1970s [53,94] and can be broadly divided into random [26,74,76,106] and ex-
haustive generation [69,72]. Imperative generation [21,30,89] is a related approach
in which a custom-made program generates the inputs (in effect, the program en-
codes the grammar). In systematic approaches, test inputs are created from a speci-
fication, given either a special piece of code (e.g., Korat [14]) or a logic formula (e.g.,
TestEra [62]). Grammar-based test input generation is an example of model-based
testing (see Utting et al. for a survey [112]), which focuses on covering the specifi-
cation (model) when generating test inputs to check conformance of the program
with respect to the model. Our work also uses formal grammars as specifications.
However, in contrast to fuzzing approaches, our approach analyses the code of the
program under test and derives new test inputs from it.

Path explosion in concolic testing can be alleviated by performing test genera-
tion compositionally [44], by testing functions systematically in isolation, encod-
ing and memoizing test results as function summaries using function input pre-
conditions and output postconditions, and re-using such summaries when test-
ing higher-level functions. A grammar can be viewed as a special form of user-

‘http://www.immunitysec.com/resources-freesoftware.shtml
Shttp://peachfuzz.sourceforge.net/
bhttp://labs.idefense.com/software/fuzzing.php
"nttp://autodafe.sourceforge.net
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provided compact “summary” for the entire lexer/parser, that may include over-
approximations. Computing such a finite-size summary automatically may be
impossible due to infinitely many paths or limited symbolic reasoning capability
when analyzing the lexer/parser. Grammar-based concolic testing and test sum-
maries are complementary techniques which could be used simultaneously.

Another approach to path explosion consists of abstracting lower-level func-
tions using software stubs, marking their return values as symbolic, and then re-
fining these abstractions to eliminate infeasible program paths [71]. In contrast,
grammar-based concolic testing is always grounded in concrete executions, and
thus does not require the expensive step of removing infeasible paths.

Emmi et al. [36] extend systematic testing with constraints that describe the
state of the data for database applications. Our approach also solves path and data
constraints simultaneously, but ours is designed for compilers and interpreters in-
stead of database applications.

Majumdar and Xu’s recent and independent work [72] is closest to ours. These
authors combine grammar-based fuzzing with concolic testing by exhaustively
pre-generating strings from the grammar (up to a given length), and then perform-
ing concolic testing starting from those pre-generated strings, treating only vari-
able names, number literals etc. as symbolic. Exhaustive generation inhibits scal-
ability of this approach beyond very short inputs. Also, the exhaustive grammar-
based generation and the concolic testing parts do not interact with each other in
Majumdar and Xu'’s framework. In contrast, our grammar-based concolic testing
approach is more powerful as it exploits the grammar for solving constraints gen-
erated during symbolic execution to generate input variants that are guaranteed to
be valid.

4.7 Conclusion

We introduced grammar-based concolic testing to enhance the effectiveness of
concolic testing for applications with complex, highly-structured inputs, such as
interpreters and compilers. Grammar-based concolic testing tightly integrates
implementation-based and specification-based testing, and leverages the strengths
of both.

As shown by our case studies, grammar-based concolic testing generates tests
that exercise more code in the deeper, harder-to-test layers of the program un-
der test. In our experiments with UNIX programs, our technique lead to up to
2x improvements in line coverage, eliminated all illegal inputs, and enabled dis-
covering 3 distinct, previously unknown, inputs that led to infinitely-looping pro-
gram execution. In our experiments with the JavaScript interpreter in Internet
Explorer 7, grammar-based concolic testing strongly outperformed both concolic
testing and fuzzing. Code generator coverage improved from 61% to 81% and
deep reachability improved from 72% to 80%. Deep parts of the application are
the hardest to test automatically and our technique shows how to address this.

Since grammars are often partial specifications of valid inputs, grammar-based
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fuzzing approaches are fundamentally limited. Thanks to concolic testing, some
of this incompleteness can be recovered, which explains why grammar-based con-
colic testing also outperformed grammar-based fuzzing in our experiments.
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Chapter 5

Concolic Security Testing

Concolic security testing finds security vulnerabilities in Web applications. Multi-
user Web applications are responsible for handling much of the business on the
Internet. Such applications often manage sensitive data for many users, and that
makes them attractive targets for attackers: up to 70% of recently reported vulner-
abilities affected Web applications [19]. Therefore, security and privacy are of great
importance for Web applications.

Two classes of attacks are particularly common and damaging [19]. In SQL
injection (SQLI), the attacker executes malicious database statements by exploiting
inadequate validation of data flowing from the user to the database. In cross-site
scripting (XSS), the attacker executes malicious code on the victim’s machine by
exploiting inadequate validation of data flowing to statements that output HTML.

Previous approaches to identifying SQLI and XSS vulnerabilities and prevent-
ing exploits include defensive coding, static analysis, dynamic monitoring, and
test generation. Each of these approaches has its own merits, but also shortcom-
ings. Defensive coding [25] is error-prone and requires rewriting existing software
to use safe libraries. Static analysis tools [70,115] can produce false warnings and
do not create concrete examples of inputs that exploit the vulnerabilities. Dynamic
monitoring tools [52,92,107] incur runtime overhead on the running application
and do not detect vulnerabilities until the code has been deployed. Black-box test
generation does not take advantage of the application’s internals, while previous
white-box techniques [116] have not been shown to discover unknown vulnerabil-
ities.

We present concolic security testing, a novel technique for identifying SQLI
and XSS vulnerabilities. Unlike previous approaches, our technique works on un-
modified existing code, creates concrete inputs that expose vulnerabilities, oper-
ates before software is deployed, has no overhead for the released software, and
analyzes application internals to discover vulnerable code. As an implementation
of our technique, we created ARDILLA, an automated tool for creating SQLI and
XSS attacks in PHP/MySQL applications. ARDILLA is a white-box testing tool,
i.e., it analyzes the source code of the application. ARDILLA is designed for test-
ing PHP applications before deployment. Security vulnerabilities that ARDILLA
identifies can be fixed before the software reaches the users because ARDILLA cre-
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ates concrete attacks that exploit the vulnerability. In our experiments, ARDILLA
discovered 68 previously unknown vulnerabilities in five applications.

Concolic security testing has five components: input generation, concolic exe-
cution, concolic database, attack-candidate generation, and attack-candidate check-
ing. We now briefly discuss these components.

Concolic security testing can use any input generator. ARDILLA uses an input
generator that is based on concolic testing [2]. During each execution, this input
generator monitors the program to record path constraints that capture the out-
come of control-flow predicates. The input generator automatically and iteratively
generates new inputs by negating one of the observed constraints and solving the
modified constraint system. Each newly-created input aim to explore an additional
execution path.

ARDILLA’s vulnerability detection is based on concolic execution. ARDILLA’s
concolic execution significantly enhances that used in the input generator. ARDIL-
LA tracks symbolic values for all concrete values in the program. In particular,
ARDILLA maintains symbolic string expressions for all string runtime values. AR-
DILLA marks data coming from the user as symbolic, tracks the flow of user data
in the program, and checks whether user-derived data can reach sensitive sinks. An
example of a sensitive sink is the PHP mysgl_query function, which executes a
string argument as a MySQL statement. If a string derived from user data is passed
into this function, then an attacker can potentially perform an SQL injection if the
user-derived string affects the structure of the SQL query. Similarly, passing user-
derived data into functions that output HTML can lead to XSS attacks.

ARDILLA’s concolic execution is unique in that it tracks the flow of symbolic
information through the database, using a concolic database. When the concrete
values are stored in the database, the symbolic information is stored with them.
When the values are later retrieved from the database, they are marked with the
stored symbolic values. Thus, only data that was marked as symbolic upon stor-
ing is marked as symbolic upon retrieval. This precision makes ARDILLA able to
accurately detect second-order (persistent) XSS attacks. By contrast, previous tech-
niques either treat all data retrieved from the database as user-derived [114, 115]
(which may lead to false warnings) or treat all such data as not user-derived [70]
(which may lead to missing real vulnerabilities).

To convincingly demonstrate a vulnerability, a tester or a tool must create con-
crete attack vectors [9,37,43]. ARDILLA can create attack candidates in two ways:
using a library of known attack patterns, or using a string-constraint solver, such
as HAMPI (Chapter 3). This step is necessary because not every flow of user data
to a sensitive sink indicates a vulnerability because the data may flow through
routines that check or sanitize it.

ARDILLA then checks the attack candidate by analyzing the difference between
the parse trees of application outputs (SQL and HTML). ARDILLA checks whether
the candidate may subvert the behavior of a database or a Web browser, respec-
tively. This step enables ARDILLA to reduce the number of false warnings and to
precisely identify real vulnerabilities.
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Contributions and Results

e Concolic security testing, a fully-automatic technique for creating SQLI and
XSS attack vectors, including those for second-order (persistent) XSS attacks
(Section 5.2)

¢ A novel technique that determines whether the flow of user data to a sen-
sitive sink is a vulnerability, using input mutation and output comparison
(Sections 5.3.3 and 5.3.4).

e A novel approach to symbolically tracking the flow of user data through a
database (Section 5.3.5).

e ARDILLA, a tool that implements the technique for PHP (Section 5.3).

e Evaluation of ARDILLA on five PHP applications (Section 5.4). We found 68
previously-unknown vulnerabilities (23 SQLI, 33 first-order XSS, and 12 second-
order XSS).

We describe the problem of attacks on Web-applications (Section 5.1), present
the concolic security testing technique (Section 5.2), the ARDILLA tool (Section 5.3),
and an experimental evaluation of the tool (Section 5.4). We finish with related
work (Section 5.5).

5.1 SQL Injection and Cross-Site Scripting Attacks

This section describes SQLI and XSS Web-application vulnerabilities and illustrates
attacks that exploit them.

SQL Injection

A SQLI vulnerability results from the application’s use of user input in construct-
ing database statements. The attacker invokes the application, passing as an input
a (partial) SQL statement, which the application executes. The attack permits the
attacker to get unauthorized access to, or to damage, the data stored in a database.
To prevent this attack, applications need to sanitize input values that are used in
constructing SQL statements, or else reject potentially dangerous inputs.

First-order XSS

A first-order XSS (also known as Type 1, or reflected, XSS) vulnerability results
from the application inserting part of the user’s input in the next HTML page that
it renders. The attacker uses social engineering to convince a victim to click on
a (disguised) URL that contains malicious HTML/JavaScript code. The victim’s
browser then displays HTML and executes JavaScript that was part of the attacker-
crafted malicious URL. The attack can result in website defacement, stealing of
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browser cookies and other sensitive user data. To prevent first-order XSS attacks,
users need to check link anchors before clicking on them, and applications need to
reject or modify input values that may contain script code.

Second-order XSS

A second-order XSS (also known as Type 2, persistent, or stored, XSS) vulnerability
results from the application storing (part of) the attacker’s input in a database, and
later inserting it in an HTML page that is displayed to multiple victim users (e.g.,
in an online bulletin-board application).

It is harder to prevent second-order XSS than first-order XSS. Applications need
to reject or sanitize input values that may contain script code and are either dis-
played in HTML output, or used in database commands.

Second-order XSS is much more damaging than first-order XSS because: (i)
social engineering is not required (the attacker can directly supply the malicious
input without tricking users into clicking on a URL), and (ii) a single malicious
script planted once into a database executes on the browsers of many victim users.

5.1.1 Example PHP/MySQL Application

PHP is a server-side scripting language widely used in creating Web applica-
tions. The program in Figure 5-1 implements a simple message board that allows
users to read and post messages, which are stored in a MySQL database. To use
the message board, users of the program fill an HTML form (not shown here) that
communicates the inputs to the server via a specially formatted URL, e.g.,

http://www.mysite.com/?mode=display&topicid=1

In this example URL, the input has two key-value pairs: mode=display and
topicid=1. The input passed inside the URL is available to the PHP program via
the $_GET associative array.

The program can operate in two modes: posting a message or displaying all
messages for a given topic. When posting a message, the program constructs and
submits the SQL statement to store the message in the database (lines 25 and 28)
and then displays a confirmation message (line 29). In the displaying mode, the
program retrieves and displays messages for the given topic (lines 39, 40, and 44).

This program is vulnerable to the following attacks, all of which our technique
can automatically generate:

SQL Injection Attack

Both database queries, in lines 28 and 40, are vulnerable but we discuss only the
latter, which exploits the lack of input validation for topicid.
Consider the following string passed as the value for input parameter t opicid:

1’ OR "17="1
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// exit if parameter ’‘mode’ is not provided
if(!isset ($_GET[’mode’ 1)) {

exit;
}
if ($S_GET{'mode’] == "add")
addMessageForTopic () ;
else if ($_GET[’'mode’] == "display")
displayAllMessagesForTopic();
else
exit;

function addMessageForTopic () {
if(!'isset ($_GET(['msg’]) ||
lisset ($_GET['topicid’]) ||
!isset ($_GET['poster’])){
exit;

}

Smy_msg = $_GET[’'msg’];
Smy_topicid = $_GET[’topicid’];
$my_poster = $_GET[’poster’];

//construct SQL statement
$sglstmt = "INSERT INTO messages VALUES (’$my_msg’,’S$my_topicid’)";

//store message in database
Sresult = mysql_query ($sqlstmt);
echo "Thank you $my_poster for using the message board";

—

function displayAllMessagesForTopic () {
if(!isset ($_GET[’'topicid’ 1)) {
exit;

}
Smy_topicid = $_GET[’topicid’];

$sqlstmt = "SELECT msg FROM messages WHERE topicid=’$my_topicid’";
$result = mysql_query ($sqglstmt);

//display all messages
while ($row = mysql_fetch_assoc (Sresult)) {
echo "Message " . $row['msg’];

}

Figure 5-1: Example PHP program that implements a simple message board using
a MySQL database. This program is vulnerable to SQL injection and cross-site
scripting attacks. Section 5.1.1 discusses the vulnerabilities. (For simplicity, the
figure omits code that establishes a connection with the database.)

67



This string leads to an attack because the query that the program submits to the
database in line 40,

SELECT msg FROM messages WHERE topicid="1’ OR ’'1'="1'

contains a tautology in the WHERE clause and will retrieve all messages, possibly
leaking private information.

To exploit the vulnerability, the attacker must create an attack vector, i.e., the
full set of inputs that make the program follow the exact path to the vulnerable
mysqgl_query call and execute the attack query. In our example, the attack vector
must contain at least parameters mode and t opicid set to appropriate values. For
example:

mode — display
topicid —- 1" OR "1’'="1

First-order XSS Attack

This attack exploits the lack of validation of the input parameter poster. After
storing a message, the program displays a confirmation note (line 29) using the lo-
cal variable my_poster, whose value is derived directly from the input parameter
poster. Here is an attack vector that, when executed, opens a popup window on
the user’s computer:

mode — add
topicid — 1
msg — Hello

poster — Villain<script>alert ("XSS")</script>

This particular popup is innocuous; however, it demonstrates the attacker’s
ability to execute script code in the victim’s browser (with access to the victim’s
session data and permissions). A real attack might, for example, send the victim’s
browser credentials to the attacker.

Second-order XSS Attack

This attack exploits the lack of SQL validation of parameter msg when storing mes-
sages in the database (line 25) and the lack of HTML validation when displaying
messages (line 44). The attacker can use the following attack vector to store the
malicious script in the application’s database.

mode — add
topicid — 1
msg — Hello<script>alert ("XSS")</script>

poster — Villain

Now every user whose browser displays messages in topic 1 gets an unwanted
popup. For example, executing the following innocuous input results in an attack:
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mode — display
topicid = 1

5.2 Technique

Our technique generates a set of concrete inputs, executes the program under test
with each input, and dynamically observes whether and how data flows from a
user input to a sensitive sink (e.g., a function such as mysql_query or echo), in-
cluding any data flows that pass through a database. If an input reaches a sensitive
sink, our technique modifies the input by either using a string-constraint solver, or
using a library of attack patterns, in an attempt to pass malicious data through the
program.

This section first shows the five components of our technique (Section 5.2.1)
and then describes the algorithms for automatically generating first-order (Sec-
tion 5.2.2) and second-order (Section 5.2.3) attacks.

5.2.1 Technique Components

Figure 5-2 shows the architecture of our technique and of the ARDILLA tool that
we created as an implementation of the technique for PHP. Here, we briefly de-
scribe its four components as an aid in understanding the algorithms. Section 5.3
describes ARDILLA and the four components in detail.

e The Input Generator creates a set of inputs for the program under test, aim-
ing to cover many execution paths.

e The Concolic Executor runs the program on each input produced by the in-
put generator and tracks how the user input flows into sensitive sinks. For
each sensitive sink, the executor outputs a set of symbolic expressions on
string variables (input parameters). These expressions indicate how the in-
put values flow into the sink.

o The Attack Generator takes a list of symbolic expressions (one for each sen-
sitive sink), creates candidate attacks by modifying the inputs using a String-
Constraint Solver.

e The Attack Checker runs the program on the candidate attacks to determine
which are real attacks.

¢ The Concolic Database is a relational database engine that can execute SQL
statements both concretely and symbolically. Our technique uses this compo-
nent to track the flow of symbolic data through the database, which is critical
for accurate detection of second-order XSS attacks.
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Attack vectors

Figure 5-2: The architecture of ARDILLA. The inputs to ARDILLA are the PHP
program and its associated database state. The output is a set of attack vectors
for the program. Each attack vector is a complete input that exposes a security
vulnerability.
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5.2.2 First-order Attacks

Figure 5-3 shows the algorithm for generating SQLI and first-order XSS attacks
(both called first-order because they do not involve storing malicious inputs in the
database). The algorithms for creating SQLI and first-order XSS attacks are iden-
tical except for the sensitive sinks (mysgl_query for SQLI, echo and print for
XSS) and details in the attack generator/checker.

parameters: program P, database state db
result : SQLI or first-order XSS attack vectors
1 attacks = @,
2 while not timeExpired() do
3 input = generateNewInput(P);
4 (symbExprs,db’) = concolicExecution(P, input, db);
5 candidates = generateAttacks(symbExprs, P, input);
6 attacks = attacks U checkAttacks(candidates, P, input);
7 return attacks;

Figure 5-3: Algorithm for creating SQLI and first-order XSS attacks.

The algorithm takes the program # under test and its associated database db
populated with the proper tables and initial data (usually done via an installation
script or taken from an existing installation). Until a time limit is reached, the algo-
rithm generates new concrete inputs (line 3), runs the program on each input and
collects symbolic expressions (line 4), generates candidate attacks vectors (line 5)
and checks the candidates to find real attack vectors (line 6).

Example SQLI

Here is how our technique generates the SQL injection attack presented in Sec-
tion 5.1.1. First, new inputs are successively generated and the program executes
concolically on each input until some input allows the program to reach line 40 in
the code in Figure 5-1, which contains the sensitive sink mysqgl_query. An exam-
ple of such an input / is (our input generator picks 1 as the default “don’t care”
value):

mode — display
topicid —» 1

Second, the concolic executor runs the program on 1, marks each input param-
eter as symbolic variable, and creates symbolic expressions for string values that
flow into sensitive sinks. In the example, the concrete string value that reaches the
sensitive sink is:

"SELECT msg FROM messages WHERE topicid="1""
The corresponding symbolic expression is:

concat("SELECT msg FROM messages WHERE topicid=’",topicid,"’")
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Third, ARDILLA use the HAMPI string-constraint solver to find a value of the
parameter topicid for which the query is an attack. ARDILLA uses a list of SQLI
attack patterns, e.g., OR ' 1’=’1’. The string-constraint solver finds a value for
which the concrete value is a valid SQL statement and contains the attack pattern
(Chapter 3 describes the necessary HAMPI string constraints.) One such value is
17 OR ’1’="1. Using this value alters input / into I":

mode — display
topicid —» 1" OR '1’'="1

Fourth, the attack checker runs the program on I’ and determines that ’ is a
real attack, i.e., changes the syntactic structure of the SQL statement.

Finally, the algorithm outputs I’ as an attack vector for the first-order SQLI
vulnerability in line 29 of Figure 5-1.

Example XSS

Here is how our technique generates the first-order XSS attack presented in Sec-
tion 5.1.1. First, new inputs are successively generated and the program executes
concolically on each input until some input allows the program to reach line 29 in
the code in Figure 5-1, which contains the sensitive sink echo. An example of such
an input / is:

mode — add
topicid —» 1
msg - 1

poster —> 1

(Even though only the value of mode determines whether execution reaches line 29,
all parameters are required to be set; otherwise the program rejects the input in
line 17.)

Second, the concolic executor runs the program on I, marks each input param-
eter as symbolic variable, and creates symbolic expressions for string values that
flow into sensitive sinks. In the example, the executor determines that the value of
the parameter poster flows into the local variable my_poster, which flows into
the sensitive sink echo in line 29:

Smy_poster = S$S_GET[’'poster’];

echo "Thank you S$my_poster for using the message board";
The corresponding symbolic expression is:
concat("Thank you ",poster," for using the message board")

Third, the attack generator mutates the input / by replacing the value of all
parameters in the symbolic expressions (here only poster) with XSS attack pat-
terns. An example pattern is <script>alert ("XSS") </script>. Picking this
pattern alters input / into I':
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mode — add

topicid — 1

msg -1

poster — <script>alert ("XSS")</script>

Fourth, the attack checker runs the program on I’ and determines that I’ is a
real attack, i.e., changes the set of script-inducing elements in the HTML output of
the program.

Finally, the algorithm outputs I’ as an attack vector for the first-order XSS vul-
nerability in line 29 of Figure 5-1.

5.2.3 Second-order Attacks

Figure 5-4 shows the algorithm for generating second-order XSS attacks, which
differs from the first-order algorithm by using a concolic database and by running
the program on two inputs during each iteration. The first input represents one
provided by an attacker, which contains malicious values. The second input rep-
resents one provided by a victim, which does not contain malicious values. The
algorithm tracks the flow of data from the attacker’s input, through the database,
and to a sensitive sink in the execution on the victim’s innocuous input.

parameters: program P, database state db
result : second-order XSS attack vectors
1 inputs = @;
2 attacks = @,
3 db,, = makeSymbolicCopy(db);
4 while not timeExpired() do
5 inputs = inputs U generateNewInput(P);
6 input; := pickInput(inputs);
7  input, = pickInput(inputs);
8 (symbExprs;,db. ) = concolicExecution(P, input;, db.,,);
9 {(symbExprs,,db.. ) = concolicExecution(P, input,,db,,,);
10 candidates = attacks U generateAttacks(symbExprs,, P, (input,, input,));
11 attacks = attacks U checkAttacks(candidates, P, (input;, input,));
12 return attacks;

Figure 5-4: Algorithm for creating second-order XSS attacks.

The algorithm takes the program £ under test and a database db. In the first
step (line 3), the algorithm makes a symbolic copy of the concrete database, thus
creating a concolic database. Then, until a time limit expires, the algorithm gen-
erates new concrete inputs and attempts to create attack vectors by modifying the
inputs. The algorithm maintains a set of inputs generated so far (in the inputs vari-
able), from which, in each iteration, the algorithm picks two inputs (lines 6 and 7).
Then, the algorithm performs concolic executions of the two inputs, in sequence,
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(lines 8 and 9) using the concolic database. The first execution (simulating the at-
tacker) sets the state of the database (db’,,) that the second execution (simulating
the victim) uses. Next, the attack generator (line 10) creates candidate second-order
XSS attack scenarios (i.e., input pairs) using a library of attack patterns. Finally, the
attack checker (line 11) checks candidate second-order XSS attack scenarios (i.e.,
input pairs).

To favor execution paths that lead to second-order XSS attacks, on line 6 our
implementation heuristically picks an input that executes a database write, and on

line 7 picks an input that executes a database read on the same table.

Example XSS

Here is how our technique generates the second-order XSS attack introduced in
Section 5.1.1. First, the input generator creates inputs and picks the following
pair I;:

mode — add
topicid — 1
msg -1
poster — 1

and /,:
mode — display

topicid —» 1

Second, the concolic executor runs the program on I;, using the concolic database.
During this execution, the program stores the value 1 of the input parameter msg
(together with the symbolic expression msg) in the database (line 25 of Figure 5-1).

Third, the concolic executor runs the program on I, using the concolic database.
During this execution, the program retrieves the value 1 from the database (to-
gether with the value’s stored symbolic expression msg) and outputs the value via
the echo in line 44. echo is a sensitive sink, and the symbolic expression associ-
ated with the string value that flows into the sink is concat("Thank you ", msg),
where msg is a parameter from /;. Thus, the algorithm has dynamically tracked
the flow of user data across two executions: from msg to the local variable my_msg
(line 20), into the database (line 28), back out of the database (line 40), into the $row
array (line 43), and finally as a parameter to echo (line 44).

Fourth, the attack generator uses the attack-pattern library (similarly to the
first-order XSS example before) to alter msg in I, to create an attack-candidate in-
put [}

mode — add
topicid —» 1
msg — <script>alert ("XSS")</script>

poster — 1

Fifth, the attack checker runs the program, in sequence, on I and I, (note that I,
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remains unchanged), and determines that this sequence of inputs is an attack sce-
nario.

Finally, the algorithm outputs the pair (I}, ) as a second-order XSS attack sce-
nario that exploits the vulnerability in line 44 of Figure 5-1.

5.3 The ARDILLA Tool for Creating SQLI and XSS At-
tacks

ARDILLA is an implementation of concolic security testing. ARDILLA generates
concrete attack vectors for Web applications written in PHP. The user of ARDILLA
needs to specify the type of attack (SQLIL, first-order XSS, or second-order XSS), the
PHP program to analyze, and the initial database state. The outputs of ARDIL-
LA are attack vectors. This section describes ARDILLA’s implementation of each
component of the technique described in Section 5.2.

5.3.1 Dynamic Input Generator

The dynamic input generator creates inputs for the PHP program under test. In-
puts for PHP Web applications are Web server requests: their parameters are map-
pings from keys (strings) to values (strings and integers) in associative arrays such
as $_GET and $_POST.

ARDILLA uses the input-generation component from Apollo [2], but ARDILLA
could potentially use any generator for PHP applications such as the one described
by Wassermann et al. [116]. The Apollo input generator is based on concolic testing
(Chapter 2). Here, we briefly describe Apollo’s technique, which ARDILLA uses as
a black box.

For each program input (starting with an arbitrary well-formed concrete input,
and then using subsequently-generated ones), the input generator executes the
program concretely and also collects symbolic constraints for each runtime value.
These constraints describe an input that follows a given execution path through
the program. Negating the symbolic constraint at a branch point (e.g., an i f state-
ment) gives a set of constraints for a different path through the program. The input
generator then attempts to solve those constraints to create a concrete input that
executes the new path. The input generator repeats this process for each branch
point in an execution, possibly generating many new inputs from each executed
one.

5.3.2 Concolic Executor

The concolic executor runs the program under test on each input and tracks the
dynamic data flow of input parameters throughout the execution. For each sensi-
tive sink, the executor outputs the set of symbolic expressions for values that flow
into the sink. ARDILLA’s concolic execution is unique in that it can track the flow
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of symbolic data through the database, by using a concolic database (Section 5.3.5).
Concolic execution in ARDILLA can be characterized by the following five compo-
nents.

¢ Symbolic variables are derived from inputs (e.g., $_GET and $_POST). AR-
DILLA assigns a unique symbolic variable to each value read from an input param-
eter, identified by the value’s origin. For example, ARDILLA assigns variable msg
to a value retrieved from $_GET [’ msg’ ].

* Symbolic expressions describe how each runtime value is derived from sym-
bolic variables. The grammar of ARDILLA’s symbolic expressions contains sym-
bolic variables, constants, string concatenation, and function calls (for built-in func-
tions). For example, the symbolic expression concat("Thank you ", poster,
" for posting") may correspond to a runtime value derived from input pa-
rameter poster via string concatenation. Another example: the symbolic expres-
sion htmlentities(concat("Hello ", poster)) may correspond to a runtime
value derived by calling a built-in function htmlentities.

e Symbolic operations specify how concrete runtime values acquire and lose
associated symbolic expressions. ARDILLA propagates symbolic expressions un-
changed across assignments and procedure calls in application code. At a call
to a built-in PHP function (e.g., chop, which removes trailing whitespace from a
string) that is not a sanitizer (see next component), ARDILLA constructs a symbolic
expression for the return value that specifies the function’s name and symbolic
values of parameters. For string values created from concatenation, ARDILLA con-
structs concatenation symbolic expressions. At a call to a database function (e.g.,
mysql_query), ARDILLA stores or retrieves symbolic expressions for the concrete
data values. (Section 5.3.5 describes the interaction of concolic execution with the
database.)

e Sanitizers are built-in PHP functions that are known to sanitize inputs (i.e.,
modify the inputs to make them harmless for XSS or SQLI attacks). For example,
htmlentities converts characters to HTML entities (e.g., < to &1t ;) and makes
the output safe from XSS attacks. At a call to a sanitizer function, ARDILLA cre-
ates an empty symbolic expression for the return value. A user of ARDILLA can
optionally specify a list of sanitizers.

e Sensitive sinks are built-in PHP functions that are exploitable in XSS and
SQLI attacks: for example, echo and print for XSS and mysql_query for SQLI.
When reaching a call to a sensitive sink, ARDILLA records the symbolic expressions
of the arguments, indicating a data flow from the inputs to the sink, and thus a
possibility of an attack.

ARDILLA’s concolic executor is implemented by modifying the Zend PHP in-
terpreter' to perform regular program execution and to simultaneously perform
concolic execution. This “shadow interpreter” approach enables using the modi-
fied interpreter for any program without source-code rewriting [2, 16,48, 60,110].

http://www.zend.com
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5.3.3 Attack Generator

The attack generator creates candidate attack vectors that are variants of the given
input. The attack generator starts with an input for which there is dataflow from
a parameter to a sensitive sink. For each parameter whose value flows into the
sink (i.e., symbolic variable in the symbolic expression), the generator creates new
inputs that differ only for that parameter. The generator can create new inputs
in one of two modes: using a string-constraint solver or an attack-pattern library.
When using a string-constraint solver, the generator finds the value of that param-
eter that, when used in an input, results in an attack string (a value that may result
in an attack if supplied to a vulnerable input parameter). When using the attack-
pattern library, the generator systematically replaces the value of that parameter
by values taken from the library, i.e., a set of values that may result in an attack if
supplied to a vulnerable input parameter.

Following previous work [41,52], we define an SQLI attack as a syntactically
valid (according to the grammar) SQL statement with a tautology in the WHERE
clause, e.g., OR 1=1. In our experiments, we used 4 attack strings (tautology pat-
terns), distilled from several security lists?>.

The input to HAMPI includes a partial SQL grammar (similar to that in Fig-
ure 3-2). We manually wrote a grammar that covers a subset of SQL queries com-
monly observed in Web-applications, which includes SELECT, INSERT, UPDATE,
and DELETE, all with WHERE clauses. The grammar has 14 nonterminals, 16 termi-
nals, and 27 productions. Each terminal is represented by a single unique charac-
ter.

ARDILLA’s XSS attack-pattern library* contains 113 XSS attack patterns, includ-
ing many filter-evading patterns (that use various character encodings, or that
avoid specific strings in patterns).

ARDILLA’s goal is creating concrete exploits, not verifying the absence of vul-
nerabilities. Moreover, ARDILLA checks every candidate attack input. There-
fore, ARDILLA is useful even given the pattern library’s inevitable incompleteness
(missing attack patterns), and potential unsoundness (patterns that do not lead to
attacks).

The attack library needs to be integrated in ARDILLA to be effective; the library
alone is not enough to construct attacks. ARDILLA constructs each attack input
so that the execution reaches the vulnerable call site (using random values is in-
effective for this purpose [2]). In particular, the constructed attack inputs contain
many key-value pairs. Strings from the attack library constitute only 1 value in
each attack input.

nttp://www.justinshattuck.com/2007/01/18/mysgl-injection-cheat-sheets,
http://ferruh.mavituna.com/sqgl-injection-cheatsheet-oku,
http://pentestmonkey.net/blog/mysgl-sgl-injecticon—-cheat-sheet

SARDILLA’s list omits attacks that transform one query into multiple queries, because the PHP
mysql_query function only allows one query to be executed per call.

‘http://ha.ckers.org/xss.html

77



5.3.4 Attack Checker

The attack checker determines whether a candidate input is an attack. The attack
checker compares the candidate input’s execution to that of the original input. The
attack checker ensures that ARDILLA creates concrete exploits, which are much
easier for programmers to fix than reports of abstract traces [9,37].

The attack checker is different for SQLI and XSS. In both types of Web at-
tacks, the PHP program interacts with another component (a database or a Web
browser) in a way the programmer did not intend. The essence of an SQLI attack
is a change in the structure of the SQL statement that preserves its syntactic validity
(otherwise, the database rejects the statement and the attack attempt is unsuccess-
ful) [107]. The essence of an XSS attack is the introduction of additional script-
inducing constructs (e.g., <script> tags) into a dynamically-generated HTML
page [115].

ARDILLA detects attacks by comparing surely-innocuous runs with potentially-
malicious ones. We assume that the input generator creates innocuous (non-attack)
inputs, since the values of the input parameters are simple constants such as 1
or literals from the program text. Therefore, the innocuous input represents how
the program is intended to interact with a component (database or browser). The
attack generator creates potentially-malicious inputs.

The checker runs the program on the two inputs and compares the executions.
Running the program on the attack-candidate input avoids two potential sources
of false warnings: (i) input sanitizing—the program may sanitize (i.e., modify to
make harmless) the input before passing it into a sensitive sink. ARDILLA does not
require the user to specify a list of sanitizing routines. (ii) input filtering—the pro-
gram may reject inputs that satisfy a malicious-input pattern (blacklisting), or else
fail to satisfy an innocuous-input pattern (whitelisting). However, the symbolic
expressions are unaffected by control flow (symbolic expressions only reflect data
flow) and cannot capture input filtering.

The SQLI attack checker compares database statements (e.g., SELECT, INSERT)
issued by the PHP program executed separately on the two inputs. The checker
compares the first pair of corresponding statements, then the second, etc. The
checker signals an attack if the statements in any pair are both valid SQL but have
different syntactic structure (i.e., parse tree).

The XSS attack checker signals an attack if the HTML page produced from
the execution of a candidate attack input (or sequence of inputs, for second-order
attacks) contains additional script-inducing constructs.

5.3.5 Concolic Database

The concolic database stores both concrete and symbolic values for each data record.
In a Web application, the database is a shared state that enables the exchange of
data between users. The concolic database tracks the flow of user-provided data

between different runs of the PHP program and it is critical in creating second-order
XSS attacks.
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The concolic database is implemented as a duplicate of the concrete database,
with each table having additional columns that store symbolic data. ARDILLA uses
these columns to store symbolic expressions.

msg topicid | msg_s | topicid_s
Test message 1 %} @
Hello 2 msg | topicid

Figure 5-5: Example state of the concolic database table messages used by the
PHP program of Figure 5-1. Each concrete column (left-most two columns) has a
symbolic counterpart (right-most two columns) that contains a symbolic expres-
sion. The @ values represent empty symbolic expressions.

Figure 5-5 shows an example database state during the execution of the pro-
gram in Figure 5-1. Assume the database was pre-populated with a test message
in topic 1, so the symbolic expressions for fields in the first row are empty. When
the user posts a message Hello in topic 2 (line 28), the symbolic expressions from
the respective input parameters are stored along with their concrete values in the
second row. Later, when the user fetches data from that row (line 43), the symbolic
expressions are also fetched and propagated to the assigned variables.

ARDILLA dynamically rewrites SQL statements in the program under test. The
rewritten SQL statements account for the new columns—either updating or read-
ing symbolic expressions. Our current implementation handles a subset of SQL,
rewriting their strings before passing them into mysql_query: CREATE TABLE,
INSERT, UPDATE, and (non-nested) SELECT. (The DELETE statement and WHERE
condition do not need to be rewritten—the database server can locate the relevant
rows using the concrete values.)

e CREATE TABLE creates a new table. ARDILLA rewrites the statement to add a
duplicate for each column (e.g., the two right-most columns in Figure 5-5) to use
for storing symbolic expressions.

e INSERT adds new rows to tables. ARDILLA rewrites the statement to store sym-
bolic expressions in the duplicate columns. For example, consider the following
PHP string representing an SQL statement (PHP automatically performs the string
concatenation):

INSERT INTO messages VALUES(’S$_GET['msg’]’,
'S GET[’topicid’]’)

Consider an execution in which parameters msg and topicid have concrete val-
ues Hello and 2 and have symbolic expressions that contain only the parameters
themselves. ARDILLA dynamically rewrites the statement as follows:

INSERT INTO messages VALUES(’Hello’,’2’,
"msg’,"topicid’)
e UPDATE modifies values in tables. For example, for:
UPDATE messages SET msg='$_GET[’msg’ ]’
WHERE topicid=’'$_GET[’'topicid’]’
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ARDILLA’s dynamic rewriting for UPDATE is similar to that for INSERT (the WHERE
condition is unchanged):

UPDATE messages SET msg='Hi’,
msg_s='msg’ WHERE topicid=’3’

¢ SELECT finds and returns table cells. ARDILLA rewrites the statement to include
the duplicate (symbolic) column names in the selection. Thereafter, ARDILLA uses
the value retrieved from the duplicate column as the symbolic expression for the
concrete value retrieved from the original column. For example, consider the con-
crete statement executed in line 39 of the program in Figure 5-1 (given the example
state of the concolic database in Figure 5-5).

SELECT msg FROM messages WHERE topicid = ’2’
ARDILLA rewrites the statement to:
SELECT msg, msg.s FROM messages WHERE topicid = ’'2’

The result of executing this rewritten statement on the table in Figure 5-5 is a 1-
row table with concrete string He11o and associated symbolic expression msg, in
columns msg and msg_s.

5.4 Evaluation

We evaluated ARDILLA on five open-source programs. We downloaded
the programs from http://sourceforge.net: schoolmate 1.5.4 (tool for
school administration, 8181 lines of code, or LOC), webchess 0.9.0 (online
chess game, 4722 LOC), fagforge 1.3.2 (tool for creating and managing docu-
ments, 1712 LOC), EVE 1.0 (player-activity tracker for an online game, 915 LOC),
and geccbblite 0.1 (a simple bulletin board, 326 LOC). We used the latest available
versions as of 5 September 2008.
We performed the following procedure for each subject program.

1. Run the program’s installation script to create the necessary database tables.

2. Pre-populate the database with representative data (e.g., defaults where avail-
able).

3. Run ARDILLA with a 30-minute time limit in each of three modes: SQLI, first-
order XSS, and second-order XSS. The time limit includes all experimental
tasks, i.e., input generation, concolic execution, attack generation (includ-
ing string-constraint solving), and attack checking. When necessary, we pro-
vided the input generator with (non-administrator) username and password
combinations. Doing so poses no methodological problems because an at-
tacker can use a legitimate account to launch an attack. The SQLI mode used
the HAMPI string-constraint solver, while the XSS modes used the attack-
pattern library.
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4. Manually examine attack vectors reported by ARDILLA to determine if they
reveal true security vulnerabilities. We did not know any SQLI or XSS vulner-
abilities in the subject programs before performing the experiments. (Thanks
to previous studies [114,115], we were aware of the presence of first-order XSS
and SQLI vulnerabilities in geccbblite and EVE.)

We ran ARDILLA in two modes for checking validity of XSS attacks: lenient
and strict. (The SQLI checker has only one mode.) In the lenient mode, the XSS
checker reports a vulnerability when the outputs differ in script-inducing elements
or HTML elements such as href. In the strict mode, the XSS checker only reports
a vulnerability when the outputs differ in script-inducing elements.

5.4.1 Measurements

Number of sensitive sinks (all) is the statically computed number of echo/print
(for XSS) or mysgl_query statements (for SQLI), whose parameter is not a constant
string.

Number of reached sinks (reach) on all generated inputs is an indication of cov-
erage achieved by the input generator. This measure is suitable for ARDILLA, be-
cause ARDILLA looks for attacks on sensitive sinks.

Number of tainted sinks (taint) is the number of sensitive sinks reached with non-
empty symbolic expressions during concolic execution. Each such occurrence po-
tentially exposes a vulnerability, which ARDILLA uses the attack generator and
checker to test.

Number of validated vulnerabilities (Vuln): We count at most one vulnerability
per sensitive sink, since a single-line code-fix would eliminate all attacks on the
sink. If a single attack vector attacks multiple sensitive sinks, then we examine and
count each vulnerability separately. This number does not include false positives.
We manually inspected each ARDILLA report and determined whether it really
constituted an attack (i.e., corruption or unintended disclosure of data for SQL,
and unintended HTML structure for XSS). For second-order XSS, we checked that
the attacker’s malicious input can result in an unintended Web page for the victim.
Number of false positives (F) is the number of ARDILLA reports that are not vali-
dated vulnerabilities.

HAMPI performance: we measured solving time for each string constraint and
each size of N = 1...6. (HAMPI found all known solutions for N < 6.)

5.4.2 Results

ARDILLA found 23 SQLI, 33 first-order XSS, and 12 second-order XSS vulnerabil-
ities in the subject programs (see Figure 5-6). The attacks that ARDILLA found, as
well as the attack patterns we used, are available at http://pag.csail.mit.
edu/ardilla.

We examined two of the three instances in which ARDILLA found no vulnera-
bilities. In geccbblite, we manually determined that there are no first-order XSS
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sensitive sinks lenient strict

program mode all reach taint Vun F Vuin F
SQLI 218 28 23 6 0 6 0
schoolmate XSS1 122 26 20 14 6 10 0
XS52 122 4 4 4 0 2 0
SQLI 93 42 40 12 0 12 0
webchess XSSt 76 39 39 13 18 13 0
XS82 76 40 0 0 0 0 0
SQLI 33 7 1 1 0 1 0
faqforge Xss1 35 10 4 4 0 4 0
XS52 35 0 0 0 0 0 0
SQLI 12 6 6 2 0 2 0
EVE XSS1 24 5 4 2 0 2 0
X8s2 24 5 3 3 0 2 0
SQLI 10 8 6 2 0 2 0
geccbblite  XSS1 17 17 11 0 0 0 0
Xss2 17 17 5 5 0 4 0
SQLI 366 91 76 23 0 23 0
Total XSS1 274 97 78 33 24 29 0
XSs2 274 66 12 12 0 8 0

Figure 5-6: Results of running ARDILLA to create SQLI, XSS1 (first-order XSS), and
XS52 (second-order XSS) attacks. The lenient and strict columns refer to ARDILLA
modes (Section 5.4). Section 5.4.1 describes the remaining columns (Vuln columns
in bold list the discovered real vulnerabilities).

vulnerabilities. In faqforge, we manually determined that each database write re-
quires administrator access, so there are no second-order XSS vulnerabilities. (We
did not manually inspect webchess for second-order XSS attacks, due to the pro-
gram’s size and our unfamiliarity with the code.)

We examined all 23 SQLI reports issued by ARDILLA and found no false pos-
itives. All attacks involved disrupting the SQL WHERE clause. In 4 cases, attacks
result in data corruption; in 19 cases, attacks result in information leaking, some-
times as serious as bypassing login authentication.

We examined all 69 (33+24+12) unique XSS reports issued by ARDILLA. We
found 24 false positives in the lenient mode for first-order XSS (42% false-positive
rate), and 0% percent false-positive rate for all other cases: strict first-order XSS,
lenient and strict second-order XSS.

We examined cases of tainted sinks for which ARDILLA did not create attacks.
The most common reason is that the same sink may not be reachable with a mali-
cious input because of control-flow filtering that concolic execution does not cap-
ture. Such reachability is very hard to determine manually from program text. The
existence of such those cases shows that not all tainted sinks may be exploitable
and that ARDILLA’s attack checker is useful in identifying exploitable vulnerabili-
ties.

The HAMPI string-constraint solver was effective in creating attack candidates.
ARDILLA generated 304 HAMPI constraints, each of which was built from the exe-

82



cution of a particular path through an application. Each HAMPI constraint was cre-
ated from a combination of one of 4 attack patterns and one of 76 attack-candidate
queries (one per tainted sink). HAMPI attempted solving the constraints for each
tainted sink for increasing sizes of the string variable, until either a solution was
found (for any attack pattern), or a timeout of 120 seconds per constraint was
reached. The SQL grammar we used encoded each terminal using a single unique
character, so the variable sizes for HAMPI constraints were not the same as the sizes
of concrete attack values. ARDILLA created attack-candidate values by expanding
the terminals in the computed solutions. ARDILLA checked each attack candidate
using the SQLI attack checker. ARDILLA found the following number of attacks
per variable size: 0 attacks for sizes 0...4, 14 attacks for sizes < 5, 23 attacks for size
6. ARDILLA found no additional attacks for variable sizes greater than 6.

Example Created SQLI Attack

In webchess, ARDILLA found a vulnerability in mainmenu.php that allows an
attacker to retrieve information about all players without entering a password.
The application constructs the vulnerable statement directly from user input:

"SELECT * FROM players WHERE nick = " . $_POST['txtNick’]
"’ AND password = '" . $_POST[’pwdPassword’] . "'"

The attack vector contains the following two crucial parameters (others omitted
for brevity)

ToDo — NewUser
txtNick — foo’ or 1=1 --

which causes execution to construct the following malicious SQL statement which
bypasses authentication (-- starts an SQL comment):

SELECT * FROM players WHERE nick = ’'foo’ or 1=1 —--
" AND password = '’

Comparison to Previous Studies

Two of our subject programs were previously analyzed for vulnerabilities. In gec-
cbblite, a previous study [115] found 1 first-order XSS vulnerability, and 7 second-
order XSS vulnerabilities (possibly including false positives). However, ARDILLA
and our manual examination of geccbblite found no first-order XSS vulnerabili-
ties. In EVE, another study [114] found 4 SQLI vulnerabilities. The result data
from neither study are available so we cannot directly compare the findings or
establish the reason for the inconsistencies.
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Comparison to Black-box Fuzzing

We compared ARDILLA to a black-box fuzzer Burp Intruder’ (listed among the 10
most popular Web-vulnerability scanners®). Burp Intruder is a fuzzer for finding
first-order XSS attacks. We configured the fuzzer according to its documentation.
The fuzzer requires manual setting up of HTTP request patterns to send to the
Web application. Additionally, the fuzzer requires manual indication of variables
to mutate. This is hard because it requires examining the source to find names of
parameters read from the $ GET and $_POST arrays. We ran the fuzzer using the
same attack-pattern library that ARDILLA uses, and on the same subject programs.
(We have not been able to successfully configure webchess to run with the fuzzer.)
We ran the fuzzer until completion (up to 8 hours).

The fuzzer found 1 first-order XSS vulnerability in schoolmate, 3 in fagforge, 0
in EVE, and 0 in geccbblite. All 4 vulnerabilities reported by the fuzzer were also
discovered by ARDILLA.

Limitations

The main limitation of ARDILLA stems from the input generator. ARDILLA can
only generate attacks for a sensitive sink if the input generator creates an input
that reaches the sink. However, effective input generation for PHP is challeng-
ing [2,77,116], complicated by the dynamic language features and execution model
(running a PHP program often generates an HTML page with forms and links
that require user interaction to execute code in additional files). In particular, the
generator that ARDILLA uses can create inputs only for one PHP script at a time
and cannot simulate sessions (i.e., user-application interactions that involve mul-
tiple pages), which is a serious hindrance to achieving high coverage in Web ap-
plications; line coverage averaged less than 50%. In fact, only on one application
(webchess) did the input generator run until the full 30-minute time limit—in all
other cases, the generator finished within 2 minutes because it did not manage to
cover more code. We also attempted to run the generator on a larger application,
the phpBB Web-forum creator (35 kLOC), but it achieved even lower coverage
(14%). ARDILLA uses the input generator as a black box and any improvement in
input generation (such as proposed recently by Artzi et al. [3]) is likely to improve
ARDILLA’s effectiveness.

5.5 Related Work

We describe previous approaches to securing Web applications from input-based
attacks.

Defensive coding relies on special libraries to create safe SQL queries [25, 78].
Defensive coding can, in principle, prevent all SQLI attacks. The technique is suit-

“http://portswigger.net/intruder
6http://sectools.org/web—scanners.html
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able for new code. However, it requires rewriting existing code, while our tech-
nique requires no change to the programming language, the libraries, or the appli-
cation.

Static approaches can, in principle, prove the absence of vulnerabilities [70,113~
115,117]. In practice, however, analysis imprecision causes false warnings. Ad-
ditionally, static techniques do not create concrete attack vectors. In contrast, our
technique does not introduce such imprecision, and creates attack vectors.

Dynamic monitoring aims to prevent SQLI attacks by tracking user-provided
values [52,87,92,107] during operation of a deployed application. However, dy-
namic monitoring does not help to remove errors before software deployment,
and requires either modifying the application, or running a modified server. For
example, CANDID [6] modifies the application source and requires changing the
runtime system, with performance overhead of up to 40% on the production ap-
plication.

Information-flow control restricts the flow of information between pieces of
software, either statically [98] or dynamically [119,121]. Information-flow control
enforces confidentiality and integrity policies on the data and prevents attacks that
use inappropriate information flows. However, some SQLI and XSS attacks abuse
legitimate information flows; the SQL queries or the JavaScript can be dynamically
generated and can depend on legal user input. Information-flow control requires
modifying the application and either the operating system and the libraries, or the
programming language. System-level techniques may have runtime performance
overhead up to 40% [119].

Static and dynamic approaches can be combined [51,56]. Lam et al. [68] com-
bine static analysis, model checking, and dynamic monitoring. QED [75] combines
static analysis and model checking to automatically create SQLI and first-order
XSS attacks on Java applications. In contrast to ARDILLA, QED (i) does not tar-
get second-order XSS, and (ii) requires programmers to use a custom specification
language to describe attacks.

Saner [5] combines static and dynamic analyses to find potential XSS and SQLI
vulnerabilities. Saner focuses on the sanitization process and abstracts away other
details of the application, i.e., Saner creates attack vectors only for extracted, pos-
sibly infeasible, paths from the static dependency graph (Saner does dynamically
validate the exploitability of string-manipulating code from those paths, but ig-
nores control flow). Saner also reports a vulnerability whenever a path from source
to sink contains no custom sanitation. The path, however, may be infeasible or not
exploitable. Saner tests each source-to-sink path independently and may miss at-
tacks in which output is constructed from multiple sinks. To detect attacks, Saner
simply searches for specific strings in the output, whereas ARDILLA compares the
structure of HTML or SQL between innocuous and attack runs.

Apollo [2] generates test inputs for PHP, checks the execution for crashes, and
validates the output’s conformance to HTML standards. The goal of ARDILLA
is different: to find security vulnerabilities. ARDILLA uses the test-input generator
subcomponent of Apollo as a black box. ARDILLA’s taint propagation implementa-
tion is partially based on that of Apollo, but we enhanced it significantly by adding

85



propagation across function calls, taint filters, taint sinks, and tracing taint across
database calls.

Emmi et al. [36] model a database using symbolic constraints and provide a
custom string-constraint solver to create database states that help exercise various
execution paths in the Web application. Our work differs in its goal (finding secu-
rity vulnerabilities vs. improving test coverage) and in the targeted language (PHP
vs. Java).

Wassermann et al.’s tool [116] executes a PHP application on a concrete input
and collects symbolic constraints. Upon reaching an SQL statement, the tool at-
tempts to create an input that exposes an SQL injection vulnerability, by using
a string analysis [83]. The tool has re-discovered 3 previously known vulnera-
bilities. The most important differences between Wassermann’s work and ours
are: (i) Their tool has not discovered any previously unknown vulnerabilities, and
requires a precise indication of an attack point. Our tool has discovered 68 pre-
viously unknown vulnerabilities and requires no indication of vulnerable points.
(ii) Their technique focuses on SQLI, while ours targets both SQLI and XSS. (iii)
Their tool performs source-code instrumentation and backward-slice computation
by re-executing and instrumenting additional code. Our tool works on unchanged
application code. (iv) Their tool requires manual loading of pages and supplying
of inputs to the page, while ours is fully automatic.

5.6 Conclusion

We have presented concolic security testing, a technique for creating SQL injec-
tion and cross-site scripting (XSS) attacks in Web applications and an automated
tool, ARDILLA, that implements the technique for PHP. Our technique is based
on input generation, concolic execution, and input mutation. To find a variant
of the input that exposes a vulnerability, input mutation uses the HAMPI string-
constraint solver, or a library of attack patterns. Using a novel concolic database to
store symbolic expressions, ARDILLA can effectively and accurately find the most
damaging type of input-based Web application attack: stored (second-order) XSS.
A novel attack checker that compares the output from running on an innocuous
input and on a candidate attack vector allows ARDILLA to detect vulnerabilities
with high accuracy. In our experiments, ARDILLA found 68 attack vectors in five
programs, each exposing a different vulnerability, with few false positives.
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Chapter 6

Conclusions

This chapter presents the summary of the contributions of this dissertation, dis-
cusses lessons learned (Section 6.1), and proposes directions for future work (Sec-
tion 6.2).

Software systems are becoming steadily more complex and our reliance on
them also increases. Testing is currently the dominant way of ensuring software
reliability and we think that it is likely to remain so. Regardless of its well-known
deficiencies, e.g., labor-intensity and incompleteness, testing is the easiest to adopt
strategy for software reliability, and it can be very effective.

The cost of testing can be reduced by automation. Testing is expensive because
creating effective test suites requires skilled test engineers. The aim of the research
presented in this dissertation is to automate the process of creating effective test
inputs.

Concolic testing is a paradigm of implementation-based software testing. Con-
colic testing is based on the premise that the software implementation can be ex-
ploited to find reliability errors. A number of automated concolic testing tools
have been developed and shown to efficiently find errors in real software. This
dissertation presents techniques and tools in the concolic testing paradigm.

The key idea of this dissertation is that by enhancing the underlying constraint
solver with the theory of strings, concolic testing can be made much more effective.
We presented such a string-constraint solver, and evaluate its efficiency. Further-
more, we showed the effectiveness of our idea by improving concolic testing of
programs that have structured inputs (e.g., programs whose inputs come from a
context-free grammar), and of Web applications that manipulate string inputs.

6.1 Discussion

Software testing has two main driving forces: quality and security. We feel that
software quality is today higher than ever. Thanks partly to adoption of good test-
ing practices (e.g., automated regression tests) and software-engineering practices
(e.g., automated build systems) in the industry, the ease-of-use, feature repertoire,
and general reliability of today’s commonly-used software is impressive, despite
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the vast and very rapidly increasing amount of software we use every day. Soft-
ware security, however, is a massive and growing problem. Thousands of severe
vulnerabilities are reported every year, and their numbers are quickly increasing’.

There is a transfer of ideas and technologies from research to hackers. Testing
and analysis technologies that used to exist as research prototypes are now widely
used by villains. For example, fuzz testing, developed in 1990 at the University of
Wisconsin [82], has leapt to prominence in the 2000s as the main technology used
by blackhats (as well as whitehat security professionals?). The transfer of more
sophisticated technologies, such as concolic testing, is very likely and perhaps im-
minent®.

The arms race between researchers and hackers will lead to more automated
technologies and more effective tools. We think that progress in this area will
be fueled by combining implementation-based and specification-based testing, by
powerful constraint solvers that combine many theories, and by contests of error-
finding tools.

Exploiting the knowledge of input-format specifications and combining it with
implementation-based analyses (Concolic Security Testing is an example of such a
combination), will play an important role in future testing tools. This combined ap-
proach compensates the inherent limitations of each analyses with the strengths of
the other analyses. Effective testing tools will require powerful constraint solvers
that combine many theories: strings, integers, bit vectors, arrays, functions, etc.
Creating software error-finding contests (such as the Iron Chef contest? or the SA-
MATE project’) will be important in fostering development of sophisticated tools.
Similar competitions have proved to be very valuable in many fields of computer
science, from formal methods® 7 to bioinformaticsS.

We feel that the falsification view (i.e., finding errors) will continue and ex-
pand its dominance over the validation view (i.e., proving the absence of errors)
of software reliability. We think that the error-finding approach is likely to become
important even in domains, such as security, that traditionally have been viewed
mostly with validation in mind. Validation techniques, such as static analysis,
will be important as preludes or guides for test-input generation [28]. Similarly,
bounded verification [34,59] is likely to grow in significance, provided it is com-
bined with generation of concrete inputs that demonstrate real errors. We think
that automatic software verification is desirable and it may become feasible, but
it is going to be achievable only for small, critical, pieces of software architecture,
e.g., common data structures [120] or the Java bytecode verifier.

'mttp://nvd.nist.gov
http://browserfun.blogspot.com
3http://www.unprotectedhex.com/psv
4http://www.blackhat.com
5http://samate.nist.gov
6http://www.satcompetition.org
7http://www.smtcomp.org
8http://predictioncenter.org
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6.2 Future Work

We present several ideas for future work on research presented in this dissertation.

Richer grammars in HAMPI. Our results have shown that using context-free
grammars is effective in testing programs with structured inputs, and in security-
testing of Web applications. Certain applications, however, require more expres-
sive grammars. For example, type-correct Java programs do not form a context-
free language. Thus, to effectively use concolic testing on a Java compiler (i.e.,
test the compiler), a more expressive string-constraint solver is required, or else
grammar-based concolic testing generates mostly type-incorrect programs. HAM-
PI always fixed-sizes the size of string variables which, strictly speaking, limits
HAMPI to regular languages. Therefore, fixed-sizing enables increasing the ex-
pressiveness of the solver without the loss of decidability. In particular, it would
be interesting to extend HAMPI to context-sensitive languages [105] or to attribute
grammars [88].

Richer string operations in HAMPI. In HAMPI, we implemented the most com-
mon string operations: concatenation, containment, and equality. Some programs,
however, may use a repertoire of string operations that is richer, e.g., substring ex-
traction, substring replacement, lexicographic comparison, length checking. Pro-
grams use such operations, for example, in input sanitization. Therefore, it is im-
portant for a string-constraint solver to support those operations [12,41,61].

Integration of HAMPI with other theories. HAMPI handles only string con-
straints. Programs, however, manipulate string inputs as well as integers, floating-
point numbers, etc. Integration of string constraints into an SMT solver would
enable handling multiple kinds of input values uniformly [12,41]. An alternative
is to enhance HAMPI itself with other theories, e.g., linear arithmetic.

Unbounded variable length in HAMPI. String variables in HAMPI are of fixed
lengths, which allows the solver to handle context-free grammars, and enables
efficient encoding in bit-vector logic. HAMPI could be enhanced to detect, in cer-
tain cases, that no solution, of any length, exists. For example, if a HAMPI input
does not contain a context-free grammar, then unbounded (un)satisfiability can
be established. This enhancement would make HAMPI even more applicable to
program analysis and verification.

Multiple string variables in HAMPI. Currently, HAMPI allows only a single
string variable. Handling multiple string variables would enhance testing of pro-
grams that handle multiple inputs. For example, PHP programs have multiple
inputs (each key-value pair can be seen as an input), and HAMPI solves for each
key in turn. Handling multiple fixed-size variables is straightforward but if the
variables are of bounded lengths, then the solver needs to account for the expo-
nential number of all possible variable-size combinations.

State-space exploration in ARDILLA. The fundamental limitation of our cur-
rent concolic security testing tool for PHP stems from the input generator. The cur-
rent input generator always starts in the same state of the application (i.e., same
state of the database). Thus, the generator simulates only those user inputs that
involve a single interaction. However, Web applications operate in sessions, i.e.,
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series of user interactions in which a PHP script generates an HTML page which
contains a Web form, which calls another PHP script, etc. An efficient input gen-
erator that handles multi-step user interactions [3] could increase effectiveness of
ARDILLA.

Non-pattern-based attack definitions in ARDILLA. Currently, ARDILLA re-
quires specifying SQLI attacks as patterns, e.g., “the generated SQL query should
not contain the *1’="1’ tautology in the WHERE clause”. This approach is ef-
fective but limited by the pattern library. A potential, more expressive approach
would be to define an attack as a query in which the user-controlled part of the
input is not contained in a sub-tree of the parse [107].
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