Reliability Analysis of a Passive Cooling System Using a Response Surface with an Application to the Flexible Conversion Ratio Reactor

by
Christopher J. Fong
B.S. Nuclear and Radiological Engineering Georgia Institute of Technology, 2006

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY
AUG 192009
LIBRARIES

SUBMITTED TO THE DEPARTMENT OF NUCLEAR SCIENCE AND ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN NUCLEAR SCIENCE AND ENGINEERING
 AT THE
 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

SEPTEMBER 2008
ARCHIVES
© 2008 Christopher J. Fong. All rights reserved.
The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created.

Signature of Author: \qquad . Department of Nuclear Science and Engineering 1 1 A July 25, 2008

Certified by: \qquad

- -

George E. Apostolakis Korea Electric Power Professor of Nuclear Science and Engineering Professor of Engineering Systems -の

Certified by: \qquad
Neil E. Todreas Professor of Nugjear Science and Engineering Professof MognicalyEngineerig (Emeritus) Thesis Reader

Certified by: \qquad Chair, Department Committee on Graduate Students

Reliability Analysis of a Passive Cooling System Using a Response Surface with an Application to the Flexible Conversion Ratio Reactor

by
Christopher J. Fong
B.S. Nuclear and Radiological Engineering
Georgia Institute of Technology, 2006
Submitted to the Department of Nuclear Science and Engineering on July 25, 2008 in Partial Fulfillment of the Requirements for the Degree of Master of Science in
Nuclear Science and Engineering

1. ABSTRACT

A comprehensive risk-informed methodology for passive safety system design and performance assessment is presented and demonstrated on the Flexible Conversion Ratio Reactor (FCRR). First, the methodology provides a framework for risk-informed design decisions and as an example two design options for a decay heat removal system are assessed and quantitatively compared. Next, the reliability of the system is assessed by quantifying the uncertainties related to system performance and propagating these uncertainties through a response surface using Monte Carlo simulation. Finally, a sensitivity study is performed to measure the relative effects of each parameter and to identify ways to maintain, improve, and monitor system performance.

Thesis Supervisor: George E. Apostolakis
Title: Korea Electric Power Professor of Nuclear Science and Engineering
Professor of Engineering Systems
[This page intentionally left blank]

2. ACKNOWLEDGMENTS

First, I would like to thank my advisor, Professor Apostolakis, for his support and guidance throughout the thesis writing process. His insights into both probabilistic risk assessment and regulatory affairs were invaluable. The other members of the FCRR research group, including Dr. Hejzlar, Professor Driscoll, and my thesis reader, Professor Todreas, provided similar support and their assistance is also very much appreciated.

Two PhD students provided valuable technical insights. Anna Nikiforova was largely responsible for the design and modification of the RELAP5-3D model of the FCRR. Without her help, I would still be debugging! Michael Elliott greatly assisted in the application of the Analytic Deliberative Process to the design of the PSACS. His knowledge of the ADP and risk-informed decision-making was very helpful in shaping the final design of the PSACS.

I am extremely grateful to the United States Nuclear Regulatory Commission for generously providing a fellowship, as well as an academic allowance to support this research effort. In particular, I thank Luis Reyes for selecting me to participate in the Graduate Fellowship Program.

Finally, I would like to acknowledge my grandfather, Joseph Zupanick. In addition to being an accomplished engineer and inventor, he served as a Navy Officer in WWII and later earned a Masters Degree from MIT. Although he is no longer with us, his memory inspires me nearly every day.
[This page intentionally left blank]

3. TABLE OF CONTENTS

1. ABSTRACT 3
2. ACKNOWLEDGMENTS 5
3. TABLE OF CONTENTS 7
4. TABLE OF FIGURES 8
5. TABLE OF TABLES 9
6. INTRODUCTION 10
7. SYSTEM DESCRIPTION 15
8. FRAMEWORK 21
8.1 Accident Scenario 21
8.2 Success Criteria 24
8.3 System Reliability 24
8.4 Simulation Code 29
8.5 Methodology Overview 31
9. ANALYSIS 33
9.1 Construction and Validation of Response Surface 33
9.2 Quantitative Reliability Assessment. 37
9.3 Sensitivity Study 42
9.4 Model Uncertainty 44
10. CONCLUSIONS 47
11. REFERENCES 50
12. APPENDICES 53
12.1 Appendix A - Valve Configuration Analysis and Supporting SAPHIRE 7 Calculations 53
12.2 Appendix B - PSACS Valve Failure Probability Calculation 58
12.3 Appendix C - Screened Predictor Variables 64
12.4 Appendix D - RELAP5-3D Input Deck 65

4. TABLE OF FIGURES

Figure 1 - FCRR Primary System and RVACS 16
Figure 2 - State Point Diagram of the FCRR Power Conversion System 17
Figure 3 - One Train of the Passive Secondary Auxiliary Cooling System (PSACS). 20
Figure 4 - PCT During SBO 23
Figure 5 - RELAP5-3D Nodalization Diagram Showing Two PSACS Trains. 30
Figure 6 - Residual Plots 36
Figure 7 - PCT Histogram 41
Figure 8 - Normalized Parameter Importance Ranking 43
Figure 9 - The Effect of Code Uncertainty 46

5. TABLE OF TABLES

Table 1 - IAEA Passive Safety System Classification [1]... 11
Table 2 - Comparison of GFR and FCRR .. 14

Table 3 - PSACS Design Specifications.. 21
Table 4 - PSACS Minimal Cut Sets .. 26
Table 5 - Predictor Variables and Levels .. 33
Table 6 - Response Surface Evaluation.. 36
Table 7 - Convergence of Reliability Estimation .. 41

6. INTRODUCTION

Many advanced reactor designs rely on both traditional defense-in-depth measures (e.g., multiple fission product barriers) and new design features such as inherently safe design characteristics and passive safety systems. Unlike the active systems common in the current reactor fleet, passive systems do not require external driving forces or operator actions and are thus considered to be simpler and more reliable. Several classes of passive safety systems exist. Table 1 lists the four categories of passive safety systems defined by the International Atomic Energy Agency [1].

A common characteristic of passive safety systems is that their driving force tends to be weak and therefore adverse or off-normal conditions may substantially degrade system performance [2]. Under certain conditions, system performance may be degraded to a level that results in unacceptable consequences. These consequences are typically identified by the system designer and are referred to as failure criteria. Failure criteria can be defined at the system level (e.g., flow rate, fluid temperature) or at a higher level (e.g., peak cladding temperature, containment pressure). Therefore, the conditional failure probability of a passive system can be defined as the probability that, given an initiating event, a set of thermal-hydraulic conditions will exist that cause the system to exceed one or more failure criteria.

Category Description	System Initiation Signal	Fluid Movement	Moving Parts	Examples
A. Inherent Safety Features	None	None	None	Physical barriers against the release of fission products, such as nuclear fuel cladding and pressure boundary systems
B. Fluid system with no moving parts	None	Due only to thermal- hydraulic conditions	None	Reactor emergency cooling systems based on air or water natural circulation in heat exchangers immersed in water pools (inside containment) to which the decay heat is directly transferred
C. Fluid system with moving parts	None	Due to thermal hydraulic conditions and state change of mechanical components (valves, dampers, etc)	Yes, but no external energy sources	Emergency injection systems consisting of accumulators or storage tanks and discharge lines equipped with check valves
D. Active Initiation/ Passive Execution	Stored energy - no AC or manual initiation permitted	Due to thermal hydraulic conditions and state change of mechanical components (valves, dampers, etc)	Yes, but no external energy sources	Emergency reactor shutdown systems based on gravity driven or static pressure driven control rods activated by fail-safe logic

Table 1 - IAEA Passive Safety System Classification [1]

System conditions leading to failure are the result of adverse combinations of system parameter values such as pressure, temperature, and void fraction. Prediction of the exact values of these parameters is made difficult by several sources of uncertainty and typically, we can only assume a range of expected values and a corresponding probability distribution. We will refer to this type of uncertainty as parametric uncertainty. Second, there are uncertainties associated with the models used to predict system behavior. These can involve equations or empirical correlations used to model various phenomena or may stem from the numerical methods employed by computer codes. We will refer to this type of uncertainty as model uncertainty. Both parametric and model uncertainties are classified as epistemic since they are related to a lack of knowledge as opposed to aleatory uncertainty, which is related to randomness [3]. An estimate of system reliability can be obtained by quantifying parametric and model uncertainty and observing their effect on system performance. Further insights can be gained by
evaluating the sensitivity of system performance to each parameter, and we will demonstrate several ways in which this can be done.

The reliability of passive safety systems has been the subject of a great deal of research this decade both in the United States and internationally. System failure is assumed to occur when a physical quantity such as temperature exceeds a value that is considered acceptable, a phenomenon sometimes referred to as "functional failure" [4]. A systematic methodology for the reliability assessment of passive systems is described by Marqués et al in [2].

Past efforts at MIT have been focused on design tradeoffs [5-6]. System reliability is assessed by performing a large number of simulations using the code RELAP5-3D [7] coupled with Latin Hypercube Sampling (LHS). These simulations cover a range of thermal hydraulic (T-H) conditions. The probability of system success (reliability) is estimated simply by dividing the number of simulations that result in success by the total number of simulations:

$$
\begin{equation*}
\operatorname{Pr}(\text { success })=\frac{\sum_{i=1}^{N} A(i)}{N} \tag{1}
\end{equation*}
$$

N is the total number of simulations and $\mathrm{A}(\mathrm{i})$ is a binary variable equal to unity when all success criteria are met and zero otherwise. A sufficient number of simulations must be performed to provide confidence in the results.

Mackay et al performed 128 simulations, observed 39 failures, and recommended several risk-informed design improvements based on these results [5]. Patalano et al supplemented the Gas-cooled Fast Reactor (GFR) design with these improvements and added several others. These changes reduced the number of failures to 16 out of 128 [6].

Initially, we considered using this methodology to perform a reliability study of the leadcooled, fast spectrum, Flexible Conversion Ratio Reactor (FCRR) under development at

MIT as part of the Department of Energy's Nuclear Energy Research Initiative (NERI). During the planning phase of this effort, a concern about computational time was identified.

Both previous efforts at MIT studied the GFR, a direct-cycle design with a relatively simple RELAP5-3D model. Furthermore, these papers focused on a fast-developing transient (LOCA) with a coolant (helium) that changes temperature quickly during transients due to its relatively low specific heat capacity. Consequently, both papers obtained temperatures exceeding the peak cladding temperature (PCT) and the peak decay heat removal (DHR) pipe temperature within the first three hours of the transient. Exceeding either peak temperature is considered a failure.

The FCRR operates at ambient primary pressure and employs a guard vessel, so LOCA is not a major concern. Instead, Station Blackout (SBO) has been shown to be the most severe transient in terms of PCT. This is due to the sudden loss of both primary and secondary forced flow. Analysis of this transient presents a challenge because PCTs are not observed until more than 60 hours into the SBO event [8]. This is mostly due to the very large heat capacity of lead, the FCRR primary coolant. Because the primary coolant can absorb a large amount of energy, it heats up slowly during an SBO and, therefore, fuel and cladding temperatures rise slowly as well.

In addition to the long duration of the SBO transient, the FCRR RELAP5-3D model is somewhat more complex than that of the GFR. The FCRR uses a super-critical CO_{2} (SCO_{2}) power conversion system rather than the direct-cycle system found in the GFR. Additionally, the GFR uses a single two-loop decay heat removal (DHR) system. The FCRR uses two systems to accomplish decay heat removal. The Reactor Vessel Auxiliary Cooling System (RVACS) is a passive system that provides primary system cooling via natural convection of air around the reactor vessel. The Passive Secondary Auxiliary Cooling System (PSACS) is a passive system that removes heat from the primary system via the intermediate heat exchangers by providing natural circulation of $\mathrm{S}-\mathrm{CO}_{2}$ fluid to a large tank of water that serves as the ultimate heat sink. These factors
combine to produce a model that takes substantially longer to run than those used in the GFR studies. A summary of the reactor differences and the required simulation times is presented in Table 2.

A faster computer was used during the FCRR study, but the long transient time and additional model complexity still increase the amount of computing time per simulation by a factor of three to four compared to the GFR studies. Performing a reasonable number of simulations would still require substantial computing time, a fact that provides motivation for the use of response surface methodology.

Project	Cooling system	Fluids	Computer	Transient time	Time per trial	Number of trials
GFR, MacKay et al [5]	DHR	Helium \& Water (DHR)	P4 3.2 GHz; 1 GB RAM	> 3 hours	$\approx 8 \mathrm{hrs}$	128
GFR, Patalano et al [6]	DHR	Helium \& Water (DHR)	P4 3.2 GHz; 1 GB RAM	>2 hours	$\approx 10 \mathrm{hrs}$	128
FCRR	PSACS RVACS	Lead, $\mathrm{S}-\mathrm{CO}_{2}$, Water (PSACS), Air (RVACS)	P4 Quad Core 2.6 GHz, 4 GB RAM	72 hours	$\approx 30 \mathrm{hrs}$ with 3 simultaneous runs	
			P4 3.2 GHz; 1 GB RAM	72 hours	$\approx 36 \mathrm{hrs}$	

Table 2 - Comparison of GFR and FCRR

A different approach to passive system reliability assessment, known as the Assessment of Passive System Reliability (APSRA) methodology, is being proposed by the Bhabha Atomic Research Centre (BARC). The APSRA focuses on mechanical failures and their effect on passive system performance [9].

This paper focuses on functional failures of passive systems. First, a model of the system is constructed using RELAP5-3D. Next, a set of simulations are performed to construct a
response surface that models system performance during an SBO. Finally, the reliability of the system is assessed by performing a Monte Carlo simulation with the response surface.

7. SYSTEM DESCRIPTION

The FCRR is a 2400 MWth lead-cooled fast reactor currently under development by MIT's Nuclear Science and Engineering department as part of the Department of Energy's Nuclear Energy Research Initiative [8]. The FCRR core can be configured to support various conversion ratios (CRs), although the analyses were performed only for two bounding CRs: (1) near zero to transmute legacy waste and (2) near unity to operate in a sustainable closed cycle. Because this paper focuses on reactor safety, only the more challenging case of a near unity conversion ratio was investigated due to its higher decay heat loads. The reactor is coupled to a power conversion system (PCS) consisting of a Brayton cycle utilizing $\mathrm{S}-\mathrm{CO}_{2}$. The PCS consists of four 600 MWth loops, each consisting of an in-vessel Intermediate Heat Exchanger (IHX), a turbine, high- and lowtemperature recuperators, a pre-cooler, and two compressors. Diagrams of the primary and secondary system are displayed in Figures 1 and 2, respectively. Details regarding the $\mathrm{S}-\mathrm{CO}_{2} \mathrm{PCS}$ are given in [9]. Decay heat removal during both normal and emergency conditions is provided by a pair of passive systems that work in tandem: the RVACS and PSACS. These systems are represented graphically in Figures 1 and 3 respectively.

Figure 1 - FCRR Primary System and RVACS [10]

Figure 2 - State Point Diagram of the FCRR Power Conversion System [8]

Figure 1 shows the major primary system components and the RVACS. The reactor vessel houses the fuel, primary coolant (lead), reactor coolant pumps, and in-vessel heat exchangers. Surrounding the reactor vessel is the reactor guard vessel which serves as a defense against coolant leaks. The reactor guard vessel is enveloped by the RVACS, which provides heat removal via natural convection to air that is drawn through inlet ducts and flows upward over the reactor guard vessel due to buoyancy effects. Ambient air outside the containment building is the ultimate heat sink. The RVACS is classified as an IAEA Category B passive system since it does not require external power, moving parts, control signals, or operator actions to accomplish its design function. The RVACS concept was originally developed for the much smaller $1000 \mathrm{MW}_{\text {th }}$ S-PRISM reactor [12]; therefore, a key design challenge was to increase the heat removal capability to a level appropriate for the $2400 \mathrm{MW}_{\mathrm{th}}$ FCRR.

Design enhancements include the addition of a perforated plate in the air gap, leadbismuth eutectic within the gap between the reactor vessel and guard vessel, and the use of dimples on the guard vessel wall. The use of a perforated plate was first identified by General Electric during the S-PRISM design, while the addition of a lead-bismuth eutectic and dimples are design improvements developed by an INL/MIT team for a leadalloy cooled medium power reactor. Together, these enhancements have improved RVACS performance to decay heat removal rates between $15 \mathrm{MW}_{\text {th }}$ and $17 \mathrm{MW}_{\text {th }}$ under accident conditions [8].

Although these improvements are noteworthy, transient analyses have shown that this performance is not sufficient under some accident scenarios such as the bounding transient, which is SBO. During this accident sequence, the heat removal rate of the enhanced RVACS would be insufficient to maintain the PCT below the design limit of $725^{\circ} \mathrm{C}$. Consequently, additional decay heat removal options to supplement the enhanced RVACS were investigated.

Initially, use of the PCS as an emergency decay heat removal system was considered since this equipment was already available; however, this would require most, if not all, of the PCS to be classified as safety- related [13]. Within the current regulatory framework, safety-related components must be seismically qualified to withstand the Safe Shutdown Earthquake, also known as the Design Basis Earthquake [14], and the Quality Assurance rules of 10 CFR 50, Appendix B [15] would apply to nearly all PCS systems and subsystems. The reclassification of nearly the entire PCS as safety related would lead to a substantial increase in construction, maintenance, and procurement costs. Therefore, the decision was made to use the PCS as a non-safety related DHR system that is backed up by a stand-alone safety-grade DHR system.

Several supplemental alternatives for a safety-related DHR system were evaluated:

- A Direct Reactor Auxiliary Cooling System (DRACS) consisting of a separately designed lead-bismuth eutectic loop connected to an air cooled heat exchanger located in the chimney of the RVACS riser.
- A Passive Secondary Auxiliary Cooling System (PSACS) that removes decay heat via the existing lead/S-CO CO_{2} IHX and a standby loop filled with secondary SCO_{2}, which transports heat by natural circulation from the IHX to a heat exchanger cooled passively by either air or water.

The DRACS was discarded because of space constraints in the reactor vessel, and PSACS was selected for further analysis. Since both the PSACS air and water designs were deemed to have merit, a formal decision-making process was utilized to complete the selection process. The Analytic Deliberative Process (ADP) [16] was used to assess the two design options against a variety of performance measures such as economics, reliability, and thermal hydraulic performance. Using the ADP, the PSACS-water option was selected as the final design option and RELAP5-3D simulations were used to test and optimize the design.

The final PSACS design consists of four independent, 50% capacity each, safety-grade trains - one for each PCS loop (Figure 3). Each PSACS train is connected to an IHX loop by two PSACS isolation valves in parallel (B). The train also consists of an inlet header or "hot leg (A)," a Passive Auxiliary Heat Exchanger (E), PSACS Storage Tank (D) and a return header to the PCS or "cold leg (F)". The hot and cold legs connect the PSACS to the PCS and the PSACS Storage Tank (PST). The latter stores a large volume of water that acts as the ultimate heat sink during PSACS operation (Figure 3).

Figure 3 - One Train of the Passive Secondary Auxiliary Cooling System (PSACS)

The PSACS Auxiliary Heat Exchanger (PAHX) is a vertical bank of parallel tubes submerged in the PSACS Storage Tank (PST), which is filled with ambient temperature water. S-CO 2 flow enters the tube bank through a plenum near the top of the PAHX and travels downward through the tubes, rejecting heat into the water. The bottom of the PAHX is located 2 meters above the top of the IHX to provide a suitable elevation difference for natural circulation. Each PCS loop has a corresponding PSACS train so failure to isolate a PCS loop during a transient creates a bypass around that train, compromising natural circulation. To minimize the probability of this occurrence, each PCS loop contains two PCS isolation valves in series rather than a single valve. Additionally, the PSACS trains are not interconnected, so a depressurization of one train will not affect the others. The PSACS is classified as an IAEA Category C passive
system because it relies on thermal hydraulic conditions for fluid flow and contains isolation valves that change state with no initiation signal [1].

Tube height	4 meters
Tube outer diameter	1.4 cm
Number of tubes per PAHX	700
Pitch / Diameter	3.5
PST height	10 m
PST diameter	6 m
Nominal PST Water Volume	$282 \mathrm{~m}^{3}$

Table 3 - PSACS Design Specifications

The PSACS design specifications listed in Table 3 were selected to allow the PSACS to suppress PCT below the $725^{\circ} \mathrm{C}$ accident limit during all credible accident scenarios even with the complete loss of two-out-of-four trains [8]. We selected this scenario for further analysis because it is the bounding case.

8. FRAMEWORK

8.1 Accident Scenario

An SBO is defined as the complete loss of alternating current (AC) to the essential and non-essential switchgear buses in a nuclear power plant, i.e., loss of offsite power concurrent with a turbine trip and loss of emergency onsite power [13]. This is a beyond-design-basis accident under the present regulations but one that the current fleet of reactors in the United States must have the capability to manage per 10 CFR 50.63. An SBO event presents a significant operational challenge as it leads to a loss of forced primary flow (the reactor coolant pumps rely on AC) and disables several ways of
primary and secondary heat removal such as the motor-driven pumps used by the emergency core cooling system or auxiliary feedwater system.

Passive cooling systems provide a distinct advantage during SBOs because they rely on natural phenomena rather than AC power to perform their safety functions. The RVACS and PSACS both provide cooling during this accident using natural circulation and neither has any components that require AC power to perform their safety-related functions. We are interested in the conditional failure probability of the RVACS and PSACS given that an SBO occurs and AC power is not recovered.

When AC power is lost, the reactor coolant pump (RCP) trip breakers are opened, resulting in a loss of forced circulation of primary coolant. The RCPs slowly coast down and natural circulation of primary coolant is established due to thermal head. On the secondary side, the PCS isolation valves fail shut and the PSACS isolation valves fail open. Each set of isolation valves are held in their normal position by either a solenoid or instrument air actuator and require AC to remain in their respective positions [Figure 3]. When AC power is lost they swap positions, isolating the PCS and placing the PSACS into service. Fuel and primary coolant temperature rise slowly due to decay heat and this heat is transferred to the $\mathrm{S}-\mathrm{CO}_{2}$ via the four IHXs. As the $\mathrm{S}-\mathrm{CO}_{2}$ heats up, a density difference between the PSACS hot leg and cold leg is established and natural circulation begins. As the PSACS removes heat from the secondary system, a temperature differential is established across the IHXs. This draws heat out of the primary system and leads to a reduction in primary coolant temperature and fuel temperature. The reduction of PCT is displayed in Figure 4.

As the hot $\mathrm{S}-\mathrm{CO}_{2}$ rejects heat into the PST, the water heats up, eventually boiling approximately two hours into the SBO. This phase change temporarily improves heat transfer, but the PSACS gradually loses effectiveness as inventory is boiled off. Assuming conservatively no operator intervention, the PSACS will boil dry in about 24 hours and will cease to provide cooling. At this point, primary temperature again begins to rise due to decay heat.

As the primary coolant temperature rises, the guard vessel heats up and RVACS flow rate increases due to natural circulation; this slows the temperature rise until a maximum temperature is reached at about 68 hours.

Figure 4 - PCT During SBO

8.2 Success Criteria

The deterministic limit for PCT is $725^{\circ} \mathrm{C}$. This limit does not correspond to prompt fuel or cladding damage; rather, this temperature leads to the onset of fuel/cladding chemical interaction. Temperatures higher than $725^{\circ} \mathrm{C}$ can cause actinide diffusion into the cladding and lead to low-melting-point regions resulting in clad thinning and potential failure [17]. These conditions have therefore been deemed unacceptable.

Because Gen III+ designs like the AP1000 and ESBWR are capable of mitigating an SBO for at least 72 hours, this value was chosen as the assumed duration of the event. Therefore, a successful mission requires the FCRR's DHR systems to maintain PCT below $725^{\circ} \mathrm{C}$ for at least 72 hours during an SBO event. No operator actions are assumed.

8.3 System Reliability

Unlike the RVACS, which is constantly operating, the PSACS is isolated during normal operation. There are four 50% capacity trains and several valves must change state before each train can provide cooling. Therefore, failure of these valves can challenge PSACS performance by affecting the number of available trains. To quantify the probability of losing one or more PSACS trains due to valve failure, we constructed a fault tree of each train. The fault tree captures the system logic and models the effect of valve reliability on PSACS reliability. In addition, it shows which combinations of valve failures lead the loss of a PSACS train. These combinations (minimal cut sets) are useful to the designer because they identify potential weaknesses or single point failures.

These insights were used to support PSACS design and led to several key features. First, the PSACS inlet and return isolation valves are in parallel so that a single valve failure does not prevent a PSACS train from actuating. As long as at least one inlet and one return isolation valve are open, the PSACS train can perform its design function. Similarly, the PCS inlet and return isolation valves are in a series configuration so that a
single valve failure does not create a bypass around the PSACS train or lead to PSACS depressurization should a PCS leak occur. These features ensure that no single valve failure can disable a PSACS train.

Although multiple independent component failures are unlikely, several failures can occur simultaneously for the same reason. Improper maintenance, installation errors, design flaws, and adverse environmental factors can all lead to multiple dependent failures. These failures are known as common cause failures (CCFs) and it is important to account for them in our PSACS model. To do so, we make use of the Beta Factor model, which is somewhat conservative but simple and accurate enough for our purposes. In this model, we assume that a certain fraction of component failures are due to a common cause and lead to the failure of all identical components in the system. This fraction, β, is typically assigned a value of about 0.10 [18]. There are two distinct types of PSACS and PCS valves: Solenoid Operated Valves (SOVs) and Air-Operated Valves (AOVs).

Prior to calculating PSACS train reliability, let us examine the minimal cut sets for one train of PSACS.

Cut Set No.	Failures	Basis	Mean Probability
1	PSACS Inlet AOV and PSACS Inlet SOV	The PSACS train remains isolated and can not provide any decay heat removal	9×10^{-6}
2	PSACS Return AOV and PSACS Return SOV		9×10^{-6}
3	PCS Inlet AOV and PCS Inlet SOV	Failure to isolate a PCS loop creates a flow bypass around the corresponding PSACS train. Hot S-CO 2 exiting the IHX could instead flow through the PCS rather than the PSACS. Furthermore, PCS piping is non-safety related and therefore less robust than the PSACS piping. Without isolation, a rupture or leak in the PCS could depressurize the PSACS thereby challenging its effectiveness.	9×10^{-6}
4	PCS Return AOV and PCS Return SOV		9×10^{-6}
5	CCF -SOV and PSACS Inlet AOV	Same as $1 \& 2$	1.5×10^{-5}
6	CCF -SOV and PSACS Return AOV	Same as 1 \& 2	1.5×10^{-5}
7	$\mathrm{CCF}-\mathrm{SOV} \text { and PCS }$ Inlet AOV	Same as 3 \& 4	1.5×10^{-5}
8	CCF -SOV and PCS Return AOV	Same as 3 \& 4	1.5×10^{-5}
9	CCF-AOV and PSACS Inlet SOV	Same as 1 \& 2	1.5×10^{-5}
10	$\begin{aligned} & \text { CCF-AOV and } \\ & \text { PSACS Return SOV } \end{aligned}$	Same as 1 \& 2	1.5×10^{-5}
11	$\begin{aligned} & \text { CCF-AOV and PCS } \\ & \text { Inlet SOV } \end{aligned}$	Same as 3 \& 4	1.5×10^{-5}
12	CCF-AOV and PCS Return SOV	Same as 3 \& 4	1.5×10^{-5}

Table 4 - PSACS Minimal Cut Sets

To determine the probability of these cut sets, we use valve reliability data from the Nuclear Computerized Library for Assessing Reactor Reliability [19]. No specific failure rates were available for valves in an $\mathrm{S}-\mathrm{CO}_{2}$ environment, so we substituted data from valves in a liquid sodium environment, which were the most conservative numbers available. Based on this information, the probability of either valve type failing to
open/close was modeled as a lognormal distribution with a mean value of 3×10^{-3} per demand and an error factor of 10 . The computer code SAPHIRE 7 was used so that these values, rather than just point estimates, could be incorporated [20]. Using SAPHIRE's fault tree analysis feature, we calculated the mean probability of losing a single train of PSACS due to valve failure:
$\operatorname{Pr}[\operatorname{PSACS}$ train fails on demand $]=1.6 \times 10^{-4}$

Losing one train of PSACS does not disable the system. In fact, the PSACS is designed to meet the success criteria discussed in Section 8.2 with up to two trains simultaneously unavailable. This is accomplished by selecting conservative design values for the PAHX and PST, which are displayed in Table 3.

We can calculate the probability of two simultaneous PSACS train failures using the following expression:
$\operatorname{Pr}[$ failure of two trains $]=\operatorname{Pr}[$ independent failure $]+\operatorname{Pr}[C C F]$

The probability of CCF is determined using the very conservative Beta Factor model, which assumes that a CCF of one valve type (AOV or SOV) in one PSACS train is always accompanied by CCF of all valves of that type in the other three trains. Therefore, if one train experiences CCF, another train is assumed to fail if at least one valve in the opposite valve group fails. We can now write Equation (2) as:
Pr [failure of two trains] $=\operatorname{Pr}$ [independent failure] $+\operatorname{Pr}[C C F$ of AOVs] $\times \operatorname{Pr}$ [at least one SOV fails] $+\operatorname{Pr}[\mathrm{CCF}$ of SOVs] x [Pr at least one AOV fails]

Adding the probabilities of minimal cut sets that share basic events, known as the minimal-cut-set upper bound approximation, is appropriate when the probability of the top level event is small [20]. Using this approach, the probability of independent failure for a given train is determined by summing of the probabilities of minimal cut sets $1-4$
in Table 4 and the probability of CCF can be determined by summing the probabilities of minimal cut sets 5-12. The probability of at least one AOV or SOV failing in another train is equal to 0.035 . Inserting these numbers into Equation (3), and assuming that Beta is lognormally distributed with a mean value of 0.10 and an error factor of 3 , we find that the mean probability of simultaneous failure of two PSACS trains is 4.0×10^{-6} and the $95^{\text {th }}$ percentile is 1.4×10^{-5}.

This probability is quite low even with our conservative assumptions and we will consider the probability of losing more than two trains of PSACS negligible. The overall system failure probability then becomes:

$$
\begin{equation*}
\operatorname{Pr}[\text { failure }]=\sum_{i=2}^{i=4} \operatorname{Pr}[\text { failure } \mid N=i] \bullet \operatorname{Pr}[N=i] \tag{4}
\end{equation*}
$$

where $\mathrm{N}=$ the number of operational PSACS trains. In this context, operational means that a PSACS train is not isolated and the corresponding PCS loop is isolated. Once a PSACS train is operational, all flow is due to natural circulation and no external energy sources, mechanical components, or operator actions are needed. Therefore, operational PSACS trains are subject only to functional failures and can be analyzed by constructing a model of the system and performing a Monte Carlo simulation in the manner described in Section 1. Performing this analysis provides values for the first half of Equation (4), the conditional failure probability given a number of operational trains.

When three or four PSACS trains are operational ($\mathrm{i}=3$ or 4 in Equation 4), there is a substantial amount of margin between PCT and the $725^{\circ} \mathrm{C}$ failure criterion at all times. In fact, simulations have shown that even when all input variables are set to their worst case values, the PSACS can meet the success criteria outlined in Section 8.2 provided that at least three trains are operational. This indicates that functional failure when at least three trains are operational is negligible and we should focus our uncertainty analysis on the case when two trains are available. Therefore, Equation (4) reduces to:
$\operatorname{Pr}[$ failure $]=\operatorname{Pr}[$ failure $\mid N=2] \bullet \operatorname{Pr}[N=2]$

The next step is to evaluate this case using a computer model to measure system performance.

8.4 Simulation Code

A RELAP5-3D model was used to develop steady-state operating parameters for the FCRR and to ensure that design constraints such as primary coolant flow rate and reactor vessel size were met. Construction of this model took place in four stages:

1. A model of the primary system was constructed with the core represented as two subchannels: hot and average.
2. A detailed IHX model was created separately, optimized, and then connected to the primary system model.
3. The enhanced RVACS with dimples on the guard vessel and perforated plate in the air riser region was added to the model.
4. The complete $\mathrm{S}-\mathrm{CO}_{2}$ PCS was coupled to the primary system

Figure 5 - RELAP5-3D Nodalization Diagram Showing Two PSACS Trains

In the FCRR RELAP5-3D model, the primary coolant system is characterized by components 500 through 595 . The nodalization starts with the lower plenum, component 500. The flow is subsequently split into two parallel channels: hot channel (component 516) and average channel (component 510). The hot channel represents four lumped assemblies with the highest peaking factor of 1.21 . The average channel represents the remaining assemblies. The flow is recombined in the chimney, component 520. Component 540 corresponds to the upper vessel plenum. Four heat exchangers are represented by components 560 and 561. Component 560 depicted in Figure 5 corresponds to lead-side coolant channels of one heat exchanger. The other three IHXs are lumped together in component 561. For some transient calculations, lumping was eliminated to allow for individual loop modeling. The heat exchanger downcomer, vessel liner, and the pump downcomer are represented by components 570,580 and 590 , respectively. The flow exits the heat exchangers, flows downward through the IHX downcomer, then upward behind the liner, and finally returns to the lower vessel plenum through the pump downcomer. As the coolant passes through the space between the liner
and the vessel, heat transfer between the vessels and RVACS occurs. The position of valve 585 which directs the flow from the liner to the pump downcomer was selected based on the pressure drop through the primary system.

Hatched components correspond to the heat structures. Heat structures are connected thermally to the attached hydrodynamic volumes. The primary system includes five main structures: average fuel pins, hot fuel pins, core barrel, heat exchanger tubes, and the reactor vessel liner. The RVACS heat structures include reactor and guard vessels with lead-bismuth as the conducting fluid, the perforated plate, and the collector cylinder.

The fuel pin model is quite detailed and includes a lead-alloy bond, cladding and an oxide layer on the outside of cladding. The heat exchanger tube heat structure also includes an oxide layer on the lead-side. Finally, the CO_{2}-side of the IHX heat structure includes tube surface augmentation (helical ribs) to model enhanced heat transfer.

The parameter values generated by the steady-state model were used to supply initial conditions to the RELAP5-3D transient analysis. This analysis uses the same RELAP53D model displayed in Figure 5, but tracks reactor parameters (e.g. peak clad temperature) throughout the duration of the transient. In this case, we modeled an SBO event but the same process can be used to model other transients such as inadvertent rod withdrawal or loss of primary system flow.

8.5 Methodology Overview

As discussed in Section 1, the methodology used to evaluate the reliability of the PSACS and RVACS is similar to previous efforts at MIT [5, 6] except that uncertainty analysis is conducted using a response surface rather than the RELAP5-3D model itself. Response Surface Methodology (RSM) replaces the output of a best estimate code (in this case, RELAP5-3D) with a function of the form [21]:

$$
\begin{equation*}
\mathrm{Y}=\mathrm{g}(\underline{\mathrm{X}}) \tag{5}
\end{equation*}
$$

Y is an output variable of interest (in our case, PCT) that depends on \underline{X}, a vector of input parameters also known as factors or predictor variables. Experiments are conducted with the predictor variables $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$ a sufficient number of times to define the response surface to the level of accuracy desired. In general, experiments may be conducted at a test facility, but computer simulations are typically used for nuclear applications.

The resulting data can be used to construct a response surface with a variety of forms: linear, polynomial, thin plate splines, and others. Once formed, the response surface replaces the slow-running thermal-hydraulic code and is used to model system performance. Because calculations with the response surface can be performed very quickly, the problem of long simulation times is circumvented. We have integrated the use of a response surface into a reliability analysis methodology that consists of the following steps:

1. Definition of the system, its mission and failure modes.
2. Construction of a system model using RELAP5-3D.
3. Identification of the sources of epistemic uncertainty and the important parameters, including the definition of specific failure criteria.
4. Quantification of uncertainties by selecting appropriate probability distributions. Literature searches and expert judgment were used when appropriate.
5. Determination of central and enveloping values for the parameters, based on these distributions.
6. Construction of a response surface based on 27 RELAP5-3D simulations and the PCT values that each predicts.
7. Propagation of parametric uncertainty through the response surface using Monte Carlo simulations.
8. Determination of passive system reliability.
9. Performance of a model uncertainty sensitivity study.
10. Performance of a parametric sensitivity study.

9. ANALYSIS

9.1 Construction and Validation of Response Surface

Based on expert judgment, literature review, and RELAP5-3D data, five predictor variables were considered likely to have an appreciable effect on decay heat removal performance. To account for potential non-linear effects, a quadratic model was selected and each variable was then assigned a lower, center, and upper level. This was done because construction of a quadratic response surface requires at least three levels per factor. The lower and upper levels were selected to envelope all expected values; this is an important step in creating a response surface that can predict system performance accurately. Using a response surface with predictor variable values outside of this envelope requires extrapolation and can reduce accuracy greatly [21]. The predictor variables and their three levels are displayed in Table 5.

Factor	Lower	Central	Upper
X_{1}, PSACS plugged tubes (fraction)	0	0.075	0.15
X_{2}, PSACS initial water temperature $\left({ }^{\circ} \mathrm{C}\right)$	7	27	47
X_{3}, RVACS emissivity (unit-less)	0.65	0.75	0.85
X_{4}, RVACS blockage (fraction)	0	0.075	0.15
X_{5}, RVACS inlet temperature $\left({ }^{\circ} \mathrm{C}\right)$	7	27	47

Table 5 - Predictor Variables and Levels

Twenty-seven combinations of these values were then used to create a response surface experiment in the manner described by Xu et al [21]. This design allows for a full quadratic response surface including linear terms, quadratic (squared) terms, and twofactor interactions. Each set of predictor variables were entered into the RELAP5-3D model and a simulation was performed to determine the corresponding PCT.

Following the collection of the data from the simulations, we used the statistical program MINITAB 14 [22] to construct the following response surface:
$\mathrm{Y}(\underline{\mathrm{X}})=711.5+4.2 \mathrm{X}_{1}+2.7 \mathrm{X}_{2}-9.2 \mathrm{X}_{3}+1.4 \mathrm{X}_{4}-15.6 \mathrm{X}_{5}+4 \mathrm{X}_{1}^{2}+0.5 \mathrm{X}_{2}^{2}-0.5 \mathrm{X}_{3}^{2}-$ $4.3 \mathrm{X}_{4}{ }^{2}+3.5 \mathrm{X}_{5}^{2}-2.7 \mathrm{X}_{1} \mathrm{X}_{2}-0.4 \mathrm{X}_{1} \mathrm{X}_{3}-4.8 \mathrm{X}_{1} \mathrm{X}_{4}+1.5 \mathrm{X}_{1} \mathrm{X}_{5}-2.7 \mathrm{X}_{2} \mathrm{X}_{3}+5.9 \mathrm{X}_{2} \mathrm{X}_{4}-$ $0.8 \mathrm{X}_{2} \mathrm{X}_{5}-9.5 \mathrm{X}_{3} \mathrm{X}_{4}+.1 \mathrm{X}_{3} \mathrm{X}_{5}-1.7 \mathrm{X}_{4} \mathrm{X}_{5}$

MINITAB 14 uses a least-mean-squares approach to fit an equation that best fits the data; however, a number of checks should be performed on any response surface to ensure that it accurately models the process in question. In our case, we wanted confidence that the response surface would serve as an appropriate substitute for our RELAP5-3D model of the Station Blackout event.

The following checks were performed:

1. Coefficient of determination (R^{2} value). R^{2} is a value in the interval $[0,1]$ that expresses what fraction of the output variability can be accounted for by the input variability. It is more formally defined as:

$$
\begin{equation*}
R^{2} \equiv \frac{S S R}{S S T} \tag{7}
\end{equation*}
$$

where the variability explained by the regression line, the regression sum of squares

$$
\begin{equation*}
S S R=\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2} \tag{8}
\end{equation*}
$$

is divided by the total variability in the dependent variable, the total sum of squares

$$
\begin{equation*}
S S T=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} \tag{9}
\end{equation*}
$$

In a "perfect" model, all output variance would be explained simply by input variance and R^{2} would equal unity. In reality, models are an approximation and therefore add a degree of error or variance. An effective model should have a value of R^{2} as close to unity as possible.
2. Size and distribution of residuals. Residuals from a fitted model are the differences between the responses observed at each input variable value and the corresponding prediction of the response computed using the response surface. Mathematically:

$$
\begin{equation*}
e_{i}=y_{i}-g\left(\underline{x}_{i}\right) \tag{10}
\end{equation*}
$$

with y_{i} denoting the $i^{\text {th }}$ response in the data set and \underline{x}_{i} representing the vector of input variables.

If the response surface fits the data well, the residuals should approximate the random errors that make the relationship between the input variables and the output variable a statistical relationship. Therefore, random residual behavior is an indication that the response surface fits the data well. On the other hand, if a non-random structure is evident in the residuals, it is a clear sign that the response surface does not fit the data well.

A scatter plot is a useful way of examining residual behavior. If truly random, the residuals should be split $50-50$ between positive and negative and should exhibit something resembling a normal distribution. The residuals also should not trend with observation order; i.e. residual size should not be a function of the experiment number. A histogram is one way to visually check the distribution shape of residuals. Another is a normal probability plot. This plot compares the empirical cumulative distribution function (CDF) against the CDF of a normal
function with the same mean and standard deviation; a close fit indicates data that are distributed normally.

The response surface (Equation 6) has been compared against these metrics and the results are favorable. The coefficient of determination is high and the residuals exhibit good balance around zero and follow a normal distribution. The residuals are small and do not trend with observation order. Quantitative metrics are shown in Table 6 and a graphical representation of the residuals is shown in Figure 6.

Figure 6 - Residual Plots

RS Criterion	Results / Observations
Small residuals	Average residual size was $1.5^{\circ} \mathrm{C}$
Coefficient of determination	$\mathrm{R}^{2}=0.985$ (out of 1.0)
Residuals are centered around zero	Residuals are well balanced: 14 are above zero and 13 are below zero

Table 6 - Response Surface Evaluation

For future steps in this analysis, the response surface was used as a substitute to replace RELAP5-3D simulations. Note that several terms in the response surface were observed to have low statistical significance, but their removal had no appreciable effect on the results of this paper and they were therefore retained.

9.2 Quantitative Reliability Assessment

The range of values used to develop a response surface is not necessarily based on values that are considered to be likely. For example, when used to support system design, the ranges may be based on values the designer feels are economically viable or able to meet design constraints. Consequently, we must perform some additional steps if we wish to use a response surface to assess system reliability.

First, we must take a slightly different approach to the selection of predictor variable ranges. In this case, we select each range based on the values we expect to see during system operation. The selection of this range is usually based on engineering judgment and may be supplemented by back-of-the-envelope calculations or simplified code runs to verify that these values are reasonable. It should be noted that these ranges may also be specific to the accident sequence under consideration. We may also choose variables that cannot be directly controlled by the system designer (e.g., RVACS inlet air temperature) but that we feel are likely to impact system performance.

This approach was used to select the predictor variables and the ranges listed in Table 5. Each range was chosen with the objective of enveloping the values that might be seen for the variables during an SBO event. Note that the choice of each range also expresses a degree of epistemic uncertainty with respect to the variables. For example, RVACS emissivity may vary according to manufacturing practices but it is expected to be no less than 0.65 and no greater than 0.85 .

To quantify this uncertainty, probability distributions are assigned to each variable.

These distributions reflect the degree of epistemic uncertainty surrounding the value of each predictor variable and allow us to estimate system reliability by coupling the response surface to a Monte Carlo simulation.

Consistent with information available in the open literature, partial flow conditions such as leakage and blockage are modeled using the exponential distribution [2, 5, 6]. This reflects the assumption that the PSACS and RVACS are most likely unblocked and that the probability of a blockage decreases rapidly with its severity level. PSACS blockage is unlikely because it is a closed system and the RVACS blockage is unlikely because of its large inlet area. In addition, an effective foreign material exclusion program, consistent with industry best practices, would reduce the likelihood of RVACS and PSACS blockage.

PSACS and RVACS temperatures are modeled probabilistically using the truncated normal distribution. This decision is consistent with information available in the open literature and reflects the assumption that ambient temperatures are more likely to be near their mean value than extreme values [2].

A literature search did not identify previous probability density functions involving emissivity but material conditions are often modeled using the truncated normal distribution and this was therefore deemed acceptable [2].

When predictor variables take on values outside of those used to formulate a response surface, extrapolation (rather than interpolation) is required and substantial inaccuracies may occur. To avoid this pitfall, the upper and lower bounds of each range should be consistent with the extreme percentiles of the selected distributions. In addition, we must recognize that some distribution values may be possible mathematically but not physically. For example, PSACS water temperatures greater than $100^{\circ} \mathrm{C}$ could be seen with a normal distribution but are not physically possible. In this case, the distributions are truncated and renormalized to avoid simulation of non-physical scenarios. This becomes particularly important when using a computer code that does not recognize
values that fall outside of what is physically possible. For example, RELAP5-3D cannot model PSACS tube blockage of greater than 100%, as this would require a negative flow area.

Response Surface Uncertainty

An important step to be performed prior to Monte Carlo simulation is the addition of an error term to account for response-surface model uncertainty. A response surface is a model used to approximate the behavior of a T-H code. Like any model, there is a degree of uncertainty regarding its predictive capabilities. This uncertainty plays an important role when calculating system reliability because near misses may actually become failures when model uncertainty is taken into account. To account for this, we quantify the effect of the residuals by assigning them an appropriate probability distribution.

Because residuals are distributed in a somewhat normal fashion, we can account for their effect by adding an error term to each Monte Carlo simulation:

$$
\begin{equation*}
Y_{i}=Y_{i, R S}+e_{i} \tag{11}
\end{equation*}
$$

$$
\begin{aligned}
\text { where } & =\text { Peak Clad Temperature for simulation } \mathrm{i} \\
\mathrm{Y}_{\mathrm{i}, \mathrm{RS}} & =\text { Peak Clad Temperature generated by response surface } \\
\mathrm{e}_{\mathrm{i}} & =\text { Error term to account for response surface model uncertainty }
\end{aligned}
$$

The residuals under consideration have an important property: they follow a near normal distribution (Fig. 6). As a second check, MINITAB 14 was used to check the residuals against other types of distributions to verify that normal is the best choice. We can now assign an error term to account for response-surface uncertainty that is normally distributed:

$$
\begin{equation*}
\mathrm{e} \sim \mathrm{~N}(\mu, \sigma) \tag{12}
\end{equation*}
$$

The mean value of the error term, μ, is equal to the statistical mean of the residuals:

$$
\begin{equation*}
\mu=\bar{x}=\frac{\sum_{i} x_{i}}{n}=\frac{-0.001}{27}=-3.7 \times 10^{-5} \tag{13}
\end{equation*}
$$

The standard deviation of the error term, σ, is equal to the statistical standard deviation of the residuals:

$$
\begin{equation*}
\sigma=s=\sqrt{\frac{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}=\sqrt{\frac{103.9}{26}}=2.0 \tag{14}
\end{equation*}
$$

The reliability of the PSACS-RVACS with two-out-of-four trains available was assessed by performing a Monte Carlo simulation and observing the percentage of simulations that met the PCT failure criterion. The simulation program Crystal Ball [23] was used to perform 10^{6} simulations of an SBO event. Table 7 shows that that the reliability converges rather quickly and only about 10^{4} simulations are needed, although performing more requires little extra time. Of the 10^{6} simulations, approximately 110,000 resulted in PCT $>725^{\circ} \mathrm{C}$ indicating a PSACS-RVACS unreliability of 0.11 . It should be emphasized that this value applies strictly to the case where only two-out-of-four PSACS trains are operational. A histogram displaying the results of this effort is shown in Figure 7.

Simulations	
10^{2}	0.856
10^{3}	0.881
10^{4}	0.891
10^{5}	0.890
10^{6}	0.890

Table 7 - Convergence of Reliability Estimation

Figure 7 - PCT Histogram

As shown in Equation (4a), the overall system unreliability is the product of the probability that two trains are down and the remaining two trains experience functional
failure. Using our numbers found previously we get a mean value of $(0.11)\left(4.0 \times 10^{-6}\right)=$ 4.4×10^{-7} and a $95^{\text {th }}$ percentile of $(0.11)\left(1.4 \times 10^{-5}\right)=1.54 \times 10^{-6}$.

9.3 Sensitivity Study

In order to identify potential design improvements and/or to bound safe operating conditions it is useful to quantify the sensitivity of the response variable (PCT) to the predictor variables. In this way, we can make risk-informed decisions about the importance of the five predictor variables. The variables were assessed in three different ways.

Linear Response Surface Coefficients: The sensitivity of a response variable to a given predictor variable is roughly proportional to the size of the predictor variable's coefficient in Eq. (2).

Factor Prioritization Method: One variable is varied over its expected range while the others are fixed at their mean or central values. This is performed for each predictor variable and the differences in delta PCT are compared.

Contribution to Variance: Statistical tests are used to measure how much of the PCT variance is comprised of the variance regarding each predictor variable.

These methods provided slightly different numerical results, but the ranking of the parameters was similar. The results are displayed in Figure 8.

Figure 8 - Normalized Parameter Importance Ranking

These results provide insights that are useful to both the design and operation of the PSACS and RVACS. They show a strong sensitivity of PCT to RVACS inlet temperature indicating that the FCRR may be inappropriate for climates with consistently high temperatures. Another insight from this effort is that RVACS emissivity plays a substantial role in system performance. If design improvements are not practical, this factor should be carefully monitored by a robust QA program during the manufacturing process to ensure adequate emissivity and a long term aging management program should be implemented to ensure emissivity values do not degrade to unacceptable levels.

9.4 Model Uncertainty

Although not an explicit step in RSM, the issue of code uncertainty is important and should be considered. In addition to uncertainty related to predictor variables and the response surface approximation itself, we recognize that there is a degree of uncertainty inherent in the models used by computer codes to predict thermal-hydraulic behavior. Often, empirical or semi-empirical correlations are used by thermal hydraulic codes to determine flow rates, heat transfer rates, etc. Other sources of model uncertainty include interpolation of thermo-physical properties and approximations related to heat structure meshing.

Therefore, let us designate $\mathrm{Y}_{\text {actual }}$ the true PCT that would occur during a given set of conditions and $\mathrm{Y}_{\text {code }}$ the PCT predicted by a computer code. We can then define the code uncertainty related to a given simulation as [3, 24]:

$$
\begin{equation*}
\varepsilon_{\mathrm{i}}=\mathrm{Y}_{\text {actual, } \mathrm{i}}-\mathrm{Y}_{\text {code }, \mathrm{i}} \tag{15}
\end{equation*}
$$

One approach to this issue is to conduct experimental benchmarking tests. This is an important step in the APSRA methodology discussed in Section 1. In this case, we would perform a series of tests to compare $\mathrm{Y}_{\text {actual }}$ and $\mathrm{Y}_{\text {code }}$. The values of ε obtained from these tests are similar to the residuals used to compare response surface results to code results. The same approach described in Section 9.2 can then be used to characterize a distribution that represents code uncertainty.

Lacking the capability for experimental benchmarking, we can examine the effect of code uncertainties by performing a sensitivity study. Although this will not identify the magnitude of code uncertainty, it will shed some light on its overall effect on reliability.

Let us assume that code uncertainty, ε, is normally distributed with a mean, μ_{c}, and a standard deviation, σ_{c}. Let us also account for response surface error by using Equation (11). Our true estimate for PCT then becomes:

$$
\begin{equation*}
\mathrm{Y}_{\text {actual }}=\mathrm{Y}_{\mathrm{RS}}+\mathrm{e}+\varepsilon \tag{16}
\end{equation*}
$$

Note that we are now accounting for model uncertainty in both the response surface (e) and the code itself (ε). Ideally, this uncertainty should be quantified by comparing code predictions to experimental results. Such an analysis is beyond the scope of this paper. We note, however, that quantification of code uncertainty is part of the APSRA methodology [9]. This methodology identifies key drivers of code uncertainty that are specific to the design in question. This is important because previous studies have shown that the accuracy of best estimate codes such as RELAP5-3D varies depending on the application. For example, benchmarking experiments performed at MIT identified substantial discrepancies between code correlations and experimental data, particularly in transitional flow regimes of gas coolants [25]. Other studies involving comparisons of RELAP5-3D calculations to data from light water reactors have been more favorable [26]. Once these drivers are identified, experimental benchmarking can be used to quantify the amount of code error present under various conditions [24]. If enough experiments are performed, a histogram of ε can be created and a distribution fit to the data. This distribution is then combined with the PCT histogram to create an estimation of reliability that incorporates known code-based uncertainty drivers. This methodology may be preferable in situations where design changes are not possible and/or the addition of margin cannot be easily accomplished.

Since the quantification of code uncertainty is beyond our scope, we will attempt to draw insights from a sensitivity study. We examine the effect on system reliability of various combinations of mean and standard deviation for ε (performing a Monte Carlo simulation for each). These results are displayed in Figure 9.

Figure 9 - The Effect of Code Uncertainty

Each point on the surface shown in Figure 9 represents a Monte Carlo simulation consisting of 10^{5} trials. Each trial is of the form shown in Equation (16). The assumed mean $\left(\mu_{\mathrm{c}}\right)$ and standard deviation $\left(\sigma_{\mathrm{c}}\right)$ of code error are represented by the x and y axes. Note that we are not supposing to know these values, but rather we are measuring their effect on reliability, which is shown on the z-axis. The value of reliability for each point is calculated by observing the fraction of trials that meet the success criteria of $725^{\circ} \mathrm{C}$. The legend to the left of the figure displays the ranges of reliability that are expected to occur for various combinations of μ_{c} and σ_{c}.

Figure 9 several useful insights. First, we observe that a negative code bias (mean value of $\varepsilon<0$) only improves reliability slightly, while a positive code bias leads to a sharp decrease in reliability. The reason for this can be seen by observing the simulations that come close to the failure limit of $725^{\circ} \mathrm{C}$ in Figure 7. There is a sizable amount of "near
misses" (PCT just below the limit) and the addition of code uncertainty changes many of these into failures. On other hand, there aren't many "near successes" and so although the addition of code uncertainty changes some of them into successes, the net effect on reliability is negative.

The second major insight is that system reliability in this case study is more sensitive to the mean value of ε than to its standard deviation. This suggests a risk-informed design strategy to reduce failure probability. During safety system design, computer simulations are used to test system performance and optimize design parameters such as heat exchanger size or pitch to diameter ratio. To account for uncertainty, the system designer selects values that provide margin between calculated system performance and failure criteria. By examining the slope of reliability with respect to μ_{c}, the designer can determine the sensitivity of system reliability to code uncertainty. A large slope indicates acute sensitivity to code uncertainty and provides motivation for experimental benchmarking and/or large design margin. By contrast, a smaller slope indicates that model uncertainty is less important, possibly justifying reduced margin and/or lack of benchmarking, which may allow for a more economic design.

10. CONCLUSIONS

The PSACS and RVACS safety systems play a vital role in FCRR accident mitigation. Therefore, these systems must be able to operate under a variety of conditions and each must perform its design function when called upon. Several phases of the FCRR project utilized risk insights. During the design phase, a risk-informed decision making process known as the ADP was used to facilitate the selection of a heat sink for the PSACS. Next, a fault tree model was used to select a valve configuration that would minimize the probability of PSACS failure. Finally, design verification was conducted by performing an uncertainty analysis to assess the performance of the PSACS and RVACS under a
variety of T-H conditions. This effort led to several insights about safety system performance; most notably, that RVACS inlet temperature plays a very large role during an SBO event and that a design change to increase RVACS emissivity would be beneficial. Additional insights were gained by performing an investigation of two sources of model uncertainty: response surface and code.

By substituting a response surface for a T-H code, a certain degree of uncertainty is introduced. This uncertainty was quantified by examining the difference between values predicted by the code and those predicted by the response surface, also known as residuals. We accounted for these residuals by adding a normally distributed error term to each response surface simulation as shown in Equation (11).

Next, the issue of code uncertainty was addressed. An error term was used to account for code inaccuracies and their effect on system reliability. This allowed us to observe the relationship between code uncertainty and reliability. This relationship, displayed in Figure 9, identifies the sensitivity of reliability to code uncertainty and provides a quantitative metric for addressing this issue. This information can be used to choose between two approaches for code uncertainty treatment.

The first potential approach focuses on quantification of code uncertainty, as discussed in Section 9.4.

The second approach circumvents the issue of code-uncertainty quantification by implementing design improvements to increase PCT margin. The addition of model uncertainty reduces reliability because it pushes simulations close to $725^{\circ} \mathrm{C}$ over the failure criterion. In other words, it turns "close calls" into failures. Furthermore, because there are more simulations with PCT slightly below $725^{\circ} \mathrm{C}$ than slightly above $725^{\circ} \mathrm{C}$, even a non-biased uncertainty term will reduce calculated reliability.

To address this issue, design improvements can be made to lower the probability of conditions that lead to a PCT near the failure limit. A great deal of effort has already
been expended on improving RVACS performance. Design enhancements include the addition of a perforated plate in the air gap, a liquid metal within the gap between the reactor vessel and guard vessel, and the use of dimples on the guard vessel wall. On the other hand, the heat removal capacity of the PSACS could be improved with relatively inexpensive design changes. For example, the PCT with all factors set to their mean values was $714^{\circ} \mathrm{C}$. A 25% increase in nominal PST volume lowers this value to $700^{\circ} \mathrm{C}$, more than doubling margin. Improvements such as these would serve to offset code uncertainty and would therefore provide greater confidence in the analysis results.

In summary, the methodology described by this paper can be used to support both passive system design and reliability assessment. It provides a framework that can be applied to various types of passive safety systems and can therefore be used as a tool for both current and future reactor designs.

11. REFERENCES

1. Safety Related Terms for Advanced Nuclear Power Plants, IAEA-TECDOC-626, International Atomic Energy Agency, Vienna, Austria (1991)
2. M. Marquès, F. Pignatel, P. Saignesa, F. D'Auria, L. Burgazzi, C. Müllerd, R. Bolado-Lavine, C. Kirchsteiger, V. La Lumia, and I. Ivanov, "Methodology for the Reliability Evaluation of a Passive System and its Integration into a Probabilistic Safety Assessment", Nuclear Engineering and Design, 235 (2005) 2612-2631.
3. G.E. Apostolakis, "A Commentary on Model Uncertainty," in: Proceedings of Workshop on Model Uncertainty: Its Characterization and Quantification, A. Mosleh, N. Siu, C. Smidts, and C. Lui, Eds., Annapolis, MD, October 20-22, 1993, Center for Reliability Engineering, University of Maryland, College Park, MD, 1995 (also published as Report NUREG/CP-0138, US Nuclear Regulatory Commission, Washington, DC, 1994).
4. L. Burgazzi, "Reliability Evaluation of Passive Systems through Functional Reliability Assessment," Nuclear Technology, 144 (2003) 145-150.
5. F. Mackay, G. Apostolakis, and P. Hejzlar, "Incorporating Reliability Analysis into the Design of Passive Cooling Systems with an Application to a Gas-Cooled Reactor," Nuclear Engineering and Design, 238 (2008) 217-228.
6. G. Patalano, G.E. Apostolakis, and P. Hejzlar, "Risk-Informed Design Changes in a Passive Decay Heat Removal System," Nuclear Technology, 163 (2008) 191208.
7. RELAP5-3D ${ }^{\ominus}$ Code Manual. Idaho National Laboratory, Idaho Falls, Idaho (2005)
8. N. Todreas, P. Hejzlar, E. Shwageraus, R. Petroski, A. Nikiforova, J. Whitman, , and C. J. Fong, "Flexible Conversion Ratio Fast Reactor Systems Evaluations," Final report MIT-NFC-PR-101, Center for Advanced Nuclear Energy Systems, Massachusetts Institute of Technology, Cambridge, Massachusetts, July 2008
9. A. K. Nayak, M. R. Gartia, A. Antony, G. Vinod, and R. K. Sinha, "Passive system reliability analysis using the APSRA methodology," Nuclear Engineering and Design, 238 (2008) 1430-1440.
10. V. Dostal, P. Hejzlar, and M. Driscoll, "High Performance Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors," Nuclear Technology, 154 (2006) 265-282
11. P. Hejzlar, J. Buongiorno, P. MacDonald, and N. Todreas, "Design Strategy and Constaints for Medium Power Lead-alloy Cooled Actinide Burners," Nuclear Technology, 147 (2004) 321-343
12. C. Boardman, A. Dubberley, D. Carrol, M. Hui, A. Fanning, and W. Kwant "A Description of the S-PRISM Plant," Proceedings of ICONE 8, Baltimore, MD, (2000)
13. "Definitions," Title 10 Code of Federal Regulations, Pt 50.2. (2007)
14. "Reactor Site Criteria," Title 10 Code of Federal Regulations, Appendix A to Part 100. (2007)
15. "Quality Assurance Criteria for Nuclear Power Plants and Fuel Reprocessing Plants," Title 10 Code of Federal Regulations, Appendix B to Part 50. (2007)
16. M.A. Elliott and G.E. Apostolakis, " A Methodology for the Conceptual Design of Advanced Nuclear Systems using Risk-informed Decision Making," Proceedings of PSA 08, Knoxville, Tennessee, September 7-11, 2008, American Nuclear Society, LaGrange Park, Illinois.
17. R. Pahl, D. Porter, C Lahm, and G. Hofman, "Experimental Studies of U-Pu-Zr Fast Reactor Fuel Pins in the Experimental Breeder Reactor-II," Metallurgical Trans. A, 21A (1990) 1863-1870.
18. M. Rausand and A. Høyland, System Reliability Theory: Models, Statistical Methods, and Applications, $2^{\text {nd }}$ ed., Wiley and Sons. Hoboken, NJ. (2004)
19. S. Eide, S. Chmielewski, and T. Swantz, "Generic Component Failure Database for Light Water and Liquid Sodium Reactor PRAs," Document EGG-SSRE-8875 (1990), Idaho National Laboratory, Idaho Falls, Idaho.
20. SAPHIRE 6.0° Code Manual. Idaho National Laboratory (1998), Idaho Falls, Idaho.
21. G. Box and N. Draper, Response Surfaces, Mixtures, and Ridge Analyses, $2^{\text {nd }}$ ed., Wiley - Interscience, Hoboken, NJ (2007)
22. MINITAB 14^{\ominus}. Minitab, Inc. State College, PA
23. Crystal Ball ${ }^{\oplus}$ Getting Started Guide, Version 7.3.1. Oracle, Inc. (2007)
24. M.R. Gartia, A.K. Nayak, P.K. Vijayan, D. Saha, and R.K. Sinha, "Capability of the Best Estimate Code RELAP5/Mod 3.2 to Analyze the Steady State and Stability of Boiling Two-Phase Natural Circulation Systems," International Congress on Advances in Nuclear Power Plants (ICAPP 2007), Nice, France, May 13-18, 2007.
25. J.I. Lee and P. Hejzlar, "Experimental and Computational Analysis of Gas Natural Circulation Loop", International Congress on Advances in Nuclear Power Plants (ICAPP '07), Nice, France, May 13-18, 2007
26. D. Bayless, "RELAP/MOD3.2 Assessment Using an 11\% Upper Plenum Break Experiment in the PSB Facility," Idaho National Laboratory (2003), Idaho Falls, Idaho.

12. APPENDICES

12.1 Appendix A - Valve Configuration Analysis and Supporting SAPHIRE 7 Calculations

The Passive Secondary Auxiliary Cooling System (PSACS) is a decay heat removal system described in Section 7 of the main body of this paper. Its design function is to remove decay heat during transients at a rate that maintains peak cladding temperature (PCT) below $725^{\circ} \mathrm{C}$ for at least 72 hours with no operator actions. The PSACS is classified as an IAEA Category C passive system because it requires no external initiation signal but does require several valves to change state [1]. The system contains four identical trains, each with 50% capacity and each coupled to a power conversion system (PCS) loop. One PSACS train is shown in Figure A.1.

Figure A. 1 - One PCS Loop and PSACS Train

The PSACS must be isolated during normal operations. This limits heat removal from the primary system and ensures that adequate inventory will be available in the PSACS Storage Tank (PST) by preventing boiling. Furthermore, each PCS loop must be isolated so as not to create a bypass around the PSACS. This concept is discussed in Section 8.3 of the main body of the thesis. Both the normal and transient $\mathrm{S}-\mathrm{CO}_{2}$ flow paths are shown in Figure A.1.

To support a risk-informed design effort, a fault tree of the PSACS was constructed using the code SAPHIRE 7. This fault tree captures the logic of the PSACS and PCS valve configurations and allows for a quantitative assessment of their reliability. It is displayed in Figure A. 2

Figure A. 2 - PSACS Train Fault Tree

The top level event, failure of a PSACS train, occurs when either the PSACS fails to actuate or the PCS fails to isolate. There are four ways this can occur and each requires the simultaneous failure of two valves. Table A. 1 lists these valves and their location on Figure A.1. These failures can occur independently or due to common cause failure (CCF). CCF events are not displayed explicitly in Figure D. 2 but are accounted for using the Beta Factor model. This methodology is discussed in Section 8.3 of the thesis.

Valve Pair	Location in Figure A.1
PSACS Inlet Isolation Valves	B
PSACS Return Isolation Valves	G
PCS Inlet Isolation Valves	C
PCS Return Isolation Valves	H

Table A. 1 - Valve Failures that Disable a PSACS Train

In order to assess the probability of these valve failures, we needed the probability that a given valve would fail to open (PSACS) or close (PCS). No data for super critical CO_{2} $\left(\mathrm{S}-\mathrm{CO}_{2}\right)$ valves could be found, but we were able to locate data for both air and solenoid operated valves with several different working fluids.

Air Operated Valves		$\operatorname{Pr}[$ fail to change state]	
Water/Steam	Mean	1×10^{-3}	
	$95^{\text {th }}$ percentile	4×10^{-2}	
	Mean	3×10^{-3}	
	$95^{\text {th }}$ percentile	1×10^{-2}	
Helium	Mean	1×10^{-4}	
	$95^{\text {th }}$ percentile	4×10^{-4}	
Solenoid Operated Valves			
Water/Steam	Mean	5×10^{-4}	
	$95^{\text {th }}$ percentile	2×10^{-3}	
Sodium	Mean	3×10^{-3}	
	$95^{\text {th }}$ percentile	1×10^{-2}	
Helium	Mean	3×10^{-4}	
	$95^{\text {th }}$ percentile	1×10^{-3}	

Table D. 1 - Valve Reliability Data [16]

These data demonstrate that reliability is affected by the working fluid the valves are operating in. We selected conservatively the reliability numbers for sodium to use in our PSACS model because they bounded the other values. Consistent with the guidance contained in [16], the probability of valve failure is modeled as a lognormal distribution. A graph of this distribution is displayed as Figure A.2. Should reliability data for $\mathrm{S}-\mathrm{CO}_{2}$ valves become available in the future, it could easily be inserted into our fault tree model.

Figure A. 2 - Probability Density Function of the Valve Failure Rate (per demand)

12.2 Appendix B - PSACS Valve Failure Probability Calculation

The PSACS contains four identical, 50% capacity trains. Section 8.3 of the main body of this thesis discusses the probability that two-out-of-four trains will be simultaneously inoperable. This probability is expressed by:
$\operatorname{Pr}[$ failure of two trains $]=\operatorname{Pr}[$ independent failure of two trains $]+\operatorname{Pr}[$ common cause failure of two trains]

In this context, "independent failure" refers to the simultaneous failure of two PSACS trains with no common cause failure (CCF) taking place. CCF refers to the failure of two PSACS trains due in part to the failure of all air-operated valves (AOVs) or solenoid operated valves (SOVs) in the PSACS system.

To get a clearer understanding of these failure types, it is useful to examine a diagram of the PSACS along with a list of the minimal cut sets for the failure of one PSACS train.

Figure B. 1 - One PCS Loop and PSACS Train

Cut Set No.	Failures	Mean Probability
1	PSACS Inlet AOV and PSACS Inlet SOV	9×10^{-6}
2	PSACS Return AOV and PSACS Return SOV	9×10^{-6}
3	PCS Inlet AOV and PCS Inlet SOV	9×10^{-6}
4	PCS Return AOV and PCS Return SOV	9×10^{-6}
5	CCF - SOV and PSACS Inlet AOV	1.5×10^{-5}
6	CCF -SOV and PSACS Return AOV	1.5×10^{-5}
7	CCF - SOV and PCS Inlet AOV	1.5×10^{-5}
8	CCF -SOV and PCS Return AOV	1.5×10^{-5}
9	CCF-AOV and PSACS Inlet SOV	1.5×10^{-5}
10	CCF-AOV and PSACS Return SOV	1.5×10^{-5}
11	CCF-AOV and PCS Inlet AOV	1.5×10^{-5}
12	CCF-AOV and PCS Return AOV	1.5×10^{-5}

Table B. 1 - PSACS Minimal Cut Sets

Each cut set represents a combination of valve failures that leads to the failure of a single PSACS train. Cut sets 1-4 contain only independent failures and cut sets 5-12 contain CCFs. The probabilities of each cut set were calculated using the codes SAPHIRE 7 and Crystal Ball, along with the valve reliability data described in Appendix A. The function of this appendix is to explain how the probability of failure of two PSACS trains is calculated. Therefore, although our analysis used computer codes to account for epistemic uncertainty surrounding failure rates and the Beta Factor, all values shown in these calculations are point estimates (mean values).

The probability of cut sets 1-4 can be expressed as:
$\operatorname{Pr}[1 \ldots 4]=\operatorname{Pr}[$ valve 1 fails $] \times \operatorname{Pr}[$ valve 2 fails $]=3 \times 10^{-3} \cdot 3 \times 10^{-3}=9 \times 10^{-6}$

The total probability of independent failure can be determined by summing the probabilities of cut sets 1-4. This approach, known as the minimal cut set upper bound approximation, is accurate provided that the probability of the top level event (in this case, failure of a PSACS train) is small.
$\operatorname{Pr}[$ independent failure of one train $]=4\left(9 \times 10^{-6}\right)=3.6 \times 10^{-5}$

Since no CCF is present in these cut sets, we can express the probability that two trains fail in this way as simply:
$\operatorname{Pr}[$ independent failure of two trains $]=(\operatorname{Pr}[\text { independent failure of one train }])^{2}=1.3 \times 10^{-9}$

Cut sets 5-12 involve CCF and make use of the conservative Beta Factor model. Here, we are assuming that a fraction of all valve failures, β, results in CCF of all nominally identical valves in the PSACS. Based on common practice, β is assumed to be lognormally distributed with a mean value of 0.10 and an error factor of 3 . Again, this is quite conservative because it assumes that, on average, the failure of one AOV or SOV
results in the failure of all 15 other valves of that type in the PSACS system 10% of the time.

The probability of each cut set 5-8 can be expressed as:

$$
\begin{aligned}
\operatorname{Pr}[5 \ldots 8] & =\operatorname{Pr}[C C F \text { of all SOVs }] \cdot \operatorname{Pr}[\text { any AOV in the train fails }] \\
& =\beta \cdot \operatorname{Pr}[\text { any SOV in system fails }] \cdot \operatorname{Pr}[\text { any AOV the in train fails }]
\end{aligned}
$$

Similarly, the probability of each cut set 9-12 can be expressed as:
$\operatorname{Pr}[9 \ldots 12]=\operatorname{Pr}[C C F$ of all SOVs $] \cdot \operatorname{Pr}[$ any AOV in the train fails $]$
$=\beta \cdot \operatorname{Pr}[$ any SOV in system fails $] \cdot \operatorname{Pr}[$ any AOV in the train fails $]$

To find the total probability of SOV CCF of one train, we sum the probabilities of cut sets 5-8:
$4\left(1.5 \times 10^{-5}\right)=6 \times 10^{-5}$

Likewise, to find the total probability of AOV CCF of one train, we sum the probabilities of cut sets 5-8:
$4\left(1.5 \times 10^{-5}\right)=6 \times 10^{-5}$

Cut sets 5-12 result in just one disabled train of PSACS; however, the remaining three trains have all AOVs or SOVs failed. Therefore, each of the remaining three trains is just one valve failure away from also becoming inoperable.

In either case, one failure of the opposite valve type will result in a second failed PSACS train. The PSACS contains four AOVs and four SOVs per train, for a total of 16 of each type. When one train has already failed, there are 12 AOVs and 12 SOVs in the remaining three trains. Given CCF of all SOVs (cut sets 5-8) only one AOV failure is needed to fail one of the remaining three PSACS trains. Conversely, if CCF of all AOVs has occurred (cut sets 9-12), then failure of one SOV in a remaining PSACS train results in that train being disabled.

Therefore, when one PSACS train has failed due to CCF, the probability that another train will fail is equal to the probability that at least one valve of the opposite type will fail somewhere in the remaining three trains. Since there are twelve such valves, we can express this probability using the binomial theorem:
$\operatorname{Pr}[$ at least one valve fails $]=1-\operatorname{Pr}[$ no valves fail $]=1-(1-q)^{\mathrm{n}}$
where $\mathrm{n}=$ the number of valves
$q=$ the probability of valve failure

Using our valve reliability numbers, we obtain:
$\operatorname{Pr}[$ at least one valve fails $]=1-\left(1-3 \times 10^{-3}\right)^{12}=0.035$

Therefore, any time a PSACS train fails due to CCF, there is a 3.5% chance that a second PSACS train will also fail. Plugging in our numbers from earlier, we have:
$\operatorname{Pr}[$ two trains fail due to AOV CCF$]=6 \times 10^{-5} \cdot 0.035=2.1 \times 10^{-6}$
$\operatorname{Pr}\left[\right.$ two trains fail due to SOV CCF] $=6 \times 10^{-5} \cdot 0.035=2.1 \times 10^{-6}$

Finally, we write the total failure probability of two trains as the sum of the probability of independent failures and the two CCF scenarios:
$\operatorname{Pr}[$ two trains fail $]=1.3 \times 10^{-9}+2.1 \times 10^{-6}+2.1 \times 10^{-6} \approx 4.2 \times 10^{-6}$

Note that this value is a point estimate because we model q and β as point estimates. Using the codes SAPHIRE 7 and Crystal Ball allows us to model q and β as distributions to account for epistemic uncertainty surrounding their values. We then obtain a mean value of 4.0×10^{-6} and a $95^{\text {th }}$ percentile of 1.4×10^{-5}.

12.3 Appendix C - Screened Predictor Variables

During development of the response surface, a number of predictor variables factors were analyzed and determined to be of negligible importance to the SBO case. It is important to note that while these factors were screened out, they may play an important role in other transients or design configurations. For example, when analyzing an unprotected transient, consideration of reactivity coefficients would be very important.

Input Parameter	Basis for non-inclusion
Core oxidation heat transfer resistance	Very low $\Delta \mathrm{T}_{\text {film }}$
PSACS heat exchanger fouling factor	Order of magnitude difference between enthalpy of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{S}^{2} \mathrm{CO}_{2}$
Core roughness	Natural circulation of primary coolant is not an issue
Non-condensable gas buildup in PCS	PCS utilizes a non-condensing power cycle
Piping layout error	Head loss in IHX >> Head loss in piping
Heat loss through piping (missing or damaged insulation)	Captured by pipe-to-fluid heat transfer assessment
PSACS pipe roughness	Head loss in IHX >> Head loss in piping
IHX fouling factor	Large surface area of IHX - substantial margin
Partially failed PSACS isolation valve	Extremely low probability due to parallel configuration
Partially failed PCS isolation valve	Extremely low probability due to series configuration
Pressure loss due to PSACS leakage	RELAP5-3D simulations demonstrated effects to be very low
Reactivity Coefficients	Negligible effects due to SCRAM

Table C. 1 -Screening Justifications

12.4 Appendix D - RELAP5-3D Input Deck

```
=2400 Lead-cooled Reactor Model with PCS and PSACS
0000001 11
0 0 0 0 1 0 0 ~ r e s t a r t ~ t r a n s n t ~
0 0 0 0 1 0 1 ~ r u n ~
0000103-1 reset
*
\begin{tabular}{llllll}
0000201 & \(3.1 .0 \mathrm{e}-80.0010007\) & 100 & 20000 & 200000 & \(*\) trancalc \\
0000202 & \(200.1 .0 \mathrm{e}-8\) & 0.010007 & 100 & 20000 & 200000
\end{tabular} * trancalc
```


20600000 expanded

* Beginning of PSACS water-side model

* no. juns vel/flow
941000121

*hydro	area	length	volume
9410101	28.27433388	1.0	0.0

*

*hydro	horz angle	vert angle	
9410102	0.0	90.0	1.0

*

*hydro	roughness	hyd diam	fe	
9410103	0.0	5.656854249		0

*

*hydro ebt pressure tempe
$9410200 \quad 32 . \mathrm{e} 5 \quad 300.00$

* from to area Kf Kr efvcahs
$94111019410100009600000000.0 \quad 0.00 .00001100$
$94121019390100009410100000.0 \quad 0.0 \quad 0.00001100$
* velf velg veli
$9411201 \quad 0.0 \quad 0.0 \quad 0.0$
$\begin{array}{llll}9412201 & 0.0 & 0.0 & 0.0\end{array}$
* hyd dia beta y-int slope
$9411110 \quad 0.0 \quad 0.00 \quad 1.00 \quad 1.00$
$\begin{array}{lllll}9412110 & 0.0 & 0.00 & 1.00 & 1.00\end{array}$

===============**

```
9600000 htrcph pipe
```



```
* no. vols
960000110
* vol area
\(9600101 \quad 1.347772310\)
* length
\(9600301 \quad 0.4 \quad 10\)
* volume
\(9600401 \quad 0.0 \quad 10\)
* azim angle
\(9600501 \quad 0.0 \quad 10\)
* incl angle
\(960060190.0 \quad 10\)
\(9600701 \quad 0.4 \quad 10\)
* roughness hyd dia
9600801 4.572e-6 0.175105810
* kf kr
\(9600901 \quad 0.0 \quad 0.0 \quad 9\)
* pvbfe
96010010000010
* fvcahs
\(9601101001000 \quad 9\)
* ebt
\(\begin{array}{lllllll}9601201 & 3 & 1.5 \mathrm{E} 5 & 300.00 & 0.0 & 0.0 & 10\end{array}\)
* vel/flow
96013000
* liquid vapor int-face
\(\begin{array}{lllll}9601301 & 0.0 & 0.0 & 0.0 & 9\end{array}\)
*hydro jun diam beta intercept slope jun
\(\begin{array}{llllll}9601401 & 0.1751058 & 0.0 & 1.0 & 1.0 & 9\end{array}\)
```



```
*hydro from to area floss rloss vcahs
\(\begin{array}{lllllll}9400101 & 960010000 & 937000000 & 0.0 & 0.0 & 0.0 & 01100\end{array}\)
*
*hydro vel/flw f flowrate g flowrate j flowrate
9400201000.0
*hydro dhjun beta c m
\(\begin{array}{lllll}9400110 & 0.1751058 & 0.0 & 1.0 & 1.0\end{array}\)
*
\(======-\$\)
```

```
*hydro component name component type
*----------------------------------------------------------------------------
* no. vols
9370001 8
* vol area
9370101 28.27433388 8
* length
9370301 1.0 8
* volume
9370401 0.0 8
* azim angle
9370501 0.0 8
* incl angle
9370601 90.0 8
9370701 1.0 8
* roughness hyd dia
9370801 0.0
* kf kr
9370901 0.0 0.0
* pvbfe
9371001 00000 8
* fvcahs
9371101 001000 7
* ebt
9371201 3 1.5e5 300.00
9371202 3 1.1e5 300.00 0.0 0.0. 8
* vel/flow
9 3 7 1 3 0 0 ~ 0
* liquid vapor int-face
9371301 0.0 0. 0. 7
*hydro jun diam beta intercept slope jun
9371401 4.638663543 0.0 1.0
```



```
*hydro from to area floss r loss vcahs
9380101 937000000 939000000 0.0
*
*hydro vel/flw fflowrate g flowrate j flowrate
9380201 0 0.0 0.0 0.
*hydro dhjun beta c m
9380110}4.638663543 0.0 1.0 1.0
*
```



```
9110101 28.27433388 1.0 0.0
*
\begin{tabular}{lccc} 
*hydro & horz angle & vert angle & \\
9110102 & 0.0 & 90.0 & 1.0
\end{tabular}
*hydro roughness hyd diam \(\quad\) fe
\begin{tabular}{llll}
9110103 & 0.0 & 6.0 & 0
\end{tabular}
*
*hydro ebt pressure tempe
9110200 3 2.e5 300.00
* from to area Kf Kr efvcahs
9111101 911010000 961000000 0.0 0.0 0.0 0001100
9112101 909010000 911010000 0.0 0.0 0.0 0001100
* velf velg veli
9111201 0.0 0.0}00.
9112201 0.0 0.0
* hyd dia beta y-int slope
9111110
9112110}00.0 0.00 1.00 1.00 
```



```
* no. vols
9610001 10
* vol area
9610101 1.23636 10
* length
9610301 0.4 10
* volume
9610401 0.0 10
* azim angle
9610501 0.0 10
* incl angle
9610601 90.0 10
9610701 0.4 10
* roughness hyd dia
9610801 4.572e-6 0.1751058 10
* kf kr
9610901 0.0 0.0 9
* pvbfe
9611001 00000 10
* fvcahs
9611101 001000 9
* ebt
9611201 3 1.5E5 300.00 0.0
```

```
* vel/flow
9611300 0
* liquid vapor int-face
9611301 0.0
*hydro jun diam beta intercept slope jun
```



```
*hydro from to cclall
*
```



```
\begin{tabular}{lllllll}
9071201 & 31.5 e 5 & 300.00 & 0.0 & 0.0. & 1
\end{tabular}
9071202 31.1e5 300.00 0.0
* vel/flow
9071300 0
* liquid vapor int-face
9071301 0.0 0. 0. 7
*hydro jun diam beta intercept slope jun
9071401 4.638663543 0.0
```



```
*hydro from to cccccc
*hydro vel/flw f flowrate g flowrate j flowrate
9080201 0 0.0 0.0 0.
*hydro dhjun beta c m
9080110}4.638663543 0.0 1.0 1.0
*
**=================================================================
========$
*hydro component name component type
        no. vols
9090001 4
* vol area
9090101 26.8188 4
* length
9090301 1.0 4
* volume
9090401 0.0 4
* azim angle
9090501 0.0 4
* incl angle
9090601 -90.0 4
9090701 -1.0 4
* roughness hyd dia
9090801 0.0}4.302037559
* kf kr
9090901 0.0 0.0 3
* pvbfe
9091001 00000 4
* fvcahs
```



```
* vel/flow
9171300 0
* liquid vapor int-face
9171301 0.0
*hydro jun diam beta intercept slope jun
9171401 4.638663543 0.0
```



```
*hydro from to area floss r loss vcahs
9180101 917000000 919000000 0.0
*
*hydro vel/flw f flowrate g flowrate j flowrate
9180201 0 0.0 0.0 0.
*hydro dhjun beta c m
9180110}4.638663543 0.0 1.0 1.0
*
**=========================================================================
*hydro component name component type
9190000 maintube annulus
*--------------------------------------------------------------------------
* no. vols
9190001 4
* vol area
9190101 26.8188 4
* length
9190301 1.0 4
* volume
9190401 0.0 4
* azim angle
9190501 0.0 4
* incl angle
9190601 -90.0 4
9190701 -1.0 4
* roughness hyd dia
9190801 0.0}4.302037559
* kf kr
9190901 0.0 0.0 3
* pvbfe
9191001 00000 4
* fvcahs
9191101 001000 3
* ebt
```



```
9310103 0.0 6.0
*
*hydro ebt pressure tempe
9310200 3 2.e5 300.00
* from to area Kf Kr efvcahs
9311101 931010000 963000000 0.0 0.0 0.0 0001100
9312101 929010000 931010000 0.0 0.0 0.0 0001100
* velf velg veli
9311201 0.0
9312201 0.0
* hyd dia beta y-int slope
9311110
```



```
9630000 htrcph pipe
*
no. vols
9630001 10
* vol area
9630101 1.23636 10
* length
9630301 0.4 10
* volume
9630401 0.0 10
* azim angle
9630501 0.0 10
* incl angle
9630601 90.0 10
9630701 0.4 10
* roughness hyd dia
9630801 4.572e-6 0.1751058 10
* kf kr
9630901 0.0 0.0 9
* pvbfe
9631001 00000 10
* fvcahs
9631101 001000 9
* ebt
9631201 3 1.5E5 300.00
* vel/flow
9631300 0
* liquid vapor int-face
9631301 0.0 0.0 0.0 9
*hydro jun diam beta intercept slope jun
9631401 0.1751058}0.
```



```
3 1 2 0 3 0 1 ~ 2 . 0 ~ 1 ~
* volume
3120401 0.0 1
* azim angle
3 1 2 0 5 0 1 ~ 0 . 0 0 ~ 1 )
* incl angle
3120601 90.0 1
* delta z
3120701 2.0 1
* roughness hyd dia
3120801 0.0 0.54627 1
* pvbfe
3121001 00000 1
* fvcahs
*3121101 001000 2
* ebt
*3121201 0 19250782. 872104.872104.1.0.1
*3121202 0 19250124. 872104.872104.1.0.2
3121201 0 13419192. 828592.828592.1.0.1
*==============================================================================
*hydro component name component type
* no. juns vel/flow
3130001 2 0
\begin{tabular}{lccc} 
*hydro & area & length & volume \\
3130101 & 0.35 & 0.5 & 0.0
\end{tabular}
*
\begin{tabular}{lccc} 
*hydro & horz angle & vert angle & delta z \\
3130102 & 0.0 & -90.0 & -0.5
\end{tabular}
*
\begin{tabular}{lcccc} 
*hydro & roughness & hyd diam & & \\
3130103 & 0.0 & 0.667558 & 0 &
\end{tabular}
*
*hydro ebt pressure tempe
3130200 0 13418526. 822879. 822879.1.
* from to area Kf Kr efvcahs
3131101 312010000 313000000 0.0 0.0 0.0 0001100
3132101 313010000 314000000 0.0 0.0 0.0 0001100
* velf velg veli
3131201 1.022885-9 1.022885-9 0. * 1.85752-8
3132201 1.917845-8 1.917845-8 0. * 2.691416-8
* hyd dia beta y-int slope
3131110}00.
```



```
\(3160103 \quad 0.0 \quad 0.667558 \quad 0\)
*hydro ebt pressure tempe
3160200 0 13452753. 775247.775247.1.
* from to area Kf Kr efvcahs
3161101 314010000 316000000 0.0 0.0 0.0 0001100
3162101 316010000 317000000 0.0 0.0 0.0 0001100
* velf velg veli
3161201 -2.54965-8 -2.54965-8 0.* -3.85307-8
3162201 -1.513218-9 -1.513218-9 0. * -2.98207-8
* hyd dia beta y-int slope
3161110
3162110
*====================================================================
=================*
*--------------------------------------------------------------------------------
* no. vols
3170001 3
* vol area
3170101 0.2 3
* length
3170301 1.0 3 *1.666666667
* volume
3170401 0.0 3
* azim angle
3170501 0.0 3
* incl angle
3170601 90.0 3
* roughness hyd dia
3170801 0.0}00.504627 3-1
* kf kr
3170901 0.0 0.0 2
* pvbfe
3171001 00000 3
* fvcahs
3171101 001000 2
* ebt
3171201 0 13452511. 775445. 775445. 1.0. 1
3171202 0 13451545. 775422. 775422. 1.0. 2
3171203 0 13450579. 775413. 775413.1.0. 3
* vel/flow
3171300 0
* liquid vapor int-face
3171301 -1.008844-9 -1.008844-9 0.1* -1.988044-8
3171302 -5.04444-10 -5.04444-10 0.2* -9.94011-9
```



```
2170001 3
* vol area
2170101 0.2 3
* length
2170301 1.0 3 *1.666666667
* volume
2170401 0.0 3
* azim angle
2170501 0.0 3
* incl angle
2170601 90.0 3
* roughness hyd dia
2170801 0.0}00.504627 3
* kf kr
2170901 0.0 0.0 2
* pvbfe
2171001 00000 3
* fvcahs
2171101 001000 2
* ebt
2171201 0 13452511. 775445. 775445. 1.0. 1
2171202 0 13451545. 775422. 775422. 1.0.. 2
2171203 0 13450579. 775413. 775413. 1.0. 3
* vel/flow
2171300 0
* liquid vapor int-face
2171301 -1.008844-9 -1.008844-9 0.1*-1.988044-8
2171302 -5.04444-10-5.04444-10 0.2 * -9.94011-9
*hydro jun diam beta intercept slope jun
2171401 0.504627
*--------------------------------------------------------------------------------
* turbine bypass valve 1x
2240000 outlet valve
*------------------------------------------------------------------------------
2240101 217010000 295000000 . 1 0.0
2240201 0 0. 0. 0.* 0.
2 2 4 0 3 0 0 ~ m t r v l v ~
2240301 1591 591 2.5 0. 206*pass
**----------------------------
1230000 inlet valve
\begin{tabular}{ccccccc} 
*-------------------------------------------------------------------------* \\
1230101 & 105010000 & 112000000 & .1 & 0.0 & 0.0 & 00100 \\
1230201 & 0 & 0. & 0. & \(0 .{ }^{*} 0\). & & \\
12300
\end{tabular}
1230300 mtrvlv
1230301 1582 582 2.5 0. 206
```


$11311011120100001130000000.0 \quad 0.0 \quad 0.00001100$
$11321011130100001140000000.0 \quad 0.0 \quad 0.00001100$

* velf velg veli
1131201 1.022885-9 1.022885-9 0. * 1.85752-8
1132201 1.917845-8 1.917845-8 0. * 2.691416-8
* hyd dia beta y-int slope
$\begin{array}{lllll}1131110 & 0.0 & 0.00 & 1.00 & 1.00\end{array}$
$\begin{array}{lllll}1132110 & 0.0 & 0.00 & 1.00 & 1.00\end{array}$

1140000 htrcpe pipe
*---
* no. vols
114000110
* vol area
11401010.061327410
* length
$1140301 \quad 0.410$
* volume
$11404010.0 \quad 10$
* azim angle
$1140501 \quad 0.0 \quad 10$
* incl angle
1140601 -90.0 10
* roughness hyd dia
$1140801 \quad 0.0 \quad 8.00 \mathrm{E}-0310$
* kf kr
$1140901 \quad 0.0 \quad 0.0 \quad 9$
* pvbfe
$114100100000 \quad 10$
* fvcahs
$1141101001000 \quad 9$
* ebt
$\begin{array}{llllll}1141201 & 3 & 1.97 \mathrm{E} 7 & 773.31 & 0.0 & 0.0 .\end{array} 10$
* vel/flow
11413001
* liquid vapor int-face
$\begin{array}{lllll}1141301 & 0.0 & 0.0 & 0 . & 9\end{array}$
*hydro jun diam beta intercept slope jun
$\begin{array}{llllll}1141401 & 8.00 \mathrm{E}-03 & 0.0 & 1.0 & 1.0 & 9\end{array}$


```
* ebt
1171201 0 13452511. 775445. 775445. 1.0. 1
1171202 0 13451545. 775422. 775422.1.0. 2
1171203 0 13450579. 775413. 775413. 1.0. 3
* vel/flow
1171300 0
* liquid vapor int-face
1171301 -1.008844-9 -1.008844-9 0.1* -1.988044-8
1171302 -5.04444-10 -5.04444-10 0.2* -9.94011-9
*hydro jun diam beta intercept slope jun
1171401 0.504627}00.
*
* turbine bypass valve 1x
1240000 outlet valve
*---------------------------------------------------------------------------
1240101 117010000 195000000 .1 0.0 0.0 00100
1240201 0 0. 0. 0. * 0.
1240300 mtrvlv
1240301 1592 592 2.5 0. 206
*pass
**-----------------------------
4 2 3 0 0 0 0 ~ i n l e t ~ v a l v e
*--------------------------------------------------------------------------------------
4230101 405010000 412000000 .1 0.0}000.00010
4 2 3 0 2 0 1 ~ 0 ~ 0 . ~ 0 . ~ 0 . * ~ 0 . ~
4 2 3 0 3 0 0 ~ m t r v l v ~
4230301 1596 596 2.5 0. 406
=================
* no. vols
4 1 2 0 0 0 1 ~ 1
* vol area
4 1 2 0 1 0 1 ~ 0 . 2 ~ 1
* length
4 1 2 0 3 0 1 ~ 2 . 0 ~ 1 ~
* volume
4 1 2 0 4 0 1 ~ 0 . 0 ~ 1 )
* azim angle
4 1 2 0 5 0 1 ~ 0 . 0 0 ~ 1 )
* incl angle
4 1 2 0 6 0 1 ~ 9 0 . 0 ~ 1 ~
* delta z
4120701 2.0 1
```



```
4140301 0.4 . 10
* volume
4 1 4 0 4 0 1 ~ 0 . 0 ~ 1 0 ~
* azim angle
4140501 0.0 10
* incl angle
4140601 -90.0 10
* roughness hyd dia
4140801 0.0 8.00E-03 10
* kf kr
4140901 0.0 0.0 9
* pvbfe
4 1 4 1 0 0 1 ~ 0 0 0 0 0 ~ 1 0
* fvcahs
```



```
* ebt
4141201 3 1.97E7 773.31 0.0
* vel/flow
4 1 4 1 3 0 0 ~ 1
* liquid vapor int-face
4141301 0.0
*hydro jun diam beta intercept slope jun
4141401 8.00E-03 0.0 1.0
*=======================================
*
* no. juns vel/flow
4160001 2 0
\begin{tabular}{lccc} 
*hydro & area & length & volume \\
4160101 & 0.35 & 0.5 & 0.0
\end{tabular}
*
*hydro horz angle vert angle delta z
4160102 0.0 -90.0 -0.5
*
\begin{tabular}{lccc} 
*hydro & roughness & hyd diam & fe \\
4160103 & 0.0 & 0.667558 & 0
\end{tabular}
*
*hydro ebt pressure tempe
4160200 0 13452753. 775247.775247.1.
* from to area Kf Kr efvcahs
4161101 414010000416000000 0.0 0.0 0.0 0001100
4162101 416010000417000000 0.0 0.0 0.0 0001100
* velf velg veli
4161201 -2.54965-8 -2.54965-8 0. * -3.85307-8
```

```
4162201 -1.513218-9 -1.513218-9 0.* -2.98207-8
* hyd dia beta y-int slope
4161110}00.0 0.00 1.00 1.00 
4162110
```



```
* no. vols
4 1 7 0 0 0 1 3
* vol area
4 1 7 0 1 0 1 ~ 0 . 2 ~ 3 ~
* length
4 1 7 0 3 0 1 ~ 1 . 0 ~ 3 ~ * 1 . 6 6 6 6 6 6 6 6 7 ~
* volume
4 1 7 0 4 0 1 ~ 0 . 0 ~ 3 - 1 )
* azim angle
4 1 7 0 5 0 1 ~ 0 . 0 ~ 3 - 1 )
* incl angle
4 1 7 0 6 0 1 ~ 9 0 . 0
* roughness hyd dia
4170801 0.0
* kf kr
4170901 0.0 0.0 2
* pvbfe
4 1 7 1 0 0 1 ~ 0 0 0 0 0 ~ 3
* fvcahs
4 1 7 1 1 0 1 ~ 0 0 1 0 0 0 ~ 2 ~
* ebt
4171201 0 13452511. 775445. 775445. 1.0. 1
4171202 0 13451545. 775422. 775422. 1.0. 2
4171203 0 13450579. 775413. 775413.1.0. 3
* vel/flow
4 1 7 1 3 0 0 ~ 0
* liquid vapor int-face
4 1 7 1 3 0 1 ~ - 1 . 0 0 8 8 4 4 - 9 ~ - 1 . 0 0 8 8 4 4 - 9 ~ 0 . 1 ~ * ~ - 1 . 9 8 8 0 4 4 - 8 ~
4171302 -5.04444-10 -5.04444-10 0.2 * -9.94011-9
*hydro jun diam beta intercept slope jun
4171401 0.504627}00.
*--------------------------------------------------------------------------------
* turbine bypass valve 1x
4240000 outlet valve
```

```
4240101 417010000 495000000 .1 0.0
4240201 0 0. 0. 0.* 0.
4 2 4 0 3 0 0 ~ m t r v l v ~
```



```
\begin{tabular}{ccccc}
1010201 & 0.0 & 0.0 & \multicolumn{2}{l}{3189.1} \\
0.0 \\
1010202 & 0.5 & 0.0 & 0.0 & 0.0 \\
1010203 & 100. & 0.0 & 0.0 & 0.0
\end{tabular}
```



```
11141100 0 1
* # r
111411014 0.0070
*
* compos. #
11141201 3 4
*
* source #
11141301 0.0 4
*
* temperature flag
11141400 0
*
* temperature #
11141401700.00 5
* vol inc type code factor
11141501 114010000 10000 160 1 280. 10
* vol inc type code factor
11141601 960010000 10000 111 1 280. 10
*
*
* type mult D-lt D-rt # *sour
11141701 0
11141800 1
* Dhe LHEf LHEr LGSf LGSr Kfwd Krev Fboi nclf povd ff #
11141801 0.0 10.0
11141802 0.0 10.0
11141803}0.
*
11141900 1
* Dhe LHEf LHEr LGSf LGSr Kfwd Krev Fbo
11141901}0.010.0 10.0 10.0 10.0 0.0 0.0 1.0 4.0 3.0 1.0 10
*
******************************* STRUCTURE 3141 ******************
*
*ht str ht.strs m.pts geom init l.coord refl b.vol
12141000}1010 5 2 1 0.005280844 0)
*
* loc flag
12141100 0 1
*
* # r
```

```
121411014 0.0070
*
* compos. #
12141201 3 4
* source #
12141301 0.0 4
*
* temperature flag
12141400 0
*
* temperature #
12141401 700.00 5
*
* vol inc type code factor
12141501 214010000 10000 160 1 280. 10
* vol inc type code factor
12141601 961010000 10000 111 1 280. 10
*
*
* type mult D-lt D-rt # *sour
12141701 0
*
12141800 1
* Dhe LHEf LHEr LGSfLGSr Kfwd Krev Fboi nclf povd ff #
12141801 0.0 10.0
12141802 0.0 10.0
12141803 0.0 10.0}10.0.0 10.0 10.0 0.0 0.0 1.0 4.0 3.0 1. 10
*
12141900 1
* Dhe LHEf LHEr LGSf LGSr Kfwd Krev Fbo
12141901 0.0}10.
*
****************************** STRUCTURE 3141 *******************
*
*ht str ht.strs m.pts geom init l.coord refl b.vol
```



```
*
* loc flag
13141100 0 1
*
* # r
131411014 0.0070
*
* compos. #
```

```
13141201 3 4
*
* source #
13141301 0.0 4
*
* temperature flag
13141400 0
*
* temperature #
13141401700.00 5
*
* vol inc type code factor
13141501 314010000 10000 160 1 280. 10
* vol inc type code factor
13141601 962010000 10000 111 1 280. 10
*
*
* type mult D-lt D-rt # *sour
13141701 0
*
13141800 1
* Dhe LHEf LHEr LGSf LGSr Kfwd Krev Fboi nclf povd ff #
13141801 0.0 10.0
13141802 0.0 10.0
13141803 0.0 10.0}1010.0 10.0 10.0 0.0 0.0 1.0 4.0 3.0 1. 10
*
13141900 1
* Dhe LHEf LHEr LGSf LGSr Kfwd Krev Fbo
13141901 0.0 10.0}1010.0 10.0 10.0 0.0 0.0 1.0 4.0 3.0 1.0 10
*
****************************** STRUCTURE 3141 ******************
*
*=================================================================
*ht str ht.strs m.pts geom init l.coord refl b.vol
14141000}1005% 2 10 0.005280844 0
*
* loc flag
14141100 0 1
*
* # r
141411014 0.0070
*
* compos. #
14141201 3 4
*
* source #
```

```
14141301 0.0 4
*
* temperature flag
14141400 0
*
* temperature #
14141401700.00 5
*
* vol inc type code factor
14141501 414010000 10000 160 1 280. 10
* vol inc type code factor
14141601 963010000 10000 111 1 280. 10
*
*
* type mult D-lt D-rt # *sour
14141701 0
*
14141800 1
* Dhe LHEf LHEr LGSf LGSr Kfwd Krev Fboi nclf povd ff #
14141801 0.0 10.0
14141802 0.0 10.0
14141803 0.0 10.0}1010.0 10.0 10.0 0.0 0.0 1.0 4.0 3.0 1. 10
*
14141900 1
* Dhe LHEf LHEr LGSf LGSr Kfwd Krev Fbo
14141901 0.0 10.0
```



```
* approximate scram curve with 1s delay
```



```
20299001 0.0 0.0
20299002 1.0 0.0
20299003 1.5 -0.2
20299004 2.0 -0.5
20299005 2.5 -3.0
20299006 3.0
$==========-_===================================------------------------------------------------------------------------------------
* decay power based on eugene's calculations for new core
*
20270600 power 510 1.0 1.0
* time p/po
20270601 -1.0 0.0
```

20270602	0.1	0.0589144
20270603	1.0	0.0551549
20270604	1.5	0.0536907
20270605	2.0	0.0524328
20270606	4.0	0.0487971
20270607	6.0	0.0464603
20270608	8.0	0.0447893
20270609	10.0	0.0435018
20270610	15.0	0.0411928
20270611	20.0	0.0395791
20270612	40.0	0.0357397
20270613	60.0	0.0334909
20270614	80.0	0.0319063
20270615	100.0	0.0307046
20270616	150.0	0.0286318
20270617	200.0	0.0272649
20270618	400.0	0.0242200
20270619	600.0	0.0224554
20270620	800.0	0.0211546
20270621	1000.0	0.0201120
20270622	1500.0	0.0181624
20270623	2000.0	0.0167732
20270624	4000.0	0.0137039
20270625	6000.0	0.0122575
20270626	8000.0	0.0114053
20270627	10000.0	0.0108279
20270628	15000.0	0.0099174
20270629	20000.0	0.0093461
20270630	40000.0	0.0080769
20270631	60000.0	0.0073531
20270632	80000.0	0.0068500
20270633	100000.0	0.0064680
20270634	150000.0	0.0057910
20270635	200000.0	0.0053224
20270636	400000.0	0.0042407
20270637	600000.0	0.0036697
20270638	800000.0	0.0033155
20270639	1000000.0	0.0030754

30000000 point separabl

* fp-decay power rinit beta/lambda fp-y u239-y G-factor 30000001 gamma $2400 . e 6$-1.0e-60 666.67 1.0 1.e-60 0.
* fp-type
*30000002 ans79-3 200. $0.0 \quad 0.0 \quad 1.0$
*

30000011990 * scram curve
3000001210506 * radial expansion \quad * trancalc
3000001310508 * crd expansion $\quad *$ trancalc

* Coolant density coefficient
* density reactivity
*30000501 8707.20 .5984605
*30000502 9533.70 .6315505
*30000503 10073.60 .00
*30000504 $10155.6-0.0959595$
*30000505 10276.1-0.2369395
* cliff for LBE
**30000506 10593. 0.1663 * extrapolated * trancalc -0.102
* density reactivity
$300005017347.2-7.6162502 \quad *$ trancalc
$300005029017.60-0.4459169 \quad *$ trancalc -7.6162502
$300005039574.40 \quad 0.1924165$ * trancalc -0.4459169
300005049797.120 .2025009
$300005059852.80 \quad 0.1831248$
$300005069908.48 \quad 0.1549898$
300005079964.160 .1180959
3000050810019.840 .0724432
3000050910041.000 .0527985 * trancalc 0.0724432
3000051010055.480 .0386287 * trancalc 0.0527985
3000051110078.860 .0144883 * trancalc 0.0386287
$3000051210092.220 .0000000 \quad$ * trancalc 0.0144883
$3000051310103.36-0.0124589 \quad$ * trancalc 0.0000000
$3000051410110.04-0.0201025 \quad *$ trancalc -0.0124589
$3000051510136.77-0.0519379 \quad *$ trancalc -0.0201025
$3000051610156.81-0.0771388 \quad *$ trancalc -0.0519379
$3000051710186.88-0.1170685$ * trancalc -0.0771388
$3000051810242.56-0.1977569 \quad *$ trancalc -0.1170685
$3000051910298.24-0.2872041$ * trancalc -0.1977569
$3000052010353.92-0.3854102 \quad *$ trancalc -0.2872041
-0.3854102
* Doppler $=-0.111 \mathrm{c} / \mathrm{K} \sim$ as calculated by ES, $\mathrm{ae}=-0.117 \mathrm{c} / \mathrm{K}$
* temp reactivity (includes thermal expansion)
$\begin{array}{lllll}* 30000601 & 300 & 0.0 & * \text { trancalc } & \\ * 30000602 & 1154 . & -1.94712 & * \text { trancalc } & -1.05042\end{array}$
*30000603 $1873.15-3.586782$ * extrapolated * trancalc -1.93497
*
* New Doppler 4.408620E-09x2-1.198005E-05x+0.02755847 + thermal expansion
$30000601300.00 \quad 0.0$
$30000602400.00-0.364056$
$30000603600.00-1.018691$

```
30000604 900.00-1.816951
30000605 1000.00-2.034053
30000606 1200.00-2.39478
30000607 1500.00-2.752178
30000608 1600.00-2.822326
30000609 1800.00-2.889145
*
\begin{tabular}{lllll}
30000701 & 510010000 & 0 & 0.1454887 & 0.0 \\
30000702 & 510020000 & 0 & 0.2473204 & 0.0 \\
30000703 & 510030000 & 0 & 0.3330110 & 0.0 \\
30000704 & 510040000 & 0 & 0.1986532 & 0.0 \\
30000705 & 510050000 & 0 & 0.0753286 & 0.0 \\
30000706 & 516010000 & 0 & 0.0000288 & 0.0 \\
30000707 & 516020000 & 0 & 0.0000490 & 0.0 \\
30000708 & 516030000 & 0 & 0.0000660 & 0.0 \\
30000709 & 516040000 & 0 & 0.0000394 & 0.0 \\
30000710 & 516050000 & 0 & 0.0000149 & 0.0
\end{tabular}
*
\begin{tabular}{lllll}
30000801 & 5101001 & 0 & 0.1454887 & 0.0 \\
30000802 & 5101002 & 0 & 0.2473204 & 0.0 \\
30000803 & 5101003 & 0 & 0.3330110 & 0.0 \\
30000804 & 5101004 & 0 & 0.1986532 & 0.0 \\
30000805 & 5101005 & 0 & 0.0753286 & 0.0 \\
30000806 & 5161001 & 0 & 0.0000288 & 0.0 \\
30000807 & 5161002 & 0 & 0.0000490 & 0.0 \\
30000808 & 5161003 & 0 & 0.0000660 & 0.0 \\
30000809 & 5161004 & 0 & 0.0000394 & 0.0 \\
30000810 & 5161005 & 0 & 0.0000149 & 0.0
\end{tabular}
$==========================================================
* compute tfuel, tmod, and rhomod to check reactivity feedback
* use power squared weighting
```



```
*ctlvar name type factor init fc min max 20505000 rhomod sum \(1.0 \quad 10089.61\)
*
*ctlvar a0 al v1 p1 a2 v2 p2
20505001 0.0 0.1454887 rho 510030000 0.2473204 rho 510040000
20505002 0.3330110 rho 510050000 0.1986532 rho 510060000
20505003 0.0753286 rho 510070000 0.0000288 rho 516030000
20505004 0.0000490 rho 516040000 0.0000660 rho 516050000
20505005 0.0000394 rho 516060000 0.0000149 rho 516070000
*
*ctlvar name type factor init fc min max
20505020 tmod sum 1.0 798.15 1
```

*ctlvar a0 a1 v1 p1 a2 v2 p2
205050210.00 .1454887 tempf 5100300000.2473204 tempf 510040000
205050220.3330110 tempf 5100500000.1986532 tempf 510060000
205050230.0753286 tempf 5100700000.0000288 tempf 516030000
$20505024 \quad 0.0000490$ tempf 5160400000.0000660 tempf 516050000
205050250.0000394 tempf 5160600000.0000149 tempf 516070000
*
*ctlvar name type factor init fc min max
20505040 tfuel sum $1.0 \quad 954.9 \quad 1$
*
*ctlvar a0 a1 v1 p1 a2 v2 p2
205050410.00 .1454887 htvat 51010010.2473204 htvat 5101002
$20505042 \quad 0.3330110$ htvat 51010030.1986532 htvat 5101004
$20505043 \quad 0.0753286$ htvat 51010050.0000288 htvat 5161001
$20505044 \quad 0.0000490$ htvat 51610020.0000660 htvat 5161003
205050450.0000394 htvat 51610040.0000149 htvat 5161005
*
$\$=======$

* radial expansion feedback coefficient $=-0.00135 \$ / \mathrm{deg} \mathrm{C}$; control on
* average moderator temperature ($-0.0023 \$ / \mathrm{deg} \mathrm{C}$ used by Cliff)
* crd expansion feedback coefficient $=0.0 \$ / \mathrm{deg} \mathrm{C}$

="=====
*ctlvar name type factor init fc min max
*20505050 tmodexp sum $1.0 \quad 792.9751 \quad$ * Cliff
20505050 tmodexp sum $1.0 \quad 798.151$
*

*ctlvar a0 a1 v1 p1 a2 v2 p2
$205050510.0 \quad 0.20$ tempf $510030000 \quad 0.20$ tempf 510040000
$20505052 \quad 0.20$ tempf $510050000 \quad 0.20$ tempf 510060000
205050530.20 tempf 510070000
*
*ctlvar name type factor init fc min max
20505060 radexp sum $1.0-1.07750251$
*20505060 radexp sum $1.0 \quad-1.835751$
*
*ctlvar a0 a1 v1 p1 a2 v2 p2
$205050610.0-0.00135$ cntrlvar 505
*20505061 0.0-0.0023 cntrlvar 505
*
*ctlvar name type factor init fc min max
20505080 crdexp constant 0.0


```
* maximum clad temperature for transient limit; based on inner surface
$=======================================================================
*ctlvar name type factor init fc min max
20501010 mtclad stdfnctn 1.0 903.11 1
*
*ctlvar type v1 p1 v2 p2
20501011 max httemp 516100107 httemp 516100207
20501012 httemp 516100307 httemp 516100407
20501013 httemp 516100507
*
*ctlvar name type factor init fc min max
20501020 tclad sum 1.0 629.96 1
*
*ctlvar a0 a1 v1 p1 a2 v2 p2
20501021-273.15 1.0 cntrlvar 101
*
*ctlvar name type factor init fc min max
20501030 maxclad stdfnctn 1.0 647.631
*
*ctlvar type v1 p1 v2 p2
20501031 max cntrlvar 102 cntrlvar 103
*
*ctlvar name type factor init fc min max
20501040 terr sum 1.0 20.04 1
*
*ctlvar a0 a1 v1 p1 a2 v2 p2
20501041 0.0 1.0 cntrlvar 100 -1.0 entrlvar 102 * fpsscalc
*
*ctlvar name type factor init fc min max
*20507060 corepow integral 5.e5 0.0}003 0.0 4000.e6 
*
*ctlvar v1 pl
*20507061 cntrlvar 704
*20507060 corepow constant 6.5e6 * dpsscalc
*
*ctlvar name type factor init fc min max
20501050 tabdecy function 2400.e6 0. 00
*
20501051 time 0 706
*
*ctlvar name type factor init fc min max
20501060 decayp stdfnctn 1.0 131182320.00
*
```



```
8100304 1.30 14
8100305 1.50 15
* volume
8100401 0.0 15
* azim angle
8100501 0.00 15
* incl angle
8100601 -90.0 15
* delta z
8100701 -1.0 1
8100702-1.0 11
8100703 -1.3 13
8100704 -1.30 14
8100705 -1.50 15
* roughness hyd dia
8100801 4.572e-5 1.6 15
* pvbfe
8101001 00000 15
* fvcahs
8101101 001000 14
* ebt
8101201 6 100000.6 372429. 372429. 1. 1. 1
8101202 6 100012. 372577.5 372577.5 1. 1. 2
8101203 6 100023.4 372759. 372759. 1. 1. 3
8101204 6 100034.8 372950. 372950. 1. 1. 4
8101205 6 100046.2 373134. 373134. 1. 1. 5
8101206 6 100057.6 373339.6 373339.6 1. 1. 6
8101207 6 100069. 373535. 373535. 1. 1. 7
8101208 6 100080.3 373720. 373720. 1. 1. 8
8101209 6 100091.6 373894.4 373894.4 1. 1. 9
8101210 6 100103. 374059. 374059. 1. 1. 10
8101211 6 100114.3 374213. 374213. 1. 1. 11
8101212 6 100127.3 374398.5 374398.5 1.1. 12
8101213 6 100142. 374567. 374567. 1. 1. 13
8101214 6 100156.8 374718. 374718. 1. 1. 14
8101215 6 100172.6 374868. 374868. 1. 1. 15
* vel/flow
8101300 0
* liquid vapor int-face
8101301 2.41721 2.41721 0. 1 *83.7017
8101302 2.4186 2.4186 0. 2 * 83.7017
8101303 2.42037 2.42037 0. 3 * 83.7017
8101304 2.42224 2.42224 0. 4 * 83.7017
8101305 2.424035 2.424035 0.5 * 83.7017
8101306 2.426067 2.426067 0. 6 * 83.7016
8101307 2.427984 2.427984 0. 7 * 83.7016
```

$8101308 \quad 2.429792 .429790 .8 * 83.7016$
$81013092.4314772 .4314770 .9 * 83.7016$
$8101310 \quad 2.43305 \quad 2.433050 .10 \quad * 83.7016$
$81013112.4345062 .4345060 .11 * 83.7016$
$81013122.4362732 .4362730 .12 * 83.7016$
$81013132.43781 \quad 2.43781$ 0. 13 * 83.7016
$81013142.4391422 .4391420 .14 * 83.7016$

| *hydro | from | to | area | floss | r loss vcahs | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8150101 | 810010000 | 820000000 | 0.0 | 0.327 | 0.327 | 01000 |

*

*hydro vel/flw	f flowrate g flowrate j flowrate			
81502010	5.7248			0. * 83.7016
*hydro dhjun	beta	c	m	
81501100.5	0.0	1.0	1.0	

================*
8200000 riser pipe

* no. vols
820000115
* vol area
820010112.642415
* length
$8200301 \quad 1.50 \quad 1$
$8200302 \quad 1.30 \quad 2$
$82003031.3 \quad 4$
$8200304 \quad 1.00 \quad 14$
$82003051.00 \quad 15$
* volume
$8200401 \quad 0.0 \quad 15$
* azim angle
$8200501 \quad 0.00 \quad 15$
* incl angle
$8200601 \quad 90.0 \quad 15$
* delta z
$82007011.50 \quad 1$
$82007021.30 \quad 2$

* reactor and containment vessel walls; gap filled with lead bismuth
$*==$
*ht str ht.strs m.pts geom init l.coord refl b.vol ax.incr.
$\begin{array}{llllll}18201000 & 16 & 13 & 2 & 1 & 4.920 \mathrm{E}+00\end{array} 0$
*
* loc flag
$182011000 \quad 1$
*
* \# r
$182011014 \quad 4.970 \mathrm{E}+00$
1820110225.000
1820110365.100
*
* compos. \#

1820120134

```
18201202 6 6
18201203 3 12
*
* source #
18201301 0.0 12
*
* temperature flag
18201400 0
*
* temperature #
18201401 600.00 13
*
* vol inc type code factor #
18201501500010000 0 0 1 1 1 1.500 1
18201502580010000}000<1 1 1.300 2 
18201503580020000 10000 1 1 1 1 1.300 4
18201504580040000 10000 1 
18201505580140000 10000 1 
*
* vol inc type code factor #
18201601820010000 0
18201602820020000
18201603820030000 
18201604820050000 10000 1 
18201605820150000 0
*
* type mult D-lt D-rt # *source
18201701 0
*
18201800 1
* Dhe LHEf LHEr LGSf LGSr Kfwd Krev Fboil nclf povd ff #
18201801 0.0 10. 10. 10. 10. 0.0 0.0 1.0 1.50 1.0 1.0 1
18201802 0.0 10. 10. 10. 10. 0.0 0.0}1.0 14.90 1.0 1.0 16
*
18201900 1
* Dhe LHEf LHEr LGSf LGSr Kfwd Krev Fboil nclf povd ff #
18201901 0.0 10. 10. 10. 10. 0.0}00.
*
****************************** STRUCTURE }820
```

* collector cylinder wall
*=========
*ht str ht.strs m.pts geom init l.coord refl b.vol ax.incr.
$\begin{array}{lllllll}18202000 & 16 & 5 & 2 & 1 & 5.490 & 0\end{array}$

```
* loc flag
18202100 0 1
*
* # r
182021014 5.500
*18202102 1 3.604325
*
* compos. #
18202201 3 4
*18202202 5 5 *asbestos
*
* source #
18202301 0.0 4
*
* temperature flag
18202400 0
*
* temperature #
18202401 600.00 5
*
* vol inc type code factor #
18202501 820010000 0 < 1 1 1 1.50 1
18202502 820020000 0 1 1 1 1.30
18202503 820030000 10000 1 
18202504 820050000 10000 1 1 l l
18202505 820150000 0
*
* vol inc type code factor #
18202601 810150000 0 0
18202602 810140000 0 1 1 1 1.30
18202603 810130000 -10000 1 
18202604 810110000-10000 1 1 1.00 14
18202605 810010000 0 1 1 1 0.50
*
* type mult D-lt D-rt # *source
18202701}0
*
18202800 1
* Dhe LHEf LHEr LGSf LGSr Kfwd Krev Fboil nclf povd ff #
18202801 0.0 10. 10. 10. 10. 0.0}00.0 1.0 16.4 1.0 2.0 16
*
18202900 1
* Dhe LHEf LHEr LGSf LGSr Kfwd Krev Fboil nclf povd ff #
18202901 0.0 10. 10. 10. 10. 0.0 0.0}1.0 16.4 1.0 1.0 16
*
```

```
****************************** STRUCTURE }820
```

* perforated plate
*=========
*ht str ht.strs m.pts geom init l.coord refl b.vol ax.incr. $\begin{array}{lllllll}18203000 & 16 & 3 & 2 & 1 & 5.290 & 0\end{array}$

```
*
```

* loc flag
$182031000 \quad 1$
*
* \# r
1820310125.300
*
* compos. \#
1820320132
*
* source \#
$182033010.0 \quad 2$
*
* temperature flag
182034000
*
* temperature \#
18203401600.003
*

| $*$ | vol | inc | type | code | factor | | |
| :--- | :---: | :---: | :---: | :---: | :--- | :--- | :--- | :--- |
| 18203501 | 820010000 | 0 | 1 | 1 | 0.90 | 1 | |

$\begin{array}{lllllll}18203502 & 820020000 & 0 & 1 & 1 & 0.78 & 2\end{array}$
$\begin{array}{lllllll}18203503 & 820030000 & 10000 & 1 & 1 & 0.78 & 4\end{array}$
$\begin{array}{lllllll}18203504 & 820050000 & 10000 & 1 & 1 & 0.60 & 14\end{array}$
$\begin{array}{lllllll}18203505 & 820150000 & 0 & 1 & 1 & 0.30 & 16\end{array}$
*

* vol inc type code factor \#
$18203601820010000 \quad 0 \quad 1 \quad 1 \quad 0.90 \quad 1$
$\begin{array}{lllllll}18203602 & 820020000 & 0 & 1 & 1 & 0.78 & 2\end{array}$
$\begin{array}{lllllll}18203603 & 820030000 & 10000 & 1 & 1 & 0.78 & 4\end{array}$
$\begin{array}{lllllll}18203604 & 820050000 & 10000 & 1 & 1 & 0.60 & 14\end{array}$
$18203605820150000 \quad 0 \quad 1 \quad 1 \quad 0.30 \quad 16$
*
* type mult D-lt D-rt \# *source
$\begin{array}{llllll}18203701 & 0 & 0.0 & 0.0 & 0.0 & 16\end{array}$
*

$18203800 \quad 1$

* Dhe LHEf LHEr LGSf LGSr Kfwd Krev Fboil nclf povd ff \#
$182038010.0 \quad 10.10 .10 .10 .0 .0 \quad 0.0 \quad 1.016 .41 .0 \quad 2.016$
$18203900 \quad 1$
* Dhe LHEf LHEr LGSf LGSr Kfwd Krev Fboil nclf povd ff \# $182039010.0 \quad 10.10 .10 .10 .0 .0 \quad 0.0 \quad 1.016 .41 .0 \quad 2.016$
*

* nset
$60000000 \quad 16$
* from outer wall of containment vessel to inner wall of collector
$* ~$
* nrh trmin alpha set

601000004 273. 0.0

* htnum jlremis

601010018201001	1	0.75
601020018203001	0	0.75
601030018203001	1	0.75
601040018202001	0	0.75

*
* 1 view factor surface

60101101	0.0	1	$*$ F1-1
60101102	0.60	$2 * F 1-2$	
60101103	0.0	$3 * F 1-3$	
60101104	0.40	$4 * F 1-4$	

* 2
$60102101 \quad 0.964083 \quad 1 \quad *$ F2-1
$60102102 \quad 0.035917 \quad 2$ *F2-2
$60102103 \quad 0.0 \quad 3$ *F2-3
$60102104 \quad 0.0 \quad 4$ * F2-4
* 3

60103101	0.0	1	$*$ F3-1
60103102	0.0	2	$*$ F3-2
60103103	0.0	3	$*$ F3-3
60103104	1.0	4	$*$ F3-4
$* 4$			
60104101	0.371585	1	$*$ F4-1
60104102	0.0	2	$*$ F4-2
60104103	0.579235	3	$* F 4-3$
60104104	0.049180	4	$* F 4-4$

*
* nrh trmin alpha set

602000004 273. $0.0 \quad 01$

* htnum jlremis
$602010018201002 \quad 1 \quad 0.75$
60202001820300200.75
60203001820300210.75

```
602040018202002 0 0.75
*
* nrh trmin alpha set
60300000 4 273. 0.0 01
* htnum jlremis
603010018201003 1 0.75
6 0 3 0 2 0 0 1 8 2 0 3 0 0 3 ~ 0 ~ 0 . 7 5
603030018203003 1 0.75
603040018202003 0 0.75
*
* nrh trmin alpha set
60400000 4 273. 0.0 01
* htnum jlremis
604010018201004 1 0.75
604020018203004 0 0.75
604030018203004 1 0.75
604040018202004 0 0.75
*
* nrh trmin alpha set
60500000 4 273. 0.0 01
* htnum jlremis
605010018201005 1 0.75
605020018203005 0 0.75
605030018203005 1 0.75
605040018202005 0 0.75
*
* nrh trmin alpha set
60600000 4 273. 0.0 01
* htnum jlremis
606010018201006 1 0.75
6 0 6 0 2 0 0 1 8 2 0 3 0 0 6 ~ 0 ~ 0 . 7 5
606030018203006 1 0.75
606040018202006 0 0.75
*
* nrh trmin alpha set
60700000 4 273. 0.0 01
* htnum jlremis
607010018201007 1 0.75
607020018203007 0 0.75
607030018203007 1 0.75
607040018202007 0 0.75
*
* nrh trmin alpha set
60800000 4 273. 0.0 01
* htnum jlremis
608010018201008 1 0.75
```

```
608020018203008 0 0.75
6 0 8 0 3 0 0 1 8 2 0 3 0 0 8 ~ 1 ~ 0 . 7 5
608040018202008 0 0.75
*
* nrh trmin alpha set
60900000 4 273. 0.0 01
* htnum jlremis
609010018201009 1 0.75
6 0 9 0 2 0 0 1 8 2 0 3 0 0 9 ~ 0 ~ 0 . 7 5
60903001 8203009 1 0.75
609040018202009 0 0.75
*
* nrh trmin alpha set
61000000 4 273.0.0 01
* htnum jlr emis
6 1 0 0 1 0 0 1 8 2 0 1 0 1 0 ~ 1 ~ 0 . 7 5
6 1 0 0 2 0 0 1 8 2 0 3 0 1 0 ~ 0 ~ 0 . 7 5
6 1 0 0 3 0 0 1 8 2 0 3 0 1 0 ~ 1 ~ 0 . 7 5
610040018202010 0 0.75
*
* nrh trmin alpha set
61100000 4 273. 0.0 01
* htnum jlremis
6 1 1 0 1 0 0 1 8 2 0 1 0 1 1 ~ 1 ~ 0 . 7 5
611020018203011 0 0.75
611030018203011 1 0.75
611040018202011 0 0.75
*
* nrh trmin alpha set
61200000 4 273. 0.0 01
* htnum jlr emis
612010018201012 1 0.75
612020018203012 0 0.75
6 1 2 0 3 0 0 1 8 2 0 3 0 1 2 ~ 1 ~ 0 . 7 5
612040018202012 0 0.75
*
* nrh trmin alpha set
61300000 4 273. 0.0 01
* htnum jlremis
613010018201013 1 0.75
613020018203013 0 0.75
6 1 3 0 3 0 0 1 8 2 0 3 0 1 3 ~ 1 ~ 0 . 7 5
6 1 3 0 4 0 0 1 8 2 0 2 0 1 3 ~ 0 ~ 0 . 7 5 )
*
* nrh trmin alpha set
61400000 4 273. 0.0 01
```

```
* htnum jlr emis
614010018201014 1 0.75
614020018203014 0 0.75
614030018203014 1 0.75
614040018202014 0 0.75
*
* nrh trmin alpha set
61500000 4 273. 0.0 01
* htnum jlremis
615010018201015 1 0.75
6 1 5 0 2 0 0 1 8 2 0 3 0 1 5 ~ 0 ~ 0 . 7 5
615030018203015 1 0.75
615040018202015 0 0.75
*
* nrh trmin alpha set
61600000 4 273. 0.0 01
* htnum jlremis
616010018201016 1 0.75
616020018203016 0 0.75
616030018203016 1 0.75
616040018202016 0 0.75
*
**ctlvar name type factor init fc min max
20507210 anna stdfnctn 1.0 873.1
*
*ctlvar type v1 p1 v2 p2
20507211 max httemp 516100107 httemp 516100207
20507212 httemp 516100307 httemp 516100407
20507213 httemp 516100507
*
20508210 gvtemp stdfnctn 1.0 873.1
*
*ctlvar type v1 p1 v2 p2
20508211 max httemp 820100107 httemp 820100207
20508212 httemp 820100307 httemp 820100407
20508213 httemp 820100507 httemp 820100607
20508214 httemp 820100707 httemp 820100807
20508215 httemp 820100907 httemp 820101007
20508216 httemp 820101107 httemp 820101207
20508217 httemp 820101307 httemp 820101407
20508218 httemp 820101507
*
**ctlvar name type factor init fc min max
20508220 rvtemp stdfnctn 1.0 873.1
*
*ctlvar type v1 p1 v2 p2
```


