
Dynamic Systems and Subadditive Functionals

by

Sleiman M. Itani

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2009

@ Massachusetts Institute of Technology 2009. All rights reserved.

ARCHIVES

Author
Departme ttof Electrical Engineering and Computer Science

May 1, 2009

Certified by................
Munther A. Dahleh

Professor

Tbesis Supervisor

Certified by
I -iliio Frazzoli

Professor

Thesis Supervisor

Accepted by
Terry P. Orlando

Chairman, Department Committee on Graduate Students
MASSACHUSETTS INSTTUTE

OF TECHNOLOGY

AUG 072009 1

I IDDADIIEQ

Dynamic Systems and Subadditive Functionals

by

Sleiman M. Itani

Submitted to the Department of Electrical Engineering and Computer Science
on May 1, 2009, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

Consider a problem where a number of dynamic systems are required to travel between
points in minimum time. The study of this problem is traditionally divided into two
parts: A combinatorial part that assigns points to every dynamic system and assigns
the order of the traversal of the points, and a path planning part that produces the
appropriate control for the dynamic systems to allow them to travel between the
points. The first part of the problem is usually studied without consideration for
the dynamic constraints of the systems, and this is usually compensated for in the
second part. Ignoring the dynamics of the system in the combinatorial part of the
problem can significantly compromise performance. In this work, we introduce a
framework that allows us to tackle both of these parts at the same time. To that
order, we introduce a class of functionals we call the Quasi-Euclidean functionals, and
use them to study such problems for dynamic systems. We determine the asymptotic
behavior of the costs of these problems, when the points are randomly distributed
and their number tends to infinity. We show the applicability of our framework
by producing results for the Traveling Salesperson Problem (TSP) and Minimum
Bipartite Matching Problem (MBMP) for dynamic systems.

Thesis Supervisor: Munther A. Dahleh
Title: Professor

Thesis Supervisor: Emilio Frazzoli
Title: Professor

Acknowledgments

First and Foremost, I thank God for everything good I ever had. I thank God for

putting God, faith and a whole lot of wonderful people in my life.

After that, I would like to thank my mother Sawsan Barbir for being everything

she is, the example of distilled love, selflessness, and care in the world. If I have to

dedicate anything to anybody, it would definitely be dedicated to you. I've seen what

you have gone through for me and my siblings, and I know that I can never repay

you; so I just want you to know that I appreciate everything. If it weren't for your

love of knowledge and your encouragement, I would have never went into science.

I would really like to thank Professor Munther A. Dahleh, my advisor. You were

always the bearer of good news to me, you put up with my procrastination and you

were always there when I needed you. You are, with no competition, the best advisor

ever. I know that I was the luckiest graduate student ever. I hope someday I'll be

like you.

My co-advisor, professor Emilio Frazzoli, I thank you for sharing your deep insight,

offering your great advice, and giving your great support. Your being there made the

PhD journey much smoother and nicer. I will always appreciate that. Professor

Alexander Megretski, my committee member, I thank you for all of your insight,

help, and encouragement. Your impact on my thesis was extremely substantial.

For all of the people who touched my life and left an everlasting impression in

my character, I would like to convey my deepest and most sincere appreciation. My

dearest sister Douha and brothers Mustapha and Ibrahim, I just love you all so much

and thank you for more things than I can think of. My close friends who know me so

well they look into my soul, Taha, Abdelkader, Saif, Yahya and all of the guys from

school, you were always great brothers, perfect friends and wonderful people and for

that I would like to thank you. Mr. Saud Kawwas and Mr. Abdelraheem Hajjar,

I would like to thank you for all the things you taught me about life, dreams and

myself.

My friends from AUB, who I shared the most fun days of my life with, Zaid and

Iyad, Nabil, Antonio, Hani, Naamani, Spiro, Wissam, Roy, Karaki, Layal, Joelle,

Manar, Tarifi, Rani, and Rawia, a great group with great memories. You guys are

just amazing.

My friends from MIT, just having you guys around makes everything much better.

Even MIT wasn't so bad because you guys were here, so Costas, Sree, Yola, Hanan,

Demba, Erin, Aykut, Mesrob, Pari, Amir Ali, Paul, Ermin, Mitra, Mardivic, Georgos,

Keith, Holly, Micheal and all my friends from LIDS: I would like to thank you all for

being great friends through these four years. My dear friend and collaborator Karen,

your friendship and help over the years has definitely changed my life. You're a really

great friend, and I am really thankful that I went to that Grad Rat.

Contents

1 Introduction 13

1.1 Motivation 13

1.2 Previous Work 14

2 Problem formulation and Background 17

2.1 Problem Formulation 17

2.1.1 Problems with Subadditive Cost for Dynamic Systems 18

2.2 Dynamic System Models that are Affine in Control 22

2.2.1 Examples of Dynamic Systems of Interest 23

2.3 Dynamic Systems Background 26

2.3.1 Evolution of the Output under Inputs from the family Ap(u, t) 32

2.3.2 Chen-Fliess Series for Nonlinear Control Systems 36

2.4 Subadditive Euclidean Functionals 37

3 Local Behavior of Dynamic Systems 43

3.1 Elementary Output Vector Fields of a Dynamic System 44

3.1.1 Examples 46

3.1.2 LTI systems 47

3.2 Bounds on the Area of the Reachable Set 51

3.2.1 Upper Bound on the Volume of the Small-Time Reachable Set 51

3.2.2 Lower Bound on the Volume of the Reachable Set 52

3.3 Locally Steering Dynamic Systems 58

3.4 r-warped Distance 61

4 Quasi-Euclidean Functionals

4.1 Notation for Quasi-Euclidean Functionals .

4.2 Quasi-Euclidean Functionals' Properties .

4.3 Quasi-Euclidean Functionals' Results

4.3.1 Variables with General Distributions

4.3.2 Requirements Relaxations

4.4 Quasi-Euclidean Functionals Applications .

5 Quasi-Euclidean Functionals and Small-Time Controllable Dynamic

Systems

5.1 Local and Global Behavior of Monotone, Subadditive Functionals

5.2 Applications to Problems with Locally Controllable Dynamic Systems

5.3 TSP Algorithm for Small-Time Controllable Dynamic Systems . .

5.3.1 Algorithm Description

5.3.2 Time to Trace the Tour

6 Problems for Dynamic Systems with Drift

6.1 Dynamic Systems with Drift

6.2 DyTSP Upper bound

6.2.1 Level Algorithm

6.2.2 Time to trace CLA

6.3 Heterogenous Dynamic systems

6.3.1 Piece-wise Uniform Dynamic Systems

6.3.2 Local Transformations for dynamic systems

7 Dynamic Traveling Repairperson Problem for Dynamic Systems

7.1 Problem Formulation

7.2 Low Traffic Intensity

7.3 High Traffic Intensity

8 Conclusion

8.1 Conclusions

63

. 6 3

. 64

... . . 66

. 6 7

... . . 69

. 71

83

........ . . 8 3

... . 86

....... . . . 8 6

...... 89

... . . 92

. 92

. 93

97

97

98

100

105

105

A Appendix

A.1 Proofs for Dynamic Systems

A.1.1 Proof of theorem 2.2

A.2 Proofs for the TSP for Dynamic Systems

A.2.1 Proof of lemma 6.16

A.3 Proofs for Quasi-Euclidean Functionals .

A.3.1 Proof of theorem 4.7

A.3.2 Proof of lemma 4.7

A.3.3 Proof of lemma 4.8

A.3.4 Proof of theorem 4.8

A.3.5 Proof of lemma 4.10

A.3.6 Proof of lemma 5.11 and 6.18 . .

A.3.7 Proof of lemma 5.13

107

107

107

109

109

111

111

116

117

118

120

122

123

- I I I I -

10

List of Figures

2-1 Parameters for a car pulling k-trailers 23

3-1 Steering the output locally 59

5-1 A tour visiting all of the cuboids in the partition. 80

6-1 Dividing R into 1-rectangles 88

12

Chapter 1

Introduction

In this thesis, we study combinatorial problems under dynamic constraints, that is,

combinatorial problems where the cost depends on the evolution of the output of a

dynamic system. We aim to create a framework that allows the study of the asymp-

totic behavior of a class of such problems for dynamic systems. We also seek to show

the applicability of the framework by producing results on some interesting combi-

natorial problems for dynamic systems. We start here by motivating the problem we

study.

1.1 Motivation

The main motivation for the problems we study are applications where a given set

of dynamic systems are required to travel as quickly as possible between a set of

points. One example of such applications is a surveillance mission where a given

UAV equipped with sensors has to visit a number of checkpoints as quickly as possible.

Another one is the vehicle-target matching problem, where a team of n UAV's are

spread over a bounded area, and there are n targets that are also randomly distributed

in the same area. Each target must be visited by a UAV while minimizing the average

time it takes for the targets to be visited. The dynamic system and the targets in

such problems are usually modeled as point masses. Such problems have been studied

by first solving a combinatorial problem that concentrates on assigning points to each

dynamic system and/or determining the order of traversal of the points while ignoring

the dynamic constraints on the system [60, 61, 62]. An optimal control problem aiming

at making the dynamic systems follow the solution of the combinatorial problem in

the minimum time is then solved. In general, solving the combinatorial part of the

problem while ignoring the dynamics of the system can lead to bad performance. In

[14], the authors study the TSP for a dynamic system that moves with a constant

velocity and has bounded curvature (the Dubins Vehicle). They prove that getting

the optimal order for the Euclidean TSP and using it for the TSP for the Dubins

vehicle produces (in certain situations) an error that grows at least as a constant

times the number of points. Such deterioration in performance makes it important

to include the dynamics of the system in the combinatorial part of the problem, and

is the main motivation for our work.

Problems similar to the ones introduced above are becoming more interesting

with the increase of our use of UAV's and autonomous robots for different kinds of

applications. These problems range from vehicles traveling for pickup or delivery,

to surveillance and search-and-rescue missions [60, 61, 12, 55]. Although certain

aspects of these problems have been studied before, we tackle these problems while

accounting for the dynamics of the system(s) that are required to perform the mission

and traverse the resulting path. We study how the dynamics of the robot or the UAV

affect the asymptotic behavior of the cost of the problem. This gives a more accurate

understanding of the problem and insight on how to minimize the associated cost,

and provides fundamental limits on performance. Additionally, we provide algorithms

that produce order optimal paths that the dynamic systems can trace, and thus they

can be used for the applications for UAV's and robots.

1.2 Previous Work

Because of the importance of studying combinatorial problems under dynamic con-

straints, some interesting combinatorial problems have been recently studied for spe-

cific dynamic systems. The Traveling Salesperson Problem has been recently studied

for the Dubins vehicle [1, 28], the double integrator [4], the Reeds-Shepp car, the dif-

ferential drive robot [22]. Additionally, in our previous work [6, 7, 8], we studied the

TSP and some related problems for a general dynamic system having a state space

representation that is affine in control. Our work is a natural extension of that work

to a larger class of problems for dynamic systems.

This work is a generalization of some previous work in a different sense. In this

work, we introduce a framework for studying general combinatorial problems where

dynamic systems travel through a given set of points. Using this framework, we

concentrate on studying the behavior of the cost of the problem as the number of

points tends to infinity. This is inspired by the similar study of the costs of the

Euclidean versions of such combinatorial problems [1, 2]. This direction of studying

such problems has proven effective in many ways, producing important convergence

results for the stochastic versions of the problems and bounds on the worst-case

results [11]. Additionally, this way of studying the costs can be used to produce

approximation algorithms for the combinatorial problems. We therefore use the same

approach in our work here and direct our efforts at studying the asymptotic properties

of the costs of the problems when the points are randomly distributed and their

number tends to infinity. Thus the problem we deal with here can be considered a

generalization of the one studied in [1, 2] to account for the dynamic constraints of

the system.

The rest of this Thesis is organized as follows: Chapter 2 has the problem formula-

tion and introduces some background on dynamic systems and subadditive Euclidean

functionals. In Chapter 3 contains a study of the local behavior of dynamic systems

and establish results on the time needed for a dynamic system to move locally be-

tween two points. In Chapter 4, Subadditive Quasi-Euclidean functionals are defined

and their properties are studied, these will be of utmost importance for our results.

Chapter 5 studies the relationship between problems for small-time locally control-

lable dynamic systems and Quasi-Euclidean functionals and determines the asymp-

totic behavior of the costs of those problems. The applicability of the formalism with

some specific examples of problems for dynamic systems and their corresponding costs

under dynamic constraints. Chapter 6 relaxes the initial assumptions on the dynamic

systems, and produce an algorithm for the TSP for a general dynamic system. Chap-

ter 7 has a detailed study of the Dynamic Traveling Repairperson Problem, with

algorithms that perform within a constant factor of the optimal for low intensity and

high intensity cases. Chapter 8 has the conclusions and discussion.

Chapter 2

Problem formulation and

Background

In this chapter, we formulate the problem of interest and present some important

background from the literature. The background needed can be divided into two

parts: The first is about dynamic systems and their local behavior, and the second

is about subadditive Euclidean functionals. These two parts represent the two areas

that we are merging in this work. Since we are injecting dynamics into traditionally

combinatorial problems, it is essential that we build some background in both of those

areas. We start by introducing the models of the dynamic systems that we use in our

study.

2.1 Problem Formulation

The goal of this work is to produce a framework that allows the study of combinatorial

problems under dynamic constraints, that is, combinatorial problems where the cost

depends on the evolution of a controlled dynamic system. The framework should

allow us to study a class of interesting problems under dynamic constraints.

2.1.1 Problems with Subadditive Cost for Dynamic Systems

Since our aim is to incorporate dynamic constraints to classical combinatorial prob-

lems, we start by reviewing the classical formulation of the combinatorial problems

that we generalize in this work. These are combinatorial problems on a, given graph.

A graph is defined by its nodes and edges. Thus a graph G is defined as (y, E),

where y = {yl,..., y}, y C Rd is a set of points and E = {(i,j)ti,j e {1,...,n}} is a

set of ordered pairs each of which corresponds to a directed edge of G. This means

that (io, jo) E E if and only if there is a directed edge between yi, and yjo in G. A

weighted graph is endowed with a set of weights {w(yi, yj) : E R+ I} for all edges

in the graph. The combinatorial problems we study choose a subset of the edges of

the given graph. To denote the chosen edges, an n x n binary matrix Z is used,

where n is the number of vertices in the graph. Thus the variables that we use for

the optimization are zij, and the classical versions of the problems can be formulated

as follows:

L() = in w(yi, j)zij, (2.1)
i j

where T C {0, 1}nx" is a set that enforces a certain structure on Z. We study

a generalization of the previous problems where the weights are produced from a

dynamic system. Consider an example where a dynamic system (UAV or a car) is

required to travel between a number of points in minimum time. In this example,

the cost of an edge connecting two points y' and y doesn't only depend on yi and

y5, but it also depends on the state of the dynamic system at yi and yj. Thus we

consider that the points in = {yi, ... , y,} are in the output space of m dynamic

systems whose states we denote by x and whose output equation is y = h(x). Without

loss of generality, we assume that n > m and that yl,..., y,, are the output points

corresponding to the initial states Xi, ..., x, of the dynamic systems (yi = h(i), for

i = 1, ... , m.) This gives the following formulation:

Ls(x ... x, Y) = minm min ETs(xi,xy)zi,j,
ZET xi:h(xi)=yi,i=m+1,...,n (2.2)

i,3 (2.2)
y - h(xi), Vi = 1, ..., m,

where Ts is a function that depends on the evolution of the dynamic system. Thus the

minimization is over the states that correspond to points in y other than the initial

states. In particular, we are interested in the case where Ts(xi, xj) is the minimum

time needed for a the state of a dynamic system to move from xi to xj with bounded

input:

Ts(x, xj) = min ldt,
S (.),....,U2 (-)EU,T 0o

dx m

dt 90()+ gi(X) Ui,

(2.3)
U = {u(.) : measurable R+ --+ [-M, M]},

x(0) = xi,

z(T) = xj.

In this equation, the dynamic system is modeled with a state space representation

that is affine in control. We describe systems that are affine in control and study some

of their properties later in this section. Different costs Ts(xi, xj) might be studied in

a similar fashion,

The weights in the combinatorial problem are the minimum time needed for the

dynamic system to move its output between pairs of points in y. Of course, this

time depends on the state of the system and not only on its output. Thus when the

dynamics are inserted into the problem, both minimization over the control in (2.3)

and over the state in (2.2) are needed.

What we study here is the asymptotic behavior of the costs (Ls : Rd-+ R) of such

problems when the points are sampled from a random variable 74 and their number

tends to infinity. This is a generalization of the study for the classical Euclidean case

(where the cost w(yi, yj) is the Euclidean distance between y and yj) that was done

by Beardwood, Halton and Hammersley [2] and later generalized by Steele [1]. Thus

our study can be considered to be a generalization of their results to account for the

dynamics of the system traversing the paths. We aim to introduce a, framework for

the study of such problems, and determine some sufficient properties of Ls that allow

us to directly determine the asymptotic behavior of Ls as n - oc. We will start by

studying these problems when the dynamic system has no drift (go = 0) and Y, ... , Y,

are uniformly, independently and identically distributed in [0, 1]", and then extend

the results to non-uniform distributions and systems with drift.

Two functionals that we will use to show the applicability of our framework are the

costs of the Dynamic System Traveling Salesperson Problem and the Dynamic System

Minimum Bipartite Matching Problem. These are special cases of the functionals

described in equations (2.2) and (2.3) that are given by:

1. DyTSP: (Dynamic system TSP) Find the minimum cost Hamiltonian circuit

over Y where the edges are output curves of the dynamic system S, and let

Lo(y) be its cost. Thus

L (x1, y) - mn min ZTs(xi,xy)z.j,

X 2 , ., Xn ij

h(Xk) Yk,

zi V = i E {1,..., n}.

> 2 VV c y, 2 < Vl < n - 1.
iCv,gv

The requirement on Z means that there should be one incoming edge and

one outgoing edge for every node in the graph, and that the graph should be

connected.

2. DyMBMP: (Dynamic system MBMP) Find the graph that connects pairs of

points in y while minimizing the average (or total) travel time:

Ll(x,..., x, y) = min min Ts(Xi, xj)z,j,
Xn+1 , ..., X2n 2,3

h(xk) = Yk,

k = n + 1,...,2n

Ezi, 1, zijO ViE {1,...,n},
J a

Z y=O, Zi =1 ViE{n+l-1,...,2n}.
a J

The requirement here on Z means that V i,j j {1, ..., n}, there should be an

outgoing edge from each yj and an incoming edge into each y?.

In both of these problems, Ts(xi, xj) is the minimum time needed for a dynamic

system to move its state from xi to xj as in (2.3). We study these examples as

important applications of our results on the general class of problems. We study the

properties they satisfy and their asymptotic behavior when yl,... . , y, are randomly,

independently and identically distributed in [0, 1]d (in the output space of system S).

We also seek algorithms for the DyTSP as a practical application of the framework.

Finally, we study the DTRP (Dynamic Traveling Repairperson Problem) for dynamic

systems.

DTRP for Dynamic Systems

Given a dynamic system that is modeled as in (2.4), let R be compact region in

the output space of the system (R is assumed to be a d-dimensional cuboid with

dimensions W1, W2,..., Wq). We study the DTRP, where "customer service requests"

are arising according to a Poisson process with rate A and, once a request arrives, it

is randomly assigned a position in R uniformly and independently.

The repairperson is modeled as in (2.4) and is required to visit the customers and

service their requests. At each customer's location, the repairperson spends a service

time s which is a random variable with finite mean 3 and second moment s2. We

study the expected waiting time a customer has to wait between the request arrival

time and the time of service, and we mainly focus on how that quantity scales in terms

of the traffic intensity A- for low traffic (AT -+ 0) and high traffic (AX -- 1). We also

study the stability of the queuing system, namely whether the necessary condition

for stability (A < 1) is also sufficient.

2.2 Dynamic System Models that are Affine in

Control

In the problem formulation, the costs Ts(xi, xj) are functions of the evolution of a

dynamic system. We model the dynamic systems with state space models that are

affine in control,have an output in Rd and bounded input. Thus they are described

as follows:

go(x) + gi(x) Ui, (2.4)
i=1

y - h(x).

x(0) = z0,

x ER b, y ER d, Ui U,

U = {u(.) : measurable R -- [- M, M]}.

We will use Assumption 3.3 in most of this work, and then in Chapter 6 generalize

the results for the cases where the dynamic system has drift. This class of systems

is very general and descriptive. We use this class of models for the dynamic systems

because even though it is general, studying its local behavior properties using differ-

ential geometric methods is mathematically elegant and established in the literature

[25, 26]. The boundedness on the input is assumed because unbounded inputs can

make minimum time problems trivial.

We now introduce two examples of dynamic systems that are affine in control.

(Y1Yz2) (x x)

Figure 2-1: Parameters for a car pulling k-trailers

We use these examples throughout this thesis to clarify certain concepts about local

reachability of dynamic systems and the behavior of the TSP and similar problems

for dynamic systems.

2.2.1 Examples of Dynamic Systems of Interest

The first model we use is that of a linear time-invariant system with its output in R 3

The state space model of that system is as follows:

i = Ax + Bu
(2.5)

y = Cx,

where

and

l

U2

(2.6)

(2.7)

(2.8), ui (-) : R -+ [-1, 1].

Here, go, gi, 92 are given by:

go = Ax -

X2

3x 1

6x 5

X3

X4

,92 =

0

0

1

0

0

(2.9)

The second example is a simplified model of a car pulling k trailers (from [31]).

The first two states in that model are the location of the first car in the plane and

the rest are the angles at the axles of the trailers; the output is the location of the

last trailer (Fig. 2-1). The state space model for the car is therefore [31]:

= cos(0o)

= sin(Oo)

L
1= sin(9o - 01)

dl

S 1
ifi cos(Oj1 - Oj) sin(OO_ - Oj)
j=1

(2.10)

k-1

Ok = C cos(Oj- - 8Oj) sin(Ok-1 - Ok)

X1 _ kC=1 di Cos(Oi)

S - Ek=1 di sin(Oi)

u = {f(.) = tan((.)), (.) R: R - [-o, 0o]}.

The car is assumed to have a constant speed forward, and the control we have on

the car is the steering angle q (actually tan(O)). It is easy to see that this is a special

case of our general dynamic system (2.4), where go and gl are given by:

cos(Oo)

sin(Oo)

0

g sin(0o - 01)
go =

(i cos(O_ 1 - I)) sin(8i- 1 - Bi)

SHj= cos(O- 1 - Oj) sin(Ok-1 8Ok)

0

0

1
L

g1 =
0

0

We will follow these systems throughout this work to clarify some concepts. Ad-

ditionally, in our detailed study of the TSP and DTRP for dynamic systems, we will

generate the asymptotic solutions of the TSP/DTRP for these examples to demon-

strate our results for some specific dynamic systems.

2.3 Dynamic Systems Background

We first introduce some terminology and definitions for systems that are affine in

control; most of these definitions are standard in the literature [25, 26]. We will

in general use subscripts to indicate components of a, vector, and superscripts to

label individual instances. Thus xi will indicate the ith component of vector xi. A

related piece of notation that we will use is the function x1j(x) which extracts the jth

component of x.

We start by introducing the most basic object we need, the reachable set of a

dynamic system.

Definition 2.1 (Reachable set). Given T > 0, the reachable set from state xz for a

dynamic system is the set RT(xo) of states x such that V x1 E RT, 3 ut, u2, ..., u* E

U such that:

x(0) = x0 , x(T) = z,

This is the set of states that are reachable in exactly time T. We define the set of

states reachable in time less than or equal to T by:

R<T(xo) = Uo<t<TRt(xo).

We extend the previous definition to the output space, and so we define the

output-reachable set from a state xz to be the set OT(xo) of points

y = h(x),x E RT(xo),

and

O<T(x) = Uo<t<Ot(x 0).

We indicate by A<T(x) the volume of O<T(xz).

We turn to some important properties of some systems that are affine in control.

Definition 2.2 (Small-time Locally Controllable Systems). A system is small-time

locally controllable at zx E RP if 3 T > 0 such that

x° E Interior(R<t(xo)) V t such that 0 < t < T.

We call a system small-time locally controllable if it is small-time locally controllable

at all x E RP.

We also extend the previous definition to the output space, and say that a system

is output small-time locally controllable at x0 if 3 T > 0 such that

h(xo) E Interior(O<t(xo)) V t such that 0 < t < T.

Definition 2.3 (Output small-time locally controllable systems). A system is called

"output small-time locally controllable" if it is output small-time locally controllable

for every x in R.

Definition 2.4 (Vector Fields). For all the purposes of this work, a vector field f(x)

is a smooth mapping from RP to RP.

Given a vector field f and a function w : RP --+ R, we denote the derivative of w

along f by:

L(f (x), wt(x)) Oxifi(W
i=1

Note that

£(f(x),x i (x)) = fj (x).

Given a vector field f and g : RP -- R, we call the derivative of g along f the new

R P -R q function:

L (f(x), g(x)) - O(x) f(x)

where 9 is the Jacobian matrix of g.

Note that the ith component of £(f, g) is the derivative of the function gi along

f. Thus the use of similar notation should not be confusing.

Definition 2.5 (Lie Brackets). Given two vector fields f and g, the Lie bracket (or

product) of f and g is another vector field denoted by [f, g] and is given by:

gg Of
[f , g]() = f () g(x),

where L and 2 are the Jacobian matrices of g and f.ax O

Lie brackets can be iterated since the result of a Lie bracket is itself a vector field.

A notion that is related to the iteration of vector fields of a dynamic system that is

affine in control is the "order" of a Lie bracket.

Definition 2.6 (Order of Lie Brackets). The orders of Lie brackets of a dynamic

system as in (2.4) are defined iteratively as follows:

1. The order of gi, i E {, ... , m} is defined to be 1.

2. The order of [gi, gJ] is the sum of the order of gi and the order of gj, where gi

and gj are themselves in go, ... , gm or iterated Lie brackets of go,..., g,.

Definition 2.7 (Indices of an iterated Lie Bracket). Given vector fields gl, ... ,gm,

note that an iterated Lie bracket V of gl, ... , g, that has order r is determined by the

following:

1. An ordered set of indices , Iv = (il; ... ; i,), ik E {1,..., m}, that determine the

vector fields from {gi, ..., g m that are in V, and their order in V. This set of

indices is defined iteratively as follows:

I9 = i is {1, ...m},

I[91,g2] = gg' U Ig2,

with the order conserved.

2. An ordered set By = ((il; jl); ...; (ir-l, -)) of r- I pairs designating the order

in which the iterated Lie brackets are applied. This set of indices is also defined

iteratively:

Bg = iE {1, ..., m},

B[gi,g2] = Bg1 U {B 92 + Tl1} U {(1, Trl + r2)},

where gI and g2 are iterated Lie brackets of gl,..., gm, ro9 is the order of g', and

the addition Bg2 + rgl is defined as follows:

-~ z f r, l - --
i f B , 2 - 5

{B2 + T9 1}
if B92 (2.12)

S{(i + rl,j + r1) : (i,j) E B2 } otherwise.

Definition 2.8 ({Ap(u , t)}). We introduce a family of inputs, denoted by {Ap(ui, t)},

that is related to gl, ..., g, and their Lie brackets. We use the notation Ap(ui, t) (apply

ui for time t), which is defined as follows:

1. Ap(ui, t) means to set the input ui = 1 and uj = 0, j fi for a time duration

equal to t. Ap(-ui, t) means to set the input ui = -1 and uj = 0,j fi for a

time duration equal to t.

2. Ap([u , u], t) = Ap(ui, t) o Ap(uj, t) o Ap(-ui, t) o Ap(-uj, t), where o denotes

concatenation and u and uj might be brackets themselves.

Definition 2.9 (Order of Ap(u', t)). The "order" of an input Ap(ui, t) is defined

similarly to the order of Lie brackets of the dynamic system:

1. The order of Ap(uj, t), i E {1, ..., m} is defined to be 1.

2. The order of Ap([ui , uJ], t) is the sum of the order of Ap(u , t) and the order of

Ap(u , t).

We introduce the notation for the "projection" of state space Lie brackets onto

the output space.

Definition 2.10 (Domain Space Lie Brackets). Given analytic vector fields fi, ... , fs :

R P -+ IRP, and an analytic function k : RP - R d, we define the Lie brackets of fl, ... , fs

in the domain space of k as follows:

[fil]k= (fi, k), Vi E {1, ... , s

[f1, f 2]k = 1(f1, [.f2]k) - £(f 2. [fl]k)

30

where fi and f2 E {g91..., ,g} or are lie brackets of gi, ..., gm. Note that the operator

[]k takes vector fields in R P to vector fields in Rd. Thus [fl]k = C(fl,k), [fl, f2]k =

£ (fi, £(f2, k)) - £(f 2 , L(fi, k)).

The order and indices of domain space Lie brackets are defined similarly to those

of Lie Brackets in Definitions 2.6-2.7.

To denote a generic Lie Bracket of gl, ... , gm, we will use the notation [gi]. To

denote an output space Lie bracket of gi, ... , gm we will use the notation [gi]h and to

denote a generic input in the family {Ap(ui, t)}, we will use the notation Ap([ui], t).

All of these quantities are defined by their indices as in Definition 2.7.

Definition 2.11 (Nilpotent Systems). A dynamic system that is affine in control is

called nilpotent if the Lie brackets of {go, gl, ... , gm} vanish after a certain order. This

happens for example when the vector fields are polynomials.

Some additional notions that we use in our study for both the local behavior of

dynamic systems and Quasi-Euclidean functionals are the following:

Definition 2.12 (Dilation function (k')). Given an ordered set of positive real

numbers r = (rl,., rd,), define the function k' : R -- Rd componentwise, by setting

kz(aV) = ai . Note that the ordering in r affects k'.

Definition 2.13 (Asymptotic Notation). Finally, we use the standard asymptotic

notation for the scaling of functions, and thus we say a function f(n) is O(g(n)) if

3c, N > 0 such that f(n) < cg(n) V n > N.

We say f(n) is Q(g(n)) if g(n) is O(f(n)). f(n) is E(g(n)) if f(n) is O(g(n)) and

Q(g(n)). Finally, f(1) is o(g(l)) if limio f(l) = 0 (for functions) or limn (oonf = 0

(for sequences).

2.3.1 Evolution of the Output under Inputs from the family

Ap(u t , t)

We start with the following theorem about the evolution of the output of dynamic

systems when inputs from the family {Ap(u , t)} are applied. First note that the time

needed to apply the input Ap([u~], t) is equal to a[%]t, where a[i] is a constant that

only depends on the indices of u'.

Theorem 2.1. Consider the dynamic system given in (2.4). If the input Ap([u], t)

(whose order is r) is applied, then

y(c .it) y(O) + t'r [gi]lo + t l t G (gi, ..., m 9Mh(x)

i=0 k

where [gi]hlxo is the output space Lie bracket with the same indices as [u], that is,

I l[O = Uui] and B[g]h xo B= B . Gk(g,, ... , gm, h(xo) is a derivative of h with respect

to gl,..., g, whose order is higher than r and is evaluated at x0 .

Proof. The proof is by mathematical induction. If the input Ap(ui, t) is applied, then

by theorem 2.2, the state and output of the dynamic system evolve as:

0Ctk
x(t) = Xo+ E Ik(gj X)_

k=l

y(t) = y(0) + E 'k(gi, h(xo))
k=l

If the input Ap([ui uj], t) = Ap(u', t) o Ap(uj, t) o Ap(-ui, t) o Ap(-uj, t) is applied,

then the state and output of the dynamic system evolve as:

x (t) = X0 + (gi, .rO))
k=l

=1

y(t) y(0) + > k(gi !
k=1

32

x2 = x(2t) = o0 (g, (x))
k=l k=l

= 0 k i(gX (X0))t O k (g (0 tk

k=l k=l

0c L(tki +k2

+ 1 k (gj 2(g x O))) t k!k2
kl=1 k2 =1

(2.13)

y(2t) = y(O) + k: (g, h(x0)) + Lk(gj, h(xl t
k=1 k=l

00 k tkl+k 2

=y(O) + L (g h(x°)) - + I2(g, h(xO))k + E : (gj ILk2(g
__

h (
_

x))) !kt

k=1 k=1 kl=l k2 =1

(2.14)
00 tk 0 0 tk 0 0 ((t)k

3 ~ x(3t) =o +(x(g, x()) +

k=1 k=l k=1

o0 2t2k 00 tk tkl+k2

= X0 C2k(gi X(XO))- 0 k 0 - E k(g k2 gix 2O)))

k=l k=l kl=l k2=l1

+ (i ())) (-1)kltkl+k2 k k (g 1(g (0))) klt+k2

kl =l k2 =1 kl=l k2 =1

(k1)l ktkl3+k2+k3

k!k2!k3!

00 00 00

+EEE
kl=l k2=1 k3=1

y(3t) = y(O) + L k(g, h(x 0)
k=l

(2.15)

tk 0 t ()00 kt

) + , h(x)) -+)) lkt!
k=l1 k=1

y(0) + 2k , + k (gh0)) 1 NL kJ (g Lk2h() tkk2

k=1 k=l kl=1 k2=l

+ L? k(gi, L2(gih(x)))(t + j k (gi Lk2 (gj' h(x)))(-1)kltkl+k

kl=1 k 2 =l kl=l k2 =l

00 00 00

kl=1 k2 =1 k3 =1
(2.16)

()k3 tk +k2+ks
S fi, C(ii k~3 (g i

,
h (x O)))) !2!3

ki k2! k3!

y(4t) = y(O) + E (gi t k 1
y(4t) = y(O)+ (g, h(xo))+ + E k(gi, h(xl))-

k=l k=l

+ (s, a(x2)) i(h(k k 3)
k=1 k=l1

= (o) + E 22t2 2t2k iC 02 k kh tkkgL
- (xO))(2k)! E C2k(gj h(xO)) ' + E E Ck,(gJ fk2(gih(xO))) ki.

k=1 k=1 ki=l k2 1!

+ 0 > ki (gi k2g () kkl) k +k2 1) l 2k(()kltkl+k

k =1 k2=1 kl=1 k2=1
0i 00 0k

+ E 1: L£kl(g, 2k2(gj, Lk3(g)) h(x)))) (l)kltk+k 2 +k3

± > 1 k (gj,2k2i ()kt k12 t2k2 k k2(gj h(O))) (-1)kikl+k2

± E 3 E L 1(g, k(gi k h(x)))) (lkktl+kE+k L hkl=1 k2=1 k=1k 2=1

+£ l(gj Ik2(gik3 (g h())))()12t123

"Y kl(gJFL2(gji 3(g, h(xO)))) (-)kl k2 >k(+k+kkk=2kk3 1k!k2!k3!
kz=I k2=1 k3=1

+ £k(gJ)k+k2:k23(+k24 (g h()))))l)+k t 3 +kg i L 0gi,~ kl!k2!k3!
kI=1 k2=1 k3=1

kl=l k=1 k3 =1 k4 =1 2!!4

(2.17)

After collecting the coefficients of t2:

y(4t) = y(O) + t2 (C 2 (gi, h(x0)) + C2(g, h(x°)) - C(gi, £(gj, h(x0))) - (gj, i(gi, h(x0))))

+ t2 (L (gj, L(gi, h (x0))) - 1 (gi, L (gj, h (x)))) + t3 E3 t' > Fik(gi, gj, h (x0))
i=O k

OO

= y(O) + t2 [gi, gjh zo + t3 ti F k(gij, h (xo0)),
i=0 k

(2.18)

where Fi(gi, gj, h(x0)) is a derivative of h with respect to gi and gj whose order is

higher than 2 and is evaluated at x0 . Similarly,

OO

x(4t) = x(O) + t2[gi, gj xO + t3 ti F (gi, gy, x(o)),
i=O k

where F (gi, gj) is a derivative of x with respect to gi and gy whose order is higher

than 2 and is evaluated at x.

Given an input Ap([ui], t), let r(ui) be the order of ui . Assume that if r(u') E

{1, ..., s - 1} and the input Ap([ui], t) is applied, then

01.

y(c[]it) = y(O) + t'r(') [gihjxO + tr(u)+l ti E Fk 91, ... , m h ,
i=0 k

where [gi]h is the output Lie bracket that has the same indices as [ui], and

Fk (gl, .. , h(x 0)) is a derivative of h with respect to gl, ... , gm whose order is

higher than r(u2) and is evaluated at xz

2.

x(O[ui]t) -= X(0) + tr(u') i +zo tr(u +1 ik (gl, **, i()),

i=O k

where [g'] is the Lie bracket that has the same indices as [ui], and F(g., .. , x(x))

is a derivative of x with respect to gl, ..., gi whose order is higher than r(ui)

and is evaluated at x.

We aim to prove that if Ap([ui], t) is applied, where r([ui]) = s, then

y(ai]t) = y(O) + tS[gi]h + t"s t' Fi(gl, ..., gm, h(x),
i=O k

where [g]h is the output Lie bracket that has the same indices as [u'], and Fk(gl, .. , g, h(xO))

is a derivative of h with respect to gY, ..., g whose order is higher than s and is eval-

uated at x° .

This can be done by using the above assumption and the fact that given [ui] such

that r([u']) = s, then [u'] = [u, u'] , where r([u']) < s and r([u]) < s and using the

same calculations and evaluations as before. O

We now turn to an important series representation for dynamic systems. One

side of the importance of this representation is that it gives a lot of insight about the

local behavior of the dynamic system. We therefore use it in Chapter 3 to study the

scaling of the area of the small-time reachable set of the system in terms of time.

2.3.2 Chen-Fliess Series for Nonlinear Control Systems

The formal power series property of the Chen-Fliess series allows a representation

of the evolution of nonlinear control systems that are described as in (2.4). This

representation is given by the following theorem:

Theorem 2.2. [25]

If go, ... , gm, h are analytic functions, then 3T > 0 such that Vt < T, the jfh

component of the output of system (2.4) evolves as follows:

yj(t) = hj(xo) (2.19)

S(gi o, . (g9i, h(x 0))) dik ... <o,
k=0 io=0 ik=0

Where the integral in (2.19) is defined iteratively by:

o (t) = t,

j (t)= j (7)d7,

J k ... io = i k (-) T d ...ik o.

An important consequence of this theorem is a set of necessary and sufficient

conditions for an output yj not to be affected by an input ui [25]. Specifically, yj is

unaffected by ui if

£(gi, h) = 0

S(g i, (gi, ...I (gYi hj(xo)))) = 0,

ViI, ..., ik G {0, ..., m }.

This result hints at the usefulness of the Chen-Fliess series in small-time optimal

control problems, and is indirectly used in our study of the small-time behavior of

dynamic systems in Chapter 3. The proof of the theorem is in [25] and is repeated

in the appendix for easy reference. We finally note that this theorem directly implies

that

xj (t) = Xj(xo) (2.20)

+ EE .. E (gio, .0, 0)) i JO
k=O io=0 ik=0O

This equation describes the evolution of the state of a dynamic system in small-

time as a series. The integrals in the end can be used to describe the time scaling

effect of each set of Lie derivatives. When using constant inputs, a single integral

scales like t, a double integral scales as t2. Therefore it hints that lower order Lie

derivatives dominate in the small-time setting.

We now turn to some background on the other side of the problems we are ad-

dressing, namely the cost of the combinatorial problem. The background here deals

with the costs in the case where the distance between every two points is the Eu-

clidean distance between them. We modify this work later to allow the use of an

approximation of the time a dynamic system needs to move between points in its

output space.

2.4 Subadditive Euclidean Functionals

In the case where the weights of the edges in the our problem formulation in Sec-

tion 2.1 are given by the Euclidean distances between the points, the costs of the

TSP is known to belong to a class of functionals called subadditive Quasi-Euclidean

functionals [1]. Additionally, it can be shown that the cost of the Euclidean version

of MBMP is also similar to subadditive Euclidean functionals when d > 3 [12]. We

therefore turn to introduce subadditive Euclidean functionals, study their properties

and produce some of the known results on them. Subadditive Euclidean Functionals

were introduced by Steele in [1], and are defined as follows:

Denote by L a real valued function of the finite subsets of Rd (d > 2). Lis a

Euclidean functional if it satisfies the two following properties[]:

Property 1 (Homogeneity). L({cal,...,oax,}) = aL({xl,...,, }) Va E R+,x E Rd .

Property 2 (Translation Invariance). L({xi + x,..., x, + x}) = L({zx, ... , x,}) Vx

Rd

A functional L is called bounded, monotone and subadditive if is satisfies the fol-

lowing three properties:

Property 3 (Boundedness). Var(L({Xi, ..., X,})) < oc if the Xi's are independently

and uniformly distributed in [0, 1]' .

Property 4 (Monotonicity). L(x U A) > L(A) Vx E Rd and finite subset A of Rd.

Let Qj, 1 < i < m d , be a partition of the d-cube [0, 1]d into cubes with sides that

are parallel to the axis and have length 1 and let tQj = {xjx = ty, yE Q}.

Property 5. (Subadditivity)

IC ER such that Vm E N and tE R + xi j... xn E R ,

L({xi, ... , x,} n [0, t]d) < E L({xl, ... , x,} n tQi) + Ctmd - (2.21)
i=1

Subadditive Euclidean functionals have been studied in [1]. The first result pro-

duced in that work and is relevant to our work here is the following theorem:

Theorem 2.3. If L is a functional that satisfies properties 1-5, and Xi; 1 < i < 00

are independent and uniformly distributed in [0, 1]d , then there exists a constant 3(L)

such that:
li L({XI, ... X,}) /(L) as.

lim 1 = (L) a.s.
OO 1-7~ d

(2.22)

This theorem signifies that a monotone subadditive Euclidean functional is asymp-

totically sub-linear in the number of variables, or, more interestingly, that it behaves

as /(L)n1d when n is large. This result was used to prove that the length of the

Euclidean TSP, the cost of Euclidean minimum spanning tree and the cost of the

Euclidean minimum matching problem all scale as n'-.

Some additional properties can be used to generalize the previous theorem to the

case where the variables are not uniformly distributed. These properties are simple

subadditivity, scale boundedness, and upper linearity.

A functional L is simply subadditive if it satisfies the following property:

Property 6 (Simple Subadditivity). 3B such that:

L(A 1 U A 2) < L(Ai) + L(A 2) + tB, (2.23)

for all finite subsets A 1 and A 2 of [0, t]d, V t > 0.

It is is called scale bounded if it satisfies the following property:

Property 7 (Scale Boundedness). 1B such that:

, n < B, Vn > 1, t > 1, (2.24)
tn 1

and {x,..., ,} C [0, t]d

Finally, a functional L is upper linear if it satisfies the following property:

Property 8 (Upper Linearity). For any finite collection of cubes Qi, 1 < i < s (Qi

defined above), and any infinite sequence xi, 1 < i < oc, in Rd, L satisfies:

S

E L({xi,...,xn,} n Q) < L({xl,...,xn} n u=lQi) + o(n1-). (2.25)
i=1

Using these properties allows the following theorem to hold:

Theorem 2.4. If L is a functional that satisfies properties 1-8, and {X} are i.i.d.

random variables with bounded support such that the absolutely continuous part of

their distribution is f(x), then B3(L) such that:

L(XI...'X}) f 1
lim ((L) f(x)l dx a.s. (2.26)

n---oo 1 d

An interesting part of this theorem is that)(L) is the same from the uniform

distribution case, the only difference between the the asymptotic behavior of L under

different distributions of X 1 , ... ,X, is the factor fpd f(x)'-dx. This means that

/(L) can be calculated from the case of the uniform distribution (for example), and

then the asymptotic behavior of L can be determined under any distribution f(x) of

X 1 , ... , Xn.

Now that we have introduced all of the background we need from the literature

to tackle the problems at hand, we start by dealing with the time a dynamic system

needs to move its output between two points in its output space. We will mainly

focus on the case where the two points are close to each other, in the sense that the

system can travel between them in a small amount of time. We also introduce the

notion of the r-warped distance between two points. The idea of r-warped distance

is very central to bringing dynamic constraints to combinatorial problems.

Once we have studied the small-time behavior of dynamic systems, we can deal

with the first two of our main problems. Namely, we study the TSP and DTRP for

dynamic systems in detail. We produce lower bounds on the costs of the problems

and algorithms that scale optimally.

Next, we introduce and study a class of functionals that we call subadditive Quasi-

Euclidean functionals. The properties of these functionals are inspired by the small-

time properties of the minimum time curves of dynamic systems. We introduce their

properties, and produce results paralleling the results we have here for subadditive

Euclidean functionals. We also show that if the weights in the graphs (as described

in Section 2.1.1) are the r-warped distances between the points, then all of the costs

of interest are subadditive Quasi-Euclidean functionals. This allows us to determine

the asymptotic behavior of the costs of problems of interest when the weights are

the r-warped distances. Since the notion of the r-warped distance was inspired by

the local behavior of dynamic systems, these results bring us one step closer to the

desired results on combinatorial problems for dynamic systems.

Finally, we use subadditive Quasi-Euclidean functionals to generalize the results

for the TSP and DTRP of dynamic systems to a larger class of problems. We link

problems for dynamic systems with the problems for the r-warped distance and deduce

results about the asymptotic behavior of the costs of the given combinatorial problems

under dynamic constraints.

42

Chapter 3

Local Behavior of Dynamic

Systems

In this chapter, we study the local behavior of dynamic systems. As we will see later in

this work, the local behavior of the system governs the global results in the problems

that we are interested in. This is mainly because of the subadditivity property of the

functionals we deal with, as we will see later in chapter 5. We will specifically study

the distance a given dynamic system S can move its output in a certain direction f

when it is given a small time t. Of course, the scaling (in terms of t) of the volume of

the small-time reachable set will follow. For most of the thesis, we have the following

assumptions on the dynamic system in (2.4):

Assumption 3.1. h, go, g9, ... , gm are analytic functions.

Assumption 3.2. The integral curves of go,, l, m, gm are defined.

Assumption 3.3. The system is small-time locally controllable, so without loss of

generality, go=0.

This chapter is divided into four sections: In the first section, we introduce some

entities that are very important for our study of the small-time reachability prop-

erties of dynamic systems. These are the elementary output vector fields and their

corresponding orders. In the second section, we bound how the area of the output-

reachable set OT(zo) (definition 2.1) of system (2.4) scales in terms of T as T -- 0.

In the third section, we study how to steer system (2.4) between two points that

are close together. This provides a bound on performance, and makes our results

more applicable. In the final section we introduce the notion of the r-warped distance

between points. We relate the idea of the r-warped distance between points in the

output space of a dynamic system to the time the dynamic systems needs to move

its output between those points. This notion will be very useful to us when we insert

dynamics into the combinatorial problems of interest, as we will see in chapters 4 and

5.

3.1 Elementary Output Vector Fields of a Dynamic

System

Given an initial state x0 , we construct a basis {fl(xo), ..., fa(xo)} for the output space

at yO = h(x o) as follows:

Definition 3.14 (Elementary Output Vector Fields). Let ri(xo) be the smallest

natural number such that there are rl vector fields in the set {gi, ..., g,, (denoted

g , ... gr -) that satisfy:

(g , ..., C (gl , h(zO))) . (3.1)

Assumption 3.4. There exists a non-zero iterated Lie bracket in the output space,

designated pj1(xo), such that the order of pl(x o) is equal to rl.

For j = 2,..., d, let rj(xo) be the least natural number such that I g0, ..., g_

with

(9g -.. g1, h(xo))) (3.2)

being linearly independent of p(x0), ... , - 1(xo).

Assumption 3.5. If

-(go,* (g . 7 _j-,(xO))o) span{ l, ... '' j- },

44

then there exists a non-zero iterated Lie bracket in the output space, designated pj

such that pj span{p', ..., iP-l}, and the order of pj is equal to ry.

We call pL ., p1 d the elementary output vector fields and r1, ..., rd their corre-

sponding orders.

Note that the elementary output vector fields are not necessarily orthonormal,

although they form a basis for the output space (locally). To get an orthonormal basis

for the output space that is more suitable for our study, note that r l < r2 ... <_ rd,

and define the new coordinates fl(z 0), f2 (0), ... , fd(xO) by using the Gram-Schmidt

procedure:

1. f (xo) is a unit vector in the output space that is parallel to pl(x 0).

2. fJ(xo) is a unit vector in the output space that is parallel to the component of

pi (xo) that is orthogonal to l1 (x), 1 2 (x 0), ... , Ij-1(O).

Definition 3.15 (Coordinate Transformation 8). We apply a change of coordinates

transformation

O : Rd_ Rd fi ei,

where ei E Rd is the vector whose ith component is 1 and all other components are 0.

This is a change of coordinates transformation in the output space of the dynamic

system, where the new coordinates of any vector V E Rd are the projections of V

on fl,... fd. We let the transform of h(xo) be h*(xo), that is, h*(x) = Oh(xo) and

h*(xo) is its kth component, i.e. the projection of h(xz) on fk.

In particular, we have the following lemma:

Lemma 3.1. Given a dynamic system as in (2.4), after applying the transformation

O, we have:

1.

P - (8p-I)k = 0,

where 1t is the kth coordinate of the vector Mi (x0) after the change of coordinates

O is applied (Definition 3.15).

Proof. Note that if for a given j {1, ... , d} and io, ... , i E {1, ... ,m },

C (g9, ... , C (g', h(xo))) E span {p, ... , },

then

Vj < k < d.

This is because

c (g0 ... , (g, h(xo)) L (g,..., C (g, h*())) (g, ... , (g, h(x°)))

Both parts of the lemma follow as special cases.

3.1.1 W

e now consider the examples of the dynamic systems that we have from Section 2.2.1

to see how elementary output vector fields are constructed. For the linear system

model we have,

fk(XO) - 0.

(3.3)Vi < k,

c (90,..., (g), h*(xo)))= 0o

AI(xo) = L (go, h(xo)) = xo2

U2(X
0) - L(gi, h(x0))= [01

J (3.4)

03(x0) - L(g (9g2, (go, h(x0))) [I1
r = 1, r 2 - 1, r 3 = 2 when x4 $ 0.

For the car pulling k-trailers, let

Pi = cos(0j-1 - Oj),
j=1

then

P1(Xo) = L (go, h(xo))

cos(o0) -i- il= di sin(Oi) sin(il - 8i)Pi

sin(0o) - E d cos(0) sin(0-I_ - Bi)Pi
sn(0o) (3.5)

b2(X 0) L (gl,1 (go, h(x°))) - L
cos(Oo)
L

rl = 1, r 2 = 2.

3.1.2 T

o get a deeper understanding of the elementary output vector fields and their orders,

consider the case of a general LTI system more closely. For an LTI system with states

in Rb and output in Rd at xz = 0, the elementary output vector fields pl, ... , pd are

the first d vectors of

C [BIABIA 2BI... IAk B]

such that [/1I ... Pd] is full rank, and if

pi = CAJB, l < i < d,O< j < k,

then the corresponding ri = j + 1.

Thus given the minimum k such that

C [BIABIA 2BI... A B]

has rank d, then rd is equal to k + 1. It is obvious that the matrix on the right is the

controllability matrix of the LTI system. This means that the orders of the elementary

output vector fields (and our index k here) are indicators of "output controllability".

The inputs don't have to be able to steer the state arbitrarily (like in the classical

controllability condition), they just have to move it in directions that will affect the

output. Of course, if the controllability matrix is full rank (and C is full rank) then

the system is "output controllable." This means that the orders of the elementary

output vector fields are upper bounded by the controllability index of the system.

The orders of elementary output vector fields for nonlinear systems carry the same

interpretation, and thus they can represent a similar index (like the k here). Thus a

local version of the controllability index can be defined for nonlinear systems that are

affine in control, and its relation to the orders of the elementary output vector fields

is the same as in the LTI case.

After applying the change of coordinates 3.15, we are ready to introduce our first

result:

Theorem 3.5. Given a system (2.4) at state x0 and ri(xz) as above, let

d

rI1(xO) = r(x).

j=1

3 Cu(x0), CL(0) > 0 such that:

CL (xo) < limr A<T Cu(zo
T-O Tllrli(x) Cu(x

where A<T is the volume of the reachable set in the output space (Definition 2.1 .)

More specifically, we will prove the stronger version:

Theorem 3.6. Given a dynamic system as in (2.4) that satisfies Assumptions 3.1-

3.5 at an initial state x0 , after applying the transformation E in Definition 3.15,

Ci(zx0), Cu(xo), 6(x 0) > 0 such that Vyf such that |yf - y0 < 6(x 0) (yo = h(xo)), the

solution of the minimum time problem:

TS(y)Oy= mm 1dt,
(yO, y(.),...,um(.)EU,T o0

dx _

dt = g (x)u(3
:1 (3.6)

y = h*(x),

U = {u(.) : measurable R + - [-1, 1]},

y(T) = yf

satisfies

1 1

C(x 0) ma1X{ yf - yo L-W,., *** -d Yt x K) Ts(yo0 yf)
1 1 (3.7)

< C C(0) max{ y - y0- _ ,i... y~-0 _ 7 'o-)}.

To prove theorem 3.5, we will first prove that given system (2.4) at state xo, and

for s E {1, 2, ..., d}, the maximum distance d,(t) that the output of system (2.4) can

move in direction f, in time t satisfies the following:

Proposition 3.1. 3T > 0, Cu,(xO) > 0 such that Vt < T

d8(t)
t~~<s) < Cu (xo). (3.8)tr0We then prove that

We then prove that

Proposition 3.2. 3T > 0, CLs(x o) > 0 such that Vt < T

ds(t)
0).tr-> CL, X

In our detailed study of the TSP for a dynamic system in Chapter 6, we will show

that the upper bound on the area of the reachable set is important for the lower

bound on the expected time the system needs to trace Cp. The lower bound is useful

for the steering algorithm we will use as a sub-algorithm in Section 6.2.1.

The following two sections present the proofs of propositions (3.1) and (3.2). We

start by recalling theorem 2.2, which is central to our proof:

Theorem. The jth component of the output of system (2.4) evolves as follows:

yj(t) = hj(xo) (3.9)

00m m rt

+ E E ... E L (gio, ---, L 9ik , i(O---<d) io
k=0 io=0 ik=

0

Where the integral is defined iteratively by:

o(t) =t,

j(= J d ()dkT,

We introduced this theorem in Chapter 2, analyzed it, and looked at its implica-

tions. We now use it as the basis for the proofs of propositions (3.1) and (3.2). The

proof of this theorem can be found in [25] and is in the appendix for easy reference.

3.2 Bounds on the Area of the Reachable Set

3.2.1 Upper Bound on the Volume of the Small-Time Reach-

able Set

This upper bound is given by the following lemma:

Lemma 3.2. Given system (2.4) at state xo, for all s E {1, 2, ..., d} and rs(xo) as in

Definition 3.14, (after applying the transformation 0 as described in Definition 3.15)

there exists T, and Cu > 0 such that for all t < T and u(.) EU ,

ys (t) - ys(0) < CUs(xO)t r(°).

Proof. From lemma 3.1, we have that Vk such that 0 < k < rs - 1,

l (gio, th, (ik h((xO))) = 0.

Plugging this in (2.19) produces:

Ys (t) = Ys(0)
oo m m

+ -1 o=O... k
k=rs-l io=0 ik=O

(gio, ., L (ik, h*(Xo)))

To establish the bound, we use the following two facts:

1. Since gi(.), xj(.), and their partial derivatives of any order with respect to x are

bounded around x0 , 3M1 such that:

(3.10)

2. Since uj(.)) < 1,

it
(t) k + 1

(k + 1)!"
(3.11)

td..di
<~ik .. <j,~o

S(gio, L ((ik (0))) < M k+ 1.

Plugging in the bounds from (3.10) and (3.11), we get:

yj (x(t)) - yj(xo) <
(mMit)k+l

E (k + 1)!k=r,-i

Therefore, 3T small enough such that the sum is convergent, and the lemma, is

proven. The lower bound in theorem 3.6 follows directly. O

3.2.2 Lower Bound on the Volume of the Reachable Set

To prove the upper bound on Ts, consider the truncated system ST that is formed

by annihilating

S(io, ... (, h (xo))

of the original system for k > rs (after 8 was applied to the output of the original

system.)

The output of this system is given by

oo00 m

k=rj io=0 ik=O
O t0

(3.12)

By theorem 2.2, BT > 0 such that Vt < T, the jth component of the output of

this system yj evolves as:

yj(t) = h. 0)

(3.13)

i'j- 1 =0

Steering Algorithm For the Truncated System (The Component Steering

Algorithm)

The first step in the proof is to design a steering algorithm for the truncated system

such that starting from an initial state xo, 3Cu(x), 6(x 0) > 0 such that Vyl such

io=0

• L', (gi j)__ O)) O d& j ...d<j0.

that jyf - yo| < 6(o), the algorithm steers the output of the truncated system from

yo to yf in time TST (y', yf) that satisfies:

TsT(YO, yf) <

We start with a lemma

Lemma 3.3. This family of inputs {Ap(ui, t)} has the following properties when

applied to the truncated system:

1. If the control input Ap([ui], t) (with order r) is applied, then

Ys (rt) = i(), Vs such that rs < r.

2. If [ui] has the same indices as p, and the control input Ap([u], t) is applied,

then

9i (rt) = #(0) + ct"i,

where r is the order of p,. Similarly, if Ap(-[ui], t) is applied, then

gj (rt) = (O) - ctri.

3. If [u'] has the same indices as p", and the control input Ap([ui], t) is applied,

then

?i (rt) = s(0), Vs such that s > i, rs = ri.

Proof. The first two claims result from plugging in the property of the truncated

system

Vk > r s ,

in Theorem 2.1.

The third claim follows again from plugging in the property of the truncated

system

Vk > rs,

1 1
CU(xo) max{l , (y - yo

S(gij, ... C (gi, h*(°))) =0,

(gi,,, C (gi,, h (xo))) = 0,

in Theorem 2.1. This results in

yk (rt) = (0) + ctr,

where c is the projection of p, on fk. By using the second claim of lemma 3.1, it

follows that c = 0.

O

These facts about the evolution of the output when inputs from {Ap(u , t)} are

applied are used in the following steering algorithm for the truncated system:

Algorithm Description

To simplify the description of the algorithm, we rearrange the coordinates in the

output space of the dynamic system as follows:

Definition 3.16 (Transformation a). For all i,i + 1,...,i + c such that r(pi) =

r(i+') = ... = r(i+c), r(i-1) r(pi), and r(p4+c) $ r(pi+c+ 1) (for completeness,

we define r(po) = 0 and r(pdl+) = oc), then i, ...,i + c are reversed. This means that

the rearrangement u(j) is defined as

a(j) = (2i + c - j), j {, ..., + c}.

This rearrangement just switches the components in the output space that have

the same order. This is done so that lemma 3.3 after the transformation would be:

Lemma 3.4. After the transformations e and o (Definitions 3.15 and 3.16) are

applied in the output space of the dynamic system described as in (2.4), we have:

1. If [u] has the same indices as p1 , and the control input Ap([ui], t) is applied,

then

(rt) = 9(0) + ctri,

where ri is the order of p'. Similarly, if Ap(-[ui], t) is applied, then

y (rt) = i(0) - tri.

2. If [ui] has the same indices as pi, and the control input Ap([ui], t) is applied,

then

Ys (rt) = y(O0), Vs < i.

Here, y is the output of the truncated dynamic system given by equation (3.12),

p-, ri i E {1,..., d} are as in Definition 3.14.

Thus the algorithm after the transformations are applied steers the components

of the output in ascending order using the inputs Ap([u], t), where u' has the same

indices as p. This is because lemma 3.4 guarantees that steering i this way doesn't

affect j if j is less than i, and therefore after the dth component is steered, the output

of the truncated system reaches the final point exactly. The algorithm is described

as follows:

1. Set the counter i = 1. For j = 1,..., d, let Tj = 0, for j E {1,..., d} (T/ is the

time the steering algorithm takes before steering the jth component of y.) Let

Ej = 0, for j E {1,..., d} (ey is the drift in the jth component of y that was

caused by steering *, ..., .

1 1

2. If a > 0, Ap([ui], CA), otherwise Ap(-[ui], C.oi). Here, [u'] is the input
-1

with the same indices as pi, and CA = c)i , where ci is the projection of pi on

fi.

3. If yf - > 0, Ap([u],), otherwise Ap([- 1)Y - Y >-1

Here,[u'] is the input with the same indices as pi, and CA = ci , where ci is

the projection of 1pii on fi.

4. Let Ti+l= Ti +C A(f y- yO) 7)+CAua), Ei+1 = (Y)i+I(T/)-(0). Increment

i by 1 and go to Step 2.

Lemma 3.5. Given the truncated system whose output is described as in equation

(3.12) at an initial state xo, 3Cu(x0) and 6(x) > 0 such that Vy f such that |yf -y <

6(x 0), the algorithm steers the output of the truncated system from yO to yf in time

TST(Yo, yf) that satisfies:

TST(Y, yS) < Cyu(x) max lyf - yz ly.. - y 7_)}.

Proof. O

For every j, we let Tj' be the time needed by the algorithm to steer the jth

component in Step 2 of the algorithm and let T2' be the time needed by the algorithm

to steer the jth component in Step 3 of the algorithm. Note that T was the total

time needed to steer the components lower than j.

By lemma 3.2, 3T > 0, and Cu, (xo) > 0 such that if the total time for steering

lower order components was T j , then e = yj(T/j)-yj(0) < Cu,(xo)(Tl') (if T/j < TI).

Therefore BT, C'(xo) > 0 such that if T' < T1, the time needed to steer the jth

component in Step 2 Tj' satisfies

T l < C1 (xo)T .

Similarly, 3Cj > 0 such that the time needed to steer the jth component in Step 3

similarly satisfies

T2 < C2 y -

Thus this algorithm steers the output of the truncated system from yO to yf in

time

T < C2 d - yd + (C + 1)~

Cd Iyf yO - +(Cd +1)(C1 Y 1 ()d)
-Cy -d- - Yd-1 + (C- + 1)T (3.14)

d

... < c y - Yi
i U

for some C > 0. Therefore 3Cu > 0 such that

TsT (yo,y f) < Cu max(y - y).

Steering the Original System

We finally use the following algorithm to steer the original system:

1. Set the counter i = 1, and let

TST < Cu max(yf
i

1
yo)

be the time to steer the output of the truncated system from yo to yf using the

Component Steering Algorithm.

2. Steer the system by applying the control u, ..., un, which steers the truncated

system from yi-1 to yf. Let y' be the resulting point, and xi be the resulting

state.

3. If xi E RTST(xf), for some x f such that h(xf) = yf, stop. Otherwise, increment

i by 1 and return to step 2.

This algorithm doesn't steer the output of the system to yf, but it guarantees that

it can be steered to yf quickly enough. To finish the proof, note that IT2 > 0, C3 > 0

such that if TST < T2, then

S
T

-+1
yj(TsT) - y (TsT) < CT 3•

This is seen by following a proof similar to the proof of lemma 3.2. Since

1
Tsr < Cu max(| y - yO IT),

it follows that 362 > 0 such that

yj(TST) - yj (TT) - y(0)- y(0), if max(yf
71

Thus if

max(yf - y?9F7) < 62,

the ith step of the algorithm will steer the output in a time duration not more than

TT. Thus y' will be arbitrarily close to yf in time that is less than 2TsT. More

specifically, the state at the end of step i, x', will be arbitrarily close to the set

{x : h(x) = yf}. This means that in a finite number of steps (and steering time less

than 2TsT), the state will be in RTST(xf) for some xf such that h(xf) = yf.

Finally, since 3T3 > 0 such that VTST < T3, if x, E RTST(xf), then xI E RTST (xi),

then 36 > 0 such that if yf - yO' < 6, the output can be steered from yo to yf in

time that is not more than

3TT < 3Cumax(y - yo7).

3.3 Locally Steering Dynamic Systems

In this section, we study the implications of proposition (3.2) on the small-time ma-

neuverability of system (2.4) that might possibly have drift. To steer system (2.4) be-

tween two close points, we will steer it along the individual fi directions (i = 1, 2,..., d)

after the transformations e and a are applied. This steering algorithm is used in the

algorithms that we produce for the TSP and MBMP. We will prove the following

property:

Lemma 3.6. Given two points yi and yf in the output space of system (2.4), such

that:

1 1
< (3.15)

CLj (q - 1)(q - j + 1) CuY,

for j = 2, ..., d.

Ya

Y2 ~bY6--D,-.---- d

Y1

Figure 3-1: Steering the output locally

Then system (2.4) can be steered from yi to yf in time that is less than

(q -1 + c i) -

The inequalities in (3.15) mean that the distances in the directions of f2, ... ,fd

are "small" compared to the distance between the points in the fi direction. The

result here means that if system (2.4) is required to move between two close points

in the output space that satisfy the relation (3.15), then it can do so in a time that

is proportional to time needed to move from yi to yf (Fig. 3-1).

Consider the situation in figure 3-1, where the system's output is steered from ya

to yC, and we have 6 = "O- fil and e= 1(0--Y)fl

To prove lemma (3.6), system (2.4) will be steered along f, ..., fd (in that order),

if the system under study is locally controllable, and f2,..., fd if it has drift.

In both cases, we will prove that the time for steering the system in the f2, ... , fd

directions takes less time than

'lf - yfl

Note that if there is drift, this still guarantees that the distance traveled by the

system in the drift direction (fl) is less than ly' - yf l and so the system can still

move in small time to yf.

Proof. Lemma (3.6)

The proof of this lemma uses the fact that f, ..., fd were designed such that fj

has an additional degree of freedom over fl, ..., fj-1. This means that given a small

time t. the system's output can be steered in the fj direction a distance larger than

CLtrj without moving in the fl,..., fj-1 direction.

Additionally, if the system's output have moved in the fl,..., f _1 directions for a

small time T, the drift these motions caused in the fj direction can be countered also

in time 7.

Therefore, to move from yi to yf, the system's output needs to move in the f2

direction for time ti +t 2
2 21

< tl . The time it needs to move in the f3 direction

is less than t + t2 + (IYk 3) 3, and so on.

Therefore, the time to move from yi to yf along all coordinates other than fi is

t- 1 < (q
j=

2

- j1)
C3

+ (q - 1)tli

which by using equation (3.15) is not more than

Cu1

Therefore the time to steer the system's output from y' to yf is less than

(C C l
1ICu) 1

U u1

D

In Chapter 6, we will use motions like the ones described here to steer the output

between two points. Of course, we will make sure that 6 and 6 are small and that

condition (3.15) is satisfied.

3.4 r-warped Distance

In this section, we introduce the r-warped distance, which plays an important role in

our study of subadditive Quasi-Euclidean functionals. The reason we are interested

in the r-warped distance is that it is tightly related to the time a dynamic system

needs to travel between two close points in its output space, as we saw in this section.

It directly follows from theorem 3.5 that around any point y in the output space

of system S (where S is locally controllable (Definition 2.2) at some x such that

h(x) = y) , there is a set B(y') (with a nonempty interior) and constant CL and Cu

such that for every point yf E B(yi), the minimum time needed for the output of

system s to move from yi to yf (Ts(yi, yf)) satisfies:

C mx 1 1 1CLmax{ yf l ,..., y-y } < Ts(y', f) < Cumax{fy -,..., y f-Y }.

(3.16)

The previous inequality means that (locally), the time needed for the output

to move between two points scales like the infinity norm of a "warped" version of

the distance between them. That is, given two points yi and yf, we can apply a

transformation that takes the jth component yf-y to y -y 17, and take the infinity

norm of the transformed difference to get a "good" estimate of the system needs to

move its output from y' to yf. More formally, we have the following definition:

Definition 3.17 (r-warped distance). Given an ordered set of positive integers r =

{rl,...,rd} and two points yi and yf, let l(y', yf) = lyf - yi and r"" = { -,..., -- } be

the ordered set of the inverses of the elements of r. rin" has the order that is inherited

from the indexes in r. We define lJ(yi, yI) = kinv (l(yi, yf)), where k is the function

introduced in definition (2.12). We call lr(yi, yf) the r-warped distance between y'

and yf.

Since we are working in finite dimensional output spaces, all p-norms are equivalent

if p > 0, and so we know that Vp > 0, 3CL(p), Cu(p) such that

CL(p) I(yi, yf) I 1< Ts(Yi, Yf) < Cu(p) lr (y, yf) I p. (3.17)

This fact will be of important use for us in our later development, for it links

the time the system's output needs to move between two points to the r-warped

distance between those points. Thus it provides a link between the dynamic study

of a problem and its static (geometric) counterpart. We are now ready to study

the TSP and MBMP for dynamic systems and establish the asymptotic behavior

of their costs. After that, We introduce subadditive Quasi-Euclidean functionals,

which are a generalization of subadditive Euclidean functionals that have invariance

properties inherited from the r-warped distance we introduced here. These will be very

useful when we generalize our results for the TSP to a larger class of combinatorial

problems.

Chapter 4

Quasi-Euclidean Functionals

In this chapter, we introduce a new class of functionals: Subadditive Quasi-Euclidean

functionals. These functionals are similar to subadditive Euclidean functionals, but

are non-isotropic. They inherit their heterogeneity structure from the r-warped dis-

tance that we defined in the previous chapter. The intuition is that since the r-warped

distance behaves like the time a dynamic system needs to travel locally between two

points in its output space, then we can relate subadditive Quasi-Euclidean functionals

to the costs of problems for dynamic systems. We start by introducing the notation

used and then the properties of this class of functionals.

4.1 Notation for Quasi-Euclidean Functionals

The Quasi-Euclidean functionals we introduce in this chapter are generalizations of

Subadditive Euclidean Functionals, and we show that they have similar asymptotic

properties. For our study of subadditive Quasi-Euclidean functionals, we use the

following notation:

Given a set r = {rl,..., rd} such that r1 <,r 2,., < rd, and ri E N for i = 1, ...,d,

we denote their sum as
d

i=

Definition 4.18 (r-cuboids). Let Qi(r, m), 1 < i _ mlI|rl, be a partition of the

d-cube [0, 1]" into cuboids with sides that are parallel to the axis and are such that

the length of the side parallel to the ith axis is

With no loss of generality, we let QI(r, m) be the cuboid containing the origin.

These are the cuboids that we use to establish a new subadditivity property similar

to property 5 of the Subadditive Euclidean functionals.

Finally, we define the multiplication operator * as the componentwise multiplica-

tion in Rd:

(y * z)~ = yIzi,

and use k'(t) * Q (r, m) (k' was introduced in Definition 2.12) to indicate the cuboid

defined as:

{z : z = z (t) * y, y Q (r, m)}.

Note that kr(t) * Qi(r, m) has sides that are parallel to the axis and the length of the

side parallel to the ith axis is ()ri

4.2 Quasi-Euclidean Functionals' Properties

We will introduce Quasi-Euclidean functionals in a, way that parallels the description

of Euclidean functionals in Section 2.4. Let r = {rl .. , Td r be as above, we call a, func-

tional L,({yl,...,y, }), yi 6 R , Quasi-Euclidean with parameter set r = {ri,...,rd} if

it satisfies the following two properties:

Property 1A (Structured Heterogeneity). Vcz E R+ and y E Rd.

L ({kr(ca) * yi., .. k() * Yn}) = CaL({yi, ... , yJ}).

This scaling property seems similar to the one for Euclidean functionals, except

that the scalings of different dimensions of the space are warped according to r. It is

evident that if r, = 1 Vi, then these two properties describe a Euclidean functional.

Property 2A (Translation Invariance). Lr({yl, ..., ,}) = L,({y+y.., y y}) Vy, i, ... ,

R d

We introduce properties that are similar to properties 3-4. Thus a functional is

called bounded and monotone respectively if it satisfies the following two properties:

Property 3A (Boundedness). If Y1,..., Y, are independently and uniformly dis-

tributed random variables in Rd, Var(Lr({Yi, ..., Yn})) < 00.

Property 4A (Monotonicity). For every finite subset A of R d,

L,r(A U y) > Lr(A).

We assume that L,(¢) = 0, and so L,(A) > 0 V finite subsets A of R d.

Let Qi(r,m), 1 <

that are as in Section

parameter set r = rl,

following property.

i < mIjlIj, be a partition of the d-cube [0, I]d into cuboids

2.4 , Definition 4.18. A Quasi-Euclidean functional L, with

..., rd is called subadditive with respect to r if it satisfies the

Property 5A (Subadditivity).

3C E R such that Vm E N and t E R + , y, ... , yn E Id,

L,({yl,..., yn} n k'(t) * [0, 1]d) < L({yl, ..., } n k'(t) * Qi(r, m)) + atmim n I 1-

(4.1)

The previous properties are all that is needed for the case of independent uniformly

distributed variables Yi. Some additional properties are needed for a subadditive

functional for the results with non-uniform distributions to hold. These properties

are the simple subadditivity, scale boundedness with respect to r, and upper linearity

with respect to r:

Property 6A (Simple subadditivity). 3B such that:

L(A 1 U A 2) < L(A 1) + L(A 2) + tB,

for all finite subsets A, and A 2 of [0, t]d.

(4.2)

Property 7A (Scale Boundedness with respect to r).

_ , < B, Vn > 1,t > 1, (4.3)
tn IIIi

and {Y, ..., yn} C [0, t]d.

Property 8A (Upper Linearity). For any finite collection of cubes Qi(r, m), 1 < i <

mli I (Qi(r, m) defined above), and any infinite sequence yi, 1 < i < c, in Rd, the

functional L satisfies:

Lr({yl, ... , y} n Qi(r, m)) < L,({yi, ... , y,} U=l1Qi(r, rm)) + o(n 1 - 1). (4.4)
i=1

We now turn to establish the asymptotic properties of Quasi-Euclidean function-

als. We produce a theorem for the case where the variables are uniformly and indepen-

dently distributed in the [0, 1]d cube, and another for the case where the distribution

is not uniform but has bounded support.

4.3 Quasi-Euclidean Functionals' Results

We present results for Quasi-Euclidean functionals that are direct parallels to the

results in [1] for Euclidean functionals. The proofs will be left to the appendix, and

the main focus here will be on the implications of these theorems. The first theorem

is similar to theorem 2.3:

Theorem 4.7. Given Y,...,Y, are identically and uniformly distributed in [0, 1] d,

and a functional L, that satisfies properties 1A-5A with parameter set r = {rl, ... , rd},

L,({Yi,...Y,}) satisfies:

lir Lr({Yl, "" 1)Y}) -.

lim , = /(Lr) a.s. (4.5)
n HiIII

This theorem tells us that subadditive Quasi-Euclidean functionals are sub-linear

asymptotically, just like subadditive Euclidean functionals. More importantly, in con-

trast to the 1- , exponent, they have a 1 - 1 exponent. This means that the larger

r I1 is, the closer the behavior is to linearity. Thus the asymptotic cost of a subad-

ditive Quasi-Euclidean functional increases when any of the ri, i E {1, .. , d} increases.

This implies that the parameters ri are indicators of the cost of the functional. In

chapter 5, we will relate r of a subadditive Quasi-Euclidean functionals to the set of

orders of elementary output vector fields of a dynamic system. This tells us that the

orders of the elementary output vector fields of the system are measures of how the

cost of the combinatorial problems behaves asymptotically. Namely, the larger the

orders of the output vector fields of the dynamic system, the larger the cost will be.

4.3.1 Variables with General Distributions

As in the case of Euclidean functionals, more restrictions are needed to deal with

random variables that are not uniformly distributed. One of the main differences

between the case of the uniform and non-uniform random variables is the possibility

of singular distributions. Direct generalizations of theorem 4.7 can deal with some

non-uniform distributions, but not those that have a singular component.

We therefore first turn to a lemma that deals with variables in Rd that have

bounded, singular distributions. Intuitively, since a singular distribution constrains

the random variables to a subspace with less than d dimensions, then the evalua-

tion of the Quasi-Euclidean functional L, on points generated from that distribution

would be small compared to it's evaluation on points generated from a non-singular

distribution. The intuitive reason is that we take the sum of ri over a subset of the

dimensions, and thus get something less than |r i. The following lemma confirms

our intuition:

Lemma 4.7. Consider a Quasi-Euclidean functional L, with parameter set r =

{rl, ..., Td} satisfying properties 6A (Scale boundedness with respect to rl, ..., rd) and

7A (simple subadditivity). Given X, 1 < i < oo are i.i.d. random variables with

singular support E, then:

lim (X,...,X) 0 a.s.
n-o 1-n r 1711

This lemma is important for the result with general distributions, since those

might include a singular part. Additionally, it gives an easy test to whether a certain

functional is not a subadditive Quasi-Euclidean function: If a given functional satis-

fied properties 6A and 7A, and there is a configuration of points for which the func-
1-

tional scales as Q(n 1 IIili), then the functional is not a subadditive Quasi-Euclidean

function.

This test is useful because it only needs one configuration of points. Additionally,

this result combined with theorem 4.7 tells us that the worst case cost of a subadditive

Quasi-Euclidean function is also 8(n -I).

The next result targets Quasi-Euclidean functionals on variables that are "the

middle ground" between uniformly distributed and a generally distributed random

variables: Variables that are uniform on a finite number of small cuboids (that

have the form of Qj(r, m) described above). Given variables Y that are uniformly

distributed on a, finite number of cuboids, theorem 4.7 almost immediately implies
1 - 1

that L,(Y, ..., Y) is e(n -I). Still, the interesting part of the result is what the

constant is in terms of the distribution. From this information, we will be able to

form results for variables with general distributions that describe both the asymptotic

behavior (in terms of powers of n) and the constant of scaling in terms of /(L,) and the

absolutely continuous part of the distribution (f(x)). Finally, note that by lemma 4.7

the singular part of the distribution will asymptotically have a negligible contribution

to L,.

Since we are now dealing with variables that are non-uniformly distributed, we

require L, to satisfy all the properties:

Lemma 4.8. Let L, be a Quasi-Euclidean functional with parameter set r = {r, ... , rd}

that satisfies properties 1A-8A. Given Yj, 1 < i < oc that are i.i.d., have a dis-

tribution whose absolutely continuous part is g(x) = a 1Q l rm)(x), where r =

{ri, ... , rd}, Qi(r, m) are cuboids as Definition 4.18, and 1Q(r,m)(x) = 1 if x E Qi(r, m)

and is 0 otherwise, then

lim (Y1 - (L) g(x) 1 Ilidx, a.s.n 1oo fd 1d1Rd

As indicated before, the interesting part of this lemma is that the constant of the

scaling is changed by a factor that is fRd g(x) Fdx. This means that if /(L,) is

known for a certain Quasi-Euclidean functional under the uniform distribution, the

asymptotic behavior of that functional can be calculated for any distribution g(x) as

above.

Finally, we turn to a result establishing the same property as lemma 4.8 for any

general distribution f(x), which might have a singular part.

Theorem 4.8. If L, is a functional that satisfies properties 1A-8A with parameter

set r = {rl,., rd}, and {Y} are i.i.d. random variables with bounded support such

that the absolutely continuous part of their distribution is f(z), then 3(Lr) such that:

lim L, (Yi,) 3(L,) f (x)' dx, (4.6)

This final theorem uses lemmas 4.7 and 4.8 to mirror theorem 2.4 for subadditive

Euclidean functionals. It has all the usefulness of the previous theorem and both

lemmas, but imposes more constraints on the functional.

4.3.2 Requirements Relaxations

In this section, we relax the properties of Quasi-Euclidean functionals while making

sure that the results still hold. This will allow Quasi-Euclidean functionals to deal

with a larger array of applications. We will give examples of such applications in

Section 4.4. We first relax property 4A to accommodate a larger class of functionals;

following the terminology in [1], we call a Quasi-Euclidean functional L, with param-

eter set r = {rl,..., rd} sufficiently monotone if it satisfies the following property:

Property 9A. (Sufficient Monotonicity)

A functional L, is called sufficiently monotone with respect to r if a sequence
1-77foay

tn = o(n I) such that for any infinite sequence y, y2 ... E]Rd and any m > n, we

have

L(X, .(, xn) < Lr(x, ... , xm) + tn.

All of the proofs follow with monotonicity substituted by sufficient monotonicity.

Note that if a functional is monotone, then it's sufficiently monotone. Still, sufficient

monotonicity is useful for some very important problems. For example, the minimum

matching problem, where given points yi, ..., y2n we are required to find the cost of

the minimum matching between them. First, note that this problem is different from

the minimum bipartite matching problem, since here, every points has 2n - 1 possible

points to match to, while in the MBMP, every point has n possible matches. It might

seem that this difference is negligible, but the MBMP in general has a higher cost.

For example, the Euclidean MBMP in two dimensions scales as Vn ln(n) [13], while

the Euclidean Minimum matching problem has a cost that scales as vn-. Still, to

study the Minimum Matching problem, sufficient monotonicity is needed, since it is

not monotone [1].

We now turn to some other relaxations, that allow certain functionals to behave

like Quasi-Euclidean functionals under certain distributions of the the argument vari-

ables. For theorem 4.7 to hold, properties 1A-5A only need to hold almost surely when

Yi, ..., Y, are uniformly, independently and identically distributed. Additionally, if all

of the properties 1A-8A hold with probability 1 when Y1. ..., Y, are independently and

identically distributed according to a distribution f(y), then theorem 4.8 will hold.

These relaxations are important for some of the examples we deal with in Section

4.4. We will see an example of a functional that is subadditive only when Y, ..., Y"

are sampled from specific distributions, and thus the results we prove hold only for

certain distributions for that functional.

Thus far, we have shown that Quasi-Euclidean functionals behave almost exactly

like Euclidean functionals except with number of dimensions d replaced by Ir 1, but

we still haven't dealt with path planning for dynamic systems. In the following sec-

tion, we relate the Quasi-Euclidean functionals we studied here to classical problems

dealing with moving the output of a dynamic system between a number of points. We

first reduce the gap between Quasi-Euclidean functionals and problems for dynamic

systems by showing some examples of Quasi-Euclidean functionals that involve the

r-warped distance between points.

4.4 Quasi-Euclidean Functionals Applications

It is well-known that the costs of the Euclidean TSP and MBMP (when d > 3) are

Euclidean functionals [1, 12]. In this section, we assume that we are given a set of

integers r = {rl, ... , rn} and we consider the TSP and MBMP where the weight of

an edge between y' and yf is Ir'(yi, yf)l 1, the 1-norm of the r-warped difference

between them (Definition 3.17). We now show that the costs of the "r-warped"

versions of the TSP and MBMP are Quasi-Euclidean functionals with parameter set

r. Denote the costs of these versions of the TSP and MBMP by LGo and LG .

Properties 1A, 2A, 3A and 9A are easily established for the costs of these problems,

from the definition of the r-warped distance and the formulations of the problems.

Property 5A is most easily proved by using the following lemma (whose proof is

similar to lemma 5.12 below):

Lemma 4.9. The cost for the TSP where the weights of the edges are warped according

to r = (ri, ... , rd) satisfies.

11
LGo(y1,---,Yn) CrV Ilr In IIr ,

Vyl, ... , y in a bounded cuboid of volume V. Here, c, is a constant that depends only

on r.

With lemma 4.9, we can proceed to prove subadditivity for LGo:

Proposition 4.3. Let r = (ri, ..., rd) be a set of positive integers and y = {yl, ..., y,},

y E [0 ,1]d. If LGo is the cost of the TSP on Y when the weights wij = I lr(y,,yy)l 1,

then LGo satisfies property 5A with parameter set r.

Proof. Consider any points yi, ..., yn in k'(t) * [0, I]d . A candidate tour of the points

is the one using the TSP paths for {yl, ..., y,n} I k(t)* Qi(r, m) and connecting them.

To connect them, a path between 2mHlr'l endpoints is needed. The length of this path

is less than cr21- 1 i i r -l,-l by lemma 4.9. This gives directly:

LGo({y, ..., y,-}nk'(t)*[0, 1]d) L 1O({Y1, , ynkj}n (t) * Q(r, m))+CGotm 11r1|1-1

i=1

(4.7)

It is obvious that LG1 is not subadditive for any set of points y... yy .. y

This can be seen by choosing y{, ..., yl and yi, ..., y2 on opposite sides of the [0, 1]d

cube. Still, we have the following lemma:

Lemma 4.10. If d > 3 and Y1, ... , Y,', Y2, ..., Y are uniformly, independently and

identically distributed on [0, 1]d, then

LG1({y11,, y12, ... YJ} n k'(t) * [0, 1]) <

mIIrI 1 (4.8)

> LG(Y 1
1. 12, ., Y.. } n k'(t) * Qi(r, in)) + Coltmrl 1' a.s.

i=1

It is interesting that the cost function of the MBMP is subadditive only for d > 3.

It is actually known that in the Euclidean case the functional is not subadditive for

d = 1, 2 [12, 13]. This hints that subadditivity of a functional depends on the details

of the setting, which makes it hard to predict whether a functional is subadditive or

not beforehand.

Now, with all of the properties needed established, we know that Lco and LGI (again,

when d > 3) are Quasi-Euclidean functionals with parameter set r, and we have the

following result by theorem 4.7:

Theorem 4.9. Let r = (ri,..., rd) be a set of positive integers, and let LGo and LcG

be the costs of the TSP and MBMP when the weights w ,j are given by

If Y, ..., Y, are uniformly, independently, and identically distributed in [0, 1]d
, we have

for i = 0, 1 (d > 3 when i = 1):

LGi (Y1, .Y,)
lim Y -= 0,3(LGi) a.s. (4.9)

n-*0o n 1- IIr l

The examples produced here are one step closer between Quasi-Euclidean func-

tionals and problems for dynamic systems. Since the time a dynamic system needs to

travel locally between two points scales as the r-warped distance between the points,

we expect the problems for dynamic systems to behave similar to the examples we

have here. Still, an important difference is that the non-local behavior of the dynamic

systems does not in general have any structure and doesn't satisfy any homogeneity

properties. We therefore turn to proving that in problems whose cost is monotone

and subadditive, local behavior determines the global scaling.

74

Chapter 5

Quasi-Euclidean Functionals and

Small-Time Controllable Dynamic

Systems

In this chapter, we study the asymptotic behavior of some problems for small-time

controllable dynamic systems by connecting them to subadditive Quasi-Euclidean

functionals. Still, since the connection between the time of the dynamic systems and

the r-warped distance is only local, we need to ensure that the local behavior dictates

the global behavior of the cost functionals. This is our first aim in this chapter

5.1 Local and Global Behavior of Monotone, Sub-

additive Functionals

In this section, we study the relationship between the local and global asymptotic

behavior of monotone, subadditive functionals. We note that the functionals we

study here are not necessarily Euclidean or Quasi-Euclidean. The relationships we

establish between the local and global behavior of functionals depends only on the

monotonicity and subadditivity properties, as we see in the following lemma:

Lemma 5.11. Let L, : Rd -- R be a monotone functional that satisfies property 5A

with parameter set r = {ri, ... , rd}, and let Q = {Qi, ..., QAm} be an arbitrary partition

of the [0, 1]d cube, and V i, let L'(yl,. .. ,y) = L({y, ..., y,n} n Q).

If V i, L({Yi,..., YV}) is O(nri i) with probability 1 when Y,..., Y, are inde-

pendently, identically, and uniformly distributed in [0 1]d , then:

1 1

Lr({Y,...,Y,}) is O(n Ili) a.s. (5.1)

This lemma simply means that since monotonicity forces Li to be a lower bound

of Lr and subadditivity forces a similar upper bound on Lr, the local behavior in

Qi is what governs the asymptotic behavior. More specifically, it tells us that if we

can divide the [0, 1]d cube into small parts such that the inside of each part Lr is

a subadditive Quasi-Euclidean functional, then all we need globally from L, is that

it is monotonic and satisfies property 5A. The usefulness of this lemma might not

be directly obvious, but for dynamic, systems studying properties locally is much

easier than doing so globally. Thus this theorem offers a relatively easy way to study

planning problems for dynamic systems, by allowing us to check all the properties

locally and only monotonicity and subadditivity globally.

It is important to note that this result is not the same as that of theorem 4.7.

While theorem 4.7 says that the value of the functional converges to /3(L)n 1 r 1h

almost surely, lemma 5.11 only says that the value of L, scales as n1- 1 almost

surely. Thus while theorem 4.7 guarantees that the value of L, is the same for all

instantiations of Y, ... , Y, if n is large enough, lemma 5.11 only guarantees that the

values of Lr from different instantiations of Y, ..., Y, are only close together (within

a constant factor which is independent of n) when n is large enough.

5.2 Applications to Problems with Locally Con-

trollable Dynamic Systems

We now turn to the problems defined in Section 2.1, namely, the DyTSP and DyMBMP.

We consider systems that are locally controllable.

From our study of locally controllable systems in Section 3.4, we know that the

behavior of the minimum travel time of these systems between two points locally is

similar to the behavior of the r-warped distance between the points. We therefore

expect LGo and LG to behave asymptotically similarly to LGo and LG respectively,

where r = (rl, ..., rd) is the set of orders of elementary output vector fields of system

S. More specifically, we have the following result:

Proposition 5.4. If for every y E [0, i]d, C = minx:h(z)=y CL(x) and C, = maxx:h(x)=y Cu(x)

exist, then there exists a partition Q1,..., QMs of the [0, I]d cube such that for every

i E{1,...,Ms} and jE {O, 1}, we have:

C± Ly < L < C' L (5.2)Lr G_ Gs Ur G,

where L' (yl, ... , y,) = LG , i), (x, ... , Xm, Xi {, ,

Qi) (x, x are such that h(x) E Q), and C and C, are constants.

From our previous results, we know that the restrictions of LGo and LG to Q are
S S

(n r -), V i.

Now, since we intend to use lemma 5.11, we only need to establish that Lo and

LG1 are monotone and subadditive on cuboids that form a partition of the [0, I]d cube.

Monotonicity of the cost is direct from the descriptions of the three problems. The

proof for subadditivity of the three functionals underhand is a bit more complicated,

but is most easily seen from the following lemma:

Lemma 5.12. Let LGo be the cost for the TSP for a locally controllable dynamic

system S, and let the elementary output vector fields of S be fl, ..., fd and their cor-

responding orders be rl, ..., rd. It follows that LGO satisfies:

LGo (X, y1,..., y n)) < csV 1- I 1 H

Vyl, ..., y, in a bounded cuboid of volume V. Here, cs is a constant that depends only

on S.

The proof of this lemma is in Section 5.3.1 and 5.3.2, where we construct a tour

and prove that the time needed for the dynamic system to trace is satisfies the bound

in this lemma. With this lemma, we can prove the following proposition:

Proposition 5.5. Let S by a dynamic system as in (2.4), r = (r, ..., rd) be the set of

orders of the elementary output vector fields corresponding to S, and y = {yi, ... , yn},

y E [0, 1]d . If LGO is the cost of the DyTSP for system S on Y, then LGo satisfies

property 5A with parameter set r.

Proof. Similar to the r-warped costs case in Section 4.4, the subadditivity of LGo can

be proven as follows: Consider any points yl, ..., y, in kr(t) * [0, 1]. A candidate path

for the DyTSP is the one using the DyTSP paths for {yl,...,yn} k'(t) * Q(r,m) and

connecting them. To connect them, a path between 2m Irj I1 endpoints is needed. The
21

length of this path is less than cs21 I I 1 t11 IIrl-1, by lemma 5.12. This gives directly:

LcG(x , {yl , ..., y,nk'(t)*[O, 1]d) < LG (X 01 , yl, Yn}nkr(t)*Q(r, m))+CtmIrjlr -i
i=1

(5.3)

As for LG1, we know that it is not subadditive for any choice of y, ... , y, y , ..., y.

Still, the following lemma, which is similar to lemma 4.10 can be established:

Lemma 5.13. Given d > 3, let LG1 be the cost for the MBMP for a locally control-

lable dynamic system S, and let the elementary output vector fields of S be fl,..., fd

and their corresponding orders be rl,..., rd. It follows that

LG (X, ..., X,{Y 11,...,~, Y 1
2 , ... ,Y}j n kr(t)* [0,1]d) <

SLGls(X o ',...,X {Y,..., Y, Y 2 , y...,2 }n k'(t) * Qi(r, m)) + CG tm lrrll - a.s..
i=1

(5.4)

when Y11, ... , Y, Y 2, ... , are uniformly, independently and identically distributed.

Thus, we have proven that LG is subadditive and monotone for i E {0, 1} (with

d > 3 for LG). Using lemma 5.11, we establish that L0G has a cost that is O(nl-_11).

This is given in the following theorem:

Theorem 5.10. Let Y, ..., Y, be uniformly, independently, and identically distributed

in [0, 1]d in the output space of a locally controllable system S described as in (2.4),

and LGi E {0,1}. Fori = 0,1 (d > 3 for LGc), we have:S 1

LG'(X , ..., X ° , { Y, ..., Y,}) is G(n-Fi) a.s.,

where r = (ri, ..., rd) is the set of orders or elementary output vector fields.

All of these results can be appropriately generalized to non-uniform distributions.

Additional properties similar to the ones in [1] are need to be satisfied for the sub-

additive Quasi-Euclidean functionals. Lemma 5.11 still holds, so it is only needed to

prove all of the properties locally, and only monotonicity and subadditivity has to be

proven globally.

5.3 TSP Algorithm for Small-Time Controllable

Dynamic Systems

In this section, we introduce an algorithm for the DyTSP that is inspired by our

framework. In Section 5.2, we proved the subadditivity of the DyTSP by patching

sub-tours from each of Qi(r, m) to make a completer tour over the points in [0, I]d .

The algorithm produced here is inspired by that proof, when the number of partitions

(mll'r11) is equal to the number of points (n).

5.3.1 Algorithm Description

The algorithm for the DyTSP of a small-time controllable dynamic system is as follows

(we assume that the points are in the [0, 1]d cube in the output space of the dynamic

system:

Figure 5-1: A tour visiting all of the cuboids in the partition.

1
11. Partition the [0, 1]d cube into cuboids Qi(r, nrIii) as in Section 4.2. Since nTF

is not necessarily an integer, some additional cuboids may be needed. Thus the
maximum number of cuboids in a row along the kth dimension is [nT].

2. Create a tour over the partition in the following way:

(a) Start at a corner of the [0, 1]d cube.

(b) Move along the yl direction, once the end of a row along the yl direction is
reached, move one cuboid in the y2 direction and traverse a new row along
the yl direction (with the opposite orientation of the previous row.)

(c) In general, when the end of a row in the y direction is reached, move one
cuboid in the yijl direction and make another pass of y (figure 5-1).

3. When in a cuboid, visit every point in that cuboid.

This algorithm is a sweep of the partition of [0, 1]d . The interesting part is that
the time for the dynamic system to travel the tour resulting from this algorithm scales
as nl-' iT. This algorithm is a generalization of the algorithm designed in [34] to the
case of a general dynamic system that is small-time locally controllable.

5.3.2 Time to Trace the Tour

The first entity needed in the study of the time the output of the dynamic systems

needs to trace the tour is the time it needs to move between any two points in one of

the cuboids of the partition. From theorem 3.17, we have

Ts(Y , y f) < Cil1(yi, y)l 1,

where lj(yi, yf) is the r-warped difference between y' and yf. Additionally, since yi

and yf are in the same cuboid, it follows that

Thus
d

I V(y, yf) l< n - 1 =dn jii

k=1

It follows that the time needed to "concatenate" two sub-tours that are in con-

secutive cuboids is not more than 2dn Irl 1 . This is because the output of the system

needs to move from the last point in the first tour to a point on the edge between the

cuboids, and then to the first point in the second tour.

Finally, the total number of cuboids in the partition is not more than

k=1

Thus the time needed to concatenate all of the tours is not more than

(n + o(n)) 2dn-i717 + T,

where T is the maximum time needed to close the tour at the end.

The time spent in the sub-tours themselves is bounded by the total number of

edges in the sub-tours times the maximum time to trace an edge in a sub-tour. The

latter is less than n -iill because all points in a sub-tour are in the same cuboid. The

number of edges in every sub-tour is less than the number of points in that sub-tour,

and so the total number of edges in all sub-tours is less than n. Therefore the time

needed to trace all of the sub-tours is not more than

1 *

Thus the total time needed for the output of the system to trace the tour produced

by the algorithm can be bounded by:

1 1 - 1 1

Ta i < n1 ,, + 2dn'1 Mli + o(n I11) = O(n 1-

One fact that simplifies the algorithm is that the systems is small-time locally

controllable and that we assumed that the elementary output vector fields have di-

rections that are invariant over [0, 1]d. In the next chapter, we relax these assumptions

to cover a larger class of dynamic systems.

Chapter 6

Problems for Dynamic Systems

with Drift

In this chapter we relax the assumptions that we had in the previous chapter. Specifi-

cally, we allow the dynamic system to have drift as long as they are locally reachable,

and we allow the directions of the elementary output vector fields to change over

[0, 1] .

Thus Assumption 3.3 is replaced by:

Assumption 6.6. The dynamic system S is locally reachable, that is, the volume of

the small-time reachable set is non-zero.

6.1 Dynamic Systems with Drift

We now aim to relax the assumptions we imposed on the dynamic systems. Dynamic

systems that have drift are not small-time locally controllable. Our framework this

far can't deal with such systems because if a dynamic system is not necessarily locally

controllable at a certain point yo in the output space, then a point yl(e) can always

be found such that the (Euclidean) distance between yo and yl (E) is less than e but

property 2A (structured homogeneity) doesn't hold. This means that for a dynamic

system that is not locally controllable, the cost is not similar to a subadditive Quasi-

Euclidean functional.

Still, problems for dynamic systems that are not locally controllable can be dealt

with using this framework, if the dynamic system is locally reachable. Given a dy-

namic system S that is described as in (2.4) but is not locally controllable, we define

the companion system for S, Sc, by adding a new control uo to the drift component

in (2.4). Thus Sc has the state space representation given by:

O = ugo() + gW() u, (6.1)
i=1

x(0) = xo,

x e Rb, y E R d, ui E U,

U = {u(.) : measurable R -+ [-M, M]},

where gi(x), h(x) and M are the ones in the state space representation of S. Note

that fi and ri are the same for S and S,. Now since S is locally reachable, S, is locally

controllable and the cost for a combinatorial problem under S, can be studied using

our framework. To relate the optimization problem for system S to that of system

Sc, we need a property similar to property 7A:

Property 9. L, is called scale bounded with respect to set r = {ri, ...rd} and a

distribution f(y) if:

1 1

L(Y, ..., Y) O(n), (6.2)

when Y1, ..., Y, are i. i. d. distributed according to f(y).

This property actually restricts the ratio discussed above sufficiently for variables

from a given distribution. This is important for problems for dynamic systems with

drift, since there are distributions where this will fail and so the choice of the distri-

bution is critical. Informally, what is being checked by property 9 is that under the

given distribution, S can perform asymptotically as well as S,. This is because if the

cost for the problem under S satisfies Property 9, then the cost will scale as the cost

of the problem under Sc.

Theorem 6.11. Let LO be the cost of the DyTSP as described in Section 2.1. If

the dynamic system S is a locally reachable system, and Y, ... , Y, are uniformly,

independently and identically distributed on [0, 1]d , then

1- 1

LO(Y1, ... , Y) is E)(n 7-77) a.s.

Proof. We start the proof by the following lemma,

Lemma 6.14. Let L° be the cost of the DyTSP. If S is a locally reachable dynamic

system, then Ls is scale bounded with respect to r = {ri, ..., rd} and the uniform

distribution over [0, 1]d .

The proof of this lemma is in the next section, where we introduce an algorithm

that produces a tour that satisfies the result. Since the companion system Sc de-

signed as above is small-time locally controllable, the cost of the DyTSP for S, is

O(n 1 _ 71) a.s. since

LS (T I, .. , m, , , Yn) < LO(x , ... , xn, yI, ... , y,), V l.Y1,, yn E [0, 1]d

This fact, in addition to lemma 6.14 completes the proof. O

We now turn to the proof of lemma 6.14 and an in-depth study of the TSP for

dynamic system (that possibly has drift). We initially assume that the directions of

the elementary output vector fields and their orders don't change over [0, 1]d , and then

relax this assumption later. Thus given a dynamic system as in (2.4), we study the

TSP tour for such systems, and how the dynamics of the system affect the expected

value of the optimal time duration.

We assume that the points Y, ..., Y belong to a closed and bounded set R in

the output space of the system (R is assumed to be a d-dimensional cuboid with

dimensions W1, W2, ... , Wd). For ease of notation, let

d

j=1

We assume that 3 TT > 0 such that for any two points yl and y2 in R, the system

can be steered from y' to y2 in time less than TT (starting at any initial state x1 such

that h(x 1) = y'.) We also assume that R (the d-dimensional cuboid containing the

n points that the system is required to visit) is such that the it h side (Wi) is parallel

to f2. The proof of lemma 6.14 is constructive, that is, we will introduce an algorithm

for the DyTSP (for a dynamic system that has drift).

6.2 DyTSP Upper bound

We now turn to the proof of lemma 6.14, which can be rephrased as follows:

Lemma 6.15. Let the minimum time for the output of system (2.4) be TTsp({ Y1, ..., n) -

If the Y1, ... , Y uniformly, independently, and identically distributed, then TTSP({Y, ... , Y,})
1-

is O(n 1 -) a.s.

The proof of lemma 6.15 is constructive, that is, we provide an algorithm that

produces an output curve CLA for system (2.4) such that the time needed for the

system to trace CLA is O(n -) a.s. Note that the algorithm introduced in the

previous chapter does not perform well in general for a dynamic system with drift.

This is because the time to trace every sub-tour in a, cuboid can possibly scale as the

number of points in the cuboid (if the dynamic system has drift), and so the time to

trace the whole tour can scale as n.

6.2.1 Level Algorithm

The algorithm we use to construct the upper bound is a generalization of our algo-

rithm for the TSP for dynamic systems in [30]. We first give some intuition about

the Level algorithm. In this algorithm, R is divided into a number of d-dimensional

cuboids (called 1-cuboids). 1-cuboids have sides parallel to Wi, and will be formally

defined shortly.

The algorithm we use is just a sweeping of R in the output space. The system

output starts at a corner of R and it first sweeps a row of 1-cuboids in the fl direction,

moves one 1-cuboid in the f2 direction and then moves back along the fi direction.

Similarly, after the system's output reaches the end of R along the fi direction, it

moves one 1-cuboid in the fi+l direction and repeats.

When sweeping a row of 1-cuboids along the fi direction, the system's output can

be guaranteed to visit one point in alternating cuboids. This is done by using motions

as in Section 3.3. When the system is moving between points in alternating cuboids

that are in the same row, it is directly guaranteed that the distance between the

points along fi direction is more that wl (the length of the side of an 1-cuboid along

the first dimension) and the distance along the fi direction is less than wil (the length

of the side of an 1-cuboid along the ith dimension, where i > 2). We will construct the

1-cuboids such that this fact guarantees that the distances satisfy inequality (3.15).

There are two points that make the Level algorithm a bit more complicated than

the basic sweep described so far:

1. Motions described in Section 3.3 only allow us to guarantee that the output

visits one point every other 1-cuboid (in the fi direction). Therefore, the system

has to do two sweeps to guarantee that it visits one point per nonempty 1-cuboid.

2. The whole sweep does not visit all the points in R. Therefore the sweep has to

be iterated with a smaller number of 1-cuboids until the number of targets left

is small (the exact number will be determined later), and the rest of the points

are visited using a greedy algorithm.

Now that we introduced the intuition about the algorithm, we define it formally.

The simplest version of the Level Algorithm for system (2.4) is as follows:

1. Set level counter 1 = 1 and the maximum level l* = [log 2(n 1I) _ IlJ1.

Figure 6-1: Dividing R into 1-rectangles

2. Let

kl - 2(1-2)(1rII1)

and c = a(d + 1 - i) , i = 2, ... , d,

where a is a normalization constant:
--1

1 1 r
a= (d+1-i)) d

Cover R with cuboids whose h side has length w = c() i. Note that the

, ... , Cd were chosen so that the volume of any 1-cuboid at level 1 is k and that

the assumption (3.15) needed in Section 3.3 is satisfied. We call these cuboids

1-cuboids (Figure 3).

3. Visit at least one point in every non-empty 1-cuboid by doing two passes (Pass(fd)),

where Pass(fi) (i = 1, ..., d) is defined iteratively as follows: Pass(fj)

(a) If i = 1, move along the fi direction across W1. Visit one point in alter-

nating 1-rectangles, using motions as in Section 3.3.

(b) If i = 1, then do [IW-'] + 1 of Pass(fi_1), moving one 1-cuboid along the

fi direction between every two passes.

M M

4. If i < i*, increment it by 1 and go to 2.

5. If i > i*, use a greedy algorithm to pick up the points that are left.

To establish the results on the performance of the Level algorithm, there are

several facts that need to be noted. Some of these important points about the Level

Algorithm are the following:

1. The 1-cuboids are aligned such that wi is parallel to W of R, which are assumed

to be aligned with fi.

2. Each of the 1-cuboids of a certain level 1 is made of 211rll 1-cuboids of the previous

level. Therefore each dimension wi is 2r times wi in the previous level.

3. The reason we visit a point in alternating 1-cuboids is that in that case we can

only use motions like in Section 3.3. This will guarantee that the time traveled

- 1
in each 1-cuboid is less than dCL + (wi)rl This is also why we use

two passes Pass(fd), because in each pass, we deal with half of the 1-cuboids.

4. We have the following lemma about the number of points left in R:

Lemma 6.16. The number of points not visited after the [i*j level is n =

O(n(llIlll)) a.s.

We now turn to the proof that the time the system needs to trace CLA is O(nl-~).

Note that by lemma (6.16), the time needed to clear the points left after the Li* J t

level will not affect the order of the time needed to trace CLA (since it is less than

TT(nl + 1) = O(n2(11Cl)). We therefore just need to prove that the time the system

needs to trace CLA over the levels is O(n 1rI1) a.s.

6.2.2 Time to trace CLA

To bound the time system (2.4) needs to trace CLA over the levels, we start by

bounding the time needed to trace CLA in one level. The bound is given by the

following lemma:

Lemma 6.17. The maximum time needed to trace one pass at level 1 is less than:

'1+ o (AlV(wi)

d
1

d

j=2

TT if r = 1,

0 if ri 1,

and
1 1

A1 = dCLlr, + C,1

is a constant that depends only on the system's dynamics.

Proof. First, we will start by finding the time needed to trace one row of l-cuboids

along the fi direction. We know that the number of 1-cuboids along W1 are at most

+ 1.

Therefore, since in every 1-cuboid the system used curves as in Section 3.3, the

time traveled in traversing one row is bounded by

T = AIWi(w ') + A1(w') + o((w)).

To turn from one row to the other, some additional time bounded by TT is needed.

The number of rows is
d d

W W

w w
j=2 W j=2 1

Finally, to go back to the beginning of the first row, the system will also need some

additional time bounded by TT.

Thus the total time to trace one pass over R is bounded by:

Nr[T, + TT] + TT,

where

(6.3)

T~ {

which is equal to

d

(AIV(w') + T)

j=2

d
1-1

+ o((w) 1 H)
j=2

i

d1 V d 1
+ A, (WI)Y

W j=2 i

(6.4)

d d d

= AIV(w J +T 2 1 + o((w
j=2 Wi j=2 j=2

S1 + ~=d 1
(AIV + TT) I=2 2 ')1 O((W _

A1Vw >70= + 0((w j- W
d

= (AIV(wl) - T1 +) 1
j=2 i

+ o (AIV(w) i -
d 1

+) H
j=2 w

Therefore, The length of the time traveled by the system at any level is bounded

by two times the maximum time traveled in any certain pass over the rows. From

Lemma 6.17 and the fact that

k'V -i3-
Wi = Ci(1

n

AI(V) rIE1(p) 11,111T 1 2c'
(6.6)

+ 2Tc 1,V7 (' + o(nn \).

The total time system (2.4) needs to trace CLA over all of the levels can be bounded

by:

Li*J

i=1
TLA < 2Con 1- 7

if rl - 1,

if rl ' 1.

(6.5)

where

C ° = 2c; A (V) it + 2TclVII

Thus
211r 111 1

TLA < - 21-r.l 1l C LAn I a.s. (6.7)
1 - 21-[Ir1

To complete the proof of lemma 6.15, we have to prove lemma 6.16. The proof is

actually close to the one in [3], and will be left to the appendix.

For the examples we have, the Level Algorithm produces tours whose expected

length is O(n 3/4) for the LTI system and O(n 2/3) for the vehicle pulling k trailers.

Again, the reason for that scaling for the LTI system is that ri = r2 = 1 and r 3 = 2.

Thus motions in the first two directions are "easy", but motions in the f3 directions are

comparatively slow. The car pulling k trailers has only two directions, and although

the corresponding r = 1 and r2 = 2, it still has the advantage (its I rll = 3 compared

to Irji = 4 for the LTI system) because of the additional dimension. The specific

constants multiplying those powers of n depend on the dimensions of R, and bounds

on the inputs of the dynamic systems (which affect A 1). In the case of the LTI

system, it actually also depends on the location of R in the output space, since the

the elementary output vector fields are varying over the output space.

6.3 Heterogenous Dynamic systems

In this section, we relax the assumption that the elementary output vector fields and

their orders are uniform over [0, 1]d. We begin by relaxing the constraints to a class

of systems that is uniform over cuboids that form a partition of the [0, 1]d cube.

6.3.1 Piece-wise Uniform Dynamic Systems

In this section we consider dynamic systems with the following property: B a partition

{Q1, ..., QM} of the [0, 1]" cube such that the directions of the elementary output

vector fields and their orders are uniform over Qi, Vi E {1,.M}.

By lemma 5.11, if L is the cost of a combinatorial problem for the dynamic system

is monotone and subadditive, then the cost scales like L, the cost of the problem

restricted to Qi. If r fl is not the same for all Qj, then the Li* that corresponds to

the largest r111* will dominate and L is O(n' "'1t). This is given by the following

lemma, which is a generalization of lemma 5.11:

Lemma 6.18. Let L, : Rd -- R be a monotone functional that satisfies property 5A

with parameter set r = {rl,..., rd}, and let Q = {Q, ..., QM} be a partition of the

[0, 1]d cube, and V i, let L(yl, ... , yn) = Lr({yl,..., } n Qi).

If V i, L'(Y,..., Y) is E(n 4) with probability 1 when Y,...,Y, are indepen-

dently, identically, and uniformly distributed in [0, I]d , then:

L, (Y, ... , Y,) is e(n 1) a.s., (6.8)

where i* = argmaxi I r .

Thus our framework can deal with dynamic system that are uniform over a par-

tition of the [0, 1]d cube. This class of systems is large and can approximate any

dynamic system whose vector fields have a finite number of discontinuities arbitrarily

well. What is needed to be proven is that the error from the approximation doesn't

add up to be too big.

Now given a general dynamic system with analytic vector fields, we aim to prove

that there is a partition {Q1, ..., QM} of [0, 1]d and a transformation T such that after

applying T in Qi, the directions and orders of the elementary output vector fields are

uniform over Qj.

6.3.2 Local Transformations for Dynamic Systems

A local transformation that makes the flows of the elementary output vector fields

uniform can always be found. This transformation follows from the fact that the

elementary output vector fields form a basis locally. To introduce the local transfor-

mation, we start with some notation.

Given a vector field f, denote by ¢/(xo) the flow of f. This is the analytic function

satisfying:
f) = f (x)) Of(xo) = 0o

atI

Denote by ft(xo) the flow of -f.

For any x0 , T > 0 and a neighborhood U of x0 such that Vt < T o{(x) is

defined for all x E U and is a local diffeomorphism. Additionally, [= f and

Otf+7-) = Qt (Of(X)) .

Given vector fields fl,..., f, such that

span{fl(x),.., fn()} = I ", Vx E U,

consider the mapping

F : U, -R"

, o o.. 0 Ofn (X)

where U = {z E " : |zi| < E}.

This mapping takes the "times" zl,..., z, to the point in RI " that is reached by

following the flows of f, for time zj, f2 for time z2 and so on.

Theorem 6.12. 3e such that F is defined for all z = (zl,...,z,) E U, and is a

diffeomorphism onto its image.

If the inverse of the mapping is used as a change of coordinates transformation,

the flows of the functions fl, ... , f, are given by Of (z) = zi. Thus using this diffeo-

morphism, the directions of the flow of fi can be assumed to be ei.

Since the elementary output vector fields span the space locally, this transforma-

tion can be used locally to make the flows of the elementary output vector fields uni-

form. Note that since we are applying a transformation, the distribution of Y1, ..., Yn

will change. Thus if Y, ... , Y, were uniformly, independently and identically dis-

tributed, their distribution will not be uniform in general after the transformation.

Thus all of the properties 1A-8A should be checked.

To generalize the results to general dynamic systems, we just have to prove that

we can find a partition of the [0, I]d cube such that in every element of the partition,

a local transformation can be applied to make the directions of the elementary output

vector fields uniform. We can find a partition as follows:

There is a set of balls, {B(y) : y E [0, 1]d} such that the a transformation

-1' can be found. This set is a cover for the [0, 1]d cube since Vy E [0,]d, y E

B(y). Since [0, 1]d is compact, there is a finite sub-cover B(yl), ..., B(yM) that covers

[0, I]d. Finally, the partition needed is the set of all of the non-empty intersections of

B(y),...,B(yM), BC(yl),..., BC(yM), where B c is the complement of [0, 1
d .

We now turn to the dynamic version of the TSP, the DTRP, and see how our results

for the TSP can guarantee that the DTRP for a dynamic system is stabilizable. We

deal with the DTRP under two scenarios, and study how to minimize the time a

customer has to wait before being serviced.

96

Chapter 7

Dynamic Traveling Repairperson

Problem for Dynamic Systems

In this chapter, we study the minimum customer waiting time for the DTRP, denoted

TDTRP. We repeat the problem formulation here for easy reference:

7.1 Problem Formulation

Given a dynamic system that is modeled as in (2.4), let R be compact region in

the output space of the system (R is assumed to be a d-dimensional cuboid with

dimensions W1, W2, ... , Wq). We study the DTRP, where "customer service requests"

are arising according to a Poisson process with rate A and, once a request arrives, it

is randomly assigned a position in R uniformly and independently.

The repairperson is modeled as in (2.4) and is required to visit the customers and

service their requests. At each customer's location, the repairperson spends a service

time s which is a random variable with finite mean - and second moment s2. We

study the expected waiting time a customer has to wait between the request arrival

time and the time of service, and we mainly focus on how that quantity scales in terms

of the traffic intensity A- for low traffic (A - 0) and high traffic (A -- 1). We also

study the stability of the queuing system, namely whether the necessary condition

for stability (A < 1) is also sufficient.

It is known that the necessary condition for stability of the DTRP is that A9 < 1

[18]. This condition simply means that the average time for a new customer request

to arise should be less than the average time needed to service a customer. We study

whether this necessary condition for stability is also sufficient, that is, whether there

are schemes for every A < 1 that will guarantee that the number of waiting customers

is always bounded. Additionally, we study how TDTRP scales in terms of the traffic

intensity.

7.2 Low Traffic Intensity

We will start with results for low traffic intensity. This means that A3 - 0 and so

almost all of the time can be used to move the system's output from one customer to

another. Let y* be a "time median" of R under the system's dynamical constraints

(does not have to be unique). So y* is the point in R that minimizes

E[T, (y, y*)],

where T,(y, y*) is the time that the system needs to travel from y* to y. Note that

T, doesn't have to be small, and therefore the steering and scaling results of the

reachable sets we derived don't necessarily hold. Let

T1 = E[T,(y, y*)],

and

T2 = E[T (y, y*)].

We have the following theorem:

Theorem 7.13. The expected customer waiting time in the DTRP (TDTRP) for a

small time controllable dynamic system is equal to

E[T (y, y*)] +

as A -- 0.

For dynamic systems that are not locally controllable, TDTRP still scales as

E[Tv(y, y*)] +-,

but there is a gap between the upper and lower bounds. This is because the system

has to move around y* while waiting for customers requests, and so when the customer

requests arrive, the system will not necessarily be at y* and therefore customers will

have to wait longer.

Proving that TDTRP > E[Tv(y, y*)]+9 is straightforward. When a customer service

request arises, the system's output has to at least move from where it is already to

the location of the new customer and service it. Thus the expected time a customer

has to wait is at least E[Tv(y, ySY)] + -, where ySYS is a random variable determining

the location of the system's output when the customer service request arrived. From

the definition of y*, E[T,(y, ySYS)] > E[T,(y, y*)], and thus

TDTRP > E[Tv(y*, y)] + = T +s = T*.

Note that this lower bound holds for both small-time controllable systems and systems

that are not small-time controllable.

To get the matching upper bound, the following policy can be followed: Service

customers in a First Come First Serve fashion, and wait at y* when there are no

customers. For dynamic systems that can't stay at a certain point (because of drift

for example), a looser upper bound can be achieved by moving around y* (T1 +H+ T3 ,

where T3 is the expected time for the system to return to y*). We will concentrate

on small-time locally controllable (definition 2.2) systems here for simplicity.

Lemma 7.19. The expected time of the previous policy TFCFS satisfies the following

relation.

TFCFS S lasA O- 0.
T*

Proof. The proof is similar to the one in [18].

By following the FCFS scheme, we have a single-server SQM system behaving like

an M/G/1 queue with first moment 2T + " and second moment 4T2 + 4sTi + s2

Thus the expected customer waiting time can be bounded by:

A (4T2 + 4 Tj + s 2)
TFCFS = A (4 4T- 2

2(1 - 2AT - A-)

Therefore:
A(4T 2+4§Tis 2) + T1 + lim TFCFS lim 2(1-2AT-)

,xo T* x-o T1 + (7.1)

= 1.

Theorem (7.13) follows directly.

7.3 High Traffic Intensity

We now turn to the case where the traffic intensity is high. Heavy traffic intensity is

when A5 -- 1. This means that there is little time for travel (1 - AN per customer on

average.) Thus the system will need to follow a more complicated scheme to allow

the number of waiting customers to be bounded.

We first produce a lower bound on the expected customer waiting time. This

result will depend on the area of the small time reachable set discussed in Section

3.2, and is given by the following lemma:

Lemma 7.20. TDTRP iS Q ((1 - As)-(hjrjj)).

100

Proof. The lower bound proof is in three steps:

1. Bound the Expected time traveled per customer:

Let n be the average number of customers waiting in R to be serviced at a

given time. Given that the output of system (2.4) is at any point in R, let the

minimum time needed to travel to a customer be t*. Then

E[t*] P[t* > T]dT

> 1 max{O, 1 - c-rTIr1 }dT,

where c = n C-1 , and Cu is from Theorem 3.5.
W1W2,

1 - c-wrlld7

= C I1 - C c ThI

1+Itr 1

l+ r | 1
CW Wu) n IIll

W W2li

= c 2 n- IIl

2. Upper bound the rate of arrival:

Recall that s is the average service time per customer needed, W is the average

waiting time, and T = W + s is the system waiting time.

The stability condition is that the average time spent traveling on the road plus

the average service time is not greater than the average time for a customer to

arrive:

where A is the rate of arrival.

101

1

E[t*]_ > 0

A(+ E[t*]) < 1,

Therefore,

1- 1
S+ C2n < -

-A

3. Lower Bound the Customer Waiting Time.

From the previous bound, and using Little's formula to relate the average

number of customers in a queue to the average waiting time: n = AW and

T* = s + W is the minimum system waiting time, we get:

> (Ac2) Ir11

and

TDTRP > S +

Therefore as A9 -+ 1, TDTRP is Q(1 - As)-(Irl)

To achieve the upper bound corresponding to the high traffic intensity lower

bound, we use the TSP policy. Under this policy, the system waits until there are n

customers, and then services them with a TSP tour. This means that it first waits

for customers number 1 to n, service them using a TSP tour, then waits till the 2nth

customer arrives, and services customers n + 1 to 2n,... Denote the k th set of n cus-

tomers by Sk and the system waiting time under this policy by TTSP, we have the

following theorem:

Theorem 7.14. As 1 - A9 -+ 0, TTSP < C3TDTRP -

Proof. We now consider Sk to be the kth customer in a queue. Since the interarrival

and service times are i.i.d, we have a GI/G/1 queue with an Erlang distribution of

order n. The mean of the sets is and the variance is /

102

Therefore, the expected value of the service time of a set is E[TLA(n)] + ng and

the variance is var(TLA(n)) + na2

Therefore, we can bound the average waiting time of the sets by:

S (-(+ var(TLA(r)) + 2)

2(1 - A(E[TLA(n)] + rig))

A(' + 72)

2(1 - A((s) + CLAr ,II1))

where CLA is from lemma 6.17. For stability, we have:

1 - A(9 + CLAn n-i) > 0.

Therefore
(1 - A9)Hri 1

and
(ACLA)'rll

(1 - A9)lIrII1

This means that for high traffic (1 - A9 - 0), n has to be large for the system to

be stable. Our assumption for the Level Algorithm performance guarantee (that n is

large) is thus satisfied.

The expected waiting time for a certain customer is the sum of the expected time

it waits for its set to form, the waiting time for the set to get serviced, and the

expected time it needs to wait to get serviced after the service of its set started.

Therefore,

TTSP <-A 1

2(1 - A(s + CLAn-T)) (7.2)
1 + A9 i

It can be shown that as 1 - A -- 0, the optimal n approaches (A) (which

is the stability bound).

Substituting the optimal value of n in 7.2 gives:

103

AIIrhiI-1Cr i
TTSP < LA

- (I - As)IIrI '

and using this with lemma (7.20) gives the result:

TTSP < C3 -
TDTRP

and thus proves that TDTRP is e ((1 - As)-lrlll) .]

Thus the DTRP is stabilizable for any dynamic system that has basic reachability

properties, that is, the expected waiting time for a customer can be guaranteed to

be bounded as long as A; < 1. For the examples we are using, the average customer

waiting time scales as (1 - Ag) - 4 and (1 - As)- 3 respectively, which is worse than

the Euclidean case. This deterioration in behavior is due to the fact that there is a,

direction in which motions of the systems' output is slow (the direction with ri = 2),

and the increase in the dimension of the output space.

104

Chapter 8

Conclusion

8.1 Conclusions

This thesis has three goals: The first is to introduce a framework to study combina-

torial problems under dynamic constraints. The second is to apply our framework

to the study of the TSP and MBMP for dynamic systems and produce algorithms

whose performance scales like the optimal in terms of the number of points. The final

goal is a study of the DTRP, both in low traffic and high traffic regimes, produce

lower bounds and algorithms whose performance in terms of the intensity scales as

the optimal.

To study different combinatorial problems under dynamic constraints, we intro-

duced a new class of functionals that we call Quasi-Euclidean functionals. These are

a generalization of Euclidean functionals, which represent the cost of the combinato-

rial problems of interest when the dynamic constraints are ignored. We established

the asymptotic properties of Quasi-Euclidean functionals, and produce results that

parallel those available for Euclidean functional. Additionally, we provide some re-

sults simplifying the study of problems for dynamic systems, and some tests that

show whether the cost function of a certain problem is a subadditive Quasi-Euclidean

function or not. Therefore the work here offers tools for the study of problems for

path planning for a dynamic system through a given number of points.

We established that the framework of Subadditive Quasi-Euclidean functionals

can simplify the study a rich class of problems for dynamic systems. We did this by

using the results for the Quasi-Euclidean functionals to study problems for dynamic

systems and establish their asymptotic behavior. Namely, we studied the TSP and

the MBMP for dynamic systems. We did this by studying the problems for systems

that are locally controllable first, and then using those results to study the problems

for systems that are not necessarily locally controllable but are locally reachable.

We then studied the TSP for dynamic systems in detail. We provided lower bounds

on the time the system has to travel to visit all of the given points, and created

an algorithm that allows the system to visit all of the points in a time that scales

optimally. We used the results from the TSP to study the DTRP in the high customer

arrival regime. We proved that the DTRP for dynamic systems is stabilizable and

provided algorithm that perform order-optimally when the traffic intensity is high or

low.

106

Appendix A

Appendix

A.1 Proofs for Dynamic Systems

A.1.1 Proof of theorem 2.2

We start by showing that the function given by

xj(Xo))) fo
00 m m

x(t) = zj(O) + E ... L (gio 7 ... L (gik

k=0 io=0 ik =0

where, as before, Xj : (xl, ... , Xn) -- x j is the solution of the differential equation

m

x = go() + g(x)u, x(O) = 0o. (A.2)

To show this, note that from the definition of fo dik...diO,

dik-1- do,

and

l <ik < m.

Taking the derivative of equation A.2 with respect to time, and rearranging the

(A.1)

t dodik-I ...lo1 =0

d dik -1... o = Uikdt fo d ik-1 ... io ,

terms on the right side, we have

00 m m t

(t) =C (go, x(xo)) + E E(g, C (Yik C (go X (xo)))) Jd ik
k=0 io=0 ik= 0

0
m 00 oom m

+ EL(gi, x(xo)) + E ... E L (±ioZ L,

i=1 k=0 io=0 ik=0

Denote by gik,J the jth component of gik, and note that:

S(for 0 < i <)) gi), we have:

Therefore, for 0 < i < M, we have:

(gjik C (gi, xi(xo))))
I t

dAi ... d io Ui

(A.3)

t dd ik .. <jo
00 m m

£(gi, x (xo)) + Z

k=0 io=0 ik=O

= gi,j(Xo) +
00 m m

E=E... E L (9io, i=C (Oik I i,))

k=0 io=0 ik =0
I t0

(A.4)

Additionally, xj(t) in equation A.1 satisfies xj(0) = x, and therefore they are the

components of the solution of the differential equation A.2.

A similar calculation shows that the output given by y = h(x) can be expressed

(A.5)

0C0

k=0 io=0 ik =O

t

.0

108

. .. io

y(t) = hj(xo)

(gio, C (gik hj (20)))

A.2 Proofs for the TSP for Dynamic Systems

A.2.1 Proof of lemma 6.16

This proof is similar to the one in [9]. We give every 1-cuboid a unique identifier

c, and let c(yi) be the 1-cuboid yj belongs to. We also denote 1(y2) be the level at

which yi is visited, and assume that if c(yi) = c(yj) and i < j, then 1(yi) < 1(yj).

Additionally, let tj (yi) be the number of l-cuboids that have targets yk such that k < i

at the beginning of the jth level. Finally let the number of cuboids of the ith level be

mi. The probability that y, is not visited in the first level is:

t1(yi) n 1
P[l(y) > 1 tl(yi)]- t) < -

mi 2ljr1lin 2Hrh

Similarly,

P[I(yi) > j tj(yi-1),.., tl(yi-)] = P[l(yi) > jjl(yi) > j- 1, tj(yil)

.P[/(yi) > j- 1 tj-l(Yi-1) ... , tl(Yi-1)

< tk (i-1)
mkk=1 (A.6)

2k|r I-ltk(n)
2n

k=1

k=1

Now let Oj = 2-j 1 r+ ,2 , j E N, and for a fixed j > 0 define the binary variables

Xi such that Xi = 1 if l(yi) > j and ty(y-l) in and Xi = 0 otherwise. Now we

have

P[X = 1 c(yl),..., c(yi- 1)] < 2 2 3k = 2 - j .
k=1

Thus the sum Ei=1 Xi is stochastically dominated by a binomial random variable

109

with p = 2- J , and therefore:

P [Xi > 21 - n] < 2 3
i=1

This is less than T1 for j < 1*. Note that if tj(y,) < Ojn, then tj+l(n) < n Xi

(because in this case the first term is the number of non-empty I-cuboids and the

second one is the number of non-visited points.) Thus

n

P[tj+l(n) > +n nIt j(yn) < 3jn]P[tj(yn)< < n] < P[Xi > 21-Jn] <
i=1

1

and therefore

P[tj+l(n) > i+ln] = P[tj+l(n) > P+lnl t(Yny) < /3n]P[ti(y) < jn] + P[tj+l(n) > 3i+ln tj(yn) >

1
< + P[t(y 1 L) > f3sn]

2'n
(A.7)

Finally, at the l* level, we have

P[t) > 2r 1) (y
P[tl.+l(n) > n 211-1111 t1'(yn) </3n]P[th.(yn)< /3n] < P[X,

(A.8)
2 I-I-l
n2 21i-l

<2 2

and therefore

P[tli+l(n) > n 211111] < 2 2

n2

and the proof is complete.

110

> n 211r 11

A.3 Proofs for Quasi-Euclidean Functionals

A.3.1 Proof of theorem 4.7

Here we present the proofs for the theorems we produced. The first is of theorem 4.7,

and it follows the proof of theorem 2.3 in [1].

Proof. We follow the notation in [1] and let H denote a Poisson point process in Rd

with a uniform intensity parameter equal to 1, N(t) be a Poisson counting process

on [0, oc), and Xi, 1 < i < o00 be i.i.d. uniform random variables on [0, I]d. For every

A C Rd, we denote by II(A) the set of random points in A (A is a Borel set in R d),

and introduce the random variable A,(t) = L, (II (k(t) * [0, 1]d)), which denotes the

evaluation of L, on random points in cuboids similar to the ones introduced in Section

2.4. Let ,r(t) = E [Ar(t)] and V(t) = VAR (Ar(t)).

Note that the distribution of the number of points in II (k(t) * [0, I]d) is Poisson

with parameter t 1ir11i (the volume of k(t) * [0, 1]d), which is the same as the distribu-

tion of N(tllIll). The conditional property of Poisson process states that the points

of II (k(t) * [0, 1]d) in k'(t) * [0, 1]d are independently, identically and uniformly dis-

tributed given HII (kl(t) * [0,]d) I = n, which again is true for X1, ..., XN(tiIll) given

jN(tIIrI) = n (in [0, i]d).

Thus the points of H (k(t) * [0, 1]d) can be generated as kr(t) * X1,...,XN(t I l),

and from property 2A, we have that the distribution of AX(t) = Lr (H (kr(t) * [0, I]d))

is the same as the distribution of tL, (XI ... , XN(ti LrI)).

So to study the distribution of Lr (Xi, ..., XN(t0I-IrI)), we will study the distribution

of A (t). The first step is to prove that the limit

li r(t)
lim exists.

From the subadditivity property of Lr,

mTII-ll

Ar(t) L (H (kr(t) * Qi(r, m))) + Cmir'lll - 1

i=1

111

From the translation invariance property of L, (property IA) and the fact that H

has a uniform intensity, it follows that

E [L, (I (kr(t) * Qi(r, m)))] = E [Lr (II (k'(t) * Ql(r, m)))] Vi < i < m'[rI1.

Now using the definitions of kr(.), Ql(r, m) and the * operator, it is direct that

E [Lr (I (kr(t) * Q (r,m)))] = E [Lr (I (kr

Therefore,

-r(t) < m Ir 1,() + C ml ll
m

and thus,

lr (t)
tllrI

< Or t

(_L
Im) i

+ C) 1lHrIli

We use equation (A.9) to prove that lim supto o t =

Let lim inf) we have

/ < lim sup
t--- oo

(t)
tll lI1

= limsup (ot) o su R +

t-*oc U iItir

< lim sup O(uotl) by the monotonicity of (.)

O(uo [t]) [tltljjl ¢(UO rt])= lim sup u lim sup
t- Co r tii | t rill ii| rt| HrIl r t] 1,11

(A.10)

Note that equation (A.9) holds for any m E N, and thus applying it with m = [t]

gives that for all t e R+:

((uot]))

Using this is equation (A.10) yields:

< (O)
- O

+ Cu -l rl Ill (A.11)

< lim sup
t-o o

ll< -(uo) + C , Vuo e R.

112

(A.9)

(A.12)

= t)

lim inft- (t)t-~r -l] l •

) *0, 1,))]

Since l = li inft-o, () This means Vc > 0 and any T E R + , there is an infinite

number of u0 > 7 that satisfy

(UO) < + E.
U l

(A.13)

Thus for any e > 0, 3 uo such that

qi'vIo)
IIrlIIUo

+ Cuo -a I' < + 6,

and therefore

= lim sup
t--oo tllrll

= lim (t) _
t-+oo tlrllI

O(Lr) < oo.

Now to deal with proving that is bounded. Note that by using the subad-

ditivity property (property 5A) of L with m = [t] gives (with property 1A):

Ar(t) < Ar([t]) <
[tl r ,(-I I

E L(HI([O, l]d)) + CFtl rl li

and therefore by squaring, taking expectations, subtracting 2 (t) and dividing by

t2 r|lll

V(t)
t 2 11rIr

E[A (1)]
< trl

+ 2 (1) + 2 C
hi

(1) + C 2

We next aim to prove that

V(2 kt)
Z< 00oo.

= (2kt)211 l1
k=1

(A.14)

Before the proof, note that since lim (ot) = f(L,), applying Chebyshev's inequal-

ity to equation (A.14) gives:

O

EP
k=l

(2 kt)rll i

(2kt jrjjj (L) >) < 00,

113

lim inf
t--oc t0rll

¢ (t)2(< oc Vt E R+ .
t211,rll

and thus since A,(t) has the same distribution as tL,(XI, ... XN(tII 1))

2ktL,(XI, ... , XN((2kt) |r 11))

(2kt)Ijrl
- 4(L,) < 00,

and therefore for all t E R + ,

L,(X1, ... , XN((2kt) 1)

k-oo (2kt)llrll1-1
= P(L,) with probability 1. (A.15)

From property 5A, with m = 2, we have:

21

Ar,(2t) < L (V(k'(2t)Qi(r, 2))) + C2dt,
i=1

now let ,r(t) = A,(t) + 2Ct and ,ri(t) = L, (II(kr(2t)Qi(r, 2))) + 2Ct, 1 < i < 211 rl

we have:

211A(t)

A (2t) < ri (t) (A.16)

and Ari(t) have the same distribution as A (t). Now let c(t) = E[AX(t)] and 0(t) =

!E[A' 2 (t)], now

V(t) = 02 2(t) _2(t).

Therefore by squaring equation (A.16), taking expectations, subtracting 0
2(t) and

dividing by (2t)2 11r l l , we get:

V(2t) 2 e'ilI V(t)

(2t) 2 |1ril (2t)2|rl

< 2 (t) 2 (2t)
2t2|rill

By iterating this for 2t, 4t, ..., 2"t and summing, we get

M

(1 - 2 I l) 1)

i=1

V(2t) V(t + 2 (t) ,
(2it)2 r lj - t21 rl 2 t2 i 2rI

114

OC

~(EP
k=1

and thus for every t E R +

1 V(2't)

E(2it)2||rjjj
<- 1_- 12-rII (

2-11rill

V(t)
t2||r ij

< oo.

Let p E N be fixed, and note that for all s E R, s > 2P, there is an integer t

2P < t < 2P + 1, and an integer k such that 2kt < s < 2k(t + 1). By the monotonicity

of L,,

L(Xl,..., XN((2kt)lllll1)) < Lr(Xl, ... , XN(slllli)) < Lr(X, ... ,XN((2k(t+l))l)),

and therefore,

lim sup L(X, , XN lim sup

< lim sup

= lim sup
Ssu-00

<urn sup

Lr(X1,

Lr(X1,

(2'
Lr(X1,

(2

sllrlil-1

XN((2 kt)l)rll (t + 1)11r1-1

... ,AXN((2 k (t±)r) (t + 1)hr1-1

k(t + 1))
II
rII

1 - 1
(t)

I r 1 - 1

... , XN((2k (t+l))lIrll)) (2P + 2)I1r11-1

k(t + 1))||rj1j-1 (2P)llr 1-1

< /(L,)(1 + 2 1-P) l rll -1

(A.17)

Similarly,

lim inf L(X, N(> /(Lr)(1 + 21-P) 1- rIll1

s-- o sllrlll-1

and therefore, since p was arbitrary, we have

L,(X1, ... , XN(s I l)
lim - = P(LS).

s---oo Shrllo

Now let r(n) be the random variable defined so that N(r(n) I ' ll1) = n and note

that
T(n)

lim 1 almost surely,

115

Lr (XI, ... , XN((2k (t+l)) 11-1I))

+ t)
t2||rjjj

and therefore

SL,(Xi, ... , X,)
li 1

n-oo 1 ii
= lim

7n--00

L,(Xi, ... , XN(, 1()))

T~r |l-1n)

T' 1ill- (n)
1l

A.3.2 Proof of lemma 4.7

This proof is similar to the one in [1]. Assume without loss of generality that E is a

subset of [0, 1]". 1 disjoint cubes Qi, i {1, ..., M} such that the Lebesgue measure

of Qi, V(Qi) satisfies EMi V(Qi) < E and

P[Y e E, , Y U ",Qi] < .

Denote by Nj the random variable that is equal to the number of points Y that are

in Qj, and by No the number of points Y CE E, Y U' Qi . By simple subadditivity,

L(fYi,..., Y,} nE) < MB+ L({Yi : Yi Qj})+L,({Yi : i E, Yi UjilQj}).
i

By scale boundedness,

L,({ Y : Yi Qj}) <

Lr({Yi : Yi E Qj}) <

1 1 1

j I[lrl (V(Qj)) r11'

B 1 j il 1x "' " ((j) ,,

" B(E j) 1 -

" B n' 1 1 1 1

1 1
L,({Y : Yi e E,Yi UjQj}) < BN0 no

1 1
K B(n~) r

(A.18)(S V(qj)) '1

(A.19)
a.s. as n -- 0o.

116

Thus

3
J

Similarly,

Thus

Lr({Y, ...,Yn} n E) < MB + Bn I-- (c11'ill + 6--

Since E > 0 was arbitrary, the proof is complete.

A.3.3 Proof of lemma 4.8

This proof is similar to the one in [1]. Assume without loss of generality that the

support of Y C [0, I]d and denote the singular support of Y by E. As above, denote

by Nj the random variable that is equal to the number of Y in Qj(r, m). By simple

subadditivity:

S

L({Y,...,Y}) < Lr({Yi,...,Yn}nE)+ L({Y,...,Yn}nQi(r,m))+sB. (A.20)
i=1

By theorem 4.7 and property 1A, we have:

Lr({Yi, ..., Yn}
1-

n Qi(r, m)) V
111

since {Y, ..., Y} n Qi(r, m) has a uniform distribution. Now since as

n -+ 00, Ni = ainV(Qi(r, m))

we have

Lr ({Y ..., Y} n Q(r, m)) 1-(L)(1

1-

and therefore

lim sup LrY1, Y
n-+oc n ir|

1-(1
< 0(Lr) ai - 11- - 1Id

117

lim
7f---00

a.s.

lim
n-- 00

a.s.

Using the same proof with the fact that by monotonicity and upper-linearity,

i=

gives a similar lower bound for the lim inf and completes the proof.

A.3.4 Proof of theorem 4.8

This proof is similar to the one in [1]. We first assume that the support of Y is a

subset of [0, 1]d and denote the singular part of the support by E. Now choose

i=1

where Qi are cuboids as described in Section 4.18. The "thinning domain" A is

defined as:

y : f (Y) < (y).

A sequence y1 can be generated from Y, such that the probability distribution

of <
1' on (A U E)C is 0(y) (here Bc is the complement of the set B.) This is done

as follows: If Y E (A U E)C, then Y1 is taken to be Y with probability p = or

a fixed point Yo E A with probability 1 - p. This is done independently for every i.

Note that this means that the probability distribution of Y1 on (A U E) C is 0(y). If

Y E A U E, then Y1 is chosen to be yo.

Another sequence of i.i.d. random variables Y§2 can be generated from a distribu-

tion with bounded support and absolutely continuous part 0(y). Now {Y'1}n(AUE)C

and {Y 2 } n (A U E) c have the same distribution, and thus the two processes

Lr({Y 1} n (A U E) c) = L ,

and

L ({Y2 } n (A U E)c) = Ln

118

also have the same distribution. Since 0(y) satisfies the conditions for lemma 4.8, we

have

lim _1
n---oo 1- |r|

1_.___!__

L2
=lim _n

n-+o00 1-1n i 1

By simple subadditivity,

SL,(Y, ..., - Lt({Y2, ... ,Y}n2 n (A U E)) - B,

and thus

L2
lim L _ >(L,)

n-oo 1- I-ll, JRd AUE

Now by monotonicity,

Lr(Y, ..., Y,) > L,({Y, ..., Y,} n (AU E)c) > L,

and thus
L,(Y, ...,) 1lim inf , > (Lr) f (y) IIlrlll

n--oo n II !JRd
a.s.

Now, to get the upper bound, consider 0(y) as before, but let A = y: f(y) > (y).

Let Y 1 be an i.i.d. sequence of random variables whose distribution has an absolutely

continuous part 0(y), and a singular support at yo E A with probability 1- fad (y)dy

when fad (y)dy < 1.

We now aim to produce a subsequence of YI1 that has the same distribution as

Y n (A U E)c. This can be done as follows: If Yi1 E (A U E) C , let Yr2 = Y 1 with

probability p = f, and Y2 = y0 with probability 1 - p (this is done independently

for each i.) Note that the distribution of Y 2 n (A U E)c is f(y). Now since E is

119

0(y)dy)1 I III a.s.O(y) lII IIdy - B(

singular, we have

Lr(Y,..., Y,)
lim sup 1 1
n--oo n1 I1 i1

Lr({Yi,..., Y,} N E c)

< lim sup 1 1
n--poc n 1 i [l

li L({Y! ... , Y } n (A U E) c) E 1
< limsup 1 + BP[Y e Ec n A] 1

Irl
n-O c S 1I

= limsup ({Y, ... , Y (A U E)) + BP[Y E c n A] r 1 a.s.
n--+co12 1111l

L,({Y, ... , YI} n (A U E))
= lim sup 1+ BP[YE E n A] 1 l

(y 1dy + BP[EcA]

¢(y)l-r, 1dy + BP[EC N 0 A]1 Ir

a.s.

a.s.

(A.21)

Since 0(y) can be chosen arbitrarily close to f (y), and A can be chosen to be

arbitrarily small, then Vc > 0,

L(Yi, ... , Y,)
lim sup 1 (L)

n-oo n rRll Rd

- 1
f(y) 1,+

and therefore

limr supLr Y < (L) f(y) 1 I I 1

n--+oc 1-id1 d
a.s.

A.3.5 Proof of lemma 4.10

We will first prove that the MBMP is subadditive almost surely for the case where

m = 2kk E N. Thus the [0, 1]d cube is divided into cuboids of sides 2-!. Let

nx (i, k) = {Yl,..., y,} n Qi(r, 2 k) and n"(i, k)= {yn+,..., Y2} n Qi(r, 2 k). Consider

the following matching algorithm:

For k = ko,..., 1, let n[(i, k) be the number of points of yl, ... , y, that weren't

matched yet, and n'(i, k) be the number of points of Y,+1, ... , Y2n that weren't matched

yet.

1. For every Qi(r, 2k) such that n(i, k) > 0 and ny(i, k) > 0, match as many pairs

as possible (min(nx, ni) pairs.

120

a.s.,

n--+OO

= O(L) d

First note that given a cuboid with sides a",..., ard, if we denote the cost of the

optimal matching by L, and we divide the cuboid into 211r111 cuboids having sides

()r,, (f)r, then

2i '11 i 1

i=1 i=1

Applying this recursively to the algorithm above gives us:

Lr(yi, .. , Y2n) <

2kllrli1 k 2j
lr 11

Li + i= j)
i=1 j=1 i=1

The next step is to prove the subadditivity for the mean of Lr(yl, ..., Y2n) (we call

it M(n)), when Y1,...,YN 1 and YN+1, ..., YN1+N 2 don't have a fixed number, but N1

and N 2 are independent Poisson processes with mean n.

It is immediate that E[Li] = 2-kM(n) and that

I ? (i,j) - ny(i,j) 1< /(7)1/2

--] "1

Thus

M(n) < 2 k (ir jl - 1) M(n
2kjjrjjji

k

+ V2d_ 2()
=1n

2

j=1

A similar inequality can be derived for the case where the [0, I]d is divided into mI 1H11

cuboids. This is done by considering the cuboid whose sides are [0, 2k+1], where k

is such that 2 k < m < 2
k+ and applying the previous algorithm.

inequality is

The resulting

M(n) < milr Ill - M(nl) + 21r 2 k

j=0

By comparing it to the process above, it follows that for a given n, the mean of

the MBMP is bounded by

k

M(n) < m lrll-M() + 2 2 l 21 - + 22d1n.
j=0

121

- (,().

Finally, since for all t > 0,

P[Lr (Yi,..., Y) M(n)
n -11 1-

L n Iir 1 n rl

> t]

1 2
n < ,r7 t

2

< 2e 8 1 11

it follows that L, is subadditive almost surely.

A.3.6 Proof of lemma 5.11 and 6.18

We will prove a more general statement that lemmas 5.11 and 6.18 are special cases

of:

Theorem A.15. Let L be a monotone functional (as described before), and Q1, ..., QM

be a partition of the [0, 1]d cube. Let L'({yil,..., yJ}) = L({yl,..., y, }n Q). Let B(M)

be any function of M that is independent of n. Assume

M

L(Yi, ..., Y) L(Y , ..., Yn,) + B(M)
i=1

a.s.,

when Y1,...,Y, are i.i.d. with distribution f(y). If V1 < i < M, L'(Y,...,Y,) is

1-

a.s.,

a.s.

when Y, ..., Y, are i.i.d. with distribution f(y). Here s"* = maxi s'.

Note that this theorem relaxes the subadditivity assumption in that it only re-

quires that L is subadditive for one partition of the [0, 1]d cube and that the term

B(M) is arbitrary. By monotonicity, we have

L (Y, ... , Y) > L' *(Yi, ... , Y,) ,

122

then L is

and therefore L is Q(n- *). By subadditivity, we have:

M

L(Y, ..., Y) L(Y , ... , Y) + B(M) a.s.
i=1

leqM max(L(Y, ... , Yn)) +B(M) a.s.

< MLi* + B(M),

and therefore L is O(nl-

A.3.7 Proof of lemma 5.13

This is similar to the proof of lemma 4.10.

123

(A.22)

124

Bibliography

[1] Steele, J. Michael, "Subadditive Euclidean Functionals and Nonlinear Growth

in Geometric Probability". The Annals of Probability 1981.

[2] J. Beardwood , J.H. Halton,and J. M. Hammersley, "The shortest path

through many points". Proc. Cambridge Philos. Soc 55 299-327 (1959).

[3] K. Savla, F. Bullo, and E. Frazzoli. "On Traveling Salesperson Problems for

Dubins' vehicle: stochastic and dynamic environments". In Proc. IEEE Conf.

on Decision and Control, December 2005.

[4] K. Savla, E. Frazzoli, and F. Bullo. "On the point-to-point and traveling

salesperson problems for Dubins' vehicles." In Proc. of the American Control

Conference, 2005.

[5] L. E. Dubins, On Curves of minimal length with a constraint on average

curvature and with prescribed initial and terminal positions and tangents,

American Journal of Mathematics, vol. 79, pp. 497-516,1957.

[6] S. Itani, E. Frazzoli, Munther A Dahleh, "Traveling Salesperson Problem for

Dynamic Systems". in the Proc. of International Federation of Automatic

Control World Congress 2008.

[7] S. Itani, E. Frazzoli, M. A. Dahleh. " Dynamic Traveling Repairperson Prob-

lem for Dynamic Systems. In the proceedings of the Conference on Decision

and Control, 2008.

125

[8] S. Itani, E. Frazzoli, M. A. Dahleh. " Traveling Salesperson Problems for Dy-

namic Systems. In the IEEE Transactions on Automatic Control, submitted.

[9] K. Savla and E. Frazzoli and F. Bullo, " Traveling Salesperson Problems for

the Dubins vehicle." IEEE Trans. on Automatic Control, To appear (2008).

[10] K. Savla and F. Bullo and E. Frazzoli, " Traveling Salesperson Problems for

a double integrator." IEEE Trans. on Automatic Control, To Appear (2007).

[11] M. Bern, D. Eppstein. "Worst-Case Bounds for Subadditive Geometric

Graphs". 9th ACM Symp. Comp. Geom., San Diego, pp. 183-188, 1993.

[12] J. H. Boutet De Monvel, O. C. Martin "Almost Sure Convergence Of The

Minimum Bipartite Matching Functional In Euclidean Space". Combinatorica

22 (4),pp. 523530, 2002.

[13] M. Ajtai, J. Komlos and G. Tusnady "On Optimal Matchings". Combinatorica

4 (4), pp. 259-264, 1984.

[14] J. Le Ny, E. Feron and E. Frazzoli. "On the Curvature-Constrained Traveling

Salesman Problem." Transactions on Automatic Control June, 2008.

[15] D. Applegate, R. Bixby, V. Chv4atal, and W. Cook, "On the solution of trav-

eling salesman problems," in Documenta Mathematica Journal der Deutschen

Mathematiker- Vereinigung, (Berlin, Germany), pp. 645-656, Aug 1998. Pro-

ceedings of the International Congress of Mathematicians, Extra Volume ICM

III.

[16] Erzberger, H., and Lee, H.Q.,"Optimum Horizontal Guidance Techniques for

Aircraft," Journal of Aircraft, Vol. 8 (No. 2), pp. 95-101, February, 1971.

[17] J. Bearwood, J. Halton, and J. Hammersly, "The shortest path through many

points," in Proceedings of the Cambridge Philosophy Society, vol. 55, pp. 299-

327, 1959.

126

[18] D.J. Bertsimas and G.J. Van Ryzin, "A stochastic and dynamic vehicle routing

problem in the Euclidean plane," Operations Research, vol. 39, pp. 601-615,

1991.

[19] S. Arora, "Nearly linear time approxation scheme for Euclidean TSP and

other geometric problems," in Proceedings of 38th IEEE Annual Symposium

on Foundations of Computer Science, (Miami Beach, FL,) pp. 554-563, Oct.

1997.

[20] Bui X. et. Al, "Shortest Path Synthesis for Dubins Non-holonomic Robot,"

IEEE 1994

[21] P. D. Lax, "Linear Algebra and its Applications." Johm Wiley and Sons, New

Jersey, 2007.

[22] A. H. Land and A. G. Doig, "An Automatic Method for Solving Discrete

Programming Problems Econometrica", Vol.28 (1960), pp. 497-520.

[23] G. B. Dantzig, R. Fulkerson, and S. M. Johnson, "Solution of a large-scale

traveling salesman problem", Operations Research 2 (1954), 393-410.

[24] M. W. Padberg and M. Grtschel, "Polyhedral computations", The Traveling

Salesman Problem (E. L. Lawler et al., eds.), Wiley, Chichester, 1995, pp.307-

360.

[25] S. Sastry, " Nonlinear Systems: Analysis, Stability, and Control." Springer-

Verlag New York 1999.

[26] A Isidori, " Nonlinear Control Systems." Springer- Verlag Berlin, 1989.

[27] S. M. La Valle, "Planning Algorithms". Cambridge University Press 2006.

[28] V.M. Kureichik, V.V. Miagkikh, and A.P. Topchy, "Genetic Algorithm for

Solution of Traveling Salesman Problem with New Features agains Premature

Convergence"

127

[29] 0. Martin and S.W. Otto, "Combining Simulated Annealing with Local Search

Heuristics".

[30] Rachel Moldover and Paul Coddington, "Improved Algorithms for Global Op-

timization" 54.

[31] A. Ossen, "Learning Topology Preserving Maps Using Self-Supervised Back-

propagation on a Parallel Machine", TR-92-059, International Computer Sci-

ence Institute, Berkley, CA September 1992.

[32] M. Dorigo, V. Maniezzo, and A. Colorni, "The Ant System: Optimization by

a Colony of Cooperating Systems", IEEE transactions on Systems, Man, and

Cybernetics-Part B, 26, 1, 29-41, 1996.

[33] T. Stotzle and Holger Hoos, "The MAX-MIN Ant System and Local Search

for the Traveling Salesman Problem", ICEC 1997.

[34] J. J. Enright and E. Frazzoli, "UAV routing in a, stochastic time-varying envi-

ronment", IFAC World Congress, (Prague, Czech Republic), July 2005. Elec-

tronic Proceedings.

[35] S. Arora. "Polynomial time approximation schemes for euclidian traveling

salesman and other geometric problems". Journal of the ACM, 45(5):753-782,

1998.

[36] S. Lin and B. W. Kernighan,"'An effective heuristic algorithm for the traveling-

salesman problem", Operations Research, vol. 21, pp. 498-516, 1973.

[37] C. H. Papadimitriou. "Euclidian TSP is NP-complete". Theoretical Computer

Science, 4:237-244, 1977.

[38] Z. Tang and U. Ozguner, "Motion planning for multi-target surveillance with

mobile sensor agents", IEEE Transactions on Robotics, Jan. 2005.

128

[39] J. M. Steele, "Probabilistic and worst case analyses of classical problems of

combinatorial optimization in Euclidean space"; Mathematics of Operations

Research, vol. 15, no. 4, p. 749, 1990.

[40] N. Christofides. "Worst-case analysis of a new heuristic for the travelling sales-

man problem". Technical report, CSIA, Carnegie-Mellon Univ., 1976.

[41] A. Frieze, G. Galbiati, and F. Maffioli. "On the worst-case performance of

some algorithms for the asymmetric traveling salesman problem". Networks,

12:23-39, 1982.

[42] C.E. Noon and J.C. Bean. "An efficient transformation of the generalized

traveling salesman problem". Information Systems and Operational Research,

31(1), 1993.

[43] A. M. Shkel and V. J. Lumelsky," Classification of the Dubins set", Robotics

and Autonomous Systems, vol. 34, pp. 179-202, 2001.

[44] P. Jacobs and J. Canny. "Planning smooth paths for mobile robots". Non-

holonomic Motion Planning (Z. Li and J. Canny) , pages 271-342. Kluwer

Academic, 1992.

[45] H.J. Greenberg. "Greedy algorithms for minimum spanning tree". University

of Colorado at Denver, 1998.

[46] R.L. Graham and P. Hell. "On the history of the minimum spanning tree

problem". Annals of the History of Computing, 7(1):4357, 1985.

[47] J.B. Kruskal. "On the shortest spanning tree of a graph and the traveling sales-

man problem." Proceedings of the American Mathematical Society, 7:4850,

1956.

[48] R.C. Prim. "Shortest connection networks and some generalizations". Bell

Systems Technology Journal, 36:13891401, 1957.

129

[49] K.H. Rosen. "Discrete Mathematics and Its Applications".McGraw-Hill, Inc.,

New York, NY, third edition, 1995.

[50] J. Kleinberg, E. Tardos, "Algorithm Design". Pearson-Addison Wesley, 2005.

[51] O. Borkuvka. "O jistem problemu minimalnim ".Prace Mor. Prirodoved. Spol.

v Brne (Acta Societ. Scient. Natur.Moravicae), 3:37-58, 1926.

[52] R. S. Barr, R. V. Helgaon and J. L. Kennington." Minimal spanning trees: An

empirical investigation of parallel algorithms." Parallel Computing, 12(1):45-

52, October 1989.

[53] S. Chung and A. Condon. "Parallel implementation of Boruvkasminimum

spanning tree algorithm". Technical Report 1297, Computer SciencesDepart-

ment, University of Wisconsin,Madison, 1996.

[54] T. Cormen, C. Leiserson, and R Rivest." Introduction to Algorithms, second

ed." Cambridge: McGraw Hill, 2001.

[55] R. Karp, U. Vazirani, and V. Vazirani." An optimal algorithm for online

bipartite matching". 22nd A CM Symposium on Theory of Computing, 1990.

[56] S. Khuller, S. Mitchell, and V. Vazirani." On-line algorithms for weighted

bipartite matching and stable marriages". Theory of Computer Science 127(2),

1994.

[57] E. Koutsoupias and A. Nanavati." The online matching problem on a

line". Workshop on Approximation and Online Algorithms, 2003.

[58] A. Meyerson, A. Nanavati, L. Poplawski. "Randomized Online Algorithms for

Minimum Metric Bipartite Matching". Proceedings of the Seventeenth Annual

ACM-SIAM Symposium on Discrete Algorithms, 2006.

[59] Y. T.TSAI, C. Y. TANG, Y. Y. CHEN. "Randomized algorithms for the on-

line minimum matching problem on Euclidean space". International journal of

computer mathematics ISSN 0020-7160, 1995.

130

[60] Z. Tang and U . O zguner, Motion planning for multitarget surveillance with

mobile sensor agents, IEEE Transactions on Robotics, vol. 21, pp. 898908,

2005.

[61] S. Rathinam, R. Sengupta, and S. Darbha, A resource allocation algorithm

for multi-vehicle systems with non-holonomic constraints, IEEE Transactions

on Automation Science and Engineering, pp. 98 104, 2006.

[62] R. J. Kenefic, Finding good Dubins tours for UAVs using particle swarm opti-

mization, Journal of Aerospace Computing, Information, and Communication,

vol. 5, pp. 4756, February 2008.

131

