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Abstract

The field of texture analysis is fundamentally concerned with measuring and
analyzing the distribution of crystalline orientations in a given polycrystalline material.
Traditionally, the orientation distribution function describing crystallographic orientation
information is written as a linear combination of the generalized spherical harmonics.
Since the use of generalized spherical harmonics requires that orientations be described
by sets of Euler angles, the field of texture analysis suffers from the inherent limitations
of Euler angles. These include difficulty of presentation and interpretation, discontinuous
changes in the description of a changing orientation, and singularities in many equations
of Euler angles. An alternative expansion of the orientation distribution function as a
linear combination of the hyperspherical harmonics is therefore proposed, with the
advantage that this expansion allows rotations to be described by angles that directly
relate to the axis and angle of a rotation. Apart from the straightforward and intuitive
presentation of orientation statistics that this allows, the utility of the hyperspherical
harmonic expansion rests on the fact that the orientation distribution function inherits the
useful mathematical properties of the hyperspherical harmonics. The relationship of the
hyperspherical harmonics to the three- and four-dimensional rotation groups is
investigated, and expressions for the matrix elements of the irreducible representatives of
these rotation groups as linear combinations of the hyperspherical harmonics are found.
These expressions allow an addition formula for the hyperspherical harmonics to be
derived, and provide the means to write a simple conversion between the generalized
spherical harmonic and hyperspherical harmonic expansions. This allows results derived
via the hyperspherical harmonic expansion to be related to the texture analysis literature.
Furthermore, a procedure for calculating the symmetrized hyperspherical harmonics
consistent with crystal and sample symmetries is indicated, and used to perform the
expansion of an orientation distribution function significantly more efficiently. The
capability of the hyperspherical harmonic expansion to provide results not traditionally
accessible is demonstrated by the generalization of the Mackenzie distribution to
arbitrary textures. Finally, further areas where the application of the hyperspherical
harmonic expansion is expected to advance the field of texture analysis are discussed.

Thesis Supervisor: Christopher Schuh
Title: Danae and Vasilios Salapatas Associate Professor of Metallurgy
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List of Figures

Figure 1: The progressive abstraction of microstructural information. (a) Three-
dimensional reconstruction of the microstructure of a commercial austenitic
stainless steel; reproduced from Figure 5 of Ref. [2], with kind permission of
Springer Science and Business Media. (b) Axis-angle representation of the
texture of a crystalline material, completely characterizing the
crystallographic orientations present. (c) Stereographic projection indicating
the orientation of {100} crystallographic planes of a material with a copper
texture.

Figure 2: Comparison of rotations performed in the active and passive conventions. (a)
Rotations in the active convention. A vector u is rotated by ff2 about the z
axis to u', then by vz2 about the x axis to u". (b) Rotations in the passive
convention. The coordinate system is rotated by r/12 about the x axis, then by
/2 about the z' axis. (c) Effect of the passive rotations in (b) on v from the

viewpoint of an observer attached to the coordinate system. The vector v
appears to be rotated by -7r12 about the x axis, then by -r1/2 about the z' axis.

Figure 3: Indication of a crystallographic plane's orientation by a point on the surface
of a sphere, projected onto a plane by stereographic projection. The
stereographic projection of a point p may be performed by placing a light
source at Q and observing the shadow cast by the point p onto the plane at p'.

Figure 4: {111 } pole figures for (a) a cube texture, (b) a copper texture, and (c) a brass
texture. "ND" and "RD" correspond to the "normal direction" and the
"rolling direction", respectively, of a sample deformed by rolling.

Figure 5: Normal-direction inverse pole figures for the three textures in Figure 4. The
inverse pole figure at the top of a given column is divided into twenty-four
stereographic triangles, with the standard stereographic triangle outlined.
This triangle appears alone at the bottom of the column. Miller indices in the
figure refer to directions in the local crystallographic frame. (a) A cube
texture, and (b) the standard stereographic triangle of the cube texture. (c) A
copper texture, and (d) the standard stereographic triangle of the copper
texture. (e) A brass texture, and (f) the standard stereographic triangle of the
brass texture.

Figure 6: Relationship of the vector n and angle c to the parameters of a neo-Eulerian
mapping. (a) The result of any series of rotations is equivalent to some
rotation, performed about an axis parallel to n by an angle w. The vector n
can be written in terms of the spherical angles 0 and 0. (b) The
corresponding point in the group space of a neo-Eulerian mapping with
parameters s = nf(wc). The result is nearly as straightforward to interpret as
the description using n and co directly.



Figure 7: A collection of discrete orientations from a copper textured material with
cubic crystal symmetry, depicted in the fundamental zone of Rodrigues
space. (a) The cubic fundamental zone containing the origin is a truncated
cube with six octagonal faces and eight triangular faces. (b) The distribution
is conventionally plotted in equidistant sections perpendicular to the r3 axis.

Figure 8: A collection of discrete orientations from a copper textured material with
cubic crystal symmetry, depicted in (a) the three dimensions inhabited by the
vector part q of a quaternion q, and (b) in two dimensions as a collection of
stereographic projections of concentric spherical shells of the space in (a).
This presentation is naturally suited to the spherical shape of the space, and
has the advantage that the rotation angle is constant within a given spherical
shell, promoting an intuitive interpretation of points displayed in this format.

Figure 9: Definition of the orientation of a coordinate system, following the
conventional interpretation of the Euler angles. The orientation is determined
as the result of three consecutive rotations, performed about z, x', and z" axes
by the angles 01, P, and 02, respectively.

Figure 10: A collection of discrete orientations from a copper textured material with
cubic crystal symmetry, depicted in Euler angle space. (a) The conventional
volume used for cubic crystal symmetry and orthorhombic sample symmetry
is bounded by planar surfaces, but contains three fundamental zones. (b) The
distribution is conventionally plotted in equidistant sections perpendicular to
the 02 axis.

Figure 11: {1 11} pole figures of the continuous pole distributions for (a) a cube texture,
(b) a copper texture, and (c) a brass texture, corresponding to the respective
discrete pole figures in Figure 4. The distribution functions are determined
by Equation (15), with Imax = 15. Regions of finite probability density appear

in some areas that are empty in the corresponding discrete pole figures due to
the use of a limited number of terms, while regions of negative probability
density were removed by applying a positivity constraint.

Figure 12: Continuous Euler angle distribution for the crystal orientations in a copper
textured material, corresponding to the collection of discrete orientations in
Figure 10. The distribution function is determined by Equation (18), with
Imax = 12. (a) A single contour of the distribution function in the
conventional volume used for cubic crystal symmetry and orthorhombic
sample symmetry. (b) The distribution function, sectioned perpendicular to
the O2 axis. Regions of finite probability density appear in some areas that
are empty in Figure 10b due to the use of a limited number of terms, while
regions of negative probability density were removed by applying a positivity
constraint.

Figure 13: Relationship shared by the axis-angle parameterization of a rotation, the
quaternion parameterization of a rotation, and the parameterization of a
quaternion by three angles. (a) A three-dimensional rotation by the angle Co
about the unit vector n, pointing along the axis of rotation. The direction of n



is specified by the angles 0 and 4. (b) The vector part q of the quaternion q,
corresponding to the rotation in (a). The vectors q and n point in the same
direction, though the length of q is sin(o/2) rather than one.

Figure 14: Continuous quaternion distribution for the crystal orientations in a copper
textured material, corresponding to the collection of discrete quaternions in
Figure 8. The distribution function is determined by Equation (31), with
nmax = 24. (a) A single contour of the distribution function in the space of
the vector part q of a quatemion q. (b) The distribution function, shown in
two dimensions as stereographic projections of concentric spherical shells of
the space in (a). Regions of finite probability density appear in some areas
that are empty in Figure 8b due to the use of a limited number of terms, while
regions of negative probability density were removed by applying a positivity
constraint.

Figure 15: A random texture, corresponding to a uniform distribution of points on the
surface of the unit four-dimensional sphere, presented using the volume-
preserving (4D to 3D) and equal-area (3D to 2D) projections. The equal-area
projection causes the uniformity of the distribution for a particular rotation
angle, and the volume-preserving projection causes the uniformity of the
distribution among the various rotation angles.

Figure 16: The physical interpretation and relationship of the quantities Tm'm (10 , 2

D'm m ( 1 , gP, 4 2 ), and U,, (, 0, ). Tn 'm , ( , 02 ) is considered to passively

bring the coordinate system into coincidence with an oriented crystal.
Dml,m(4,0 ( 2) is considered to actively bring an oriented crystal into
coincidence with the coordinate system; this is identical to the effect of
Tm' (0, , 2 ) from the perspective of an observer attached to the coordinate

system. U'~,n (c, 0, ) is considered to actively bring a reference crystal into
coincidence with the oriented crystal; this is the inverse of the effect of

Figure 17: The normal direction inverse pole figure of a copper sample, as measured
experimentally by EBSD.

Figure 18: The ODF of the copper sample in Figure 17, expressed via the hyperspherical
harmonic expansion given in Equation (96). Blue and red indicate regions of
positive and negative probability density, respectively. (a) The coefficients
of the expansion are calculated using Equation (97). (b) The coefficients of
the expansion are calculated using Equations (95) and (122), i.e. by means of
the coefficient conversion formulas. Inspection of the figures reveals that the
expansions are identical.

Figure 19: The ODF given in Figure 18a, constrained to positive values by the procedure
described in Section 4.6. Apart from the removal of the regions of negative
probability density and a slight broadening of the peaks, the distribution
function is identical.



Figure 20: An example of the reduction in the number of linearly independent harmonics
required for the expansion of a function on the surface of a sphere with cubic
point group symmetry; blue and red correspond to positive and negative
values respectively. (a) The nine spherical harmonics defined by Equation
(14) for 1 = 4. The value of the index m is indicated above the columns, with
the harmonics Y,'"c on the top and Y,'"' on the bottom of a given column. (b)

The single linear combination of the harmonics in (a) that satisfies the
requirements of cubic point group symmetry.

Figure 21: Examples of the symmetrized hyperspherical harmonics, as calculated from
the tables of coefficients in Appendix E. Specifically, these are sets of the
three lowest-order, non-trivial symmetrized hyperspherical harmonics for
orthorhombic sample symmetry and for the crystal point symmetries (a) 222,
(b) 422, and (c) 432. In each of the projections, the z and x axes of the
projections point out of the page and to the right, respectively.

Figure 22: Conventional methods of viewing a simulated cube texture. (a) The (100)
and (b) (111) pole figures are presented in stereographic projection, with the z
and x axes pointing out of the page and up the page, respectively. (c) The
blue and red regions in the Euler angle space indicate regions of positive and
negative probability density, respectively.

Figure 23: The current method of viewing a simulated cube texture. The z and x axes of
the projections point out of the page and to the right, respectively. (a)
Projection of the discrete quaternions corresponding to the simulated texture,
including all of the rotations in the crystallographic point group 432. (b)
ODF corresponding to the discrete distribution of part (a), calculated using
the first thirty-seven hyperspherical harmonics of orthorhombic sample
symmetry and cubic crystal symmetry. Blue and red regions indicate regions
of positive and negative probability density, respectively.

Figure 24: Conventional methods of viewing a simulated copper texture. (a) The (100)
and (b) (1 11) pole figures are presented in stereographic projection, with the z
and x axes pointing out of the page and up the page, respectively. (c) The
blue and red regions in the Euler angle space indicate regions of positive and
negative probability density, respectively.

Figure 25: The current method of viewing a simulated copper texture. The z and x axes
of the projections point out of the page and to the right, respectively. (a)
Projection of the discrete quaternions corresponding to the simulated texture,
including all of the orientations described in Ref. [89]. (b) ODF
corresponding to the discrete distribution of part (a), calculated using the first
thirty-seven hyperspherical harmonics of orthorhombic sample symmetry and
cubic crystal symmetry. Blue and red regions indicate regions of positive and
negative probability density, respectively.

Figure 26: The cubic orientation (light lines) and disorientation (bold lines) spaces,
displayed in the orthographic projection of the quaternion space. The solid



points mark the intersection of the axes with the surface of the orientation
space. The q, are the components of the vector part of the quaternion.

Figure 27: {100} pole figure plots for simulated cube textures of varying degrees of
sharpness, plotted in equal area projection. The angles indicate the maximum
allowed disorientation angle of a cubic crystal from the reference orientation.
The normal direction is out of the page, and the rolling direction is vertical in
the plane of the page.

Figure 28: Disorientation angle distribution functions corresponding to simulated cube
textures of varying degrees of sharpness (cf. Figure 27). Labels given in
degrees indicate the maximum allowed disorientation angle of a cubic crystal
from the reference orientation (smaller values denote sharper textures), while
the heavy dark line corresponds to a material in which every misorientation is
equally likely.

Figure 29: Disorientation angle distribution function for a copper texture, assuming the
absence of correlations relating the orientations of neighboring grains or
relating the orientation and shape of a single grain. The solid line is the result
of our simulation, while the bars indicate the probability density for an
experimental material with a similar texture, as measured by Mishin,
Gertsman and Gottstein [106]. The dashed line corresponds to a material in
which every misorientation is equally likely (i.e., the Mackenzie distribution).

Figure 30: Representative triple junction depicting the physical significance of the
quantities co and #. Grain A is rotated by the angle oA and is located opposite
the boundary with orientation #A; a similar geometry applies for grains B and
C.

Figure 31: Comparison of the quantities used to define the state of a grain boundary. A
single boundary is depicted in terms of (a) co, co' and # and (b) 0 and p.
Notice that in (b) the grains share the misorientation equally, resulting from a
rotation of the system in (a).

Figure 32: Labeling scheme for the grain rotations o and the quantities Oand p around a
triple junction. The misorientations 0 are the rotations that bring the grain at
the tail of the arrow into coincidence with the grain at the head. Our labeling
scheme differs in sense from some similar examples in the literature [97].

Figure 33: Lattices of symmetrically equivalent points and corresponding unit cells for 0
and (p at a single grain boundary. (a) 0 and p display independent
periodicities of ao and co/ 2, respectively, resulting in a rectangular lattice and
simply described boundaries. (b) 0 and p display joint periodicities, leading
to a sparser lattice, an extended range of unique quantity pairs, and more
complicated boundaries.

Figure 34: Lattices of symmetrically equivalent points and corresponding unit cells for
OA, OB and Oc at a triple junction. (a) OA, 8B and Oc each display independent
periodicities of co, resulting in a cubic lattice. The size of the markers
indicates the relative positions of points residing in the three (111) type



planes shown. (b) The three misorientations display joint periodicities, such
that the lattice resides entirely in the (111) plane and each lattice point
satisfies the constraint OA + OB + 0. = 0.

Figure 35: Representation of the distribution functions for misorientations about a triple
junction. Triple junctions are classified by the number of misorientations
smaller in magnitude than O; for this figure, 0 9, < w, /3. Darker shading
corresponds to more special boundaries, e.g., white is a Jo region, and dark
grey is a J3 region. Solid lines indicate unit cell borders in the current
representation, and dashed lines in the alternate representation. (a)
Classification of triple junctions as defined by Equation (211). For clarity of
representation, the distribution is projected into the plane spanned by OA and
0B. This representation is preferred for integration due to the simplicity of the
equations of the region boundaries. (b) Classification of the triple junction
distribution defined by Equation (209). Bands of special boundaries occur in
a high symmetry configuration, and classification is continued outside of the
fundamental zone to emphasize this symmetry. The three regions in dashed
lines correspond to the three parallel planes that intersect the unit cell
appearing in Figure 34a.

Figure 36: Analytic solutions for the special fraction of boundaries in correlated
boundary networks, for the specific case where w is uniformly distributed on
the interval - omax : o < Imax , and 0, = o, /6 with cos the angle of rotational

symmetry of the crystallites. Our exact solution (Equation (213)) is given by
the solid black line, and is valid over the full range of Cmax /w, . The vertical

dashed lines appear at omax = 9,/2 and cm,ax = O, /2 - 9, /2. The solutions

of Frary and Schuh [97] and Van Siclen [98] are represented by the dashed
grey line, which deviates for cmnax < , /2 and excludes the effects of crystal

symmetry for co, /2 - O,/2 < oma, . A further result for Omax = O, /2, found
by Van Siclen, is denoted by the black dot. Equation (222), our
simplification for sharp textures, is shown by the series of grey points.

Figure 37: Triple junction fractions plotted as a function of the special boundary fraction
in correlated boundary networks, for the specific case where co is distributed
uniformly on the interval - omwax c < wmnax. For comparison, the dotted

lines show the predicted triple junction fractions for a random (uncorrelated)
spatial distribution of misorientations. Solutions by Frary and Schuh [97]
and Van Siclen [98] for cwmax < c, /2 - , /2 appear as the solid lines, and the

specific case derived by Van Siclen for cOnax = Cs /2 is given by the dashed
lines. Our solutions, presented in Appendix I, migrate continuously over the
regions shaded in grey with changes in the values of co, and O.



1. State of the Field'

The field of materials science and engineering is fundamentally concerned with

manipulating the microstructure of materials in order to control their properties. Recent

improvements in instrumentation, which include electron backscatter diffraction (EBSD),
dramatically enhance our abilities in this regard by providing extensive crystallographic

orientation information of a given two-dimensional section of a microstructure. As this

technique has been developed and combined with chemical analysis and serial sectioning

methods, it has become possible to access complete three-dimensional chemistry, phase,

and crystal orientation information; in short, the microstructural state of a polycrystal

may now be completely quantified.

While these techniques allow an unprecedented opportunity for examining the

microstructure-property relationships of materials, in many cases the controlling physics

depend on only a relatively small subset of the available information. For example, a

variety of the effective tensor properties of materials (e.g. elasticity and transport

coefficients) as well as inherently anisotropic, nonlinear properties at the single crystal

level (e.g. plasticity and cracking) are governed primarily by the crystallographic texture,

or the distribution of crystal orientations within a polycrystal. When properties of this

type are of interest, it may be reasonable to simplify the analysis of a material by

neglecting the spatial information of the microstructure and examining only the

orientations of the crystalline grains.

Figure 1 illustrates schematically the process of abstraction that is useful when

studying texture and the effects of texture on material properties. Figure la shows a

complete microstructure, reconstructed from a progression of EBSD maps obtained

through serial sectioning, where each grain is colored differently according to its

orientation. The central purpose of texture representation is to preferentially examine the

orientation of the crystallites without concern for their spatial characteristics, e.g. their

arrangement, size and morphology; to this end, Figure lb shows a schematic

representation of the distribution of discrete orientations sampled from the polycrystal.

Numerous alternatives exist for the representation of texture information, and these will

' The content of this chapter has previously been published in Ref. [1].
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Figure 1: The progressive abstraction of microstructural information. (a) Three-dimensional reconstruction

of the microstructure of a commercial austenitic stainless steel; reproduced from Figure 5 of Ref.

[2], with kind permission of Springer Science and Business Media. (b) Axis-angle representation

of the texture of a crystalline material, completely characterizing the crystallographic orientations

present. (c) Stereographic projection indicating the orientation of {100} crystallographic planes of

a material with a copper texture.

be covered at length later in this chapter. However, all of these alternatives, including

that used in Figure lb, significantly distill the dataset represented by Figure la. Even

more selective presentation of texture information is not only sometimes feasible, but

may be necessary; in certain situations, only a portion of the orientation information is

relevant or readily accessible. For example, many properties depend predominantly on

the orientation of a single crystallographic axis, as for the c axis in transversely isotropic

crystals. The representation of these crystallographic axes, or poles, is illustrated in

Figure Ic.

The paradigm of data reduction and distillation exemplified in Figure 1 is not only

powerful, but necessary. The acquisition of increasing amounts of data, in and of itself,

does not provide the insights that advance the field. These insights depend entirely upon

the depth of our understanding, and therefore on the skillful and judicious refinement of

the data to a form that is both transparent and useful. Unfortunately, as with many

unintuitive subjects, the essential content may be unintentionally obscured, or even

discarded, during the process of simplification; in the case of crystallographic texture, it

is altogether too easy to abandon the most critical information in the interest of depicting

the data in a familiar form.

We explore the abstractions of Figure 1 in this chapter, both in a general sense

and with specific emphasis on forms common in the materials science community. Since



this chapter is intended as an overview of a complex and well-developed field, the reader

is referred to various works in the literature for more complete mathematical treatments

as the need arises, e.g., Morawiec [3] and Bunge [4].

1.1. Rotations and Orientations

EBSD measures the discrete crystallographic orientations of volume elements

arranged in a regular manner on the surface of a material. The analysis of material

texture therefore begins with an examination of the available methods to parameterize

discrete crystallite orientations and present the accumulated orientation information in a

clear and concise format. Of course, this requires the definition of an orientation, which

in turn requires the definition of a rotation.

.1.1. Defining a Rotation

While often not appreciated, a certain amount of precision is necessary in the

definition of a rotation to be able to relate the rotation to the orientation of a particular

object. For example, we may be provided with a rotation matrix, but unless the quantity

on which the matrix acts and a method for applying the matrix are specified, the resulting

orientation is obscured. One difficulty is that two conventions for defining a rotation

appear in the literature, known as the active and passive conventions.

An active rotation is defined as a transformation of space relative to a stationary

coordinate system. A rotation B then brings the vector u to the vector u', which is found

to by left multiplying the column vector of the coordinates of u by a suitable matrix B:

u' = Bu. (1)

A second rotation of space A with respect to the same, stationary coordinate system

similarly brings the vector u' to the vector u", found by left multiplying the coordinates

of the vector u' with a suitable matrix A:

u"= Au'= ABu. (2)

By the associativity of matrix multiplication, the combined effect of these rotations on the

vector u may instead be expressed as a left multiplication of u by the single matrix AB;

that is, the combined effect AB of two rotations, B and A, is still a rotation.



A rotation in the passive convention behaves rather differently, by leaving the

space fixed and rotating the coordinate system by which points are identified. For an

observer attached to the rotating coordinate system, space appears to rotate in the reverse

sense to that of the active convention. For example, perform the same rotation B as

above, but on the coordinate system rather than on the space. Then the coordinates of the

stationary vector v, relative to the rotated coordinate system, become

v' = B-'v, (3)

the matrix B-' performing the inverse operation of B. This result is generalized to the

following relationship: the matrix transforming the coordinates of a vector during a

passive rotation is the inverse of the matrix transforming the coordinates of a vector

during the corresponding active rotation. The rotation AB that transforms coordinates by

the matrix AB in the active convention, then, transforms coordinates by the matrix

(AB)- = B-'A-' when interpreted in the passive convention; not only the sense of the

individual rotations is reversed, but the order of application is reversed as well.

The difference between these conventions is demonstrated in Figure 2. The active

convention is used in Figure 2a, where a vector initially on the x axis is aligned with the z

axis by a rotation of ;r/2 about the z axis and a rotation of ;r/2 about the x axis. The

equivalent operation to that in Figure 2a is performed in the passive convention in Figure

2b by applying the individual rotations to the coordinate system in the same sense, but

A I #1

,U - -

u ----

(a)/x (b) x, x' (c) x"

Figure 2: Comparison of rotations performed in the active and passive conventions. (a) Rotations in the

active convention. A vector u is rotated by r/2 about the z axis to u', then by r/2 about the x axis

to u". (b) Rotations in the passive convention. The coordinate system is rotated by //2 about the

x axis, then by r/2 about the z' axis. (c) Effect of the passive rotations in (b) on v from the

viewpoint of an observer attached to the coordinate system. The vector v appears to be rotated by

-7r/2 about the x axis, then by -r/2 about the z' axis.



reversed in order; the coordinate system is rotated by n/2 about the x axis, then by n-/2

about the resulting z' axis. This operation is equivalent to that in Figure 2a in the sense

that the space in Figure 2a and the coordinate system in Figure 2b experience the same

effective rotation by 2r/3 about the [1 11] direction. Figure 2c demonstrates that from

the viewpoint of an observer attached to the coordinate system, the apparent rotation in

Figure 2b is exactly the inverse, namely, a rotation by -2d/3 about the [1 1 ] direction.

While equivalent in the sense that one may be transformed into the other, the

interpretation of matrices expressed in these conventions is clearly different. The

convention used must therefore be clearly specified for a discussion of rotations to be

meaningful. We use the active convention in the majority of the present work, for the

reason that we find it simpler to interpret a rotation performed relative to a stationary

frame of reference than a rotation performed with respect to a frame of reference that

changes with every operation.

1.1.2. Defining an Orientation

An orientation is simply the physical result of a sequence of rotations. Rotations

must be performed with respect to a coordinate system, usually defined as that system

with coordinate axes aligned along the edges (often assumed to be orthogonal) of the

sample being examined. The orientation of a crystal is identified with an active rotation

that brings a reference crystal aligned with the coordinate system into coincidence with

the crystal embedded in the material. The matrix corresponding to this rotation is

designated by O, though there could be many equivalent such rotations. For example, the

configuration resulting from an active rotation of a crystal by )r/2 about the z axis is

equivalent to that resulting from a rotation by 57d2 about the same axis. Some of this

redundancy is eliminated by considering only rotations by angles between 0 and r, but

there is additional ambiguity that depends on the symmetries of the system.

A reference crystal with cubic symmetry could be initially aligned with the

coordinate system in any of twenty-four physically indistinguishable ways. Indicating

the symmetry operations of the crystallographic point group by C, all of the matrices OC,

describe equivalent orientations of the crystal. Furthermore, the sample often exhibits



statistical symmetry in the distribution of crystal orientations as a result of processing

history. When this symmetry is present, any of the symmetry operations S, can be

applied to the sample without changing the observable characteristics, thereby expanding

the set of rotations resulting in physically indistinguishable orientations to S,OC. A

reasonable discussion of texture requires that an orientation be uniquely identified with

just one of these rotations; usually, selecting the rotation with the minimum rotation angle

about an axis lying in the standard stereographic triangle is sufficient. A discussion of

more subtle cases, where this criterion does not uniquely identify the rotation, is given

elsewhere [5].

1.2. Pole Figures

One of the conventional methods for representing a texture is by means of pole

figures. These originated as a natural result of diffraction experiments, and reveal the

orientations of particular crystallographic planes rather than of individual crystals.

Despite the development of more sophisticated methods of texture representation, the use

of pole figures persists for a number of reasons; these include the familiarity of the

materials science community with this method of presentation, the relative simplicity of

physically interpreting the information displayed in this format, and the existence of

many situations in which the orientation of a particular crystallographic plane controls

some property of interest.

The orientation of a particular crystallographic plane is completely specified by a

single line, passing through the origin and oriented in the direction normal to the plane.

This line intersects a unit sphere centered on the origin in two diametrically opposed

points. Since the line passes through the origin, either one of these two points uniquely

identifies the line. The orientation of a single crystallographic plane is then completely

specified by the point of intersection of the normal vector to the plane with the positive

hemisphere of the unit sphere; this point is referred to as the pole. (Incidentally, the pole

is identical to the crystallographic axis with the same indices for cubic crystals). An

example of a pole, p, corresponding to a given plane orientation is shown in Figure 3.

When the poles of a particular crystallographic plane are considered, and the

hemisphere is projected into two dimensions, a pole figure is obtained. The most



Figure 3: Indication of a crystallographic plane's orientation by a point on the surface of a sphere, projected

onto a plane by stereographic projection. The stereographic projection of a point p may be

performed by placing a light source at Q and observing the shadow cast by the point p onto the

plane at p'.

common projection for this purpose is the stereographic projection, which preserves

angles but not area; the angle between two lines drawn on the hemisphere is the same as

the angle between their projections on the plane, though this comes at the price of

changing the apparent density of the poles in the projection. Occasionally, an equal-area

projection is useful instead of the stereographic; this projection preserves the apparent

density of the poles, but distorts the angles between projected lines. While we use the

stereographic projection for the present case, several discussions of the benefits of one

projection or the other exist in the literature, e.g. Refs. [6, 7].

The stereographic projection of the point p in Figure 3 is given by the point of

intersection of the unique line passing through Q and p with the plane of projection at

z = 1. Mathematically, this projection is given by

2x 2y
x , y , (4)

l+z l+z

where x, y, and z are the coordinates of the point p, and x' and y' are the coordinates of the

point p'. Since they depend on the choice of the point Q and the plane of projection,

other formulas for the stereographic projection may differ.

As the method delineated above permits a single pole to be represented as a point

in the plane of projection, a distribution of poles can be represented as a collection of

points in this plane. A complete description of the discrete poles in a polycrystalline

sample is provided by depicting one point per crystal, or one point per volume element.
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Figure 4: {111) pole figures for (a) a cube texture, (b) a copper texture, and (c) a brass texture. "ND" and

"RD" correspond to the "normal direction" and the "rolling direction", respectively, of a sample

deformed by rolling.

Schematic {11 l} pole figures for a number of commonly observed textures appear in

Figure 4, including the cube, copper and brass textures. These projections are

conventionally depicted in the plane parallel to that of a sheet sample, and the "normal

direction" to this plane is labeled "ND". The transverse direction of highest symmetry is

usually called the "rolling direction" and is labeled "RD", although this notation is used

for non-rolled materials as well.

Since the geometry of the sample indicates a suitable set of axes for this

projection, any sample symmetry is generally visible in the resulting pole figures; for

example, samples with orthorhombic symmetry were used to generate the pole figures of

Figure 4, meaning that a statistically identical pole figure could be reproduced from any

one of the four quadrants. Although this symmetry is occasionally exploited and only a

portion of the pole figure provided, it is quite common to find the entire pole figure in the

literature.

The same is not true for so-called inverse pole figures. Whereas a pole figure

shows sample directions aligned with a particular crystallographic pole, an inverse pole

figure does the opposite, indicating the crystallographic poles aligned with a specified

sample direction. This is often of interest for samples in which the processing history

strongly identifies a single direction, e.g., the axis of a fiber or wire, or the growth

direction of a thin film. The procedure for constructing an inverse pole figure is quite

similar to that of a pole figure, with one exception; instead of projecting a

crystallographic pole onto a plane determined by the sample geometry, the vector

pointing along a given sample direction is projected onto planes determined by the local



crystallographic orientation. That is, the projection procedure illustrated in Figure 3 is
performed for each crystal or volume element, with the frame of reference always given
by the local crystallographic frame. An inverse pole figure is obtained by plotting the
results of all of these projections together.

Figure 5 shows the normal-direction inverse pole figures for samples with the
three textures shown in Figure 4, namely, the cube, copper and brass textures. Since the
frame of reference for an inverse pole figure is always defined by the local crystal
orientation, the symmetry of the crystals is reflected in the inverse pole figures. As
indicated by the fine lines in Figures 5a, 5c and 5e, the cubic crystal symmetry of the
samples with these textures divides the projections into twenty-four stereographic
triangles, each containing identical orientation information. The crystal symmetry is
exact, rather than statistical as is the case for sample symmetry, allowing the entire
inverse pole figure to be recovered exactly from any one of the stereographic triangles.
Hence, the twenty-four-fold redundancy strongly encourages presentation by a single
stereographic triangle. The standard stereographic triangle of the cubic system is that

010 010 010
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Figure 5: Normal-direction inverse pole figures for the three textures in Figure 4. The inverse pole figure at
the top of a given column is divided into twenty-four stereographic triangles, with the standard
stereographic triangle outlined. This triangle appears alone at the bottom of the column. Miller
indices in the figure refer to directions in the local crystallographic frame. (a) A cube texture, and
(b) the standard stereographic triangle of the cube texture. (c) A copper texture, and (d) the
standard stereographic triangle of the copper texture. (e) A brass texture, and (f) the standard
stereographic triangle of the brass texture.



containing the crystallographic directions {hkl} for which 1 > h 2 k 2 0, which we have

outlined using bold lines in Figure 5. The usual presentation of an inverse pole figure

provides only this standard stereographic triangle, as shown in Figures 5b, 5d and 5f.

It is important to remember that pole figures and inverse pole figures do not

explicitly indicate the orientations of crystals in a polycrystalline sample, only the

orientations of selected crystalline planes or directions. As suggested by Figure 1, these

constructions represent only a fraction of the orientation information that is accessible via

techniques that include EBSD. Occasionally, multiple pole figures, each of a different

crystallographic axis, may be presented as a means of illustrating texture; however, there

is no explicit means to identify the points on two pole figures originating from a single

crystal. There do exist highly developed methods for determining the most probable

crystal orientation distribution consistent with the pole figures of multiple

crystallographic planes [4], but in general pole figures unnecessarily discard a great deal

of the available orientation information. Therefore, methods of texture representation

that accurately reflect the orientations of the crystals, rather than their planes, are

frequently more useful than representation by pole figures.

1.3. Discrete Orientations

Any real, orthogonal, three-by-three matrix of determinant one corresponds to a

proper rotation of space in the active convention. The group of rotation matrices with

these properties is often considered to be the canonical parameterization of rotations,

partly due to the simplicity of applying a rotation matrix to either a vector or to another

rotation matrix via the matrix product. As a result, rotation matrices are quite convenient

for the algebraic manipulation of discrete orientations; on the other hand, the

visualization of a collection of orientations via rotation matrices is rather difficult.

A unique description of an orientation in three dimensions only requires three

independent parameters [8]. If these can be identified, they can be taken as coordinates

of a three-dimensional group space in which individual orientations appear as points. In

the case of rotation matrices, each matrix contains nine components. While the direct use

of these nine components to form a nine-dimensional group space is unreasonable, there

is no obvious way to use only three of the matrix components to represent an orientation



(though there is some motivation for using six [9, 10]). A related difficulty lies in
interpreting the physical effect of a rotation matrix; at least to the current authors, this is
not transparent except in the simplest cases. The regrettable result is that the use of this

convenient and familiar parameterization of rotations is sharply restricted to the algebraic

manipulation of discrete orientations, rather than to their visualization.

Partly for this reason, the materials science community employs a number of

other parameterizations side by side with rotation matrices, each with their own particular

advantages and weaknesses. The analysis of texture information requires familiarity with

the most common parameterizations in order to be able to select the most appropriate one

for the application at hand. We provide a brief overview of these parameterizations in

this section, with particular emphasis on their relative strengths.

1.3.1. Axis-Angle Parameters

A theorem due to Euler states that every displacement of a sphere with a fixed

center is equivalent to some rotation of that sphere about an axis by an angle [11].

Although this description of a rotation requires four parameters, three for the coordinates

of the unit vector n pointing along the axis of rotation and one for the angle co, it has the

advantage that the physical effect of a rotation described by an axis and angle is easily

visualized (see Figure 6a). These four parameters may be reduced to three without loss

of information by observing that the constraint on the length of n allows only two of its

three coordinates to be chosen independently. For instance, n may be expressed in terms

of the spherical coordinates 0 and 0, at the expense of introducing an asymmetry into the

parameters which is inherent to the spherical coordinate system. As pointed out by Frank

[12], a more symmetric method for combining these four parameters into three is to

multiply n by a simple function f(c):

s = nf((w). (5)

Varying the function f(w) converts the quantity s into various neo-Eulerian mappings.

The close relationship between the axis and angle of a rotation and the corresponding

point in the group space of one of these neo-Eulerian mappings is illustrated in Figure 6.
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Figure 6: Relationship of the vector n and angle w to the parameters of a neo-Eulerian mapping. (a) The

result of any series of rotations is equivalent to some rotation, performed about an axis parallel to

n by an angle co. The vector n can be written in terms of the spherical angles 0 and 0. (b) The

corresponding point in the group space of a neo-Eulerian mapping with parameters s = nf(co).

The result is nearly as straightforward to interpret as the description using n and w directly.

The simplest function of this type is the rotation angle itself. The vector a then

points in the same direction as the axis of rotation and scales linearly in length with the

rotation angle:

a = nco. (6)

We refer to the components of a, and not the four parameters of the separate axis and

angle of rotation, as the axis-angle parameters because their behaviour is more reasonable

for small rotations and because they appear more often in the literature. Since n may

point in any direction and co is constrained to the values 0 co _; z, the group space of

these parameters is a solid ball of radius ir. Each point on the interior of this ball

corresponds to a unique rotation, and diametrically opposed points on the surface

correspond to the same two-fold rotation. While the redundant points can be removed by

excluding certain portions of the surface [13], the topological properties of the space

nevertheless allow small variations in a physical orientation to correspond to

discontinuous changes in the axis-angle parameters as a point jumps from one part of the

group space to another. This behaviour is rather inconvenient from the standpoint of

numerical calculations.

A more serious drawback of the axis-angle parameterization is the complexity of

the multiplication law, or the formula required to calculate the single rotation equivalent

to two rotations performed in succession. This difficulty may be addressed by more



deliberate selection of the function multiplying n, which provides neo-Eulerian

parameterizations with simpler combination laws and certain other useful properties. As
a result, the simplicity of the axis-angle parameterization is useful when introducing

certain ideas concerning the rotation group, but this parameterization is rarely used for
the representation of texture due to the existence of more attractive alternatives.

1.3.2. Rodrigues Vectors

The Rodrigues vector parameterization is a neo-Eulerian mapping introduced into

the discussion of texture by Frank [12]. The three parameters of a Rodrigues vector are

constructed by multiplying n by the tangent of half of w:

r = n tan(c/2). (7)

As with all of the neo-Eulerian parameterizations, this vector points in the same direction

as the axis of rotation and increases monotonically in length with the rotation angle co for

angles 0 co zr. Hence, the interpretation of a Rodrigues vector, as with the axis-angle

parameters, is nearly as simple as that of the axis and angle of a rotation directly. One

disadvantage of this parameterization, though, is that the magnitude of a Rodrigues vector

diverges as the rotation angle approaches r, meaning that a binary rotation cannot be

represented with a Rodrigues vector. Furthermore, the unbounded group space brings

into question the feasibility of visualizing a texture as a collection of points distributed

throughout an infinite volume.

Nevertheless, certain properties of Rodrigues vectors make this parameterization

quite favorable for the presentation of texture information. These may be derived from

the multiplication law for rotations expressed as Rodrigues vectors; the result of a

rotation rB followed by a rotation rA is determined by [14]

rA +r + r A x rB
rA B (8)1- rA rB

which is a slight rearrangement of the form appearing in the literature. Apart from its

relative simplicity, the particular advantage of this multiplication law is that it may be

used to show that the trajectory for a continuing rotation about a single axis is a straight



line in the Rodrigues space, regardless of the orientation of the reference frame; similarly,

any change of the reference frame transforms a line into another line, and a plane into

another plane [12]. The benefit of these properties becomes apparent when considering

the effect of symmetry on the group space.

The presence of sample or crystal symmetry partitions the group space into

distinct regions known as fundamental zones, defined by the requirement that they

contain a unique point for every physically distinguishable orientation of a crystal. That

is, a given fundamental zone contains only one of the points corresponding to the set of

symmetrically equivalent rotations SOCj. The presence of symmetry thereby reduces the

matter of visualizing the group space to that of a single fundamental zone, since all of the

texture information is contained in each fundamental zone. While for most

parameterizations the surfaces of these fundamental zones are curved, it follows from

Equation (8) that the boundaries of the fundamental zones in Rodrigues space are always

planar [12]. The specific forms of these fundamental zones have been derived for a

variety of crystal and sample symmetries, and are generally finite and bounded by planar

surfaces [14, 15]. For materials with sufficiently high crystal symmetry, this has

encouraged the presentation of texture information in two dimensions by equidistant
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Figure 7: A collection of discrete orientations from a copper textured material with cubic crystal symmetry,

depicted in the fundamental zone of Rodrigues space. (a) The cubic fundamental zone containing

the origin is a truncated cube with six octagonal faces and eight triangular faces. (b) The

distribution is conventionally plotted in equidistant sections perpendicular to the r3 axis.



planar sections of the fundamental zone. This presentation is used in Figure 7 for a
collection of orientations from a copper textured material with cubic crystal symmetry.
Figure 7a displays the orientations in the cubic fundamental zone, and Figure 7b gives the

conventional sections of this space in two dimensions.

1.3.3. Quaternions

Although quaternions often receive less notice than other parameterizations, their

attractive mathematical properties have proven indispensable for a number of subjects

with particular relevance to the analysis of orientation information. Specifically,
quaternions have been used for texture analysis [12, 16-19], disorientation and mean

orientation calculations [5, 15, 20-25], expression of certain specific textures [26-28], and

in connection with the equations of texture evolution [29, 30]. Quaternions appear in

related fields of materials science as well, as in the development of the theory of

coincident site lattices [21, 31, 32] and in the investigation of the symmetry groups for

modulated crystals and quasicrystals [33].

A quaternion q is often interpreted as a vector in four-dimensional space. For the

study of rotations, the quaternions of interest satisfy the normalization constraint

q2 + q + q2 + q3 = 1, which is assumed throughout the remainder of this document. A

quaternion is then related to the quantities n and o of a rotation by

q = (q0,q)= [cos(w/2),n sin(w/2)], (9)

where qo and q are conventionally referred to as the scalar and vector parts of the

quaternion, respectively. While the description of a three-dimensional rotation requires

three parameters and a quaternion contains four, we observe that a rotation is completely

specified by just the vector part q, which may be interpreted as a neo-Eulerian mapping.

Although the scalar part qo appears redundant, the properties of this four-component

parameterization strongly encourage the use of the parameter qo as well, at the price of a

little redundancy.

As normalized vectors in four-dimensional space, quaternions inhabit the region

defined as the set of points at a distance of one from the origin, i.e. the unit sphere in four

dimensions (or S3, for those familiar with this notation). Exactly as for a sphere in three



dimensions, there is no closed path on the unit sphere in four dimensions that contains a

discontinuous change in the values of the quaternion components; the discontinuous

change in the values of the axis-angle and Rodrigues vector parameters for rotations in

the vicinity of co = ;r is simply not present. By including all of the quaternions on this

hypersphere, though, every physical orientation is represented twice. Equation (9)

indicates that given a quaternion +q, increasing co by 2;r results in the antipodal

quaternion -q with the signs of all the components reversed. Although these quaternions

correspond to distinct rotations, they clearly result in the same physical orientation

(meaning that one may consider the space inhabited by orientations as RP3). This may be

interpreted as resulting from the trivial symmetry of three-dimensional space, that is, a

rotation by 2;r about any axis results in an indistinguishable orientation. As in Rodrigues

space, the presence of symmetry partitions the quaternion group space into distinct

fundamental zones (actually, Heinz and Neumann derived the boundaries of these regions

in Rodrigues space from the properties of the quaternion group space [15]). The

symmetry through a rotation by 2;" identifies the fundamental zones as one half of the

unit sphere, and we select the half with positive values of qo for the representation of

textures. Hence, the parameterization of a single orientation by two quaternions is not a

particularly serious obstacle.

The advantage of writing the quaternion in Equation (9) in terms of half-angle

trigonometric functions (and thereby introducing the redundancy in +q and -q) rather

than full-angle functions is that this form permits the multiplication law to be written in

an exceptionally simple form; a rotation expressed by the quaternion q followed by qA

results in the quaternion given by [13]

[qqAo9A ,qB ]= [qAoqBo- 9qA q9B'qAOqB + q 0q9A +9A xqB], (10)

where quaternions operate to the right. The simplicity of this multiplication law lies in

the fact that the components of the resulting quaternion are all linear functions of the

components of q, and q. Although this is a feature of other parameterizations as well

(e.g. rotation matrices), the quatemion parameterization is the parameterization of

smallest dimension with this property [10]. With respect to numerical calculations, this



type of multiplication law tends to be efficient and robust, and there is some indication
that quaternions may even be preferable to rotation matrices for this purpose [34].

There remains the matter of visualizing a collection of points embedded in a four-
dimensional space, i.e., of the necessity of projecting from four dimensions to three, and
from three dimensions to two. While there are many projections of the quaternion group

space with qo 2 0 into three dimensions, we mention only the orthographic and gnomic

projections at the moment (stereographic and equal-volume projections into three
dimensions should generally be considered as well, though the formulas for these are
slightly more complex [6, 12]). The first, the orthographic projection, follows from the
observation that the vector part q of a quaternion q resembles a neo-Eulerian mapping,
for which all orientations may be plotted in the analog of the representative spherical
volume in Figure 6b. This method is attractive because there is little additional
computation involved, and knowledge of the vector part allows the final component of
the quaternion to be quickly reconstructed by applying the normalization constraint. An
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Figure 8: A collection of discrete orientations from a copper textured material with cubic crystal symmetry,
depicted in (a) the three dimensions inhabited by the vector part q of a quatemion q, and (b) in two
dimensions as a collection of stereographic projections of concentric spherical shells of the space
in (a). This presentation is naturally suited to the spherical shape of the space, and has the
advantage that the rotation angle is constant within a given spherical shell, promoting an intuitive
interpretation of points displayed in this format.



example of this representation for the crystal orientations in a copper textured material

with cubic crystal symmetry is shown in Figure 8a.

Meanwhile, the gnomic projection converts a quaternion into the corresponding

Rodrigues vector. The projection is performed simply by dividing the vector part of a

quaternion by the scalar part, or r = q/qo . This suggests that orientation measurements

may be analyzed as quaternions and projected into the Rodrigues space as a final step for

the purpose of visualization.

The parameterizations resulting from the projections suggested above are clearly

neo-Eulerian, meaning that a vector within the three-dimensional group space points

along the axis of rotation and scales monotonically with the rotation angle. In particular,

the value of the rotation angle is constant within a given spherical shell centered on the

origin of any neo-Eulerian parameterization. This suggests that the axis and angle of

rotations represented by points in any neo-Eulerian group space will be easily identified

when the space is sectioned into concentric spherical shells at constant intervals of

rotation angle. We use this presentation in Figure 8b by sectioning the orthographic

projection of Figure 8a into concentric spherical shells. Since the symmetry of this

texture renders the upper and lower hemispheres identical, we use the stereographic

projection (given by Equation (4)) to project only the upper hemispheres into two

dimensions. When this symmetry is not present, the upper and lower hemispheres may

be plotted side by side. Points within a given stereographic projection in Figure 8b

correspond to a particular interval of rotation angle, and their location within the

projection indicates the orientation of the rotation axis.

The quaternion parameterization offers some notable advantages, at the price of

requiring four parameters instead of three. For example, the quaternion group space

includes points for all distinct orientations, and does not contain discontinuities in the

parameter values along any trajectory through the space; these cannot simultaneously be

properties of any three-dimensional parameterization [10]. Furthermore, the bilinearity

of the multiplication law markedly simplifies many functions of orientations when

expressed in the quaternion coordinates. The primary obstacle to the use of quaternions

is the perceived difficulty in visualizing the group space, though as shown in Figure 8,

this is not actually as difficult as might be expected. While several other reasons strongly



Figure 9: Definition of the orientation of a coordinate system, following the conventional interpretation of

the Euler angles. The orientation is determined as the result of three consecutive rotations,

performed about z, x', and z" axes by the angles 0, 0, and 2, respectively.

supporting the use of quaternions in the field of texture analysis exist, these will be

become apparent only in subsequent chapters.

1.3.4. Euler Angles

Of the options enumerated in this chapter, the Euler angle parameterization is the

one most conventionally used for the analysis and presentation of texture information.

Instead of deriving from an axis and angle of rotation, this parameterization describes the

relative orientation of two coordinate systems with three passive rotations (we follow the

passive convention with the Euler angles in order to conform to the majority of the

literature on the subject). These rotations are performed about the z, x', and z" axes, with

rotation angles given by the three Euler angles b1, 0, and 2, respectively [4]. Applying

these rotations in the determined sense and order brings one of the coordinate systems

into coincidence with the other, as indicated in Figure 9. Meanwhile, plotting the Euler

angles on orthogonal axes forms a group space that is 2f--periodic along all three axes.

Since, in this space, a cube of edge length 2ff contains two points for every orientation,

the Euler angles are generally restricted to the values 0 < 1 < 22r, 0 ( _ ;r and

0 02 < 2r to remove the redundant points. Cubic crystal symmetry and orthorhombic

sample symmetry reduce the fundamental zone still further, though the resulting surface

in Euler angle space is invariably curved. For this reason, the region defined by



0 01: r/2, 0 < 0 / /2 and 0 __ 02 ;r/2 is often selected instead for these

symmetries, despite the fact that this region contains three points for every orientation

[7]. The benefit of this choice is that the planar surfaces permit a natural presentation in

two dimensions by a series of parallel sections, conventionally selected perpendicular to

the 02 axis. This is the method used in Figure 10 for a collection of orientations from a

copper textured material with cubic crystal symmetry, where Figure 10a displays the

orientations in the Euler angle group space, and Figure 10b presents the corresponding

conventional two-dimensional sections.

One conspicuous feature of this definition is its asymmetry [12]. While the neo-

Eulerian parameterizations do not single out any particular direction in space, the Euler

angles more naturally describe rotations about the x and z axes than about the y axis. The

asymmetry has a number of repercussions, among which is the presence of a singularity

in the definition of certain rotations and therefore a singularity in the group space [10,

35]. This occurs for rotations about the z axis, for which P = 0. When this Euler angle
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Figure 10: A collection of discrete orientations from a copper textured material with cubic crystal

symmetry, depicted in Euler angle space. (a) The conventional volume used for cubic crystal

symmetry and orthorhombic sample symmetry is bounded by planar surfaces, but contains three

fundamental zones. (b) The distribution is conventionally plotted in equidistant sections

perpendicular to the 0 axis.



vanishes, all 01 and 0 2 for which b1 + 02 is a constant result in the same orientation.

What is particularly concerning is that this non-uniqueness applies to the identity
operation (the non-rotation) as well; the rotation group is a Lie group, and this requires

any proper parameterization of the rotation group be reasonably behaved in the region

around the identity [36]. The singularity often appears in functions of orientations

parameterized by the Euler angles as well; for example, the multiplication law for Euler

angles [37] and the kinematic equations [10] each contain a singularity when ( = 0.

More pragmatically, interpreting an orientation parameterized by Euler angles is

not as simple as for the neo-Eulerian parameterizations. One of the reasons for this

difficulty is that instead of a single rotation, as for the alternatives outlined in the

previous sections, the Euler angles require one to envision the result of three consecutive

rotations. Furthermore, the effect of any of these rotations is not specified by a single

Euler angle, but depends on the preceding rotations due to the use of the passive

convention. The situation is mollified slightly by recognizing that the first two Euler

angles can be interpreted as a variety of spherical coordinates for the z" axis with respect

to the initial coordinate system. The x'" axis may then be established by following the

construction given by, e.g., Wenk and Kocks [7]. Despite this interpretation, though, the

author finds the neo-Eulerian parameterizations to be far simpler.

1.4. Orientation Distribution Functions

Traditionally, diffraction techniques lacked the spatial resolution to measure the

orientations of individual crystals; instead, a diffraction pattern provided probabilistic

information about the orientations of many grains within the diffracting region. This

information could be used to construct an orientation distribution function, indicating the

probability of finding a volume element within the material with a particular crystalline

orientation. Often, a continuous probability distribution of this type is actually more

useful for the analysis of texture information than discrete orientation measurements.

More specifically, given a set of continuous functions with a few particular properties,
any collection of discrete orientation measurements may be accurately approximated as a

linear combination of these functions. The coefficients in this expansion then give an

efficient and compact expression of a texture. Indeed, this relatively simple principle is



the foundation for the whole of classical texture analysis [4] and continues to motivate

recent developments as well, including, e.g., microstructure sensitive design [38, 39].

1.4.1. Circular Harmonics

The expansion of an arbitrary, square-integrable function f(0) defined on the

unit circle as an infinite linear combination of sines and cosines, i.e. as a Fourier series, is

well-known. The normalized, real circular harmonics may be written as

Xi = I cos(me)
1 .(11)

X,,, sin(mo),

with integer index 1 < m; for m = 0, X0, vanishes and X 0c = 1/- . This notation

allows the expansion of f(b) to be written in the form

f(o) = ao Xoc + (a,,,Xnc + bmX,,,, ), (12)

where the coefficients are determined by the inner product of the function f(0b) with the

corresponding basis function, or

2z

am = ff(O)Xmedo

2, (13)

b11 = f( #),,d .

Our purpose in reproducing these formulas is not to instruct in the principles of their use,

but rather to provide a sense of continuity with the other harmonics currently used for the

representation of texture, namely, the spherical and generalized spherical harmonics.

1.4.2. Spherical Harmonics

Whereas a point on a unit circle is specified by a single angle 0, a point on a unit

sphere is specified by two, the polar 0 _ 0 and azimuthal 0 _' < 2r angles. Now,

since the transition from two dimensions to three involves the addition of the z axis, and a



sphere may be considered as a progression of circles centered on and perpendicular to the
z axis, one expects the spherical harmonics to be constructed from circular harmonics

modulated by a function of z. This is exactly the case, as is clear from the real spherical

harmonics 2

Y, 1)" 2 T P - (cos O)X,nc
(14)

21+ 1 (/- m)s =(- )'i 2 1 -rn (cos O)X,,,,
2 ( + m)! /

with integer indices 0 <l and 1 <r m l1; when m = 0, YO vanishes and Y,0c is divided

by -/2 to preserve the normalization. These functions contain the circular harmonics

from Equation (11), an associated Legendre function P," [40, 41], and a normalizing

coefficient. With the spherical harmonics, any square-integrable function f(O, b) on the

surface of a sphere may be written as a linear combination in the form

, = aYOoc + (a'YYc +b'Y , , (15)

=0 m =1

where the coefficients are determined by the inner product of the function f(O, q) with

the corresponding basis function, or

a,' f f f(O, r)Y" sin Oddz

2,, (16)
b"' = Jf (0, )Ym sin BOd .

00

While Equation (15) is an exact expansion for f(O, 0), the calculation of an infinite

number of coefficients is not particularly practical. Instead, the expansion is always

performed with a finite number of terms by limiting the index 1 to values less than or

equal to Imax; this smoothes the resulting approximation, although limiting the number of

terms occasionally introduces spurious peaks or valleys as well.

2 Please forgive the shift in notation. The placing of the indices in Equation (11) is more consistent with
the eventual notation for the hyperspherical harmonics, while the placing of the indices in Equation (14) is
fixed by convention.
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Figure 11: {111} pole figures of the continuous pole distributions for (a) a cube texture, (b) a copper

texture, and (c) a brass texture, corresponding to the respective discrete pole figures in Figure 4.

The distribution functions are determined by Equation (15), with lmax, = 15. Regions of finite

probability density appear in some areas that are empty in the corresponding discrete pole figures

due to the use of a limited number of terms, while regions of negative probability density were

removed by applying a positivity constraint.

The smoothing performed by limiting the number of terms makes this expansion a

convenient method for finding an approximation to a collection of points on the surface

of a sphere, as, for instance, the discrete poles for a given crystallographic plane. When

normalized, the resulting function is interpreted as the probability density function of

observing a pole in a particular area of the sphere's surface. We follow this procedure to

calculate the probability density functions for the three {11 1} pole figures of Figure 4,

and plot the results in stereographic projection in Figure 11.

1.4.3. Generalized Spherical Harmonics

Bunge, often thought of as the founder of modern texture analysis, considered

textures as probability distribution functions in Euler angle space [4]. Since the

definition of the Euler angles precludes their interpretation as angular coordinates on the

surface of a familiar geometrical shape, the basis functions for the Euler angles are

generally considered to reside in the space formed by placing the three Euler angles on

orthogonal coordinate axes, as in Figure 10a. These functions, known as the generalized

spherical harmonics, resemble the product of two complex spherical harmonics with a

shared index 1 and polar angle 0, and are given by [4]

T"" = e""mb Pm" (cos 0)e'" , (17)



with integer indices 0 1, -1 < m 1 and -1 n 5 1. The function P,"" is occasionally

referred to as a generalized associated Legendre function (a definition and derivation of a

closely related function are provided elsewhere [42]). One practical point to consider is

that while the generalized spherical harmonics defined in Equation (17) are complex, a

probability distribution function of orientations is real. This means that the expansion of

a probability distribution function over the generalized spherical harmonics generally

requires complex expansion coefficients containing redundant information.

A square-integrable function f(, 1 , 02) defined within the Euler angle space is

expanded as [4]

f(A,, ,)= 02 )r"T " ,n (18)
1=0 mn=-In=-I

Figure 12: Continuous Euler angle distribution for the crystal orientations in a copper textured material,

corresponding to the collection of discrete orientations in Figure 10. The distribution function is

determined by Equation (18), with Imax = 12. (a) A single contour of the distribution function in

the conventional volume used for cubic crystal symmetry and orthorhombic sample symmetry.

(b) The distribution function, sectioned perpendicular to the 02 axis. Regions of finite probability

density appear in some areas that are empty in Figure 10b due to the use of a limited number of

terms, while regions of negative probability density were removed by applying a positivity

constraint.
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with complex coefficients t;'". The coefficients of this expansion are found by taking the

inner product of the function with the appropriate generalized spherical harmonic [4]

S21 +1 2f ~1 , i )T"f"' sin (d4, ddOb2 , (19)

8Z 0 000

where (21+1) arises from the fact that the inner product of a generalized spherical

harmonic with itself depends on the value of 1, 8; is a normalization factor, and the *

indicates the complex conjugate. The labor required to calculate these coefficients is

reduced to practical limits by including in the expansion only terms with 1 less than or

equal to some 'ma,, at the expense of some accuracy.

A normalized, real-valued and positive function f( 1,,0,,2) may always be

interpreted as the probability density of an orientation occurring in the region of 01, 0,

and 02 in Euler angle space. The expansion of Equation (18) was applied to the discrete

orientations given as points in Euler angle space in Figure 10, and the result is shown in

Figure 12. The single contour of the distribution function in Figure 12a makes clear the

interpretation of the copper texture as a "tube" through Euler angle space, while the two-

dimensional format used in Figure 12b is the traditional means of reporting a texture

graphically in the literature.

1.5. Problem Statement

The various representations outlined in this chapter should be considered as

methods for the communication of textures, presumably of materials with advantageous

properties or resulting from particular processing procedures. That is, the representation

of texture is fundamentally a means to an end, though one that is inherently subject to the

properties of the accompanying mathematical framework. Specifically, the measurement

and subsequent analysis of orientation information is usually performed within the Euler

angle parameterization of orientations. In a sense, this is the foundation upon which the

entire field of texture measurement, representation and engineering is built; every aspect

of this field benefits from the enormous effort invested by the scientific community in



developing the mathematical aspects of orientation analysis using the Euler angles, and is
constrained by the inevitable difficulties of working with this formulation as well.

Although three parameters suffice to characterize a rotation, the topological

properties of SO(3) preclude the existence of a three-dimensional parameterization that

covers every orientation and is simultaneously nonsingular [10]. This is manifested in

the Euler angles by the well-known degeneracy wherein certain orientations, including

the identity, are represented by an infinite number of points in the group space [4, 8, 43].

A distortion of the metric tensor [29], the related degeneracy of the invariant volume

element [4], and singularities in the equations of motion [10, 43] follow as a result. This

severe non-uniqueness causes some small changes in a physical orientation to correspond

to abrupt jumps in the values of the Euler angles, posing an inconvenient complication to

the calculation of disorientations and the tracking of orientations during texture evolution.

Furthermore, the present author along with other researchers [14, 23, 30] find that the

Euler angles are not intuitive; a particular physical orientation does not intuitively relate

to a triplet of Euler angles, partly due to the difficulty of visualizing three successive

rotations, and partly to the asymmetric treatment of the coordinate axes [12, 23, 30]. The

calculation of grain misorientations, by extension, suffers from the same complexities,
and requires equations involving trigonometric functions, inverse trigonometric functions

and singularities [35, 44].

Despite the achievements of the field using the Euler angles (e.g., Refs. [4, 45,
46]), the shortcomings outlined above render them either difficult or impractical to use

for certain situations in the analysis of crystallographic texture. Hence, a mathematical

framework for the analysis of orientation information that has all the same capabilities as

the existing one using Euler angles, but in a different parameterization, would be

valuable. A few specific properties that would be convenient for this parameterization to

exhibit include

i. a simple multiplication rule for combining successive rotations,

ii. an intuitive physical interpretation,

iii. the absence of singular orientations, and

iv. the ability to express distribution functions in an explicit mathematical form.



1.6. Structure of this Thesis

As discussed in Section 1.3.3, the quaternion parameterization already displays

the first three characteristics outlined above. The purpose of this thesis is therefore to

provide and develop the utility of a series expansion for the representation of orientation

information within the context of the quaternion parameterization. Specifically:

* An orientation distribution function is mapped to a square-integrable function

on the surface of a unit sphere in four dimensions, and then expressed as a

linear combination of the hyperspherical harmonics. A discussion of the

means by which to visualize an orientation distribution function in this form is

provided as well.

* The mathematical connections relating the hyperspherical harmonic functions

to rotations in three and four dimensions are investigated.

* Formulas to convert from the generalized spherical harmonic expansion to the

hyperspherical harmonic expansion are found by considering the mutual

relationship of the generalized spherical harmonics and the hyperspherical

harmonics to the three-dimensional rotation group.

* Sets of symmetrized hyperspherical harmonics that satisfy the sample and

crystal point group symmetries identically are found, and provide an alternate

basis for the expansion of an orientation distribution function.

* The Mackenzie distribution is generalized to materials with arbitrary textures

for the first time by expressing the misorientation distribution function in the

form of the hyperspherical harmonic expansion.



2. Hyperspherical Harmonics3

The central purpose of this chapter is to provide the formulas required to express

an arbitrary orientation distribution in the form of a series expansion over the

hyperspherical harmonics, defined below. This expansion does not appear to be known

within the materials science literature, despite the fact that at least since a seminal paper

by Fock [48], the hyperspherical harmonics and the related series expansion have

frequently been used in other contexts, e.g. Refs. [49-56]. Indeed, as will be explained in

more detail, the hyperspherical harmonic expansion is a natural extension of the more

familiar expansions of functions on the unit circle and the unit sphere, as discussed in

Sections 1.4.1 and 1.4.2, respectively.

2.1. Quaternions

The motivation for the hyperspherical harmonic expansion depends closely on the

representation of rotations by normalized quaternions. An overview of the properties of

quaternions that reproduces and expands on the material presented in Section 1.3.3 is

therefore provided in this section. For reference, the quaternion parameterization is more

completely described in, e.g. Refs. [13, 36].

A quaternion q is often represented as a vector in a four-dimensional vector space

over the field of real numbers, that is,

q = qo + qi + q2 + q3k, (20)

where the unit quaternions i, i,j and k form the basis of the vector space. Hereafter, the

word "quaternion" will refer specifically to a normalized quaternion, i.e. one that satisfies

the condition q0 + + q2 + qf = 1 and describes a point on the surface of the unit sphere

S3 in four dimensions. Exactly as a point on a circle is conveniently described by an

angle, and a point on a sphere by a pair of angles, a quaternion residing on S3 is

parameterized by a triplet of angles; namely, the hyperspherical angle Cd2 and the

spherical angles 0 and b, constrained to the values 0 cow/2 _< z, 0 0: z and

3 The content of this chapter has previously been published in Ref. [47].



0 0 < 2r. These relate to the coordinates of four-dimensional space by the relations

[49, 53, 56, 57]

q0 =cos(co/2)

q, = sin(co/2)sinOcoso (21)
q2 = sin(c/2)sin 0 sin b
q3 = sin(c/2)cos O.

Recognizing o as a rotation angle and the angles 0 and 0 as spherical angles that indicate

the direction of a rotation axis n, a quaternion may instead be expressed in the form

q = (q0,q)= [cos(co/2), n sin(c/2)], (22)

where q0 is conventionally referred to as the scalar part, and q as the vector part. The

relationship between the axis-angle and quaternion parameterizations appearing in

Equation (22) is depicted explicitly in Figure 13. Exactly as changing the sign of the

components of n in the axis-angle parameterization inverts a rotation, changing the sign

of the components of q of a quaternion q forms the quaternion corresponding to the

inverse rotation, or more simply the inverse quaternion q'. On the other hand, while

increasing the angle of a rotation by 2r results in an orientation of three-dimensional

space that is indistinguishable from the original one, Equation (22) indicates that this

(a) x (b)/

Figure 13: Relationship shared by the axis-angle parameterization of a rotation, the quaternion

parameterization of a rotation, and the parameterization of a quaternion by three angles. (a) A

three-dimensional rotation by the angle o) about the unit vector n, pointing along the axis of

rotation. The direction of n is specified by the angles 0 and 0. (b) The vector part q of the

quaternion q, corresponding to the rotation in (a). The vectors q and n point in the same direction,

though the length of q is sin(o/2) rather than one.



increase in rotation angle changes the sign of every component of q. More explicitly, a
particular orientation of three-dimensional space corresponds to two distinct rotation

operations that differ in rotation angle by 2;, and to two distinct quaternions +q and -q.

Therefore, although rotation angles in the domain 0 co _ r are sufficient to describe

every unique orientation of three-dimensional space, the above construction requires the

domain 0 o 2; to describe the rotation operations corresponding to every distinct

quaternion.

The multiplication law for quaternions follows directly from the definition of

multiplication for the basis quaternions 1, i, j and k, and is a linear function with respect

to all of the quaternion parameters [13]. While other parameterizations exhibit a bilinear

composition rule, the quaternion parameterization is the representation of smallest

dimension for which this is the case [10]. The composition rule is often written as a

vector equation containing the dot and cross products in the form

[Po, ][q 0,q] = [ 0 q0 -p.q, p 0q + q0p+pxq], (23)

and provides the single rotation equivalent to the rotation q followed by the rotation p.4

As defined, quaternions operate in the same order as rotation matrices, from right to left.

The unusual bilinearity of this composition allows the formulation of equivalent

expressions using four-by-four orthogonal matrices of unit determinant [58], a fact that

will be of considerable importance presently.

Contrasting markedly with other parameterizations currently in use, the

quaternion parameterization includes no singular points [10]. Since the quaternion

parameterization handles rotations about all three axes equally in the sense of having a

complete set of infinitesimal generators [35], quaternions avoid the singularity in the

vicinity of the identity operation that is present for the Euler angles. Meanwhile, the

singularities and discontinuities in the values of the axis-angle and Rodrigues parameters

in the vicinity of rotations by i do not appear in the quaternion parameterization. This is

actually intimately related to the correspondence of two quaternions to a single

orientation; specifically, the quaternion group is isomorphic to the simply connected

4 "The rotation q" is occasionally written as an abbreviation for "the rotation corresponding to the
quatemion q".



covering group SU(2), and is related to SO(3) by a 2-to-1 homomorphism [36]. More

pragmatically, the absence of singularities is not only convenient, but is practically

important for numerical calculations.

2.2. Defining the Hyperspherical Harmonic Expansion

One advantage of expressing a rotation using the four components of a quaternion

is that every quaternion resides on the unit sphere in four-dimensional space. That is, a

collection of three-dimensional rotations is mapped to a collection of points on the four-

dimensional unit sphere. Analogous to the expansion of an arbitrary square-integrable

function defined on the unit circle using a Fourier series and the expansion of an arbitrary

square-integrable function defined on the three-dimensional unit sphere using the

spherical harmonics, an arbitrary square-integrable function on the four-dimensional unit

sphere may be expanded as an infinite linear combination of harmonic functions

restricted to this space. We refer to these functions as the hyperspherical harmonics, and

indicate them in complex form by the symbol Z,,. Since the hyperspherical harmonics

are defined on the four-dimensional unit sphere, and any point on the four-dimensional

unit sphere may be written as functions of the angles o, 0, and b by Equation (21), the

hyperspherical harmonics may be written as explicit functions of these angles as well. A

definition consistent with many of those appearing in the literature [49, 53, 56, 59] is'

Z,, (co, , ) = (- i) 2i +/ 2 (2l+l)(lm (n+ Xn-) sin'(c°/2)C'' [cos(w/2)] 24
((21 

+1)

I(T +m) (n+1+ 1) (24)

x P," (cos )e"",

with integer indices 0 < n, 0 <1 n, and -1 m 1, and where C,+1 and P" stand for

a Gegenbauer polynomial and an associated Legendre function, respectively; definitions

of these functions consistent with the current usage appear in Appendix A. Of some

significance is that these harmonics cleanly separate into the product of functions each of

a single angular coordinate. The remaining coefficient ensures that the hyperspherical

5 The arrangement of indices on the hyperspherical harmonics differs from that elsewhere [47] due to the
consideration that the index n identifies the set of hyperspherical harmonics that form a basis for an
irreducible representation of SO(4), while the indices I and m identify individual members of this set; this
difference in significance encourages the separation of n from I and m.



harmonics are normalized and form an orthonormal set with respect to the inner product,
i.e.

f r ,zr.," sin 2 (wc/2)d(c/2)sin OdOdq= m,,,i,11,,,, (25)
000

where 6 is the Kronecker delta. The expansion of an orientation distribution function f

that reflects a distribution of quaternions on the unit sphere in four-dimensional space is

given as a linear combination of the hyperspherical harmonics above by

,o n /

f(t, O, )= c e,,Z,", , (26)
n=0,2.. /=0 m=-1

where the index n is restricted to even integers by the trivial symmetry of three-

dimensional space. The complex coefficients c", of this expansion may be calculated

from the inner product (which behaves exactly like a projection operator) off with the

appropriate hyperspherical harmonic Z,,, or

c,, = fZ" f sin 2 (c/2)sin Od(co/2)dOdo . (27)
000

One distinct advantage of the complex form of the hyperspherical harmonic

expansion is simplicity of mathematical notation. Nevertheless, the use of complex

functions and coefficients is not necessarily ideal for the expansion of a real-valued

probability distribution of orientations. Instead, the expansion is potentially simpler as a

linear combination of real functions with real coefficients. We define the real

hyperspherical harmonics Z",, and Z", for m 0 in terms of the complex

hyperspherical harmonics by the unitary transformation

Zi, = il (- 1) Z,, + Z," _,,
",, = (- )Z, - Z,, . (28)

Although this construction is straightforward, these real forms do not, to our knowledge,

appear in the literature. Explicitly, the real hyperspherical harmonics are given by



S,,(co, ,2)= (- 2 +1)(- m)! (n + lX -) sin' (co/2)C, [cos(wo/2)]
S(00 ) +m) (n+1+ 1) n-

x p, (cos )cos(m) 
(29)

Z,, (w, O,'1! (2+1)(-m) (n+ n -1) sin'(o/2)C,+l[cos((/2)]
; (+m)! (n+1+1)

x P,' (cos O)sin(m 0),

with integer indices 0 < n, 0 < l < n, and 1 m 1l; for m = 0, Zo, vanishes and Z 0c is

defined as Zo, = i'Z" . Since the transformation performed in Equation (28) is unitary,

the functions Z"c and Z,, inherit the advantageous property that they are normalized

and form an orthonormal basis with respect to the inner product, i.e.

,Z,, sin (2)d(sin (o/2)d(co2)sin OdOdj = ,,,,,, ,, S,,', (30)
000

where the index i stands for either c or s. Analogous to Equation (26), the expansion of

an orientation distribution functionf, or a distribution of quaternions on the unit sphere in

four dimensions, is written as a linear combination of the real hyperspherical harmonics

above with real coefficients a,, and b, by

f(o,,)= aoZoc +a ( nZ,,c +b 1,Z1, (31)

n=0,2 ./=0 mn=l

Suitable coefficients for the expansion are determined by the inner product off with the

appropriate harmonic. Explicitly, the coefficient a",, of the even basis function Z,, and

the coefficient b',',, of the odd basis function Z',',,, are provided by

a,,, Z;, f (co, 0, )sin 2 (c/2)d(wo/2)sin Od0d
000

2f,, (32)

"I= J Z,,,f (co, 0, )sin 2 (c/2)d(co/2)sin Od0d .
000

While preferable from the standpoint of numerical calculations, the real hyperspherical

harmonic expansion is given in a less convenient mathematical form. For this reason,

many of the derivations in the following chapters are performed using the complex



hyperspherical harmonic expansion, though the results of these derivations are readily

expressed in the form of the real hyperspherical harmonic expansion with reference to the

conversion formulas provided in Appendix B.

As a basic examination of the degree to which Equation (31) is able to reproduce

the details of a discrete orientation distribution, we apply the expansion to the collection

of discrete quaternions in Figure 8 of Section 1.3.3. The result appearing in Figure 14

employs the orthographic and stereographic projections described in Chapter 1, and

indicates that despite the inevitable inaccuracies introduced by limiting the number of

terms, the probability density function reflects the distribution of the orientation

measurements quite accurately. Though the expression for a texture as a hyperspherical

harmonic expansion has only recently been presented [47], the principle follows naturally

from the more familiar expansions of functions on the unit circle and unit sphere.
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Figure 14: Continuous quaternion distribution for the crystal orientations in a copper textured material,

corresponding to the collection of discrete quaternions in Figure 8. The distribution function is

determined by Equation (31), with nmax = 24. (a) A single contour of the distribution function in

the space of the vector part q of a quaternion q. (b) The distribution function, shown in two

dimensions as stereographic projections of concentric spherical shells of the space in (a). Regions

of finite probability density appear in some areas that are empty in Figure 8b due to the use of a

limited number of terms, while regions of negative probability density were removed by applying

a positivity constraint.



2.3. Projections of a Quaternion Distribution Function

While the orthographic and stereographic projections used in Figure 8 and Figure

14 provide a convenient means to represent a quaternion distribution function in two-

dimensions, there nevertheless remains the question of whether this presentation is the

most suitable one. Since quaternions and the hyperspherical harmonics reside on the

surface of a unit sphere in four-dimensional space, projections from a four-dimensional

space into a three-dimensional space and from a three-dimensional space into a two-

dimensional space are necessary in order to display orientation statistics in a format

suitable for the printed page. We consider these projections separately.

Of the projections appearing in the literature which may be used to project the

four-dimensional unit sphere into three dimensions, the current section mentions only

three. The outstanding feature of the first of these, the stereographic projection, is that it

preserves the angles of intersection. While this makes the stereographic projection useful

to depict crystallographic directions and to measure the angles between them, the benefit

of preserving the angles of intersection of paths on the surface of the four-dimensional

unit sphere is not clear. A second projection that has been the subject of considerable

interest is the geodesic projection, defined as the projection that maps great circles on the

four-dimensional unit sphere onto straight lines in three-dimensional space. More

simply, this projection maps a quaternion onto the corresponding Rodrigues vector with

the benefit that the orientation and disorientation spaces of symmetric objects are

bounded by planar surfaces. Since the stereographic and geodesic projections are not

used extensively in the following, the reader is referred to, e.g., Refs. [3, 6, 60] for

explicit formulas and descriptions of the properties of the resulting parameterizations.

The third projection, and the one that is used most frequently in the following, is

the volume-preserving projection (otherwise known as the homochoric projection in

Refs. [3, 12, 30]). The outstanding feature of this projection is that the invariant measure

of the three-dimensional volume projected from the four-dimensional unit sphere is unity.

That is, the density of points within a particular volume of the projected group space is

directly proportional to the volume of crystalline material with that orientation. The

projection maps a point with angular coordinates o, 0, and b on the surface of the four-



dimensional unit sphere to a point with Cartesian coordinates x, y and z in the interior of a
three-dimensional solid ball by the relations

x = r sin 0cos 0
y = r sinOsin (33)
z = rcosO,

where r = (3/4)"3 (co - sin co) 1/3 . Alternatively, the projected coordinates may be written

as functions of the quaternion coordinates q, by means of Equation (21).

With the usual limits on co, 0, and 0, the projection of Equation (33) maps the

positive hemisphere of the four-dimensional unit sphere to a solid three-dimensional ball

of radius r = (3z/4) /3 . Since the vector from the origin to a point defined by x, y and z

within this ball points in the direction of the axis of rotation and increases monotonically

in length with the rotation angle, the values of the projected orientation distribution on a

spherical shell of radius r indicates the distribution of rotation axes for rotations by a

specific angle co. The sectioning of the projected group space into concentric spherical

shells therefore allows the orientation distribution to be viewed as a series of distributions

of rotation axes for particular rotation angles, thereby holding one of the physically

relevant quantities constant and simplifying the interpretation.

As for the projection of a three-dimensional spherical shell onto two-dimensions,
the equal-area projection is used for the same reason that the volume-preserving

projection is used above. That is, the density of points within a particular projected area

is directly proportional to the volume of crystalline material with the specified

orientation. The area-preserving projection maps a point with coordinates r, 9, and 0 on

the surface of a three-dimensional spherical shell to a point with coordinates X and Y on a

solid two-dimensional disk by the relations

X = R cos 

(Y=Rsino, (34)

where R = r 2(1 - cos 0). As above, the projected coordinates may be written as

functions of the coordinates x, y and z or the quaternion coordinates q, by means of

Equations (33) and (21). Since the hemispheres of the three-dimensional spherical shells
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Figure 15: A random texture, corresponding to a uniform distribution of points on the surface of the unit

four-dimensional sphere, presented using the volume-preserving (4D to 3D) and equal-area (3D to

2D) projections. The equal-area projection causes the uniformity of the distribution for a

particular rotation angle, and the volume-preserving projection causes the uniformity of the

distribution among the various rotation angles.

defined by 0 0< r/2 and z/2 < 9 r generally contain distinct information for

orthorhombic samples and crystal symmetry of 6 or lower, these hemispheres should be

presented as separate projections. However, for the common situation of orthorhombic

samples and crystal symmetry of 222 or higher, the hemispheres contain identical

information and a projection of the positive hemisphere alone is sufficient.

The benefit of using this method of presentation is demonstrated in Figure 15.

This figure depicts a random texture, i.e. the projection of a uniform distribution of points

on the surface of the four-dimensional sphere to a two-dimensional figure, for rotation

angles from 0O to 1800 in 150 increments. Inspection reveals that the apparent density of

rotation axes is uniform not only within the projection of a spherical shell corresponding

to a particular rotation angle, but amongst the projections of all the rotation angles as

well; these properties result from the equal-area projection of Equation (34), and from the

volume-preserving projection of Equation (33), respectively. This projection therefore

simplifies the identification of the physical significance of orientation information.



3. Hyperspherical Harmonics and the Rotation Groups6

While the expansion of an ODF as a linear combination of basis functions gives

an analytical expression to an otherwise arbitrary square-integrable function, the main

motivation for this technique is that the expanded function inherits the properties of the

basis functions. That is, the expansion allows the established properties of the basis

functions to be used in the analysis of an experimental ODF. Therefore, there is some

need to improve our understanding of the properties of the hyperspherical harmonics and

thereby to more completely realize the utility of the expansion in Equation (26). Within

this context, an investigation of the properties of the hyperspherical harmonics as they

relate to the rotation groups in three and four dimensions is found to be particularly

useful. Although the following is not intended as a general discussion of group theory,
some results indispensable for the development of the hyperspherical harmonic expansion

will be presented in this section. For a more complete presentation of group theory and

representation theory in general refer to, e.g. Ref. [8].

3.1. Three-Dimensional Rotations

The orientations of the individual crystallites in a sample are generally described

by a three-dimensional rotation of a crystal in a reference orientation that brings the

reference crystal into coincidence with the actual crystallite. Since a three-dimensional

rotation of the sample as a whole effectively changes the reference orientation, this

operation changes the ODF of the sample and the hyperspherical harmonic expansion of

the ODF as well. The study of the three-dimensional proper rotation group, referred to as

SO(3), is therefore pertinent to the study of the properties of the hyperspherical

harmonics and the related series expansion.

3.1.1. Irreducible Representatives of SO(3)

The study of SO(3) requires an analytical realization of the group to give the

elements an explicit form. Any realization to a set of matrices is more specifically called

6 Much of the content of this chapter has previously been published in Refs. [47, 61].



a representation of the group, and given a particular rotation g,, the matrix R(g,) is called

the corresponding representative. We note that matrix multiplication proceeds from right

to left, and adopt the same convention for the result of rotation g, followed by g,:

g,g, = gk - R(g,)R(g9 = R(g k ). (35)

We further note that a similarity transformation of the representation, with matrices

S-'R(g,)S formed from R(g,) and the invertible linear transformation S, is considered

to be a change of basis of the representation. The canonical realization of SO(3) is to the

group of real, three-by-three orthogonal matrices with unit determinant, but the frequency

of this representation does not preclude the existence of representations by matrices of a

different dimension. Indeed, an infinite number of representations exist, but the majority

may be decomposed into a direct sum of representations of smaller dimension. The

representations for which decomposition is not possible are said to be irreducible, and

possess a number of quite useful properties.

Irreducible representations for SU(2), the covering group of SO(3), exist for all

integer dimensions. A formula for the matrix elements of these representatives is given

by [8, 13, 45]

a+m-k (a* )I-m'-k bm'-m+k (_b*)k
R ,,,,, (a, b) = ( + m')!(- m')!( + m)!(- m)!. a1 (a*'' (m )k

k (+m-k)(1-m -k)(m -m+k)k!
(36)

though the cited references differ subtly in the use and meaning of this representative.

We follow the interpretation of Altmann [13]. That is, a rotation operation is considered

as an active rotation of configuration space, rather than a passive rotation of the

coordinate system. An irreducible representative left-multiplies the column vector of the

coordinates of a point, and right-multiplies the row vector of the components of the basis.

The dimension of the representative given in Equation (36) is (21+ 1), where 1 is restricted

to positive integer or half-integer values. The index m' labels the rows of the matrix

sequentially from I to -1, and m labels the columns sequentially from I to -1. The index k

ranges over all values for which the factorials are finite. The proper rotation

corresponding to the representative above is identified by the Cayley-Klein parameters a

and b, related to the components of the corresponding quaternion q by [ 13]



a = qo - iq3

b = -q 2 - iq. (37)

Finally, the operation * indicates the complex conjugate. Equation (36) then gives an

infinite number of equally valid representatives of all integer dimensions for a single

rotation, corresponding to the quaternion q.

However, in Equation (21) the quaternion q is written as an explicit function of

the angles w, 0 and 0 rather than of the Cayley-Klein parameters a and b. This suggests

that the formula for the matrix element in row m' and column m of a (21+1)-dimensional

irreducible representative of SU(2) may equivalently be written as U,,,,m(c, ,0q) instead

of R,,,,,,(a, b), provided that conversion formulas from the Cayley-Klein parameters to the

angles co, 0 and 0 are found. This is accomplished by introducing Equation (21) into

Equation (37), with the result

a = cos(co/2)- isin(w/2)cos(O)
b = -isin(w/2)sin(O)e- ' . (38)

One more result is required before the conversion of Equation (36). The reader is invited

to confirm that the substitution of the quantities a* and -b into Equation (36) in the place

of a and b provides the relation
1"  (a* m- m

i
' '  )(39)

Rm,R, (a* ,-b) = (- )," R',_, (a, b) (39)

for the matrix elements of the inverse of R'(a,b). This actually holds for the irreducible

representatives of SO(3) in other forms as well, meaning that

Um,,, (- , o, i) = (- 1)m-' Ulmm,,, (, O, ) (40)

is an equivalent relation for the matrix elements of the inverse of U'(C, ,0). While

there are other symmetries of the irreducible representatives, Equation (40) shall be of

particular use in the following.

Although an expression for the functions U',,, (co, 0, ) may be found by direct

substitution of Equation (38) into Equation (36), a more elegant expression is given by

considering the operation described by the representative U' (o, O,) to be the result of



three distinct rotations [62]. The first rotation, described by the representative

U' (9,;/2,0 -r/2), brings the point on the sphere described by the spherical angles 0

and 0 into coincidence with the z axis. The second rotation, described by the

representative U' (C,0,0), performs a rotation by the angle co about the z axis. The third

rotation, described by the representative U'(O9, /2, + z/2), brings the point on the z

axis into coincidence with the point on the sphere described by the spherical angles 0 and

0, and is the inverse of the first rotation. The representative U'(w, , ) is then

constructed from the product of three representatives by

Ui',, (c, 9, 0) = U ,,, (0, /2, ~ + ;r/2)U'.,. (co,O,O)U,,,, (0, '2, - z/2), (41)

with integer or half-integer indices - 1 m" < / and - 1 m" < 1. Observing that the

third representative is the inverse of the first, a symmetry relation equivalent to Equation

(40) is used to find

U,(, c, , ) ~ '(- 1)"'"U, ,.,,,. (co,O,)U,,,., ,,,, (O, z/2, - /2)U,,m (0, z/2, - r/2).

Inl In

(42)

Since two of the representatives in Equation (42) share the same arguments, the product

of these representatives may be expanded in a series using the Clebsch-Gordan

coefficients [8, 44, 45, 63]. This gives

Ui,,, (co, , ) = .(-1)m '-mun ,,.,,, (co,,) C , (0, g/2, ~-/2)C,,,,,,, , (43)
' in" A v /1

with integer indices 0 2 < 21, -2 <A v 2A and -2 p 2, and where the properties

of the Clebsch-Gordan coefficients CJ,,,,, constrain the remaining summation indices

to the values v = -m"+ m" and p = -m'+ m. Appendix C provides a definition of the

Clebsch-Gordan coefficients, while Refs. [8, 44, 45, 63] offer discussions of the

properties of these quantities. Our notation for the Clebsch-Gordan coefficients follows

that of Ref. [63].

The quantity U',m (Cw,0,0) is evaluated by referring to Equation (38) to find that

a = e - i,/2 and b = 0 for these values of 0 and 0. Inserting these quantities into Equation



(36) reveals that the individual terms of the summation therein vanish for k # 0, and that

U,,,(,O,O) vanishes for m" m".

the expected result, namely, that

Um.,n" (w,O,O) = -"" m .
o' Im .

Simplification of the remaining quantity provides

(44)

With this, the expression for U',,,, (w, 9, 0) becomes

U,,, (o, 0, ) = (- I)m'-m e-'" C .,,,. Uo 1 (, /2, -
m" A p

(45)

The quantity Uo, (0, /2, - z/2) is evaluated similarly. Reference to Equation (38)

indicates that, for this representative, a = cos(0/2) and b = sin(/2)e-' .

these quantities into Equation (36) yields

Uo (o,s/2, - /2) =(- 1) - - )

Substitution of

!(2 -){1 + cos 1 - cos 0 -p/2
2 )1 + cos)

(46)
x( (- 1) k I - cos 0 k

k (A + p - k)(A - k)(- + k)!k! 1+ cos 0)

after some rearrangement and collection of terms.

Se '/ ,

The trigonometric functions of half-

angles in this equation have been converted to functions of full angles. Recognizing the

quantity in brackets as the associated Legendre function P,-"(cos9) [44], the function

UO (0, x/2, 0 - /r/2) is instead written as

Uo, (0, r/2, - T/2)= - (cos )e'~.

The expression for U,,,, (o, , 0) then becomes

Ut,,,, ( , () '- 1 n' C i - (Cos P)e'" I (- " CI-m"l"in
A p V (A2±+ P) In

(47)

(48)

The symmetry properties of the Clebsch-Gordan coefficients [44, 45, 63] allow the

factors of (-1) - ' and (- 1)' to be cancelled by rearranging the indices, giving



,,,(, ,) ( ,,, 2- C "" (49)
, (wO, )= 0)A C/rn 21+1 (L + (s 2  oe ( (49)

The quantity in brackets is referred to as the generalized character of the irreducible

representations of the rotation group, and is written as X (co). An alternate expression

for this function is [63]

= 2 A! (21 + X21 -! sin (/2)C / 1 [cos(w/2)], (50)
(21 + + 1)21-

where C2+, is a Gegenbauer polynomial, as defined in Appendix A. Substitution of

Equation (50) into Equation (49) and some rearrangement yields

UI( )= 2(2+ 1)T f,,,, (-i) 2+1)

Cnn, (OI (-) J) (In2±1)
A 21+1 in+12 (+p)!

(21 +2/+l 21- ! sinA (c /2) C~  , [cOs(co/2)]P (cosO' (51)
(21 + A + 1)! ] (51)

The quantity in brackets is the hyperspherical harmonic Z 2 (co, 0, 0), as defined by

Equation (24). This allows a compact expression for the matrix elements in the form

U,,,,(o, ,)= - 2 + 1 c,,, 2/ ,(o, a ) (52)
A p 21+1

Although this result is identical to the one obtained for the U,,,,(o, , b) as defined in

Refs. [62, 63], this derivation is meant to verify that Equation (52) is consistent with the

current conventions.

The elements of the irreducible representatives of SU(2) defined by Equation (52)

are equivalent to those defined by Equation (36), though in a different parameterization.

However, the purpose of this section is to determine the irreducible representatives of

SO(3), not of SU(2), in terms of the angles co, 0 and b. Since SO(3) is a subgroup of

SU(2), the irreducible representatives of SO(3) must appear among the irreducible

representatives of SU(2). Specifically, they are found by restricting 1 to integer values.

Equation (52) therefore provides the desired formula for the irreducible representatives of

SO(3) as well.



3.1.2. An Addition Theorem

With a formulation for the matrix elements of the irreducible representatives of

SO(3) in hand, an addition theorem for the hyperspherical harmonics may now be

derived. Practically speaking, the addition theorem simplifies the summation of products

of the hyperspherical harmonics, and allows the convolution of ODFs as is required to

calculate distribution functions of orientation differences. We point out that restricted

forms of the addition theorem for the hyperspherical harmonics appear in the quantum

mechanics literature [50, 52, 55]. Nevertheless, these results are generally presented in

the literature without an explicit (or, in some cases, consistent) set of conventions. To the

author's knowledge, this addition theorem does not appear elsewhere in the literature in a

form that is consistent with the current conventions, particularly as they apply to the field

of texture analysis and to the expansion of the ODF as in Equation (26).

The addition theorem for the hyperspherical harmonics is analogous to the

addition theorems for, e.g., the Gegenbauer polynomials or the associated Legendre

functions. The formula derives from the observation that if a rotation described by the

angles cow, Oi and . is followed by a rotation described by the angles wc, 60 and 02, then

the result is equivalent to that of some single rotation described by the parameters co, 0

and 1. This is equivalent to the matrix multiplication of the corresponding irreducible

representatives, or

Uc/, (, 0, 0) = U , 0 (w2  2 2m'm ( o 1 1 901 (53)

Although Equation (53) may be expanded by means of Equation (52), the procedure is

simplified somewhat by applying some of the symmetry properties of the Clebsch-

Gordan coefficients to Equation (52) to obtain

Umm (W, 9, ) = (- 1)-2+ m ,  Citim 7 2 (C 0, 0). (54)

This is substituted into Equation (53) to give



Z(-1i) a'"" C' ",,,,,Z Cz2, =Z (i,,Zr t l

A 1 2 + (55)

A Pi -, 21 +1 C1hn Alp, 9

where Z',~ is written for j2~, (co,,0 ,) for the sake of brevity. After multiplying by

the Clebsch-Gordan coefficient C, ,,, and summing over the indices -m' and m, this

becomes

(- ) Z Ci,,C,,, = ZZZZ(- 1) Z 2 Z 1
A in 2 A(56) 1 (56)

I-In'" A'c '  Cnz -  " ,l, ]5

The quantity in brackets on the left is d, , , by the unitarity of the Clebsch-Gordan

coefficients, where S is the Kronecker delta, while the quantity in brackets on the right is

found to be [63]

11()+ (-i)' -"' CI~ C .C c>, = 1 2222 2 C + 1CAP2{ 2
m" -m' mn

(57)

The quantity in braces is the Wigner 6j symbol, and is defined in, e.g., Refs. [8, 63].

Simplification of the left side of Equation (56) and substitution of Equation (57) into the

right side of Equation (56) gives

2 / 2 P2 AP

(58)

as an addition theorem for the hyperspherical harmonics. This is closely related to an

addition theorem for the generalized characters of the irreducible representations of the

rotation group as reported in Refs. [62, 64], and is a generalization of the more restricted

addition theorems reported in Refs. [50, 52, 55]. The corresponding generalized

spherical harmonic addition theorem enables the convolution of ODFs expressed in the



generalized spherical harmonic expansion, and as indicated in the subsequent sections,
the hyperspherical harmonic addition theorem serves a similar purpose.

3.1.3. Bases of the Irreducible Representatives of SO(3)

The significance of the irreducible representatives of SO(3), as with any set of

matrices, is defined only to the extent that the nature and behavior of the corresponding

bases is established. The literature on the subject indicates that a suitable orthonormal

basis for the (21+1)-dimensional representatives of SO(3) is formed by the set of (21+1)

complex spherical harmonics Y," with a specific value of 0 < 1 [13, 45]. The convention

followed above suggests that the relationship of the spherical harmonics to the irreducible

representatives of SO(3) is such that a rotation of the spherical harmonics is performed by

right multiplying a row vector formed by the spherical harmonics by the representative

U'. Since the basis of the representative is formed from the set of spherical harmonics

with a particular value of 1, the rotation transforms a linear combination of harmonics of a

given value of I into a different linear combination of harmonics with the same value of 1,
and no others. This is more commonly expressed in the physics literature as the principle

of conservation of angular momentum [8, 13, 45]. The purpose of this section is to

establish a mathematical notation that will be useful in subsequent sections in the context

of these considerations.

The principle that an arbitrary square-integrable function on the unit sphere in

three dimensions may be expressed as an infinite linear combination of the complex

spherical harmonics is well-known. Specifically, an arbitrary complex square-integrable

function f(0, 0) is expanded using the complex equivalent of Equation (15) as

f D I

f (0, ) = I c"Y,"' = (Y,' ... , ' Jc ..c,) M, (59)
/=0 m=-1 /=0

where the c are the complex coefficients of the expansion. Although an unusual use of

the notation, the symbol (Y/ ... Y -' stands for a row vector of the complex spherical

harmonics Y" with a specific value of I arranged in decreasing values of m, and the

symbol c ...c,') indicates the column vector of the corresponding complex coefficients



arranged similarly. The inner product of these vectors, expressed by (Y' ... , Ici ... c C),

is equivalent to the summation over m in Equation (59). Although the definitions of the

complex spherical harmonics vary subtly with the field in which they are used, we follow

the definitions provided in Refs. [13, 45].

The application of a rotation operation to a vector may be considered as giving

either a linear combination of the transformed basis vectors with the original coefficients,

or a linear combination of the original basis vectors with transformed coefficients. With

regard to the expansion in Equation (59), this implies that the result of an active rotation

of the function f may either be written as the product of the transformed basis functions

Y'... with the original coefficients c ... c ), or as a linear combination of the

original basis functions (Y'... Y,-' with the transformed coefficients U'c ...c,'). This

is equivalent to the statement that the matrix equation

Rf (0,B)= Y '...Y ' UI c...cT1) (60)
I=0

is invariant with regard to the order of operations. When necessary, Equation (60) is

interpreted as a transformation of the coefficients. The symbol R, written without

indices, indicates a rotation operator in this section. Notice that any set of coefficients

that is unchanged by the application of U' describes a function that is invariant to that

rotation operation, i.e. a function that displays the corresponding symmetry.

While Equation (59) is natural for complex-valued functions, functions that are

known to be real-valued, e.g. the probability distribution of crystalline axes, may be

expanded more efficiently as a linear combination of the real spherical harmonics with

real coefficients by means of Equation (15). Analogous to Equation (28), the conversion

from the complex to the real spherical harmonic is effected by a unitary transformation
me = - )'"Yii + Y-i

Yi"' =-i [( 1)" yin -_ y-(61)

for harmonics with integer indices 0 Il and 1 m < 1, and by YO"c = Y for m = 0. If

the complex spherical harmonics with a specific value of 1 are written as a row vector,



then this unitary transformation may be written as the unitary matrix T' that transforms

the basis functions into a row vector of the corresponding real spherical harmonics, i.e.

Y' I...Y ITI =(Y,c ,Y," ... IYO (62)

The invariance of the function f with respect to expansion over the basis of the complex

or real spherical harmonics requires that

/=0

= Y, .Y,-, T'T ,t c' .c-i)  (63)
/=0

=I\ (Y1, ...Y, b/ a ,...a ),
1=0

where T't is the adjoint of T', or the complex conjugate transpose. This indicates that

that the corresponding transformation of the coefficients from the complex expansion to

the real expansion is effected by

Tit c1 ...c-')= a',b ...ao). (64)

The irreducible representative in the basis of the real spherical harmonics is therefore

TItU'T', since

R (o, ) = Y¢ ... ,- ' cl...c,'
I=0

= ('...Y,-' T'TitU'T'Tit lc ... ') (65)
/=0

= C,c Y, ...Y,oc iTltUITla ,b ... ao )
/=0

While a change of the phase of the real spherical harmonics or of the ordering of the rows

and columns of TI does not change the meaning of the result, the convention followed

above causes the three-by-three matrix TItU'T' to correspond exactly to the canonical

real three-by-three rotation matrix.

The material included in this section has followed, for the most part, from well-

known results and methods of representation theory. In what follows, we will use this



notation and extend these techniques to the less familiar irreducible representatives of

SO(4), the group of proper four-dimensional rotations.

3.2. Four-Dimensional Rotations

As observed in the introduction to Section 3.1, a three-dimensional rotation of a

given sample effectively changes the reference orientation of the individual crystallites,

and therefore the ODF of the sample and the hyperspherical harmonic expansion of the

ODF as well. The nature of the effect on the hyperspherical harmonic expansion is

determined by the following line of reasoning. A particular set of quaternions residing on

the four-dimensional unit sphere describes the initial crystal orientations within the

sample. Since a change of reference orientation maps this set to a different set of

quaternions in the same space, this operation is a mapping of the four-dimensional unit

sphere onto itself. That is, a three-dimensional rotation of the sample effects a four-

dimensional rotation of the hyperspherical harmonic basis of the expansion. The effect of

this rotation on the hyperspherical harmonics is given in matrix form by the irreducible

representatives of SO(4), the group of proper four-dimensional rotations. Hence, an

explicit expression for the irreducible representatives is not only of mathematical interest,

but imparts practical benefits as well. These include, for example, the ability to change

the reference orientation of a collection of orientation measurements to clearly reveal any

statistical sample symmetry introduced by the processing history.

3.2.1. Relating SO(3) and SO(4)

By analogy with the canonical form of the irreducible representatives of SO(3),

the canonical form of the irreducible representatives of SO(4) is expected to be given by

real orthogonal four-by-four matrices of unit determinant. The requirements that these

matrices be real and orthogonal indicate that a general four-dimensional rotation is

determined by six independent parameters [36]. This suggests that a general four-

dimensional rotation may be related in some manner to two three-dimensional rotations,

determined by three independent parameters each. The existence and nature of this

relationship is established below by considering the multiplication law for quaternions.



For clarity, the investigation is performed within the context of symmetry operations

applied to a crystal.

Our convention is that a crystallographic orientation is described by an active

rotation q of a reference crystal from a reference orientation, aligned with the sample, to

the orientation of the observed crystal. Since an initial rotation of the reference crystal by

a crystal symmetry operation r must result in a symmetrically indistinguishable initial

orientation of the crystal, the composition of the rotation q with the prior symmetry

operation r results in the symmetrically equivalent rotation u given by the quaternion

product [qo,q][ro,r]= [uo,u]. While this multiplication may be evaluated with Equation

(23), it is more convenient for the present purpose to write the quaternion product in

matrix form as the product of an orthogonal four-by-four matrix of unit determinant with

the vector formed by the quatemion components of q [58]:

ro - r -r 2  3 q0 1
r, ro  r3  -r 2 q1  U1

r2 r3 ro r q2 2

r3  r2  - r ro  q 3 J u 3 3

Once the crystal is oriented, a subsequent rotation of the sample by a sample symmetry

operation p must result in a statistically indistinguishable final orientation of the crystal,
since every orientation of this type occurs with equal frequency in the sample. That is,
the composition of the rotation q with the subsequent symmetry operation p results in the

symmetrically equivalent rotation v, given by [p0 ,p q 0, q] = [v0, v]. This may be written

as a multiplication by a similar orthogonal four-by-four matrix of unit determinant,
though with the signs of the off-diagonal components of the lower three-by-three section

reversed [58]:

Po -P - P2  P3 q0  0
Pl Po - P3 P 2  q1  v1I= I (67)
P2 P 3  Po0 - Pl 2  V2

P3  P2 P1  Po2 q 3  v 3

As orthogonal four-by-four matrices with unit determinants, the matrices for the rotations

r and p appearing in Equations (66) and (67) perform restricted rigid rotations of four-



dimensional space. That these rotations are not general is reflected by the fact that each

matrix is determined by only three independent parameters, e.g. the angles Cw, 0, and q.

Nevertheless, the product of these matrices does produce a general real orthogonal four-

by-four matrix of unit determinant [65, 66]. That is, the quaternion w as calculated from

[pop][q0, q][ro,r] = [wo,w] is related to the quaternion q by a single four-dimensional

rotation which subsumes the crystal symmetry operation r and the sample symmetry

operation p. Since formulas for the irreducible representatives of SO(3) are provided in

Section 3.1, and the relationship of three- to four-dimensional rotations is known, these

results now may be used to determine explicit formulas for the irreducible representatives

of SO(4).

3.2.2. Irreducible Representations of SO(4)

The procedure by which we find the irreducible representations of SO(4) requires

a well-known theorem from group theory. For a certain set of conditions, when the

elements g, of one group of transformations commute with the elements h, of a second

group of transformations, the set of products g,h, formed by combinations of these

elements form a group as well, known as the direct product group. Given the irreducible

representatives G(g,) and H(h,) of the elements g, and h,, respectively, the direct product

G(g, ) H(hj ) of these matrices forms an irreducible representative of the element g,hj

of the direct product group [8, 66].

For some quaternion q, consider prior multiplication by the quaternion r and

subsequent multiplication by the quaternion p as distinct transformations. Then the

associativity of quaternion multiplication requires that the quaternion w, resulting from q

by [p 0o,p]q 0,q][ro,r] = [w0,w], not depend on the order of application of r and p; that is,

the associativity of quaternion multiplication requires that the transformations performed

by r and p commute. As found in Section 3.2.1, the combination of right multiplication

by r and left multiplication by p corresponds to a single four-dimensional rotation of q,

and Equation (52) provides the irreducible representatives U' of SU(2) corresponding to

r and p separately. The above theorem then indicates that the irreducible representatives

of the proper four-dimensional rotation group are uniquely determined, up to a similarity



transformation, by the direct product of two of the irreducible representatives U', one

corresponding to the quaternion r and the other to the quaternion p. This is equivalent to

the statement that the direct product group SU(2) 0 SU(2) is locally isomorphic to the

group SO(4), as is widely recognized in the literature on the four-dimensional rotation

group [49, 50, 53, 65]. That is, the direct product group is related to SO(4) by a 2-to-i

homomorphism, due to the ambiguity in the common sign of the U' [66, 67].

While the direct product of irreducible representatives of SU(2) does provide the

irreducible representatives of SO(4), the bases of these representatives do not initially

correspond to the either the complex hyperspherical harmonics defined in Equation (24)

or the real hyperspherical harmonics defined in Equation (29). For that reason, they may

not initially be used to perform a rotation of a function in the form of Equation (26) or in

the form of Equation (31). A suitable similarity transformation of the representatives is

first necessary to bring them into the appropriate basis. This similarity transformation is

determined by investigating the properties of the irreducible representatives of SU(2).

A rotation r transforms a square-integrable function f(r) defined on the unit

sphere in three-dimensional dual vector space into the function R(r)f('), where the

operator R(r) is a function of the quaternion components of r and where duality is

interpreted to mean that the space transforms in the opposite sense to the usual vector

space. The parenthesized superscript (r) is a label denoting that f(r) resides in the three-

dimensional dual vector space on which r operates. Since f(r) is defined on the unit

sphere, it may be expanded as an infinite linear combination of the complex spherical

harmonics Y,m(r) with complex coefficients c l(r), as in Equation (59). This allows the

rotated function R(r)f(r) to be given in terms of the coefficients of the expansion and the

irreducible representatives U't (r) of the rotation r, as in Equation (60):

R "(r ) (y() ... Y-i(' U1(r ') "... ' (68)
/=0

Similarly, the rotation p transforms a square-integrable function f(P) defined on the unit

sphere in three-dimensional vector space into the function R(p)f(P) . As before, the



parenthesized superscript (p) indicates that f(P) resides in the three-dimensional vector

space on which p operates. If the function f ") is expanded as a linear combination of

the complex spherical harmonics Y,""(P) with complex coefficients c""(P), then the rotated

function R(p)f(") may be written in terms of the coefficients of this expansion and the

irreducible representatives U" (p) of the rotation p as

R(p)f P) = (Y'(P) ... Y (P) IU'(p c(p ... tP). (69)
/'=0

Since only the U' with integer values of I appear in these expansions, the restriction of

the irreducible representatives of SU(2) to the irreducible representatives of SO(3)

follows naturally from this construction.

The commutation of r and p, in the sense discussed above, indicates that R(r) and

R(p) operate on distinct functions residing in distinct spaces, as is emphasized by the use

of the superscripts (r) and (p) and the differentiation of the indices by the use of a prime.

Therefore, the meaning of the symbol f (r)f(p) must not be interpreted as the product of

f (r) and f(P) in the usual sense. Rather, this must be interpreted as a single function,

one part of which is operated on by R(r) and the other part of which is operated on by

R(p). Since f(r)f(P) defines values at points in distinct spaces operated on by distinct

transformations, this function must be expanded over a similar set of basis functions

Ym"(r)Ym'(p), where Y,i'(') resides in the space operated on by the rotation r, and Y'( P)

resides in the space operated on by the rotation p. The corresponding coefficients are

denoted by c"(r)c;'(p). The expansion of the transformed function R(r)R(p)f(r)f(P) is

then given in terms of the expansion of f(r)f(p) and the irreducible representatives

formed by the direct product of U' (r) and U" (p), vis-a-vis the above theorem, by

R(r)R(p)f (p) = yi(r)y(p) . y-l(r)y-(p) UIt
o r=10 I (70)



where the basis functions Y,'(')Y"'(P) and coefficients c'(r')cl''(P) are ordered in decreasing

values of m, and in decreasing values of m' for a particular value of m. Although

perfectly reasonable representatives U't(r) U" (p) may be formed with independent

values of I and 1', the complex hyperspherical harmonics form the basis of only those

irreducible representatives given by a similarity transformation of the U"'(r)0 U" (p)

with / =1' [49, 50, 53, 68]. We therefore apply this constraint to the function in

Equation (70), and the double summation becomes a single summation.

If the three-dimensional spaces in which the functions f(r) and f(P) reside are

considered to be distinct, then it is expected that they be operated on by distinct three-

dimensional rotations. On the other hand, if the three-dimensional spaces in which they

reside are considered to be projections of a single four-dimensional space, then it is

expected that a single four-dimensional rotation operate on them simultaneously. The

change of basis necessary to emphasize this point of view is accomplished by a similarity

transformation involving the Clebsch-Gordan coefficients Cj" [49, 53], as defined in

Appendix C. The Clebsch-Gordan coefficients relate the basis of Equation (70), where

each basis function Yn'(')Y," '(") is given by a pair of spherical harmonics, to the coupled

basis, where each basis function Zn" is a single hyperspherical harmonic:

(yl(r)y '(P)...Y-(r)y-'(p) C_ "...Z" ... ,, . (71)

The complex spherical harmonics are ordered in increasing values of 2, and in decreasing

values of u for a particular value of A, with n = 1 + l'. C,,, is the unitary matrix formed

by arranging the Clebsch-Gordan coefficients in accordance with the ordering of the row

vectors in Equation (71). Following the procedure used in Equation (63), we find that the

corresponding transformation of the coefficients is

C I c/'(r) cl"(p) .. =C-o(r) .I.(p n0 .. . . c , (72)

where the coefficients are ordered similarly to the hyperspherical harmonics in Equation

(71). Equations (71) and (72) and a procedure analogous to that of Equation (65) indicate



that the reformulation of Equation (70) as a four-dimensional rotation of a function f

written as a linear combination of the complex spherical harmonics, is given by

R(r, p)f= Zoo...Z ,...Z,"_ C, U"(r)I U (p)C,, l Coo...c,...c,, , (73)
n=0,2.

where the direct product U'" (r) U" (p) is evaluated before right multiplication by C1,

and left multiplication by C,,, and R(r,p) is the operator that performs a single four-

dimensional rotation equivalent to the action of R(r)R(p). Notice that n in Equation (73)

ranges over only the non-negative even integers, as is required by the relations n = 1 + 1'

and I = l' for integer 1 and 1'. This may be viewed as a consequence of performing

transformations with elements of SO(3), rather than with elements of SU(2), in Equations

(68) and (69). Alternatively, we may consider that the hyperspherical harmonics with

odd values of n do not remain invariant under a four-dimensional rotation corresponding

to a three-dimensional rotation by 2fz. Since this is a basic requirement of an orientation

distribution function, the coefficients of these hyperspherical harmonics must vanish

identically and the expansion in Equation (73) does not include the odd values of n.

Comparing Equation (73) with Equation (60) reveals that if R(r, p) is considered

to be a four-dimensional rotation operation, then the matrices appearing in the middle of

Equation (73) are the irreducible representatives of SO(4) corresponding to this operator.

Therefore, the formula for the elements of the irreducible representatives of SO(4) is

given in index notation by

RI' 
n  

(0 2 9 2,21,11)= ZZm
C I / 

U, ,*m (2,0 2 2m'm,i(ol l I/2mg
int , 11 , ; i ,

(74)

where the rotation p is expressed with the angles col, 01 and 01, the rotation r is expressed

with the angles Q2, 02 and 2, and the element in the A'u' row and in the Ap column of the

(n+ 1)2 -dimensional irreducible representative of SO(4) is considered to be a function of

these angles. Since the basis of the irreducible representative of Equation (74) is formed

from a set of the complex hyperspherical harmonics, this formula allows the rotation of a

function written in the form of Equation (26).



For the rotation of a function written in the form of Equation (31), a similarity

transformation of Equation (73) must be performed to convert the basis functions into a

set of the real hyperspherical harmonics. The necessary transformation, already provided

in Equation (28), is written as a unitary matrix T" such that the application of this matrix

to a row vector of the complex hyperspherical harmonics gives

oo... ,... , T" = (Z c... ,Znn, ,,...Z c • (75)

As demonstrated by the procedure of Equation (63), the corresponding transformation of

the coefficients is given by

T"lco ...c,, ... c _, = ao...a ,,, ... a,, . (76)

The basis functions and coefficients of Equations (75) and (76) are ordered in increasing

values of 2, and in decreasing values of u for a particular value of 2, with c before s for a

particular value of u. Following the procedure of Equation (65) to apply this unitary

transformation to Equation (73) results in

R(r,p)f = 1(z" ... ,"n,Z, ... Z c T"tC,U"I (r) U" (p)C,,.T"
n=0,2 .. (77)

x ao ... ann b, ...a,,o •

The (n+1) 2-dimensional irreducible representative of SO(4) appearing in Equation (77) is

interpreted as performing the necessary transformation of the expansion coefficients, and

is given in index notation by

R; (21,,, (w 2 ' 81 l ) = TA 2 ,t CI ;22 U$m (m) 2 902, 2)

A2/12 mn
2m m2ml AtIP (78)

Xul, (o-,0, /)C T"

where the usual notation for summations is condensed for the sake of brevity. Whereas

the irreducible representative of SO(3) changed a linear combination of the (21+1)

spherical harmonics for a particular value of 1 into a different linear combination of the

same harmonics, the irreducible representative of SO(4) changes a linear combination of

the (n+1)2 hyperspherical harmonics for a particular value of n into a different linear

combination of the same harmonics.



While a change in the phase of the hyperspherical harmonics or the ordering of

the rows and columns of the various transformations performed in this section does not

change the significance of the result, following the current convention causes the matrix

T"tCt,U't (r) U' (p)C,,,T" for n = 1 to correspond the matrix form of the quaternion r

in Equation (66) when p is the identity, and to the matrix form of the quaternion p in

Equation (67) when r is the identity. Apart from aesthetic considerations, the reason for

this choice will be made clear in the following sections.

3.2.3. An Alternate Formula for the Irreducible Representations of SO(4)

The purpose of this section is to find an alternative expression for the (21+1)2-

dimensional irreducible representatives of SO(4), the elements R',' of which are found

in the preceding section to be

i ,2 in; ni l

(79)

with integer or half-integer index 0 1, and integer indices 0 2A' < 21, - ' P' < A',

0 < 2 21, and -2 < p I 2. The indices A' and p' label the rows of the representative in

increasing values of A' and in decreasing values of p' for a particular value of 2', while

the indices A and p label the columns of the representative in increasing values of I and

in decreasing values of p for a particular value of A. The summation indices m', m2 ,

mI ,and m, range from -1 to I, subject to the constraints m2 + = ' and m' + m = u.

For the moment, the author simply asserts that the irreducible representative in Equation

(79) correctly transforms the hyperspherical harmonics in Equation (24), and that the

phases of the quantities defined in these equations are consistent.

The irreducible representatives of SU(2) in Equation (79) may be expanded by

means of Equation (52) to find



R2,,, CI,42/ Z+1
f, l

a
u = 2  

lm
, 2 22 / 21+1 /"m2222 212

m2 m m m + (80)

S 2(221+1, (80)

where Z,, and R 2 are written for Z ,2 (,0,, (,) and R,/ 1,, (w2  2 2 ', 1, ) foT

the sake of brevity. Since complex conjugation of Equation (24) reveals that

Z" (/, , (A) = (- n*1' z;_,,, (w,+, Z (81)

some rearrangement of Equation (80) and substitution of Equation (81) gives

R' (2l )2 ) ( i2 '/222 1 +-22 Z21  Z 21
(21+ 2 A2 1 ,/ (82)

M 2 2 m 2 m; m 1

The symmetry properties of the Clebsch-Gordan coefficients, along with substitution of

the index -/2 for 12, allow Equation (82) to be written as

21 2T2 1)2212+ 22 + 2

'12 - 1 +A 2 2 + I A /l + 172/ Z 21
R 'i I (2/ + 1)2 A 2 12 A, I ,

ICI mP2mh""lm'1hnl"1212 -/12 hnlA- •(83)

M' M 2  ml nil

The quantity in brackets is found to be [63]

C,,,, C,/ C1"2 Cl, -, = 21 2+ 2+ 2k +
CIm2nll "I~l ImP2; -P2 lm, , p Y

min n2 m 1 n k k

A '1 (84)
x Ck - CA U I I

A2 2 pkK P k

k 22 2

where the quantity in braces in Equation (84) is the Wigner 9j symbol, and is defined in,
e.g., Refs. [8, 63]. With this, the expression for the matrix element of the irreducible

representative becomes



22 A2 +1 ZZZ( 1)22 -2I 222 + I 2A + I1 Z2 /.

% p 21+1 2 P2 Al P,,2 Ap,

1 1 (85)

X> IJ 2k1+ 'K C /1 1

k I k 12 /1

which is an alternative form for the elements of the irreducible representatives of SO(4)

described by Equation (79).

The utility of Equation (85) is that some of the properties of the irreducible

representatives of SO(4) follow more readily from this form than from Equation (79).

For instance, consider the elements of the row labeled by the indices A' = 0 and ' = 0.

Applying this restriction to the indices in Equation (85) gives

2 2 221 +1( 1) 222 121 Z )ZA,
00211 - 21+1 A, P2 Al I 0 '(

0 1 1 (86)

xZ C2k _lC,, COO A 1 
k k 22

Since the Clebsch-Gordan coefficient COK is equal to (-1)A- SAk-K/ 22+1 , this

simplifies to

S 21+1 22 . Z1Z C
1

(0 1 1 (87)

X 2 2 1

where the requirement that iP = ~, + P2 , as enforced by the remaining Clebsch-Gordan

coefficient, cancels several of the factors of (- 1). This expression is simplified further

by observing that the 9j symbol where one of the arguments vanishes may be reduced to a

6j symbol by the relation [63]



011

2 l = ( (88)1 ,1 -2~1 -A I

This allows Equation (87) to be written as
212  p222- + 2  +

R21 222±T1 22/ Z21 
2' CA A2 (89)

004I = (21 + 1)/2 A Z P22 AI PC 221 1 A 1A (89)i22 A 'l PIf

or, once more using the symmetry properties of the Clebsch-Gordan coefficients,

R 2'0 =(-1) -  (- 1) V' A 2  I 22± 21± Z' 2'

2 1 2 1 A 2 A P I A2 2  A(90)

2x C 1, "1 1

The quantity in brackets, by the addition theorem provided in Equation (58), is one of the

hyperspherical harmonics. That is, the expression for the elements of the row identified

by the indices A' = 0 and 0' = 0 of the irreducible representative of SO(4) defined in

Equation (79) is given by

2R ,2- 222 Z 2, (CO, 0, ), (91)

where the arguments co, 0 and 0 of the hyperspherical harmonic describe the rotation

resulting from following a rotation described by ol, 01 and 1 by a rotation described by

Q2, 92 and 0. Similar considerations reveal that the elements of the column of the

irreducible representative identified by the indices A = 0 and p = 0 may be written as

RA, 00 (t02 2, I l Z ,, (, ,, ), (92)
21 + A1

where the arguments c, 0 and 0 of the hyperspherical harmonic describe the rotation

resulting from following a rotation described by o02, 92 and i by a rotation described by

Co, 01 and b1. The author emphasizes that these results are obtained much more simply

from Equation (85) than from Equation (79).



Equation (85) is an analytical form for the irreducible representatives of SO(4)

that does not require prior construction of the irreducible representatives of SU(2). As

indicated above, this formulation allows the properties of the irreducible representatives

of SO(4) to be more easily observed, and provides a route to a deeper understanding of

the matrices required to change the reference orientation for an ODF in the form of

Equation (26).

3.2.4. Bases of the Irreducible Representatives of SO(4)

While definitions of the hyperspherical harmonics appear throughout the literature

[49, 50, 52, 59], there is no general agreement on the phase. Since changing the phase of

the hyperspherical harmonics amounts to a similarity transformation of the irreducible

representatives of SO(4) for which these form a basis, some care should be exercised to

ensure that the phase of the hyperspherical harmonics is consistent with the explicit

formula for the irreducible representatives of SO(4). Otherwise, these representatives do

not transform the elements of the basis correctly. We specifically follow the phase

convention of the complex-valued definitions of the hyperspherical harmonics in Refs.

[49, 53, 56, 57], and provide some evidence in this section that our formulas for the

irreducible representatives of SO(4) are consistent with this choice.

Let us return, for the moment, to the matter of the phase of the irreducible

representatives of SO(3). While not necessarily obvious, the irreducible representatives

of SO(3) as presented in the literature are entirely compatible with the canonical

representation of three-dimensional rotations by real three-by-three orthogonal matrices

of determinant one. That is, there exists a similarity transformation that brings the

complex three-by-three irreducible representative of SO(3) into the familiar canonical

form. Furthermore, the linear transformation effecting this similarity transformation,

when right multiplying the row vector of the basis elements of the three-by-three

irreducible representative, simultaneously brings the basis into a form that behaves

identically to the usual basis vectors of three-dimensional space. Although merely

requiring that this similarity transformation exist places a certain constraint on the

relationship of the irreducible representative to the basis elements, the ability to freely

select the similarity transformation permits an infinite number of consistent forms for the



irreducible representatives and the basis elements. Fortunately, Condon-Shortley phase

convention uniquely determines a standard similarity transformation, and allows the

irreducible representatives of SO(3) to be given in a consistent form throughout the

literature.

The situation is rather different with irreducible representatives of SO(4) and the

hyperspherical harmonics. There does not appear to be any counterpart to the Condon-

Shortley phase convention to uniquely specify the form of the irreducible representatives

of SO(4) and the phase of the hyperspherical harmonics, as is reflected in the variety of

phases for the hyperspherical harmonics appearing in the literature [49, 50, 52, 59].

Nevertheless, requiring that the four-by-four irreducible representative of SO(4) and the

four hyperspherical harmonics for which n = 1 be related in the manner described above

is certainly reasonable. That is, we require that there exist an invertible linear

transformation of the hyperspherical harmonics which makes the resulting basis behave

identically to the orthogonal unit vectors along the w-, x-, y-, and z-axes of Euclidean

four-dimensional space, and that simultaneously defines a similarity transformation of the

four-by-four irreducible representative which brings the representative into the canonical

form.

Of course, this raises the question of the canonical form for the representatives of

SO(4), which is generally speaking not as familiar as for SO(3). We propose that the

canonical form for these representatives may be considered as deriving from the

multiplication rule for normalized quaternions. As indicated in Section 3.2.1, the effect

of a prior rotation r on some rotation q may be represented as a multiplication of the

column vector of the quaternion components of q by a real four-by-four orthogonal

matrix R formed from the quaternion components of r. Similarly, the effect of a

subsequent rotation p on some rotation q may be represented as a multiplication of the

column vector of the quaternion components of q by a different real four-by-four

orthogonal matrix P formed from the quaternion components ofp. While the matrices R

and P separately perform distinct, constrained four-dimensional rotations, the matrix

formed by their product is a general real four-by-four orthogonal matrix of determinant

one and performs a general four-dimensional rotation. Since R and P commute, the order



of application of these matrices does not change the result. This provides a canonical

form for four-dimensional rotations.

Consider the four-by-four irreducible representative of SO(4) with elements given

by Equation (74). The basis of this representative is formed by the four hyperspherical

harmonics for which n = 1. The proposed condition on the phase of the hyperspherical

harmonics is that there exists an invertible linear transformation T' of the hyperspherical

harmonics which defines functions that behave analogously to the unit vectors along the

w-, x-, y-, and z-axes of Euclidian four-dimensional space, and that T 1 simultaneously

defines a similarity transformation which brings the irreducible representative into

canonical form. A suitable linear transformation exists, and is defined by the relation

ZiO Z,, Z,0 1 Z, I = [Z 10 i(- Z, + Z, ,1) - (Z, + Z',1)1- iZ,'. (93)

The basis functions on the right of Equation (93) behave exactly as required, differing

only by a constant positive coefficient from the four components of a vector in this space

as defined by Equation (21). Actually, Equation (93) is identical to Equation (75) for the

case n = 1, since T 1 in the current section is identical to the T1 of Section 3.2.2. As

remarked at the end of that section, the similarity transformation effected by T' brings

the four-by-four irreducible representative of SO(4) into the canonical form as well.

Therefore, while this is not intended to be a rigorous justification for the choice of phase

for the hyperspherical harmonics, the hyperspherical harmonics as defined in Equation

(24) and the irreducible representatives of SO(4) as defined in Equation (74) appear to be

reasonable insofar as they satisfy the compatibility condition outlined above.



4. Conversion to and from the Generalized Spherical

Harmonic Expansion

The introductory section of this chapter contains a discussion of numerous ideas

and formulas presented in earlier sections of this thesis, which are reproduced here for the

reader's convenience. The reader to whom this material is already familiar is encouraged

to pass over the current introduction and continuing at the beginning of Section 4.1.

The availability of an analytical form for an orientation distribution function

(ODF), which describes a distribution of crystal orientations, is fundamental to the field

of texture analysis. Analytical forms of the ODF are used, for example, in extracting

orientation statistics from diffraction measurements [69], in studying the effect of

processing history on the statistical evolution of microstructures [70], as an input to

crystal plasticity finite element methods that examine the effect of mechanical anisotropy

during deformation [71], and in the design of materials using spectral methods to identify

a desired ODF on the basis of the properties of interest [72]. Nevertheless, the current

mathematical treatment of the ODF has remained essentially the same for more than forty

years, since the introduction of the generalized spherical harmonic expansion for this

purpose [73, 74]. This situation appears to be principally due to the propagation of

conventions followed by Bunge in his seminal contributions to the field of texture

analysis [4]. These conventions notably include the description of an orientation by the

Euler angles 0, P, and 0, and the consequent expression of the ODF as a linear

combination of generalized spherical harmonics T'"" (, , 0 2 ) in the form

00 / /
f( ' )~ _tm'mTm'm (o 2) (94)

I=0 m'=-I m=-l

where the coefficients of the expansion are determined by the inner product

tin'm 221 +1 f f /(2 tT nl'm* (l , B2 )sin POd, dPd b2 . (95)
00 0

Despite the utility of this expansion, the use of Euler angles as a parameterization of

rotations is not necessarily ideal. For example, one inevitable difficulty with this method



is the existence of certain singular orientations that do not correspond to a unique set of

Euler angles [10]. These orientations correspond to an infinite number of points in the

orientation space, and give rise to singularities in the equations of motion [10] and in the

formulas used to determine the result of sequential rotations [35, 44]. Furthermore, the

description for the boundaries of the asymmetric domains in the orientation space is

notably more complex for the Euler angle parameterization [75] than for some of the

alternatives [5, 14, 15].

These disadvantages of Euler angles are certainly not inherent to the study of

orientation information; to be convinced of this, one needs merely to consider the

properties of the normalized quaternion parameterization of rotations [13]. The rotation

corresponding to a quaternion is readily apparent from the final three components, which

form a vector that points along the axis of rotation and scales monotonically in length

with the rotation angle [12]. This close relationship of a quaternion with the axis and

angle of a rotation further permits the construction of an orientation space which is

substantially simpler to visualize and interpret than that of the Euler angle

parameterization, as is described in Section 2.3. With regard to the manipulation of

orientation information, the most familiar example of the advantage of quaternions is

given by the formula for the multiplication of rotations, which involves only a bilinear

combination of the quaternion components [58]. Other instances where the use of

quaternions simplifies calculations related to the analysis of orientation information

appear throughout the literature [5, 10, 24, 29].

Despite these advantages, a significant portion of the crystallography community

continues to use Euler angles instead of quaternions to describe crystallographic texture.

While this preference for Euler angles may historically be attributed to the absence of an

analytical expression by which to represent an ODF in the quaternion group space, the

hyperspherical harmonic expansion provides exactly this alternative. The motivation for

this expansion relies on the observation that normalized quaternions may be considered

as vectors identifying points on S3 (the unit sphere in four-dimensional space).

Analogous to the expansion of a square-integrable function on S2 (the unit sphere in

three-dimensional space) as an infinite linear combination of the spherical harmonics, a



square-integrable function on S3 may be expanded as an infinite linear combination of the

hyperspherical harmonics Z", (c, 9,0), or

f(CO, , 0) = I c",Z"(, , ), (96)
n=0,2... /=0 m=-I

where the coefficients of the expansion are found from the inner product

2,ffr g

o = .f (, , O)Z,, (co, 0, 0)sin 2 (co/2)sin 0d(c/2)d0d, (97)
000

and n is restricted to even integers by the trivial symmetry of three-dimensional space.

This expansion is discussed in more detail in Chapter 2.

Since the physical significance of orientation information does not depend on the

means by which it is described, the expansions given in Equations (94) and (96) may in

principle be used interchangeably. However, there is presently no means of converting

an ODF expressed in the form of the generalized spherical harmonic expansion of

Equation (94) to one in the form of the hyperspherical harmonic expansion of Equation

(96). With this in mind, the purpose of this chapter is principally to provide continuity

with the existing literature by deriving a simple linear transformation to relate the

coefficients of these two expansions. Our expectation is that this will allow extant

published results in texture analysis to be converted to, and presented in, a more intuitive

and accessible form. This result is then harnessed to apply a mathematical technique in

common use with the generalized spherical harmonic expansion to the hyperspherical

harmonic expansion as well.

4.1. Overview of the Conversion Method

The group of primary concern to the study of crystallographic orientations is

SO(3), the group of rotations of three-dimensional space. While the importance of this

group to the physical sciences has encouraged many authors to investigate its properties,

the resulting treatments do not always follow a consistent set of conventions [8, 13, 44,
45]. At least for the current authors, this situation has caused a certain degree of

confusion and inconvenience, as the conventions used in deriving many of the results



available in the literature are not always explicitly stated. To our knowledge, the results

contained in this paper do not appear anywhere else in the literature with a consistent set

of conventions.

We follow the same conventions in the interpretation and use of a rotation matrix

as those of Altmann [13]. That is, a rotation operation is viewed as an active rotation of

configuration space rather than as a passive rotation of the coordinate system, unless

explicitly stated otherwise. A rotation matrix left-multiplies the column vector of the

coordinates of a point, and right-multiplies the row vector of the components of a basis.

This interpretation allows one to identify a crystal orientation with the rotation operation

required to bring a reference crystal into coincidence with the actual crystal. The ODF is

then interpreted as a function of rotations of three-dimensional space, or more often as a

function of some set of parameters that clearly define a rotation.

This chapter makes use of two parameterizations. The first of these is the Euler

angles 0, P, and 0, which define a general rotation as the result of three consecutive

active rotations by the angles -01, -0, and -4 about the z-, x-, and z-axes, respectively

(from the point of view of an observer attached to the coordinate system, this active

rotation sequence is identical to the passive rotation sequence defining the Euler angles as

described by Bunge [4]). The second rotation parameterization is by the angles o, 0, and

0, as described in Chapter 2. The relationship of the Euler angles to the angles co, 0, and

0 is established by the conversion formulas provided in Appendix D.

The analytical form of the ODF used by the majority of the crystallography

community is provided in Equation (94), where rotations are parameterized by sets of

Euler angles. This equation actually derives from one of the consequences of the Peter-

Weyl theorem, namely, that the matrix elements of the irreducible representatives of

SO(3) provide a complete, orthogonal basis for the expansion of a square-integrable

function of three-dimensional rotations [76]. While many expressions for the irreducible

representatives of SO(3) appear in the literature, they often differ from one another by

similarity transformations [8, 13, 44, 45]. Once a set of conventions is specified and a

consistent expression is found, the Peter-Weyl theorem allows the ODF to be written as

an infinite linear combination of the matrix elements of these irreducible representatives.

For example, the expansion in Equation (94) is found by following the phase convention



of Bunge [4], expressing the matrix elements of the irreducible representatives of SO(3)

as functions of the Euler angles, and denoting the matrix element in row m' and column m

of the (21+1)-dimensional irreducible representative by T' m  01, , 2 ).

The expansion provided in Equation (96) follows more directly from a

consideration of SO(4), the group of rotations of four-dimensional space. A well-known

result of group theory states that the basis elements of the irreducible representatives of a

group of operators provide a complete, orthogonal basis for the expansion of a function to

which an operation of that group may be applied [8]. Since sets of the hyperspherical

harmonics Z" (oo, 0,) transform as the bases of the irreducible representatives of SO(4),

the hyperspherical harmonics form a complete, orthogonal basis for the expansion of a

square-integrable function on S3. Considering points on S3 to correspond to normalized

quaternions, Equation (21) suggests that the angles co, 9, and b identify points on S3 in a

manner analogous to that of the spherical angles on S2. That is, exactly as a function on

S2 is more naturally written as a function of the spherical angles than Cartesian

coordinates, a function on S3 is more naturally written as a function of the angles co, 0,

and 0 than of quaternion coordinates. The angles co, , and 0 are therefore entirely

compatible with the interpretation of the ODF as a square-integrable function on S3,

which allows the ODF to be written as an infinite linear combination of the

hyperspherical harmonics in Equation (96).

Regardless of the different motivations for the generalized spherical harmonic and

the hyperspherical harmonic expansions, they contain the same orientation information.

As such, there must be a method to convert from one expansion to the other. This

conversion is found by comparing the expressions for the matrix elements of the

irreducible representatives of SO(3) as functions of the Euler angles and the angles co, 0,

and 0. When written using the Euler angles, the expression for these matrix elements

gives the formula for the generalized spherical harmonics. When written using the angles

co, 0, and 0, the same expression becomes a linear combination of the hyperspherical

harmonics. Equating these forms gives the conversion of the basis functions in Equation

(94) to the basis functions in Equation (96), and the conversion from the coefficients in



Equation (94) to the coefficients in Equation (96) as well. We develop this approach

further in the following.

4.2. Rotation Conventions and the Generalized Spherical Harmonics

There are many mathematical results in the literature that are useful and relevant

to the present task. However, incorporating or referring to them without establishing a

consistent set of conventions is quite hazardous. In particular, the conversion from the

generalized spherical harmonics to the hyperspherical harmonics is nonsensical unless a

consistent set of conventions is used to derive the expressions for the matrix elements of

the irreducible representatives of SO(3) as functions of the Euler angles and the angles co,

0, and 0. We therefore devote a significant portion of this chapter to the consideration of

this issue.

The definition of the generalized spherical harmonics most frequently used by the

crystallography community is [4]

Timn ) 0, 0, 2 )= e""0'2 P""' (cos )e"" , (98)

where the function P,",'" (cos 0) is defined as

P,""' (coso) - (1- cos )(m'-)/2

x (1 + cos )-(+)/2 d ) -m ( + co /+
d(cos~ )-n,-"

The generalized spherical harmonic may be considered as the matrix element in row m'

and column m of the (21+1)-dimensional irreducible representative of SO(3). Therefore,

Equation (98) depends implicitly on the conventions adopted by Bunge [4] during the

construction of the irreducible representatives. Generally speaking, the range of

conventions that must be specified include the selection of the basis elements, the choice

of the active or passive rotation convention, and the parameterization used to write the

formulas for the resulting matrix elements.

The vast majority of literature on the subject, including that by Bunge [4] and the

current document, selects the set of spherical harmonics with a particular value of I as the



basis elements of the (21+1)-dimensional irreducible representatives of SO(3). Since the

basis is consistent throughout, the issue is not discussed further. As for the remaining

conventions enumerated above, Bunge [4] uses the passive convention and the Euler

angle parameterization, while we use the active convention and the angles Co, 0, and 4.

The comparison of matrix elements apparently requires that the relationship of the

representatives constructed following these different conventions be clearly established.

We address these differences individually for the sake of clarity, with the difference in

rotation convention first and the difference in parameterization second.

4.2.1. Determination of the Functions Dinm ( ,1, 2)

Regarding the difference in rotation convention, consider that a rotation matrix's

elements depend only on the selection of an initial coordinate system and the apparent

rotation of space from the perspective of an observer rigidly attached to that coordinate

system. If two matrices that effect the same apparent transformation of space share a

single basis, then corresponding matrix elements of the two matrices should be the same,
independent of the rotation convention followed. In particular, sequential active rotations

by -0, about the z axis, -0 about the x axis, and -4 about the z axis effect the same

apparent transformation of space as sequential passive rotations by b1 about the z axis, by

0 about the x' axis, and by 0 about the z" axis. Therefore, the elements of the matrix

describing the active rotation sequence should be the same as the elements of the matrix

describing the passive rotation sequence.

Throughout the literature, the generalized spherical harmonic T""m (1, 0,2) is

considered to be the matrix element in row m' and column m of the (21+1)-dimensional

irreducible representative of SO(3) that describes the passive rotation sequence of the

preceding paragraph. Define the function D,,,(4 1, , 2 ) as the corresponding matrix

element in row m' and column m of the (21+1)-dimensional irreducible representative of

SO(3) that describes the active rotation sequence of the preceding paragraph. Since this

function differs from the generalized spherical harmonic TIm"' (0 , 0, 2 ) only in the sense



in which the irreducible representative is interpreted, these functions should be identical,

i.e. Tn"'"m (,,0 2 )= D~,,,,1(q~, 2). Curiously, this is not found to be the case.

The functions D (,,m (, ', 0 2 ) may be found by converting an existing expression

for the matrix elements of the (21+1)-dimensional irreducible representatives of SU(2) in

terms of the Cayley-Klein parameters into an equivalent expression in terms of the Euler

angles 0, 0, and 0. The matrix elements of the irreducible representatives of SU(2) as

functions of the Cayley-Klein parameters are given by [8, 13, 44, 45]

a +,n-k (a* )1-m'-k b ','-,m+k (-b*) k
R,',,,, (a, b) = (/+ m~.'(l - m')!.(l + m)! (k' -m) + - k!

k (l+m-k)(1-m'-k)(m'-m+k)k!'
(100)

as in Equation (36). The meaning and use of the representative constructed from these

matrix elements varies among the cited references; our interpretation follows that of Ref.

[13]. The dimension of the representative is (21+1), where 1 is restricted to non-negative

integral or half-integral (half of an odd integer) values. Restricting / to integral values

gives the representatives of SO(3). The index m' labels the rows of the matrix

sequentially from I to -1, and m labels the columns sequentially from I to -1. The index k

ranges over all values for which the factorials are finite.

Converting Equation (100) into a function of the Euler angles requires that the

relationship of the Cayley-Klein and Euler angle parameterizations be known. Their

relationship is found by comparing the matrix elements of the complex two-by-two

irreducible representatives of SU(2) written in the Cayley-Klein and Euler angle

parameterizations, which are provided by Equations (184) and (186) of Appendix D.

This comparison yields the relations a = cos(P/2)e'( +12)/2 and b =isin(P/2)e-'(A - )/2.

Substituting these into Equation (100) and rearranging the result provides

D,',,,,( 2:m ' -_(l + m)!(l -m)(l + m.(l m + Cos ~ 1( - cos )/

S2 1 + cos

(- 1)" 1 - cos k e 1/102_ Ico
k (+m-k -m'-k)(m'-m+k).k! 1(+cos)

(101)



The quantity in brackets (or a closely related quantity) appears in Refs. [8, 42, 44, 45],
though there is considerable variation in the phase and notation, and none of these

references provide this quantity with a name. This quantity is in fact exactly equal to one

appearing in Ref. [44], where it is denoted as the function P1',, (cos 0).

One of the symmetries of the function P,,,m(cos 0) is revealed by introducing

k'= k - m as the summation index instead of k in Equation (101). Inspection of the

result indicates that P,m (cos 0) is symmetric with respect to the exchange of the indices

m' and m, or that P, (cos P) = Pm, (cos 0). An alternate expression for P,,,, (cos <) that

is provided in Ref. [44] is

P'm (cos 0) - (- 1)'-' '-m / + m'. (1 +cos)-(m+m)/2 (1-COS )-(m'-m)/2
2' (1- m)!( + m)! ( - m ')d'

x d-'m, [(- cos 0)'-m (I + cos P) +m.
d(cos 0)/

(102)

Exchanging the indices m' and m in this expression and comparing with the function

P,"'m (cos ) of Equation (99) reveals that

Pm, (cos 0)= (-1)m'-m pn'm (COS ). (103)

With this equivalence, the function DI,, (01, P, 02) may be written as

D,m (01s 02 )"'-"m [e"'2 P (cos )e' ]. (104)

The quantity in brackets is the generalized spherical harmonic T"m'm (,, 02) of

Equation (98), providing the relation

Dm ( 2 = (1)m'-m Tm'm 2). (105)

That is, the representatives of SU(2) consistent with the current conventions differ from

those used by Bunge [4], and by the texture community in general, by a similarity

transformation.



4.2.2. Phase of the Generalized Spherical Harmonics

As indicated by Equation (105), the relationship between the two nominally

equivalent expressions for the matrix elements of the irreducible representatives is found

to be

T"' (41, ,2) m-m' ,'( ,0, 02), (106)

where there is an unexpected difference of phase between the two functions.

Unfortunately, it is not possible to directly compare the derivations of these expressions

in order to identify the source of the disparity, since Bunge [4] does not provide a

derivation of the formula for the generalized spherical harmonics. Rather, he indicates

that more detailed accounts of the representations and properties of the generalized

spherical harmonics appear in Gelfand, Minlos and Shapiro [42], Vilenkin [44], and

Wigner [8], though this is not precisely true. While functions related to the generalized

spherical harmonics do appear in these references, none of these is identical to his

definition of the generalized spherical harmonics. These authors indicate their assorted

expressions for the matrix elements of the irreducible representatives of SO(3) by

T ,,(1, 0, 0 2 ) [42], t,(,0,) [44], and D(')({a, f, 7}),,, [81, respectively. Inserting

4, 0, and 2 for the angles of the first, second, and third rotations of these functions, we

find that their relationships to the generalized spherical harmonics Ti"' ( 21, , 42 ) are

lTi' (1 , p, 2m'- T m 1 2 2 m 2, _) m-m ,D) ( {) Q{ 2 ,0, 1 }m,'m , (107)

where * is the complex conjugate. Examining Equation (107), we see that none of these

expressions matches the form provided by Bunge. That is, Bunge neither provides a

derivation of the expression he uses for the generalized spherical harmonics, nor provides

a reference to a derivation consistent with the conventions he followed. The difference

between T"" "'(1, 0, 0 2 ) and D,,,, (1, 0, 02) in Equation (106) therefore appears to have

developed from an internal inconsistency in his work [4], though it is difficult to verify

the presence of an error without clearly establishing the source of the generalized

spherical harmonics.



Whether or not the equation for the generalized spherical harmonics is internally

consistent with the conventions followed by Bunge [4], the expansion in Equation (94)

remains a valid expansion of the ODF; changing the generalized spherical harmonics by a

constant factor amounts to pulling a constant factor out of the coefficients in the

expansion. Since Bunge used the generalized spherical harmonics almost exclusively in

the context of Equation (94), the question of the constant factor appearing in Equation

(106) is virtually irrelevant to his subsequent results. For the purposes of the present

chapter, however, a constant factor represents a change in the values of the matrix

elements of the irreducible representatives of SO(3). Equating expressions for the matrix

elements in different parameterizations certainly gives nonsensical results when the

expressions are not equal. Therefore, the functions Dm, (1 , 02) will be considered as

more fundamental from the standpoint of calculations within this section, though the

majority of our equations will be formulated using the functions T'm 2(b, , 2) in order

to relate our results more directly to the literature.

4.3. Relating the Irreducible Representatives

With the relationship of the generalized spherical harmonics T"'m ( , , 02) to the

functions D,',, ( , 02) provided by Equation (106), the conversion formulas relating

Tm' (0, 0, 02) to the hyperspherical harmonics may be formulated once the relationship

of the hyperspherical harmonics to the intermediate functions D ,,n, 0,2) is known.

The current convention is to define the hyperspherical harmonics as in Equation (24), that

is,

2'+'/2 1! Q -m) (n + lXn- 1)
Zl",(oO)= (- i); 2' (21+1)(l-m. (n+/+ ) sin'(cq/2)C"+'[cos(co/2)]

2z l+m) (n+1+1) n-1 (108)
x P," (cos 0)e"" ,

with integer indices 0 n, 0 1 n, and - m < 1. As indicated by Equation (52) of

Section 3.1.1, the matrix element in row m' and column m of the (21+1)-dimensional

irreducible representative of SO(3) may be written as a linear combination of the

hyperspherical harmonics in the form



(109)
UI, (, , 0)= C 21± + 1) Z= (C, , 0).A ' 21+1

The question of the relationship of the hyperspherical harmonics to the functions

Dm,, ( 1 , , 0, 2 ) is therefore equivalent to the question of the relationship of the functions

U/,,, (W, 0, 0) to the D 1,,,, (, ,2 ).

For this, a consideration of the physical significance of the rotation operations

U' B

Figure 16: The physical interpretation and relationship of the quantities T"' (,0,2), D., (, ' , 2),

and U.,,,(,(o,0,4). T,"'(4,0,42) is considered to passively bring the coordinate system into

coincidence with an oriented crystal. D,,, (1, , 02) is considered to actively bring an oriented

crystal into coincidence with the coordinate system; this is identical to the effect of

T,""' (,0,,2) from the perspective of an observer attached to the coordinate system.

Ui , (, , 0 ) is considered to actively bring a reference crystal into coincidence with the oriented

crystal; this is the inverse of the effect of D,,,,, (A , P, ).



corresponding to T,'""(1, , 2), D,,m( ,0, 2) and Um,, ,(c, 0,) is useful. According

to Bunge [4], T"'m(, , 2) describes a crystal orientation by the passive rotation which

brings the coordinate system initially aligned with the sample into alignment with the

crystal, where the crystal is aligned with the actual orientation throughout. This

operation is shown at the top of Figure 16. As discussed in Section 4.2.1, D',,,,, (i ,0, 2)

describes a crystal orientation by the active rotation which brings the crystal initially

aligned with the actual orientation into alignment with the reference orientation, where

the coordinate system is aligned with the sample throughout. This operation is shown in

the middle of Figure 16, and is the active counterpart to the traditional description.

Finally, U,,,,(co, 0,) by definition describes a crystal orientation by the active rotation

which brings the crystal initially aligned with the reference orientation into alignment

with the actual orientation, where the coordinate system is aligned with the sample

throughout. This operation is shown at the bottom of Figure 16.

Reference to Figure 16 clearly indicates that the active rotation corresponding to

D',,,, ( , ,, 2) is the inverse of the active rotation corresponding to Um,,(co, , ). That

is, the unitary matrix constructed from D,,17M (01, , 2) is the inverse of the unitary matrix

constructed from U,,m (co, 9, 0), or

Dnm, ,2 ) = Um,, (o, O, ). (110)

Applying Equation (106) to Equation (110) gives

This equation relates T" (1, 0, 42), formulated with the passive convention and the

Euler angle parameterization, to U,,,m (co, 0, ), formulated with the active convention and

the axis-angle parameterization, and is the basis for the conversion formulas presented in

the subsequent section.



4.4. Conversion Formulas

The conversion from the generalized spherical harmonics to the hyperspherical

harmonics proceeds according to the prescription mentioned Section 4.1 of the current

chapter; since the value of the matrix elements of the irreducible representatives of SO(3)

must be independent of the parameterization, the formulas for these matrix elements as

functions of the Euler angles and of the angles co, 0, and b may be equated. Inverting

Equation (111) and inserting Equation (109) reveals that

(__lnm-m'Tnun'* (0 1  , 2)--- 1112(2A + 1)/& z,( 1) 0 2; 2 + (), (O, 0). (112)
A /1 21+1

After relabeling the indices m and m', complex conjugating both sides and applying

Equation (81), this becomes

T," "'(, 2)= -) + i T 2(22+ 1) T2 1 (C,0, ). (113)
A , 21+1

Changing the summation over p to a summation over -u and applying the symmetry

properties of the Clebsch-Gordan coefficients gives the result

Ti,i'(,0, 0,2 1)) (_i+ III ',m (iO 2(21+1)r Z(o,9, 0). (114)
21+1

This establishes the formula to convert from the generalized spherical harmonics to the

hyperspherical harmonics.

The inverse expression is found by exploiting the unitarity relations of the

Clebsch-Gordan coefficients. This procedure is simplified by initially applying the

symmetry properties of the Clebsch-Gordan coefficients to obtain

Ti' m (01 2)= (- 1i'l" CA" 2", Z2, (CO, o, ). (115)

A = 1 Cm, 21±t .

Multiplying through by Cij",,,, summing over the indices -m' and m, and rearranging the

summations then gives



S i) -m 21+1 Tinn ( 2 Z (, 9, 0)

- m I -- m'lm m (116)

The quantity in brackets is , 6 ,,,, by the unitarity of the Clebsch-Gordan coefficients,

simplifying the equation to

z-21,, 9 (0 l C) I) - 2-m 11 I 'n( (117)+
( - CI-m'hn T 0'

Applying the symmetry properties of the Clebsch-Gordan coefficients and replacing the

summation over -m' with a summation over m' gives

Z2 O) I I (_ 1),I+n
'-
-

m 
C Im V-2- m'm(118)m ( -M' m CI('l 2TI T

I
' (01 (1 18)

where the indices of summation satisfy the constraint m - m' = u. This is the counterpart

to Equation (114), and establishes the formula to convert from the hyperspherical

harmonics to the generalized spherical harmonics.

The ability to convert the basis functions of Equation (94) into those of Equation

(96) is not as useful as the ability to convert the expansion coefficients directly, though.

Calculation of these formulas requires one to account for the fact that the values of the

ODFs as expressed by Equation (94) and Equation (96) are different. This is simplest to

observe for the case of a uniform distribution, for which the value of the ODF in

Equation (94) is unity everywhere, while the value of the ODF in Equation (96) is 1/2f 2

everywhere. As with the matrix elements of the irreducible representatives of SO(3),
equating expansions of the ODF when the values of the ODFs at corresponding points are

not equal is nonsensical. This disparity is resolved by multiplying one of the expansions

by the appropriate coefficient, or

f(1, ,2)= 2' 2f(0, ,). (119)

Multiplying this by the complex conjugate of Equation (114) and integrating by means of

Equation (190) in Appendix D results in



2i 2)
f( m * sinOdd d 2  I(- 1)A+m- in' t - l 8z'32(2A + 1) .

2 ff 2Im'Al 21 +1
O0 0 A '

X Jf (c, , b)Z*" sin 2 (c/sinin 6O(co/2)dOdo ,
000

(120)

where an additional factor of 1/2 is introduced on the right side to account for the fact

that every orientation is included in the integrated volume twice. The integrals may be

evaluated by means of Equation (95) and Equation (97), and simplification gives

t( = Z (-1)2 m - " Cm,'C"m 4, 2(2A +1)c
A p

(121)

The inverse expression may be found either by a similar integration, or by inverting

Equation (121) directly, with the result that

(122)c 21 )+m'-n C _lim 2 + n I 'm .

min' inm 'e'A f2i(21 + 1)

Equations (121) and (122) provide the linear transformations to convert an ODF written

in the form of Equation (94) directly into the form of Equation (96), and vice-versa; the

required Clebsch-Gordan coefficients are given in Appendix C.

Figure 17: The normal direction inverse pole figure

EBSD.

of a copper sample, as measured experimentally by



4.5. Implementation of the Conversion

In this section we validate the results of the previous sections of the chapter by

applying them to the ODF of a copper sample, as determined experimentally by electron

backscatter diffraction (EBSD). For reference, the normal direction inverse pole figure

map of the measured area is given in Figure 17. We validate the conversion formulas by

comparing the coefficients cn, of the hyperspherical harmonic expansion as calculated

directly from fitting the experimental data with Equation (97), and as calculated by first

fitting for the coefficients t"'m of the generalized spherical harmonic expansion from

Equation (95) and then converting them to the c" using Equation (122). The analytical

expression for an ODF should be independent of the calculation method used, so the

equivalence of these sets of coefficients

formulas derived in the preceding sections.

The expansion of the ODF given by

00 to 150 150 to 300 300 to 450 450 to 600

60° to 750 75' to 900 900 to 1050

105 0 to 120 0 1200 to 1350 135 0 to 150 0

(a) 1500 to 1650 165 0 to 180 0

provides evidence for the accuracy of the

the coefficients calculated directly from the

00 to 150 150 to 300 300 to 45 45 o 600

4 45

600 to 75 750 to 900 900 to 1050

1050 to 1200 1200 to 1350 135 0 to 1500

(b) 1500 to 1650 1650 to 1800

Figure 18: The ODF of the copper sample in Figure 17, expressed via the hyperspherical harmonic

expansion given in Equation (96). Blue and red indicate regions of positive and negative

probability density, respectively. (a) The coefficients of the expansion are calculated using

Equation (97). (b) The coefficients of the expansion are calculated using Equations (95) and

(122), i.e. by means of the coefficient conversion formulas. Inspection of the figures reveals that

the expansions are identical.



experimental data appears in Figure 18a, and that given by the coefficients calculated

indirectly through conversion from the generalized spherical harmonics using Equation

(122) appears in Figure 18b. The infinite summation in the hyperspherical harmonic

expansion of Equation (96) is limited to n 30, and the procedure used to display the

hyperspherical harmonic expansions graphically is described in Section 2.3. Blue and red

regions correspond to positive and negative probability density, respectively. The

presence of a few clearly distinguishable probability density peaks reflects that the

observed region contained only a few grains, while the resemblance of Figure 18a to

Figure 18b indicates that the directly calculated coefficients match well with those

calculated by means of the conversion formulas. Although not practical to present in

print, we have directly compared the numerical values of the 5456 coefficients in the two

expansions as well, and they are equal to within one part per 108, i.e., to within the error

of the numerical calculations. These results convincingly validate the conclusions in the

preceding sections.

4.6. The Positivity Constraint

We anticipate that the conversion formulas presented above will allow existing

texture information to be translated easily into the new hyperspherical harmonic-based

representation. Beyond texture information, however, the conversion formulas carry the

broader implication that mathematical methods and tools developed for use with the

generalized spherical harmonics do not need to be re-derived for the hyperspherical

harmonics. One example is provided by the positivity method for the correction of the

ghost error, which has been handled in the context of the generalized spherical harmonic

expansion by prior researchers [77-79].

The regions of negative probability density appearing in Figure 18 are unphysical,

and result from the truncation of the infinite expansion to a finite number of terms.

Historically speaking, regions of negative probability density often appeared in the

generalized spherical harmonic expansion of the ODF, though this phenomenon was

generally attributed to the inherent limitations on information obtained from conventional

diffraction experiments (i.e., the so-called "ghost error") rather than truncation error.

Many of the same techniques developed in the literature to correct for the ghost error may



be used to correct for the truncation error as well. Roughly, these include the positivity

method [77-79], the quadratic method [80, 81], and the maximum entropy method [82-

85]. Of these, the positivity method is arguably the simplest to implement. This method

traditionally involves finding an approximation for the odd I coefficients in Equation (94)

by enforcing the non-negativity of the ODF.

Explicitly, given a reduced ODF f (g) that is calculated using only the even /

coefficients, define a function

~, f)= ,-(g) f,(g)<0
+1(g) 0 otherwise (123)

Find the expansion coefficients of f, (g) from Equation (95), and use the even 1

coefficients of f 0 (g) and the odd 1 coefficients of A (g) to define the function f (g).

From this point on, the positivity method follows an iterative procedure. Insert f, (g)

into Equation (123) to define a function j+,(g), and find the expansion coefficients of

this function from Equation (95). Define the function f,, (g) from the even 1 coefficients

of f (g) and the sum of the odd I coefficients of f,, (g) and f, (g), and repeat the

procedure until the magnitude of the negative probability density in f, (g) falls below a

set threshold. The function f,,, (g) is called the complete ODF.

The same general principle, with minor modifications, may be used to reduce the

extent of the truncation error in Figure 18. Indicate the hyperspherical harmonic

expansion of the ODF by f0 (g). Insert this function into Equation (123) to find A (g),

and calculate the expansion coefficients of f, (g) from Equation (97). Form the sum of

every coefficient of f 0 (g) with the corresponding coefficient of f (g), and normalize the

result by multiplying each coefficient by the constant that brings co to the value 1/Vr i.

This collection of coefficients defines the function f, (g), which is a normalized

approximation to fo(g)+ A (g). This procedure is iteratively repeated, using Equation

(123) to find f,, (g) from f (g), until the magnitude of the negative probability density
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Figure 19: The ODF given in Figure 18a, constrained to positive values by the procedure described in

Section 4.6. Apart from the removal of the regions of negative probability density and a slight

broadening of the peaks, the distribution function is identical.

in f, (g) falls below a set threshold. The primary difference of this method from the

positivity method outlined above is that the majority of current orientation measurement

techniques provide information about all the coefficients in the expansion. This property

removes the need to preserve the values of some coefficients while selectively changing

others.

This positivity method is applied to the hyperspherical harmonic expansion of the

ODF appearing in Figure 18, with the result shown in Figure 19. The procedure

markedly reduces the magnitude of the negative probability density regions, though at the

inevitable price of broadening the peaks in the probability distribution function.

4.7. Conclusion

While the importance of the generalized spherical harmonic expansion of an ODF

to the historical development of texture analysis is undeniable, exclusive reliance on a

single particular expansion is inherently limiting. This is quite clear from an examination

of the literature, where discrete orientations are routinely manipulated with multiple

parameterizations (rotation matrices, Rodrigues vectors, Euler angles, etc.) to leverage



their complementary strengths, but orientation distributions in the past benefited from

only this single representation. The absence of an alternative to the generalized spherical

harmonic expansion required that every operation on the ODF be performed in the Euler

angle parameterization, regardless of its suitability. The hyperspherical harmonic

expansion of an ODF provides the missing alternative, though the utility of this

expansion relies on the existence of a means by which to efficiently and easily convert

from one representation to the other; this chapter provides the equations effecting this

conversion for the first time.

The ramifications of these conversion formulas are expected to extend further

than the ability to express a particular ODF in the axis-angle parameterization.

Specifically, these formulas provide continuity of the hyperspherical harmonic expansion

with the existing literature, and allow mathematical results derived using the generalized

spherical harmonic expansion (or programs written using this expansion) to be used with

a minimum of modification. As a simple example, the fact that the conversion of the

expansion coefficients is a linear transformation enables one of the procedures existing in

the literature to enforce a positivity condition on the generalized spherical harmonic

expansion of the ODF to be applied directly to the hyperspherical harmonic expansion of

the ODF. We hope that these results significantly increase the accessibility and utility of

the hyperspherical harmonic expansion in the field of texture analysis.



5. Symmetrization of the Hyperspherical Harmonics7

While the expansion of functions on a unit circle and a unit sphere (as performed

with Equations (12) and (15), respectively) and the hyperspherical harmonic expansion

(as performed with Equation (31)) may be applied to any square-integrable function

defined on the appropriate space, the functions of practical interest are usually not

arbitrary. For example, an orientation distribution function must reflect the crystal and

sample symmetries of the material being considered. The knowledge that the function

being considered is subject to certain symmetries is quite valuable, since it allows one to

use significantly fewer terms in the expansion than for the general case. The essential

idea is that it is only necessary to use the symmetrized harmonics, or those linear

combinations of harmonics that reflect the symmetries of the system. Any linear

combination of the symmetrized harmonics must reflect these same symmetries, and

furthermore, any square-integrable function with these symmetries may be decomposed

into a linear combination of the symmetrized harmonics. Since the number of

symmetrized harmonics is usually just a fraction of the number of general harmonics (and

decreases further as the symmetry increases), the reduction in the number of coefficients

to calculate is often considerable.

As an example, consider the rotation of a circle about an axis perpendicular to the

plane of the circle and passing through its center. If this is a k-fold axis, then the

symmetrized circular harmonics are given by Equation (11) with m restricted to integer

multiple of k. Requiring a function on the circle to conform to this symmetry causes the

coefficients of its expansion to vanish for all except these values of m, meaning that the

number of coefficients to be calculated is reduced by a factor of k.

The situation is more complicated for the spherical harmonics, since the increase

in dimension allows a particular point group symmetry to include multiple rotations

performed about different axes. While the theory underlying the procedure is more

involved (refer to, e.g., Refs. [86, 87]), the reduction in the number of coefficients to

calculate is considerable, as the example given in Figure 20 indicates. Of all the linear

7 The content of this chapter has previously been published in Refs. [1, 47].
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Figure 20: An example of the reduction in the number of linearly independent harmonics required for the

expansion of a function on the surface of a sphere with cubic point group symmetry; blue and red

correspond to positive and negative values respectively. (a) The nine spherical harmonics defined

by Equation (14) for 1 = 4. The value of the index m is indicated above the columns, with the

harmonics Y,c on the top and Y,"" on the bottom of a given column. (b) The single linear

combination of the harmonics in (a) that satisfies the requirements of cubic point group symmetry.

combinations of the nine spherical harmonics for 1 =4 (Figure 20a), only one

combination satisfies the symmetry of the cubic point group (Figure 20b). Furthermore,

the ability to derive the symmetrized spherical harmonics is not necessary to reap this

benefit, since tables are available that list the symmetrized spherical harmonics [88].

Of course, the symmetrization of the hyperspherical harmonics to enforce crystal

and sample symmetry is of particular interest, due to the utility of these functions in the

expression of texture. Following Bunge [4], the symmetrized hyperspherical harmonics

are defined as linear combinations of the real hyperspherical harmonics. Provided that

the symmetrizing coefficients of these linear combinations satisfy certain conditions, the

symmetrized hyperspherical harmonics constitute a set of orthonormal functions over

which an orientation distribution with the appropriate symmetry may be expanded

significantly more efficiently. While our method to derive the symmetrizing coefficients

is quite general, we have explicitly determined the symmetrized harmonics only for

samples with orthorhombic symmetry and for crystals with the Laue symmetry groups.

Despite our use of well-known group theoretical techniques, certain aspects of our

symmetrization procedure, as well as the symmetrized harmonics themselves, appear to

be unique within the literature.



5.1. Eigenvectors of the Irreducible Representatives

A functionfon the surface of the unit sphere in four dimensions may be written in

the form of a real hyperspherical harmonic expansion, as in Equation (31). As indicated

in Section 3.2.2, a four-dimensional rotation R(r, p) of the function f is equivalent to a

transformation of the expansion coefficients such that the result is written in the form

R(r,p)f = (Zo ... ZnZ ,, ... Z jT"tC,,Ut (r) 0 U" (p)C,,T"
n=0,2 (124)

X a00...anb nn...ano

where the irreducible representatives of SO(4) corresponding to R(r, p) are functions of

the sample symmetry operation p and the crystal symmetry operation r. A symmetrized

function fmay now be defined as one that is invariant to the application of every distinct

four-dimensional rotation corresponding to the simultaneous action of a crystal and a

sample symmetry operation. From Equation (124), one finds that a function is invariant

to the application of a particular four-dimensional rotation only when the sets formed

from expansion coefficients with particular values of n are invariant to the application of

the corresponding (n+l) 2-dimensional irreducible representatives of SO(4). That is, a

function is invariant to a four-dimensional rotation only when the sets of expansion

coefficients form eigenvectors of eigenvalue one of the irreducible representatives.

An inspection of Equation (124) indicates that any four-dimensional rotation

operation may be considered to transform the hyperspherical harmonics for a particular

value of n into linear combinations of the hyperspherical harmonics for the same value of

n, and no others. Since the symmetrized hyperspherical harmonics are defined to be

linear combinations of the hyperspherical harmonics that are invariant to certain four-

dimensional rotation operations, they may be constructed as linear combinations of only

the hyperspherical harmonics with a particular value of n. Let A(n) indicate the number

of linearly independent combinations of the hyperspherical harmonics for a particular

value of n that are invariant to all the four-dimensional rotation operations corresponding

to the application of distinct pairs of crystal and sample symmetries. The expression for

the Ath of these linearly independent combinations is written as



2 = (z oc...Z", ",,...onnc  00o ... an,, 2 ,b,, 2 ... ao , (125)

where the a",, and b" are referred to as the symmetrizing coefficients. Since the

symmetrized basis functions are square integrable functions on the surface of the unit

sphere in four dimensions, a general four-dimensional rotation of Z may be expanded

using the hyperspherical harmonic expansion and written as

R(r, p); = Z c Z ...Zn Zn...Znoc TntC,U" (r)9 U (p)C,,T[

X a• nnc, b a o ) , (126)
X aoo . nna2, b,, A • • a

which is simply a specific instance of Equation (124). If the four-dimensional rotation

operation R(r,p) is constructed from a sample symmetry operation and a crystal

symmetry operation, then the definition of the symmetrized hyperspherical harmonics

requires that

R(r,p)Z = -, . (127)

Introducing Equation (125) on the right and Equation (126) on the left of Equation (127)

reveals that for the Z to be a symmetrized hyperspherical harmonic, the symmetrizing

coefficients must satisfy the condition

T"tCt,Ut(r)@U (p)C,T" a ... " ".. = 0" na... n n"n a . (128)I 00 A2 ... n o

That is, the symmetrizing coefficients of the Ath linearly independent symmetrized

hyperspherical harmonic for a particular value of n must form a simultaneous eigenvector

of eigenvalue one of all the (n+l1) 2-dimensional irreducible representatives of SO(4)

corresponding to the application of distinct pairs of crystal and sample symmetries.

The implementation of the condition given by Equation (132) is simplified by

considering only the simultaneous eigenvectors of eigenvalue one of all the (n+1)2-

dimensional irreducible representatives of SO(4) corresponding to distinct pairs of the

generators of the crystal and sample point groups, rather than the point groups

themselves. This gives an identical result because any operation of the point group may



be constructed from some combination of the generators. Therefore, a function that is

invariant to the four-dimensional rotation corresponding to these generators will remain

invariant under the application of any four-dimensional rotation corresponding to the full

rotation groups.

For the purpose of clarity, the calculation of the symmetrizing coefficients of the

symmetrized hyperspherical harmonics is performed via the following steps:

i. Enumerate the generators of the crystal proper point group symmetry and the

sample proper point group symmetry.

ii. Form a pair of rotation operations by combining one of the generators from step i

with the identity, and find the (n+l )2 -dimensional irreducible representative of

SO(4) corresponding to this pair. Repeat for every generator from step i. The

necessary form of the representatives appears in Equation (78).

iii. Calculate the simultaneous eigenvectors with eigenvalues of one for every

representative found in step ii.

iv. Construct an orthonormal basis from the linearly independent eigenvectors. The

components of the basis vectors provide the coefficients necessary to find the

symmetrized hyperspherical harmonics from Equation (125).

We have used this procedure to calculate the symmetrized harmonics for samples with

orthorhombic symmetry and crystals with the proper rotational symmetries of all the

Laue groups, such as would be required to describe textures in rolled sheet materials.

The symmetrizing coefficients necessary to construct at least thirty of the symmetrized

hyperspherical harmonics for each of these symmetries in provided Appendix E.

Since the calculation and use of these functions constitute the central aim of this

chapter, it is worthwhile to briefly examine a few of the symmetrized hyperspherical

harmonics. In Figure 21 appear the first three non-trivial symmetrized hyperspherical

harmonics with orthorhombic sample symmetry and the crystal point group symmetries

222 (Figure 21a), 422 (Figure 21b), and 432 (Figure 21c). The specific nature of the

symmetry present in these harmonics is not necessarily obvious due to the fact that

rotations do not combine linearly. For example, a symmetry rotation about the z axis

moves the point corresponding to the identity along the z axis, but rotates certain of the

points corresponding to 1800 rotations about the z axis. When combined with different
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Figure 21: Examples of the symmetrized hyperspherical harmonics, as calculated from the tables of

coefficients in Appendix E. Specifically, these are sets of the three lowest-order, non-trivial

symmetrized hyperspherical harmonics for orthorhombic sample symmetry and for the crystal

point symmetries (a) 222, (b) 422, and (c) 432. In each of the projections, the z and x axes of the

projections point out of the page and to the right, respectively.
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sample and crystal symmetries, and the absence of an inversion center in the quaternion

group space, this results in the marked chirality of some of the images. The exception to

this difficulty though is the identification of regions corresponding to transformations of

the identity by symmetry operations. This allows one to identify the point group 222 in

the first harmonic of Figure 21a, the point group 422 in the third harmonic of Figure 21b,

and the point group 432 in the first harmonic of Figure 21 c.

5.2. Symmetrized Hyperspherical Harmonic Expansion

While the Ath linearly independent simultaneous eigenvector for a particular value

of n may be constructed from Equation (125), this equation may instead be written as

(129)

With the symmetrizing coefficients calculated by the procedure

symmetrized hyperspherical harmonics form an orthonormal system

RD
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(a) (100) Pole Figure
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(b) ( 11 ) Pole Figure

provided above, the

of functions, i.e.

Figure 22: Conventional methods of viewing a simulated cube texture. (a) The (100) and (b) (111) pole

figures are presented in stereographic projection, with the z and x axes pointing out of the page and

up the page, respectively. (c) The blue and red regions in the Euler angle space indicate regions of

positive and negative probability density, respectively.
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Figure 23: The current method of viewing a simulated cube texture. The z and x axes of the projections

point out of the page and to the right, respectively. (a) Projection of the discrete quaternions

corresponding to the simulated texture, including all of the rotations in the crystallographic point

group 432. (b) ODF corresponding to the discrete distribution of part (a), calculated using the first

thirty-seven hyperspherical harmonics of orthorhombic sample symmetry and cubic crystal

symmetry. Blue and red regions indicate regions of positive and negative probability density,

respectively.

2rr x
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(130)

Any orientation distribution function f that satisfies the necessary crystal and sample

symmetries may be uniquely expressed as a linear combination of the symmetrized

hyperspherical harmonics in the form

(131)
n=,2... 2=

f (w, 0, 0) = Z s A A.
n=0,2... A=]

Meanwhile, the coefficients s" of this expansion are found from the inner product of the

appropriate symmetrized hyperspherical harmonic withf, or

fi = J f f f(Co, 0, y)sin 2 (o1/2)d(co/2)sin OdOdV .
000

(132)
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5.3. Representation of Textures with Symmetry

As a demonstration of the ability of the symmetrized harmonics to accurately

reproduce ODFs, we now consider two simulated textures for cubic polycrystals in

samples of orthorhombic symmetry. We begin with a "cube" texture, which is presented

in Figure 22 by the conventional means of (100) and (111) pole figures (Figure 22a,b)

and an orientation distribution function in the Euler angle parameterization (Figure 22c),

where the blue and red regions indicate positive and negative probability density,

respectively. Although the physical meaning of the high probability density regions in

the Euler angle space is not intuitively clear, the texture in Figure 22c may be identified

as a cube texture by reference to a legend of common texture elements, for example, Ref.

[3]. Figure 23a displays the discrete orientations of the simulated cube texture as

projected quaternions, with the corresponding orientation distribution function appearing

in Figure 23b. The orientation distribution is calculated from Equation (131) using the

first thirty-seven symmetrized hyperspherical harmonics with orthorhombic sample and

cubic crystal symmetry, as presented Appendix E. Although a depiction of actual
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(a) (100) Pole Figure
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1 P i uRP .

(b)(I 11) Pole Figure

__ 250 300 350

400 450 50 55

6c 6P0

0 (01 90

IO ~ 8*01

Figure 24: Conventional methods of viewing a simulated copper texture. (a) The (100) and (b) (111) pole

figures are presented in stereographic projection, with the z and x axes pointing out of the page and

up the page, respectively. (c) The blue and red regions in the Euler angle space indicate regions of

positive and negative probability density, respectively.
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Figure 25: The current method of viewing a simulated copper texture. The z and x axes of the projections

point out of the page and to the right, respectively. (a) Projection of the discrete quaternions

corresponding to the simulated texture, including all of the orientations described in Ref. [89]. (b)

ODF corresponding to the discrete distribution of part (a), calculated using the first thirty-seven

hyperspherical harmonics of orthorhombic sample symmetry and cubic crystal symmetry. Blue

and red regions indicate regions of positive and negative probability density, respectively.

orientation statistics would probably use finer sections and only cover the asymmetric

unit, the full representation is used to emphasize the symmetry; inspection of the figure

reveals the presence of the expected 900 rotations about (100) axes, 1200 rotations about

(111) axes, and 1800 rotations about (100) and (110) axes.

We consider a more complex texture as well, the "copper" texture, conventional

and current representations of which appear in Figure 24 and Figure 25, respectively.

Whereas the symmetry of the cube texture permits an expansion in terms of a relatively

small number of harmonics, including the first harmonic of Figure 2 1c, the copper texture

is considerably more asymmetric and therefore more thoroughly reflects the ability of the

symmetrized hyperspherical harmonic expansion to represent arbitrary textures with the

requisite symmetry; notice the close agreement between the discrete orientation

distribution of Figure 25a and the ODF of Figure 25b, calculated as before with the first

thirty-seven hyperspherical harmonics with orthorhombic sample and cubic crystal

symmetry.
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5.4. Conclusion

While the real hyperspherical harmonic expansion in Equation (31) may be

applied to an arbitrary square-integrable function on the surface of the unit sphere in four

dimensions, an ODF mapped onto this surface by the quaternion parameterization is

certainly not arbitrary. Apart from the purely mathematical constraint that a probability

density function should be real and positive valued, the ODF must reflect the physical

properties of the sample being characterized. This notably includes the symmetries that

are inherent to the crystallites considered individually and the statistical symmetries of

the crystallites considered collectively, i.e. the crystal and sample point group symmetries

must be reflected in the ODF. Since these symmetry operations as performed in three-

dimensional space leave the sample in a symmetrically equivalent state, the reflection of

these symmetry operations in four-dimensional space should leave the ODF in a

symmetrically equivalent state as well.

The effect of a three-dimensional rotation on the four-dimensional quaternion

group space is determined by the irreducible representatives of SO(4), as provided in

Section 3.2.2. The irreducible representatives of SO(4) provide the means to find the

linear combinations of the real hyperspherical harmonics that remain invariant to the

application of the crystal and sample symmetries. These linear combinations, called the

symmetrized harmonics, satisfy the symmetry requirements of the ODF identically, and

provide a set of basis function over which the expansion of the ODF may be performed

significantly more efficiently. This section provides an explicit procedure to calculate the

symmetrized hyperspherical harmonics for any set of sample and crystal proper point

group symmetries. Furthermore, the coefficients necessary to construct the symmetrized

hyperspherical harmonics for orthorhombic sample symmetry and for the proper rotation

groups corresponding to each of the Laue groups are calculated and provided for use by

the reader or the broader community in Appendix E.
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6. A Generalized Mackenzie Distribution

The study of disorientations between neighboring crystals begins with the so-
called "Mackenzie distribution" [90], which gives the probability density of observing a
particular disorientation angle between randomly oriented cubic crystals. This
distribution is one of the simplest and most widely known results involving three-

dimensional geometrical probabilities in materials science. While the direct applicability

of the Mackenzie distribution is sharply restricted to a small class of microstructures, it is

nevertheless frequently used to measure the deviation of experimental disorientation

angle distributions from the random case. Such comparisons are useful because the

properties and behaviors of grain boundaries are in many cases related to the magnitude

of the disorientation angle [91, 92]. The disorientation angle distribution is often used to

quantify changes in the grain boundary network resulting from various processing

procedures as well [93, 94], and therefore continues to be a function of direct engineering

significance.

It is an interesting historical fact that, concurrently with Mackenzie's work,
Handscomb [20] developed an analogous solution to the problem using a different

mathematical framework. The near-simultaneous appearance of Refs. [90] and [20]

suggests that the "Mackenzie distribution" is more aptly named the "Handscomb-

Mackenzie distribution", but it also highlights an important theme for the present work.

Whereas Mackenzie's derivation proceeded using rotation matrices to describe

orientations and misorientations, Handscomb worked in the framework of quaternions.

The unique and beneficial properties of the quaternion parameterization led Handscomb

to a short and transparent analytical solution in only four pages, whereas the Mackenzie

derivation required twelve. A close analogy to this situation is addressed in the present

chapter, where we consider the generalization of the Handscomb-Mackenzie problem

from simple random textures to the case of arbitrary textures. Whereas this problem has

remained intractable for the past 50 years when relying on orientation distributions

expressed as functions of the Euler angles, by once more exploiting the properties of the

quaternion parameterization we are able to achieve an explicit solution.
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The Handscomb-Mackenzie function is a distribution of disorientation angles. As

such, it is essentially a projection of the more general misorientation distribution function

(MDF), which provides the probability of measuring a particular relative misorientation

of adjacent grains. Although the literature provides general formulations by which to

express an arbitrary orientation distribution function (ODF) or MDF analytically [4],

there does not appear to be any means by which to describe the simpler disorientation

angle distribution function explicitly. There are only two exceptions of which we are

aware. The first exception is the case addressed by Handscomb [20] and Mackenzie [90]

for materials with randomly oriented crystals, i.e., for materials with perfectly uniform

ODFs. Although their solutions apply specifically for crystals of cubic point symmetry,

their approach has more recently been extended to materials of arbitrary crystal symmetry

[95, 96]. The second exception is for ensembles of two-dimensional crystals where the

only allowed rotations are in the plane of the material, for which disorientation

distributions have been derived for some specific textures in the literature, [97, 98], and

for more general families of textures in Appendix F. Nevertheless, a general explicit

formula for the disorientation angle distribution function that begins from an arbitrary

ODF or MDF of an inherently three-dimensional material does not appear to exist. As

noted above, we ascribe this to the nature of the current mathematical treatment of the

ODF and the MDF.

For historical reasons, the prevailing treatment of orientation information is based

on the description of a rotation by Euler angles, and of the ODF and MDF as linear

combinations of functions of Euler angles [4]. In principle, the disorientation angle

distribution function could be found by expressing the Euler angles as functions of the

axis and angle of rotation, substituting these formulas into the existing analytical

description of the MDF, and integrating out the axis information. However, the

conversion formulas from the Euler angle to the axis-angle description of a rotation are

unwieldy enough to effectively preclude the application this method. This purely

mathematical obstacle would be removed if, instead of expressing the ODF and MDF as

functions of Euler angles and then converting them to the axis-angle description, the ODF

and MDF were expanded as linear combinations of functions of the axis and angle of
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rotation directly. Then the reduction of the MDF to the disorientation angle distribution
function would be as simple as integrating out the axis information.

This alternative expansion of the ODF and MDF as linear combinations of
functions simply related to the axis-angle description of rotations is provided by the
hyperspherical harmonic expansion. In parallel to the work of Handscomb [20], this

expansion is constructed in Section 2 with reference to the unique properties of

quaternions. It consequently offers certain advantages and simplifications with regard to

the presentation, interpretation, and manipulation of orientation distributions as compared

to treatments based on the Euler angles. As a result, the derivation of a general, explicit

form for the disorientation angle distribution function is now practicable for the first time.

We present this derivation for materials with cubic crystal symmetry in the current paper,
along with some related results.

6.1. Quaternions and the hyperspherical harmonics

The section reproduces many of the formulas presented in Section 2 of this thesis

for the reader's convenience. For those to whom this material is already familiar, the

discussion of new material continues in Section 6.2.

A crystal orientation may be described by a rotation operation that brings a

reference crystal into coincidence with the actual crystal. Similarly, a misorientation

between two crystals may be described by a rotation operation that brings one of the

crystals into coincidence with the other. The MDF and ODF therefore share a common

mathematical framework as functions describing probability distributions of rotations.

The primary description of rotations followed throughout this document is by the triplet

of angles c, 0, and 0, where 0 o _ 2n is the rotation angle and 0 < 0 _ -zx and

0 _< 0 < 2;r are the spherical angles of the axis of rotation. The components of a

quaternion corresponding to a given active rotation may be constructed from these angles

by the formulas [13]
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q0 = cos(o/2)

q, = sin(o/2)sin cos b (133)

q2 = sin(o/2)sin 0 sin (

q3 = sin(w/2)cos 0,

where the four components satisfy the normalization condition q0 + q + q2 = 1.

As discussed in Section 2, the advantage of expressing a rotation in this way is

that every normalized quaternion resides on the unit sphere in four dimensions. That is, a

collection of three-dimensional rotations is mapped to a collection of points on the four-

dimensional unit sphere. Meanwhile, an arbitrary square-integrable function on the four-

dimensional unit sphere may be expanded as an infinite linear combination of harmonic

functions restricted to this space. These functions are the hyperspherical harmonics,

indicated by the symbol Z,",. Since the hyperspherical harmonics are defined on the

four-dimensional unit sphere, and any point on the four-dimensional unit sphere may be

written as functions of the angles w, 9, and b via Equation (133), the hyperspherical

harmonics may be written as explicit functions of these angles as well [49, 50]:

Z ' ,= i 2/+' /21!( (1 -m)!(n + lXn -1) sin'(o/2)C,_ [cos(o/2)]
z" (, 0- 21 +1) +n--'1l

2r (ln+m)! (n+1 +)! (134)

x P,'" (cos O) 1,1

with integer indices 0< n, 0 1 < n, and - m l, and where C+ and P'" stand for

a Gegenbauer polynomial and an associated Legendre function, respectively [40, 41].

The hyperspherical harmonics provide a complete, orthonormal basis for the expansion of

a square-integrable functionf on the four-dimensional unit sphere in the form

f(,,)= c , Z i,. (135)
n=0,2... /=0 mi=-I

The complex coefficients c,,, of this expansion may be calculated from the inner product

off with the appropriate hyperspherical harmonic Zn ,, or
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C" = ZfiZ f sin 2 (co/2)sin Od(c/2)dOd , (136)
000

where * indicates the complex conjugate. Using the above equations, the ODF and MDF
may be expressed as analytic functions of quantities relating directly to the axis-angle
description of a rotation. While this analysis is presented in more detail in other sections,
the formulas provided above will be sufficient for the present purpose.

6.2. Uncorrelated Misorientation Distribution Function

Generally, the MDF is calculated by analyzing the spatial variations of local

crystallographic orientation as determined by, e.g., electron back-scatter diffraction

measurements. If the necessary spatial information is not available, then the MDF may

be approximated from the ODF by making certain assumptions. This is necessary

because while the MDF depends on the ODF [99-102], the ODF is not the only

contributing factor. In particular, the presence of correlations relating the orientations of

neighboring grains or correlations relating the orientation and shape of a single grain may

have a strong effect on the misorientations present in a material [103]. Nevertheless, if

these correlations are assumed absent, then one is able to predict an "uncorrelated MDF"

from the ODF alone. Although derivations of the uncorrelated MDF from the ODF

within the framework of the generalized spherical harmonic expansion have been

presented elsewhere in the literature [104, 105], we present this derivation within the

framework of the hyperspherical harmonic expansion for the first time.

Assume that two crystals are in the reference orientation, and that their relative

misorientation is described by the identity rotation. Act on the first crystal with the

rotation Ag, with the result that the misorientation of the crystals is described by the same

Ag. Now, act on the pair of crystals with the further rotation g. The final orientation of

the first crystal is described by g.Ag, where , denotes the rotation multiplication operation

with the order of operations running from right to left, and the final orientation of the

second crystal is described simply by g. Since the relative misorientation of the crystals

is still described by Ag, the relative misorientation is clearly independent of the choice of

g. Therefore, the probability density of observing a relative crystal misorientation of Ag
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is given by the probability density of observing crystals with orientations described by

g.Ag and g, integrated over all g. That is,

M'(Ag) = f* (g)f(g -Ag)dg , (137)

wheref is the ODF, M is the uncorrelated MDF, and * indicates the complex conjugate.

Writingf in Equation (137) in the form of Equation (135) gives

M'(Ag)= ZZ ~Z "cC * "' '"* ,,(g)Z"',,(g Ag)dg. (138)
n" n' " I' m" 

('

Since the integration is only with respect to g, separating the dependence of Z"',, on g

and Ag would allow the integral to be evaluated and Equation (138) to be simplified. The

desired decomposition of Z',,, is permitted by means of the hyperspherical harmonic

addition theorem in Equation (58), with the result

M'(Ag) = c ,, (g) ~ 1 + 1
n P n I'n l . W n I" 

/ n
i' in

(139)
1" I 

n'/2 n'/2 d

Collecting the quantities that do not depend on g outside the integral and rearranging the

summations yields

M'(Ag) = Z n (Ag) r. 2 1N l'
htgn' / m'- 12 -+ n- n'12

In in inn

n'" 1n

n'/2 n'/2

(140)

The integral here is equal to 3 ,,,,,,,rs,.,,,. by the orthogonality of the hyperspherical

harmonics (as is visible from Equation (25)), where 6is the Kronecker delta. Simplifying

the indices and relabeling the index n' as n gives

M'(Ag) = Z (Ag{(-)-,
n m L

I n C n,, *,,. ,
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(141)

where the expression for Al' is observed to be in the form of the hyperspherical harmonic
expansion of Equation (135). That is, we may write:

M '(Ag) = nm Z, (Ag).mIg (Ag). (142)n i rn

Comparing Equation (141) with Eq. (142) indicates that

Mm = ( /) T 21 1- Q'% 21 +_+ I{if i / IW C r "Mn 0, n2I' n/2 n/2 Ci m' c"m" C m'C

(143)

is the relation determining the expansion coefficients m', of the uncorrelated MDF from

the expansion coefficients c", of the ODF. Along with Equation (142), the coefficients

of Equation (143) allow a prediction of the MDF to be found for cases where the ODF

characterizing the grains is available, but the measured MDF is not.

6.3. Disorientation Angle Distribution Function

The procedure for finding the disorientation angle distribution function assumes

that the MDF be known. If the actual MDF of the material is not known, then the

uncorrelated MDF may be calculated from the ODF by the method given in the previous

section. The derivation of the disorientation angle distribution function further assumes

that the MDF is written as an expansion over the complex hyperspherical harmonics, as

in Equation (135). If the MDF is instead written as an expansion over the real or

symmetrized hyperspherical harmonics (as defined in Sections 2.2 and 5.1), then this

expansion may be converted into the form of Equation (135) by means of the conversion

formulas provided in Appendix B. If the MDF is written as an expansion over the

generalized spherical harmonics, then the conversion formulas available in Section 4.4

may be used to bring the MDF into the required form. Hence, the expansion of the

misorientation distribution function Mmay always be given as

n I

M(o, , ) = m,",Z". (144)
n=0,2. /=0 m=-
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Generally speaking, the disorientation angle distribution function, p(co), is found from M

by integrating over the angular coordinates relating to the axis information, or

p(w)= f mIn,Z,,d, (145)
f(o) n I In

where di = sin 2(w/2)sin OdOd. Substituting Equation (134) into Equation (145) gives

p(,)= m, (-i); 2 1! 2 (n+l sin'(m/2)C+[cos(c/2)] -Yn'(O' )d,
2 + n ,,, i s(n+ l +,1) ()

(146)

leaving just the specification of the limits of integration (co), and where Yi" is one of

the spherical harmonics describing the distribution of rotation axes. Since this depends

on the disorientation space of the MDF and therefore on the point symmetry group of the

crystallites, Equation (146) is the simplest presentation of the disorientation angle

distribution function for arbitrary materials.

6.3.1. Solution for Cubic Crystals

Given that many engineering materials exhibit cubic point group symmetry, we

derive a more explicit formula for the disorientation angle distribution function for this

case in the following. The orientation space, or the region within the quaternion group

space containing one point for every unique orientation of a cubic crystal, is defined by

the relations [15, 21]

(,r2 -41 ° ± +q, 
(147)

q0  +q +- q2 +- q3 ,

where the subscript i stands for 1, 2, or 3. The disorientation space, or the region within

the quatemion group space containing one point for every unique relative orientation of a

pair of cubic crystals, is defined from the orientation space by an additional restriction

placed on the allowable rotation axes. This restriction is written as [15, 21]

q, q2
> q 3 2 0. (148)
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While relations among the four quaternion components are convenient for

describing the boundaries of the orientation and disorientation spaces mathematically,

relations among three of the components are more suitable for the visualization of these

regions. The normalization condition on the four quaternion components may be used to

eliminate qo from Equations (147) and (148), and the resulting formulas give the

description of the orientation and disorientation spaces used to construct Figure 26. This

procedure is sometimes referred to as an orthographic projection of the orientation and

disorientation spaces from the quaternion space. (Alternatively, a gnomic projection of

the orientation and disorientation spaces from the quaternion space returns the analogous

figures in the Rodrigues space [12]; this explains the similarity of Figure 26 to the more

well-known view of the orientation space constructed in terms of Rodrigues vectors.)

Equation (133) indicates that the distance of a point from the origin in Figure 26

is sin(w/2), meaning that a surface of constant co is a sphere in this space. Returning to

Equation (146), we find that the integration should be performed over the area of

intersection of the disorientation space with a sphere of radius sin(co/2) centered at the

identity, where the disorientation space is used to avoid the inclusion of multiple

symmetrically equivalent regions. Nevertheless, given that the disorientation space is

defined from the orientation space by a restriction placed on the axis of rotation, and that

the integral in Equation (146) removes the dependence on the axis of rotation anyway,

performing the integration over the area of intersection of the sphere with the orientation

q3

S- - 2 /

Figure 26: The cubic orientation (light lines) and disorientation (bold lines) spaces, displayed in the

orthographic projection of the quaternion space. The solid points mark the intersection of the axes

with the surface of the orientation space. The q, are the components of the vector part of the

quaternion.
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space rather than the disorientation space changes p(co) by nothing more than a

multiplicative constant. The advantage of using the orientation space instead of the

disorientation space is that this choice simplifies the formulas for p(co).

An inspection of Figure 26 indicates that the area of intersection of the orientation

space with a sphere centered at the identity is a piecewise function of o. While the

appropriate intervals of co may be calculated from Equation (147), the relevant

calculations have been reported in detail by other authors [20, 90, 96]. We describe the

intervals of co with reference to Figure 26 by visualizing the interaction of the boundary

of the orientation space with an expanding sphere of radius sin(co/2) centered at the

origin.

i. If 0 tan(cw/2)5 F2 -1, then the sphere is contained within the orientation space.

At the upper limit of this region, the sphere contacts the centers of the six

octagonal faces.

ii. If r2 -1I tan(co/2)_ /3, then spherical caps extend beyond each octagonal

face. At the upper limit of this region, the sphere contacts the centers of the eight

triangular faces.

iii. If -3/3 tan(co/2) < 2 - ,2, then spherical caps extend beyond each triangular

face as well. At the upper limit of this region, the spherical caps extending

beyond each face contact the spherical caps of neighboring faces at the center of

the shared edges.

iv. If 2- Vi2< tan(c/2)_ 23-16i2, then the spherical caps extending beyond

each face overlap with the spherical caps of the neighboring faces. At the upper

limit of this region, the sphere contains the entire orientation space.

The area of integration in Equation (146) and the disorientation angle distribution

function p(co) must be evaluated independently for each of these intervals of o.

For the first interval (i) of co, the integration in Equation (146) is performed over

the entire ranges of the angles Oand b. The integral is found to be
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2zz

sin 2 (w/2) I f Y (0,)sin &OdOd = 2- sin 2 (/2)6 103mo (149)
00

by the orthogonality of the spherical harmonics. Substitution of this result into Equation

(146) gives

p, (o) = 22-- mo sin2 (c/2)C [cos(co/2)] (150)

for the disorientation angle distribution function in the first interval of Co.

For the second interval (ii) of co, the integration in Equation (146) is performed

over the entire sphere except for the six spherical caps extending beyond octagonal faces.

Evaluation of Equation (146) over this area is equivalent to the result found by

subtracting from Equation (150) the contribution from the area subtended by the spherical

caps. By the symmetry of the MDF, the contribution of any one of these spherical caps is

identical to that for any other. Therefore, the formula for the disorientation angle

distribution function in this interval is found by subtracting from Equation (150) six times

the result S of evaluating Equation (146) over the spherical cap extending beyond the

face in the positive q3 direction in Figure 26, or

P2 (o)= P (o)- 6S, (co). (151)

This spherical cap is defined from Equation (147) by - 10 3, q, which provides the

integration limits 0_ 0 cos'[(2 -1)cot(a/2)J with reference to Equation (133). At

the same time, the solid angle subtended by the spherical cap includes the entire range of

0. Writing 01 (o) for the upper limit of 0, the relevant integral is then

2xO, (co) 1

sin 2 (co/2) fY" (0, )sin &Od& =  (l + 1)r sin 2 (c/2),o ft (x)dx, (152)
0 0 cos[o, (o)]

where the change of variable x = cos 0 has been performed. The integral over x may be

evaluated for a lower limit of cos0 as

F 1-cos0 l1=0
jco(x)dx = sin(0)Pi'(cosO) 1 0' (153)cos(o)
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though we consider the form in Equation (152) to be simpler from a notational

standpoint. Substitution of Equation (152) into Equation (146) gives

S,(o)= J2sin2(o/2)1 mlo(- i)'2'1! (21 + 1)  sin'(co/2)

1 (154)

c ,' [cos(o/2)] IP (x)dx.
cos[l, (co)]

The solution for p(c) in the second interval of c is then given by direct substitution of

Equation (154) into Equation (151).

For the third interval (iii) of o, by similar reasoning, the contribution from the

eight spherical caps extending beyond triangular faces must be subtracted from Equation

(151). Since there are eight of these spherical caps, and by the symmetry of the MDF

they all make the same contribution S, to Equation (146), the disorientation angle

distribution function is

P3 (c)= P (c) - 6S, (o) - 8S, (o) (155)

in the third interval of o.

To evaluate S2 , we select the spherical cap extending beyond the triangular face

in the positive octant of Figure 26. Since the integrand appearing in Equation (146) is a

spherical harmonic, the symmetry of the spherical cap may be exploited to simplify the

integration by initially performing a three-dimensional rotation R(w',O', ') of the

integrand to bring the point corresponding to the triangular face's center into coincidence

with a point corresponding to the q3-axis in Figure 26. The rotation of a spherical

harmonic is generally performed by writing the rotated spherical harmonic

R(Co', ', q')Y"' (0, q) as a linear combination of spherical harmonics with the same value

of 1, or [13]

/
R(a', o', O')YI" (0, 0) = YI"" (O, )U,,, (', 0', .'). (156)

,f'=- I

The matrix U,,,,,, is one of the (21+1)-dimensional irreducible representatives of SO(3)

defined by Equation (52), while a', 61 and ' indicate the angle and axis of the rotation
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being performed. In this case, the arguments of the irreducible representative are
determined by the initial coordinates of the triangular face's center. From Equation

(147), this triangular face is defined by the equation q0 = q, + q +q3, which becomes

cot(c/2) = (sin 0 + cos )sin 0 + cos with reference to Equation (133). Since the center

is the point on this face closest to the origin, minimizing o with respect to 0 and b gives

S= r/4 and 0 = cos- (3/3) for the angular coordinates of the center point. Therefore,

the appropriate values for the arguments c', 6 and 0' of the irreducible representative are

cos-' (/3), z/2, and 7z/4, respectively.

We now require the solid angle subtended by the spherical cap in the rotated

position. The equation for the rotated triangular face must be of the same form as the

equation for the octagonal face in the positive q3 direction, but modified to reflect the

increased distance of the triangular face from the origin. These considerations give

-/3 0 q 3 for the equation of the rotated face, or 0_ 0_ cos-' [(-3/3)cot(co/2) with

reference to Equation (133). Meanwhile, the integration is performed over the entire

range of 0. On substituting Equation (156) for the integrand in Equation (146) and

writing 02 (o) for the upper limit of , the integral in Equation (146) over the rotated

spherical cap is found to be

2 2(co) /
sin 2 (/2) 1 Yin' (oc)Um [cosl (I/3 /2, 7ff/4]sin OdOd

o 0 m'=-I
l (157)

= (21+ 1)rsin2(c/2)Um [cos-(-3/3 /2,7f/4] jP(x)dx,
cos[0 2 (C)]

where the factor of 6,,0 arising from integration over the complete range of 0 causes all

but one term of the summation over m' to vanish. Applying Equation (157) to Equation

(146) gives

S2 () =2 sin 2 (c/2) m/ (- i) 211!, (21+ 1) (n++1~n sin'(co/2)
n I ,n (n + 1 + 1)

(158)
xC [cos(o/2) ]U[s -os /3 /2,7z/4] jP(x)dx

cos[0o (s)]
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for the contribution that must be subtracted from the disorientation angle distribution

function to account for a single spherical cap extending beyond a triangular face.

Substitution into Equation (155) now gives the solution for the third interval of co.

Finally, for the fourth interval (iv) of co, the contribution from the six spherical

caps extending beyond octagonal faces and the eight spherical caps extending beyond

triangular faces must still be removed, but with a correction to account for the area

excluded twice by the overlap of neighboring spherical caps. Two distinct types of these

regions occur, one typified by the area common to the spherical caps extending beyond

the neighboring octagonal faces in the positive qi and positive q2 directions in Figure 26,

and the other by the area common to the spherical caps extending beyond the octagonal

face in the positive q3 direction and the triangular face in the positive octant of Figure 26.

By the symmetry of the MDF, the contribution T from first of these regions is

symmetrically equivalent to the contribution from any of the overlaps at the twelve edges

joining neighboring octagonal faces, while the contribution T2 from the second of these

regions is symmetrically equivalent to the contribution from any of the overlaps at the

twenty-four edges joining neighboring octagonal and triangular faces. Accordingly, the

disorientation angle distribution function is written as

P4 (co) = p(co)- 6S,(co)- 8S2, (co) + 12T,(co) + 24T2 (co) (159)

in the fourth interval of co.

Consider the overlap of the spherical caps extending beyond the octagonal faces

in the positive q, and positive q2 directions first. From Equation (147), the equations

defining these spherical caps are (i -l) 0 < q and (I -1 0 q2 , respectively, which

become (4-2-1)cot(co/2) sinOcos 0 and (2-1)cot(co/2) sin Ocos 0 with reference

to Equation (133). The limits of 0 are found as functions of 0 by solving these for 0,

which gives sin [( -l)cot(w/2)cscJ cos [( - l)cot(/2)csc O. Meanwhile,

inspection of Figure 26 indicates that the maximum and minimum values of 0 occur

within the overlap region at b = 7/4. Inserting this value for 0 and solving for 0 gives

sin-l(2- J)cot(co/2)J] 0 - sin-' 1(2 - 2cot(c/2)] for the limits of 9. These limits
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may now be used to evaluate Equation (146) over the area common to a pair of spherical
caps on neighboring octagonal faces, with the result

T (co) = 1sin2 (co/2): mm (- i)'2'l! n+1N sin(c-l/2)
n I m ( (n +1+1) (160)

, (,) 2(-,)0 ) (160)
x C,'+-[cos(-/2)] fY,' (0, )dO sin OdO,

0,(a) 0,(,,o)

where 2(co, ) and 1(o, O) stand for the upper and lower limits of 0, and 04(c) and

03 () stand for the upper and lower limits of 0, respectively.

As for the overlap of the spherical caps beyond the octagonal face in the positive

q3 direction and the triangular face in the positive octant, Equation (147) indicates that

these spherical caps are defined by the equations ( - 1) < q3 and q0  q1 q + q 3,

respectively. Reference to Equation (133) allows these to be written in angular

coordinates as ( -1)cot(c/2) cosO and cot(w/2) cosO+N -sinOcos( - 7r/4).

The limits of q are found as functions of 0 by solving this second equation for 0, giving

r/4 - cos-' cot(c/2)csc 0 -cot oV]/2} b cos-' cot(/2)csc -cot O,]/ 2 + z/4.

As before, inspection of Figure 26 indicates that the maximum and minimum values of 0

occur within the overlap region at b = /4. Inserting this value for 0 and solving for 0

gives cos-, (/3)- cos[ cot(/2)/31 0B cos - 1)cot(w/2) for the limits of 0.

With the boundary of the area shared by these neighboring spherical caps defined in

angular coordinates, Equation (146) is evaluated to determine the contribution from this

region of overlap as

T2(w)=[2/ sin 2(c/2) Z m (-i)'2'l! +1n ~n+ sin'(o/2)
n I in l(n + 1 + 1)!

(o)~ (04e) (161)

x C', [cos(co/2)] JY" (0, O)d sin OdO,

where 04(co, 0) and 13(co, 0) stand for the upper and lower limits of 0, and 06(co) and

05 (c) stand for the upper and lower limits of 9, respectively.
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Unfortunately, there does not appear to be any means to evaluate the integrals

appearing in Equations (177) and (178) in closed form, and we resort to numerical

integration methods. Nevertheless, since the contributions from the overlapping regions

are given in an explicit form, we are able to write the disorientation angle distribution

function explicitly as well, by introducing Equations (177) and (178) into Equation (159).

This completes the derivation of the explicit form for the disorientation angle

distribution function for materials with cubic crystal symmetry. The disorientation angle

distribution function p(w) is defined in a piecewise fashion, with the solutions in the four

distinct intervals of co given by Equations (150), (151), (155), and (159). Although not

normalized in the form given above, we now derive the normalization factor for p(co).

Since the MDF is a probability distribution function, this must be a normalized quantity,

or

1 = M(co, 8, )sin 2 (o/2)sin Od(/2 )dOd. (162)
000

The cubic point group contains twenty-four elements, meaning that there are forty-eight

points in the quaternion space that are symmetrically equivalent to the identity (antipodal

pairs of quaternions represent identical rotations) and a corresponding forty-eight regions

that are symmetrically equivalent to the orientation space. Making use of the notation in

Equation (145), this allows Equation (162) to be written as

co., / 2 oDn /2

1 = 48 J M(co, o, O)dd(/2) = 48 Jp(o)d(w/2), (163)
0 n(o) 0

where womax is the largest rotation angle contained in the orientation space. If p(co)dco is

considered as the probability of sampling a disorientation angle in the range dco, then

Equation (163) is more conveniently written in the form

1 = 24 p(co)do, (164)
0

which indicates that multiplying the formulas for p, (c) derived above by a factor of 24

is sufficient to ensure normalization.
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6.3.2. Solution for random grain orientations

For a material with completely random grain orientations (and no correlations in
grain orientations), the misorientations relating neighboring grains will be completely
random as well. The MDF for this type of material is therefore uniform. This MDF may
be expanded by Equation (144), with the result that all the expansion coefficients vanish

except for mo = 1/vJ-. Hence, the comparison of the results of Section 6.3.1 with the

Handscomb-Mackenzie distribution for random textures is in principle as simple as

evaluating our formulas for these coefficients and comparing the result to that given in

the literature [20, 90]. For convenience, we apply the normalization constraint to the

disorientation angle distribution functions in this section.

For the first interval of co, the formula for the disorientation angle distribution

function is given by Equation (150). Substitution of the appropriate coefficients causes

all of the terms in the summation to vanish except for n = 0, or

P, (c) = 48-2 sin 2 (c/2)C [cos(o/2)]. (165)

Simplifying Equation (165) and recognizing that Co = 1 allows this to be written as

48 24
p, ()= sin2(w/2)= 2(1- cosw) (166)

in the first interval of co, which is identical to the known result.

For the second interval of o, the formula for the disorientation angle distribution

function is given by introducing Equation (154) into Equation (151). Substitution of the

appropriate coefficients causes all of the terms in the summations to vanish except for

n= 0 and =0, or

24 1
P2( )= -1 - cos o)-1482 sin2 (co/2) C [cos(c/2)] P,(x)dx. (167)

Vri cos, (o)]

Evaluating the integral with reference to Equation (153) and simplifying the remainder

gives
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p2 ()24 (1 - cos co)[3( - 1)cot(/2) - 2 (168)

in the second interval of c, which is also identical to the known result.

For the third interval of co, the formula for the disorientation angle distribution

function is found by introducing Equations (154) and (158) into Equation (155).

Substitution of the appropriate coefficients causes all of the terms in the summations to

vanish except for n = 0 and 1 = 0, or

P3 24(1 - cosco)3 -1)cot(c/2)- 2]- 192V2 sin2(/2)

(169)
x C [cos(o/2) 0 [os (/3 /2, 7/4 JP(x)dx.

cos [2 (o)]

The matrix U00, as the irreducible representative of SO(3) for a basis of a single element,

is identically unity. As before, evaluating the integral with reference to Equation (153)

and simplifying the remainder gives

p3 ( 24 (1 -cos co)3( - 1)+ 4/V ]cot(c/2) - 6. (170)

for the disorientation angle distribution function in the third interval of co, which is

identical to the known result.

Finally, we consider the fourth interval of co. Since there does not appear to be

any means to evaluate the integrals in Equations (160) and (161) in closed form, even for

constant integrands, these formulas do not simplify for the case of uniform texture.

However, numerical evaluation of these integrals yields exactly the expected form; in the

following section we provide graphical evidence to this effect.

6.4. Examples of disorientation angle distributions

We apply the above formulas to calculate the disorientation angle distributions for

several simulated microstructures with textures of practical interest. We begin by

considering simulated materials with cube textures of varying degrees of sharpness, with

no spatial correlations among the grains. These materials are constructed by rotating
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Figure 27: {100} pole figure plots for simulated cube textures of varying degrees of sharpness, plotted in

equal area projection. The angles indicate the maximum allowed disorientation angle of a cubic

crystal from the reference orientation. The normal direction is out of the page, and the rolling

direction is vertical in the plane of the page.

individual crystals from the reference orientation, with any rotation by o equal to or less

than a prescribed threshold angle being equally probable. A set of disorientations is then

constructed by sampling many randomly selected pairs of crystals, and subsequently

finding a finite expansion of the MDF in the form of Equation (144). For reference, the

{100} pole figures for the textures that were examined are presented in Figure 27, for

several values of the allowed threshold rotation. The corresponding disorientation angle

distributions are presented in Figure 28, where each curve is labeled with the prescribed

threshold rotation.

These disorientation angle distributions appear essentially as expected on the

basis of physical considerations. Roughly speaking, the ODF of any material of this

family is nonzero only within spheres of uniform probability density centered on points

in the quaternion space that are symmetrically equivalent to the identity. First consider

the material with a threshold rotation angle of 150 . For this material, the boundaries of

the spheres of uniform probability density are distant enough that the disorientation angle

distribution only contains information relating one part of a given sphere to another part

of the same sphere, resulting in a maximum observable disorientation angle of 300. The

situation is similar for a material with a threshold rotation angle of 22.50, apart from the
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maximum observable disorientation angle being increased to 450. For a material with a

threshold rotation angle of 300, the situation is quite different though. The disorientations

relating points in neighboring spheres of uniform probability density fall within the

disorientation space and make a noticeable contribution to the disorientation angle

distribution for large angles. This contribution introduces a marked asymmetry into the

peak in probability density that was absent from the disorientation angle distributions of

the sharper textures. This behavior becomes more significant for the material with a

threshold rotation angle of 37.50, and for the material with a threshold rotation angle of

450 the spheres of uniform probability density actually make contact with one another (cf.

Figure 27). While the ODF continues to change as the angular threshold is increased

beyond 450, these changes become less noticeable from the standpoint of the

disorientation angle distribution which continues to approach that of a uniform ODF.

The heavy dark line in Figure 28 corresponds to this final disorientation angle

distribution as calculated by the method of Section 6.3, and is in perfect agreement with

the results of Handscomb [20] and Mackenzie [90].

As expected, the disorientation angle distribution function of all of these textures

3.5/

5 / 3722.5'
A 2.5 1Unifobrnmi

7 2

1.5, 1

o i37.5'
P 45" ",

0.5

-0.5 10 20 30 40 50 60
Disorientation angle 0

Figure 28: Disorientation angle distribution functions corresponding to simulated cube textures of varying

degrees of sharpness (cf. Figure 27). Labels given in degrees indicate the maximum allowed

disorientation angle of a cubic crystal from the reference orientation (smaller values denote

sharper textures), while the heavy dark line corresponds to a material in which every

misorientation is equally likely.
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generally converges to zero at o = 0' and o = 62.8', since the area of intersection of the

orientation space with a sphere of radius sin(w/2) centered at the identity vanishes either

when the sphere vanishes or when the sphere extends beyond the orientation space. That

this does not always occur at the upper limit of c in Figure 28 indicates a potentially

significant truncation error or numerical integration round-off error. Meanwhile, the

oscillations that are visible for the material with a threshold rotation angle of 150 are

clearly due to a truncation error, since they occur outside the region where numerical

integration is performed. These sources of error result in areas of unphysical negative

probability density, though they may be addressed either by increasing the number of

terms in the expansion, or by dealing strictly with textures that do not contain sharp

discontinuities that are difficult to capture with a finite-order series expansion (as in the

present case where we have prescribed a sharp threshold rotation angle within which all

orientations must lie).

Figure 29 shows the disorientation angle distributions for a simulated material and

Uniform

Experimental

SIF

S Simulated

0.5

0 10 20 30 40 50 60
Disorientation angle o

Figure 29: Disorientation angle distribution function for a copper texture, assuming the absence of

correlations relating the orientations of neighboring grains or relating the orientation and shape of

a single grain. The solid line is the result of our simulation, while the bars indicate the probability

density for an experimental material with a similar texture, as measured by Mishin, Gertsman and

Gottstein [106]. The dashed line corresponds to a material in which every misorientation is

equally likely (i.e., the Mackenzie distribution).
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for an experimental material (as measured by Mishin et al. [106]) with strong copper

textures, in the absence of correlations relating the orientations of neighboring grains and

relating the orientation and shape of a single grain. A comparison of the disorientation

angle distributions presented in Figure 29 is encouraging. Specifically, the experimental

result deviates from the reference distribution in the direction of the simulated result,

which is expected since the simulated texture is sharper than the experimental one.

6.5. Conclusion

The disorientation angle distribution is a common and straightforward method to

characterize some features of the grain boundary network, and benefits from a marked

simplicity of measurement and presentation in experimental situations. Despite the use

of the disorientation angle distribution function in the literature spanning several decades,

the authors are aware of analytical formulas reported for this function only for materials

where every misorientation of neighboring grains is equally likely [20, 90, 95, 96], or

where the problem is restricted to inherently two-dimensional materials [97, 98, 107].

We attribute the absence of a more general formulation to certain difficulties inherent to

the customary treatment of rotation distributions as linear combinations of the

generalized spherical harmonics [4]. In particular, because the generalized spherical

harmonics are written as functions of Euler angles, they cannot be easily transcribed into

a form permitting analytical separation of rotation axis and angle.

On the other hand, the recently proposed alternative for the expansion of a

rotation distribution function as a linear combination of the hyperspherical harmonics

[47] is given as a function of quantities relating directly to the axis and angle of rotation.

Writing the MDF of a material in this form immediately allows one to find a general,

explicit formula for the misorientation angle distribution function, as is provided here in

Equation (146). The current paper applies this formula more specifically to materials

with cubic crystal symmetry, for which the misorientation angle distribution function

must be defined in a piecewise fashion over four intervals. The explicit solutions in each

of these intervals are reported in Equations (150), (151), (155), and (159). These

expressions reduce properly to the well-known solutions of Mackenzie [90] and
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Handscomb [20] when grains are randomly oriented, but generalize the result to arbitrary

textures.

129



7. Conclusion

The field of modern texture analysis is to a certain extent founded on the seminal

contributions of Bunge [4], and particularly on his realization of the significance of an

analytical expression for textures by a series expansion. He established the conventions

of parameterizing orientations as triplets of Euler angles and representing an orientation

distribution function by a linear combination of the generalized spherical harmonics,

conventions which remain established within the materials science community.

The recent increase in the availability of orientation statistics due to the marked

improvement of measurement techniques and automated instrumentation provides an

unprecedented wealth of orientation information, the extent of which is only now being

realized by the texture analysis community. Furthermore, the emergence of advanced

analytical methods to relate local or global orientation information to materials properties

has increased the importance of texture analysis to the engineering community as a

whole, and has extended the range of situations to which texture analysis is being applied.

These developments bring the inevitable difficulties of working with Euler angles into

sharp relief, and reveal that further advances in the field of texture analysis are limited by

the continued use of Euler angles and generalized spherical harmonics.

Within this context, the current thesis proposes that a radically different approach

to the analysis of orientation information is necessary, one that is based on the quaternion

parameterization of rotations. Since quaternions may be considered as residing on the

surface of a unit sphere in four dimensions, a collection of crystal orientations may be

mapped to a collection of points on this sphere. Hence, this parameterization serves to

motivate the expansion of an orientation distribution function as a linear combination of

harmonic functions restricted to this space, namely, the hyperspherical harmonics. This

expansion not only allows rotations to be expressed by the angles Co, 0, and 0, but is

found to simplify the visualization and interpretation of an orientation distribution

function as well.

The main motivation behind the expansion of an orientation distribution function

though is that the expansion inherits the beneficial properties of the basis functions. For

the current case, the properties of particular relevance to the representation of orientation
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information depend on the relationship of the hyperspherical harmonics to the three- and

four-dimensional rotation groups. The investigation of these relationships is found to

yield several results, including an addition formula for the hyperspherical harmonics that

is useful when convolving orientation distribution functions, and a motivation for a self-

consistent phase convention.

A further result of considerable practical importance is the derivation of formulas

to convert from the generalized spherical harmonic expansion to the hyperspherical

harmonic expansion of an orientation distribution function, and vice-versa. These follow

directly from knowledge of the relationship of the generalized spherical harmonics and

the hyperspherical harmonics to the three-dimensional rotation group. The conversion

formulas not only allow analytical results derived in the context of the generalized

spherical harmonic expansion to be used with little modification in our mathematical

framework, but obviate the need to extensively modify existing implementations of the

generalized spherical harmonic expansion to benefit from the advantages of working with

the hyperspherical harmonics.

Apart from a series expansion for the orientation distribution function, Bunge

contributed the observation that the orientation distribution function must reflect the

symmetry of the crystallites and the symmetry of the microstructure that is introduced by

the processing history. This suggests that the series expansion be performed using a set

of basis functions that identically satisfy the crystal and sample point group symmetries.

A procedure to calculate symmetrized hyperspherical harmonics consistent with these

symmetries is presented, making use of the relationship of the hyperspherical harmonics

to the four-dimensional rotation group. Moreover, the series expansion of an orientation

distribution function is found to be significantly more efficient when the symmetrized

hyperspherical harmonics are used as the basis functions.

Although the hyperspherical harmonic expansion is equivalent to the generalized

spherical harmonic expansion in the sense that one may be converted into the other, the

expression of orientation statistics by means of the hyperspherical harmonic expansion

nevertheless simplifies certain calculations that are not otherwise practical. One instance

of this is provided by the generalization of the Mackenzie distribution to materials with

arbitrary textures. Essentially, finding the generalized Mackenzie distribution involves
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integrating out the portion of the misorientation distribution function pertaining to the

axis of rotation, and preserving only the rotation angle information. While this operation

is difficult to perform within the generalized spherical harmonic expansion due to the

complicated relationship of the axis of rotation to a triple of Euler angles, the axis

information is completely contained in the portion of the hyperspherical harmonics that

relates to the angles 0 and 0. Writing the misorientation distribution function in the form

of a hyperspherical harmonic expansion and integrating over the angles 0 and 0 results in

a formula that is found to reduce to the Mackenzie distribution for the case of a random

texture, and is in good agreement with experimental disorientation angle distributions

presented in the literature.

Finally, some thoughts on further directions of research that may benefit from the

use of the hyperspherical harmonic expansion of orientation information are presented. It

is the hope of the author that the results presented in this thesis continue to motivate the

study of the hyperspherical harmonic expansion, and eventually contribute to the wider

field of texture analysis within the materials science community.
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8. Directions for Further Research

This thesis research proposes and develops a novel mathematical framework for

the analysis of orientation information based on the hyperspherical harmonic expansion.

The development proceeds to the point where the hyperspherical harmonic expansion is a
practicable method for the representation of experimental texture measurements, and is

able to interface with and reproduce existing results in the field of texture analysis. The

generalization of the Mackenzie distribution to arbitrary textures represents the beginning

of the continuing trajectory of this line of research, that is, to provide a means to derive

results not traditionally accessible by the generalized spherical harmonic expansion.

Several avenues of further research that show potential in this regard include:

* the visual representation and interpretation of orientation and misorientation

information. Considering a crystal orientation as parameterized by either a

quaternion or by the angles c, 0, and 0 instead of by a triplet of Euler angles

is a fundamental change of viewpoint that dramatically increases the potential

to intuitively display orientation statistics. This is a direct result of the close

relationship of a quaternion or the angles c, 0, and 0 to the parameterization

of a rotation by an axis and an angle. By appropriately assigning colors to

distinct points in the quaternion group space, it is expected that a color's shade

and intensity will be indicative at a glance of the magnitude of a rotation and

the direction of the rotation axis. Coloring a material surface by this scheme

would reveal all of the orientation information at once, instead of the more

restricted information that is accessible from, for instance, a traditional inverse

pole figure map.

* the prediction of the fractions of coincident site lattice (CSL) boundaries of

various types for a microstructure with a known MDF. This is, in effect, a

generalization of the results presented by Warrington and Boon [108] to

arbitrary textures, and is analogous to the generalization of the Mackenzie

distribution as performed in Chapter 6. The necessary calculation for a given

CSL misorientation involves integrating the MDF over the region of the
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misorientation space defined by, e.g. the Brandon criterion [109]. While the

shape and boundary of this region is difficult to describe in Euler angle space,

the description is actually quite simple in the quaternion group space, being

merely the collections of points on the surface of the unit sphere in four

dimensions within a particular angular distance of the point representing the

ideal misorientation. It is therefore expected that the necessary integration is

practicable, but only within the current formalism.

the prediction of triple junction types for uncorrelated materials with arbitrary

ODFs. Analytical predictions for triple junction types in two-dimensional

materials have only recently been found [97, 98, 107]. While the same ideas

and techniques may in principle be applied to the more general situation of

three-dimensional materials with arbitrary textures, there exist a number of

purely practical mathematical barriers when these calculations are performed

using the generalized spherical harmonic expansion of the ODF. On the other

hand, the remarkable similarity of concepts underlying the hyperspherical

harmonic expansion and the quantum theory of angular momentum raises the

possibility of bringing the extensive mathematical machinery of quantum

mechanics to bear on the question of predicting triple junction types. It is

expected that this availability of results from the physics literature via the

hyperspherical harmonic expansion will make the prediction of fractions of

triple junction types achievable for the first time.
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Appendix A: Definition of Functions8

Since the definitions of certain standard functions vary subtly with the field, we
provide definitions consistent with the remainder of this paper. The associated Legendre

functions P,'" are defined using Rodrigues' formula as

P(x) (X ) m( 2- (1- x2 m/2 d+m2
(171)

Notice particularly the appearance of the Cordon-Shortly phase factor (-1 )m in the

definition of this function; this is occasionally inserted into the definition of the complex

spherical harmonics directly instead. Meanwhile, the Gegenbauer polynomials C" are

defined as

S (-2)" F(v + n)F(2v + n) 1/2-v d" [( +v,/2
n! ' F(v)F(2v + 2n) dx n (172)

Further properties and relationships of these functions are given in, e.g. Refs. [40, 41].

8 The content of this appendix has previously been published in Ref. [47].
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Appendix B: Conversions of the Hyperspherical Harmonic

Expansion Coefficients

The majority of this document formulates probability distribution functions of

rotations using the complex version of the hyperspherical harmonic expansion because of

the notational simplicity that this affords. For reference, the definition of the complex

hyperspherical harmonics

Z'i,' (, , ,b)= (- i) 2/+1/2! (21+1) - m) (n + lXn -1) sin'(/2)C +[cos(c/2)] 173

IT (Q+m) (n+l+ 1)! - (173)
x P," (cos o)e "m ,

and of the resulting hyperspherical harmonic expansion

oo n I

f (co, 0, ) = /i,, ,, (174)
n=0,2... /=0 min=-/

are reproduced here. Nevertheless, the complex version of the expansion is not always

the most convenient. For example, an expansion using the real hyperspherical harmonics

and real expansion coefficients is often more suitable for a real-valued function. The real

hyperspherical harmonics are defined in terms of the complex hyperspherical harmonics

of Equation (173) as

Z 11 0 , 0 #) = il'Z ,"

Z,,C (o, 09,) = il [(-1)'mZ,", + Zi,j/2 (175)

Z, , (o, 0, 0) = i'' (-1)"' Z, - z" V
n ~ ~ ~ I = I- NF Z_

where the additional subscript c or s indicates whether the function is even or odd with

respect to 0. Explicitly, these functions may be written as
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Z~ n , ')_ 2/1! 21 + 1) (n + 1Xn - sin'(w/2)C'[cos(o/2)]P, (cos 0)
2 (n +1+ 11)n-

Z n (, 9, 0) 211! (n+l-n-)
Z;"mc(W,0, )=(-1) 2'l! (21 +1) )!(n+1Xn- ) sin' (w/2)C [cos(/2)]n (l m)! (n + 1 + 1)!n-I

x P" (cos O)cos(m ) (176)

z,, (o, )= (-Iy" (21+1) n+lXn - sin'(ac/2)C+ , [cos(w/2)]
S(l + m) (n + 1 + 1)!

x P'" (cos )sin(mo).

The difference in phase of the complex hyperspherical harmonics of Equation (173) with

respect to earlier publications [47] causes a difference in the phase of the real

hyperspherical harmonics of Equation (176) as well. Nevertheless, we believe that the

current phase of Equation (173) is preferable to earlier versions (as described in Section

3.2.4). Since the transformation relating the complex hyperspherical harmonics to the

real hyperspherical harmonics is linear and invertible, the real hyperspherical harmonics

provide an equally suitable basis for the expansion of a rotation distribution function that

takes the form

f(co,,)= aoZo + (aZ b,", +b,",Z," (177)
n=0,2... /=0 m=1

The expansion coefficients of Equation (177) may now be defined in terms of the

complex expansion coefficients of Equation (174) by inverting Equations (175),
substituting these relations into Equation (174), and comparing the resulting coefficients

with those of Equation (177). This gives

an = (-) Co

a", = (-i)' (- 1)'"c + cj,, (178)

b, =(-i)1-1- 1)'" c,n - c,_ ,

corresponding to Equations (175) above. Provided that the functionf is real-valued, these

coefficients will be real as well.

Often, the rotation distribution functions of interest characterize physical systems

with certain symmetries. For example, the ODF of a single phase material exhibits the

exact point group symmetry of the individual crystallites and the statistical point group
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symmetry of the arrangement of crystallites within the sample. The expansion of any

function that exhibits symmetries certainly requires a basis of only those functions that

display the same symmetry. Roughly, this basis may be constructed by identifying all of

the linear combinations of hyperspherical harmonics that satisfy the symmetry conditions

and forming an orthonormal set of the linear combinations that span the symmetrized

function space. The advantage of an expansion over the symmetrized basis functions is

that the use of significantly fewer terms gives a comparable level of accuracy to the more

general expansions given in Equation (174) or Equation (177). A description of the

calculation of the coefficients of the linear combinations of hyperspherical harmonics that

satisfy the symmetry conditions, and the subsequent orthogonalization procedure, is

presented in Chapter 5. The symmetrized basis functions may be written in the form

n Z" , atoZo c + 11,,nc +b" ,,,Z,, , (179)
/=0 in=l

where iim and b,, are the symmetrizing coefficients. By convention, the triplet of dots

above the symmetrizing coefficients and the symmetrized harmonic indicates that the

point group symmetries of the crystal and of the sample are both satisfied [4]. Provided

that the rotation distribution function f displays symmetries equal to or higher than the

symmetries of the symmetrized harmonics, the expansion off may be written as

O A(n)

f(c, )= s "Zs , (180)
n=0,2. .A=1

where A(n) is the number of symmetrized basis functions for a particular value of n.

While an arbitrary rotation distribution function does not, in general, exhibit the

required symmetries and cannot be expanded in the form of Equation (180), a rotation

distribution function that displays symmetry can certainly be expanded in the more

general forms of either Equation (177) or Equation (174). Provided that the expansion

coefficients of Equation (180) are known, the corresponding expansion coefficients of the

more general expansions may easily be found. Substitution of Equation (179) into

Equation (180) and comparison of the result with Equation (177) gives
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A n=1alo = sA aAi

a,, = s;a,,, (181)

b = s( n m ,

2=1

for the coefficients of the corresponding real hyperspherical harmonic expansion.

Furthermore, inversion of Equations (178) and substitution of Equations (181) into these

relations gives

n n. -n .

Cio I 1 SA aA/o
A=1

CIm (- )m s - ibi,,, (182)
A=1

ci = I  s ( +ib"',,

A=1

for the conversion formulas relating the coefficients of the symmetrized hyperspherical

harmonic expansion to the coefficients of the complex hyperspherical harmonic

expansion.
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Appendix C: Clebsch-Gordan Coefficients

Although formulas for the Clebsch-Gordan coefficients may be found throughout

the physics literature [8, 44, 45, 63], one of these is provided here for reference [110]:

Cj 'n = m,,, [(2j +1)(j, +j2 -j(j jl-jz(j+j2 -j(Jl +J2 + )!]1
/2

, (-1) [( j, + m, ).(j -m )!(j + m2 )2 -m, + m)(j m)]2

Sz!( + j2 - - Z.(I - - z)(j2 + m - z( - j2 + m + z)(j- - m2 + z)"

(183)

The index z ranges over all integer values for which the factorials in the summation are

finite. The Clebsch-Gordan coefficients vanish unless the indices satisfy the conditions

m = m1 + m2 and 1j, -j2l < 1 j I j + J2.

140



Appendix D: Euler Angles and the Angles o, , and 0

One method to determine the relationships between different descriptions of a

rotation is to compare the matrix elements of a single representative, expressed using the

different descriptions. The simplest matrix that may be used for this purpose is one of the

two-dimensional complex representatives of SU(2). The requirements that this matrix be

unitary and of unit determinant constrain the representative to be of the form

R1/2b* (a, b) a b (184)

where the complex Cayley-Klein parameters a and b satisfy the condition Ja12 + Ib2 = 1.

The Cayley-Klein parameters may instead be written as simple functions of the rotation

angle 0 cow r and the spherical coordinates 0 0 ; r and 0 < < 2;r of the axis of

rotation by Equation (38), giving the matrix

U1/2 (m-, (cos(co/2)- isin(c/2)cos - isin(co/2)sin -'0 (185)
- isin(w/2)sin W'  cos(o/2)+ isin(w/2)cos 0

for the same representative. This matrix describes an active rotation, which is interpreted

as the rotation that brings a crystal aligned with the coordinate system to the observed

orientation.

The construction of the corresponding matrix according to the conventions of Ref.

[4] requires more consideration, since this matrix is interpreted following the passive

convention. Independent of the rotation convention followed, the construction of rotation

matrices reflects the apparent rotation of space from the perspective of an observer

attached to the coordinate system. From this vantage point, sequential passive rotations

by , about the z-axis, by 0 about the x'-axis, and by , about the z"-axis are

indistinguishable from sequential active rotations by -, about the z-axis, by -0 about the

x-axis, and by -0 about the z-axis. Since the apparent effect of these rotation sequences

is the same, the corresponding matrices should be the same. That is, the matrix elements

of the irreducible representatives describing the passive rotation sequence should be the

same as those describing the active rotation sequence. Expressing the active rotation
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sequence by repeated use of U1/ 2(co 0, ) allows the corresponding representative to be

given as a function of the Euler angles 0 1 < 2;, 0O (: <7 r, and 0 < 02 < 21 by

D1/2(l,,)=( e'A2/2 0 cos(0/2) isin(0/2))(e' i /2 0
e-' 2  isin(0/2) cos(0/2)) 0 e-

1
' 2

(cos(</2(01)e' 2 isin((8/2)e- 1()-)/2

isin(P/2)e'(11-02)/2 cos(0/2)e-'( +2)/2"

This matrix describes an active rotation, with matrix elements that should be identical to

those given by the construction in Ref. [4]. As for the interpretation of this matrix, recall

that in the passive convention, a crystal orientation is described the passive rotation that

brings the sample coordinate system into coincidence with the crystal coordinate system.

From the perspective of an observer attached to the coordinate system, this operation is

identical to the active rotation that brings the crystal from the observed orientation to the

reference orientation, aligned with the sample coordinate system. Therefore, the rotation

described by the matrix in Equation (186) is the inverse of the rotation described by the

matrix in Equation (185), and these matrices are related by the complex conjugate

transpose. The relationship of these matrices is outlined graphically in Figure 16.

Comparing the real and complex parts of Equation (185) with those of the

complex conjugate transpose of Equation (186) provides a variety of formulas to convert

from the angles co, 0, and b to the Euler angles 0, 0, and ._ describing the equivalent

rotation. For example, three of these formulas are

tan b + tan(co/2)cos 0
tan , =

1 -tan(o/2)cos 0 tan b

cos 0 = 1 - 2 sin2 (co/2)sin 2 0 (187)

- tan 0 + tan(co/2)cos 0
tan 2 1 + tan(co/2)cos 0 tan 0

though these do not uniquely determine the Euler angles as functions of the angles co, 0,

and b due to the trigonometric functions involved. Nevertheless, these formulas are

sufficient to calculate the Jacobian determinant relating the product of the differentials of

the Euler angles to the product of the differentials of the angles co, 0, and 0, or
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dd/d,,2 a 2) d(cw/2)d6 . (188)
a(cq/2, 0, )

This calculation is straightforward, though lengthy. We provide only the result, namely,

that the Jacobian determinant is

a( , Pb 2)1_ 8sin 2 (cw/2)sin (189)
a(co/2, 0, )= sinP

Applying this result to Equation (188) and separating the terms that depend on the Euler

angles from the terms that depend on the angles co, 0, and 0 gives

sin dddOd2 = 8sin 2 (o/2)sin 1d(o/2)dWO , (190)

which is useful when finding the formulas to convert from the coefficients of the

generalized spherical harmonic expansion in Equation (94) to the coefficients of the

hyperspherical harmonic expansion in Equation (96), and vice-versa.
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Appendix E: Tables of the Symmetrizing Coefficients 9

The tables below provide the coefficients necessary to construct the first thirty or

more symmetrized hyperspherical harmonics for orthorhombic sample symmetry and

crystals with the proper rotational symmetries of all the Laue groups. For the

crystallographic point group 32, one of the two-fold axes is set on the x axis. Many of the

harmonics appear more than once, i.e., harmonics for the crystallographic point group 2

satisfy the symmetry requirements of the crystallographic point group 1 as well.

The symbol Z" denotes the A th linearly independent function with the required

symmetry constructed from the real hyperspherical harmonics for a particular value of n,

and is given by the equation

-I o ZlOAIOc +> II Z1i,, +bi iZ,,,n (191)
1=0 m=1

with the functions ZJ,e and Z", defined in Equation (29). We preset all symmetrized

functions of this type for a given value of n, which is the reason that the number of

harmonics provided for a particular crystallographic point group often exceeds thirty.

The values of the coefficients ia-,,, and bn,, in this equation are found in the tables by the

indices n and A which appear in the left column, and by the indices 1, m and i, which

appear in that order in the parentheses following the coefficient. The index i stands for

either c or s, and indicates the coefficients ii ,, or bI, , respectively. As a particular

example, the second harmonic listed for the crystallographic point group 1 is

0.63245553Z40 c + 0.59160798Z'0 + 0.50000000Zn44. Further information relating to the

uses and properties of these functions is provided in Section 2.2 and in Chapter 5.

9 The content of this appendix has previously been published in Ref. [47].
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E.1. Cystallographic Point Group 1

n,X, Coefficients of the Expansion of the Symmetrized Hyperspherical Harmonics

0,1 1.00000000(0,0,c)

4,1 0.63245553(0,0,c)+0.59160 7 98 (4 ,0,c)+0.50000000(4,4,c)

4,2 0.63245553(1,0,c)-0.31622777(3,0,c)-0.70710678(4,4,s)

4,3 0.63245553(1,1,c)+0.19364917(3,1 l,c)-0.25000000(3,3,c)+0.66143783(4,1,s)+0. 2 5000000(4,3,s)

4,4 0.63245553(1,1 ,s)+0.19364917(3,1 ,s)+0. 2 5000000(3,3,s)-0.66143783(4,1 ,c)+0.25000000(4,3,c)

4,5 0.75592895(2,0,c)+0.42257713(4,0,c)-0.50000000(4,4,c)

4,6 0.53452248(2,1 ,c)-0.55901699(3,1 ,s)+0.43301270(3,3,s)+0.16366342(4,1 ,c)+0.43301270(4,3,c)

4,7 0.53452248(2,1 ,s)+0.55901699(3,1 ,c)+0.43301270(3,3,c)+0. 16366342(4,1 ,s)-0.43301270(4,3,s)

4,8 0.7 55 9 2 895(2,2,c)-0.65465367(4,2,c)

4,9 0.53452248(2,2,s)-0.70710678(3,2,c)-0.46291005(4,2,s)

4,10 1.00000000(3,2,s)

6,1 0.3 7 796447(0,0,c)-0.56407607(4,0,c)-0.47673129(4,4,c)+0.19738551(6,0,c)-0.52223297(6,4,c)

6,2 0.37796447(1,0,c)+0.40824829(3,0,c)+0.476731 2 9 (4 ,4 ,s)-O. 4 3 6 43578(5,0,c)+0.52223297(6,4,s)

0.37796447(1,1 ,c)-0.25000000(3,1 ,c)+0.32274861(3,3,c)-0.44594129(4,1 ,s)-0. 16854997(4,3,s)-

6,3 0.21128856(5,1 ,c)+0.22821773(5,3,c)-0.30618622(5,5,c)+0.22613351(6,1,s)-0.35754847(6,3,s)-

0.30618622(6,5,s)

0.37796447(1,1 ,s)-0.25000000(3, ,s)-0.32274861(3,3,s)+0.44594129(4,1 ,c)-0. 16854997(4,3,c)-

6,4 0.21128856(5,1,s)-0.22821773(5,3,s)-0.30618622(5,5,s)-0.22613351(6,1,c)-0.35754847(6,3,c)+

0.30618622(6,5,c)

0.48795004(2,1 ,c)+0.32274861(3,1 ,s)-0.25000000(3,3,s)-0.04934638(4,1 ,c)-0. I 13055824(4,3,c)-

6,5 0.38188131(5,1,s)-0. I 17 6 7 7 6 70(5, 3 ,s)+0.39528471(5,5,s)-0.09731237(6,1,c)-0.27695585(6,3,c)-

0.39528471(6,5,c)

0.48795004(2,1 ,s)-0.32274861(3,1 ,c)-0.25000000(3,3,c)-0.04934638(4,1 ,s)+0. 13055824(4,3,s)+

6,6 0.38188131(5,1,c)-0. I 7677670(5,3,c)-0.39528471(5,5,c)-0.09731237(6,1,s)+0.27695585(6,3,s)-

0.39528471(6,5,s)

6,7 0.4 8 7 95004(2,2,s)+0.40824829(3,2,c)+0. 13 9 572 6 3 (4 ,2 ,s)+0.57735027(5,2,c)-0.49236596(6,2,s)

8,1 0.5 7 735027(0,0,c)+0.27097338(4,0,c)+0.22901431(4,4,c)-0.07784989(6,0,c)+0.20597146(6,4,c)+
0.503831 4 7(8,0,c)+0.26794565(8,4,c)+0.40824829(8,8,c)

8,2 0.57735027(1,0,c)-0.21320072(3,0,c)-0.1 7 7 39372(4,4,s)+0.24806947(5,0,c)-0.15954481 (6,4,s)-

0.24428193(7,0,c)-0.20754981 (8,4,s)-0.63245553(8,8,s)

0.57735027(1,1 ,c)+O. 13055824(3,1 ,c)-0. 16854997(3,3,c)+0.16593663(4,1 ,s)+0.06271815(4,3,s)+

8,3 0.12009612(5,1 ,c)-0. 12971863(5,3,c)+0.17403581(5,5,c)-0.06908493(6, 1,s)+O. 10923286(6,3,s)+

0.09354143(6,5,s)+0.10098582(7,1 ,c)-0. 10494754(7,3,c)+0.11602387(7,5,c)-0.15811388(7,7,c)+
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0.58539927(8,1,s)+0.20095924(8,3,s)+0. 18708287(8,5,s)+0. 15811388(8,7,s)

0.57735027(1,1 ,s)+0. 13055824(3,1 ,s)+O. 16854997(3,3,s)-0.16593663(4,1 ,c)+0.06271815(4,3,c)+

0. 12009612(5,1 ,s)+0. 12971863(5,3,s)+0. 17403581(5,5,s)+0.06908493(6,1 ,c)+0. 10923286(6,3,c)-
8,4

0.09354143(6,5,c)+0.10098582(7,1,s)+0. 10494754(7,3,s)+0. 11602387(7,5,s)+0. 15811388(7,7,s)-

0.58539927(8,1 ,c)+0.20095924(8,3,c)-0.18708287(8,5,c)+0.15811388(8,7,c)

0.67098171(2,0,c)-0.07591750(4,0,c)+0.08982680(4,4,c)+0.21374669(6,0,c)+0.08078865(6,4,c)+
8,5

0.39823215(8,0,c)+0.10509693(8,4,c)-0.56044854(8,8,c)

0.50538229(2, 1,c)-0. 19003487(3,1,s)+0. 14720038(3,3,s)+0.02070258(4, 1,c)+0.05477388(4,3,c)+

0.24472932(5,1 ,s)+O. 1 1328766(5,3,s)-0.25331891(5,5,s)+0.03351900(6,1 ,c)+0.09539675(6,3,c)+
8,6

0.13615482(6,5,c)-0.40569389(7,1 ,s)+0.09165423(7,3,s)-0.16887927(7,5,s)+0.32220112(7,7,s)+

0.06024819(8,1,c)+0. 17550449(8,3,c)+0.27230964(8,5,c)+0.32220112(8,7,c)

0.50538229(2,1 ,s)+0. 19003487(3,1 ,c)+0. 14720038(3,3,c)+0.02070258(4,1,s)-0.05477388(4,3,s)-

0.24472932(5,1 ,c)+0. 11328766(5,3,c)+0.25331891(5,5,c)+0.03351900(6,1 ,s)-0.09539675(6,3,s)+
8,7

0.13615482(6,5,s)+0.40569389(7,1 ,c)+0.09165423(7,3,c)+0.16887927(7,5,c)+0.32220112(7,7,c)+

0.06024819(8,1,s)-0. 17550449(8,3,s)+0.27230964(8,5,s)-0.32220112(8,7,s)

0.67098171(2,2,c)+0.11761089(4,2,c)+0.12773808(6,2,c)+0.18946619(6,6,c)-0.67255224(8,2,c)-
8,8

0.17722939(8,6,c)

0.50538229(2,2,s)-0.24037721 (3,2,c)-0.05855574(4,2,s)-0.36999595(5,2,c)+0. 16959422(6,2,s)-
8,9

0.43206218(7,2,c)-0.34444748(7,6,c)-0.46086633(8,2,s)

0.56853524(3,0,c)-0.35478744(4,4,s)+0.08268982(5,0,c)-0.31908961(6,4,s)-0.41222575(7,0,c)-
8,10

0.41509962(8,4,s)+0.31622777(8,8,s)

0.51480396(3,1 ,c)-0.08758414(3,3,c)-0.26882274(4,1,s)+0.03259043(4,3,s)+0.18171134(5,1,c)-

0.06740609(5,3,c)-0.25534521 (5,5,c)+0.40227789(6,1,s)+0.05676101(6,3,s)-0. 13724393(6,5,s)-
8,11

0.07292561(7,1 ,c)-0.05453421(7,3,c)-0. I 7023014(7,5,c)+0.29541786(7,7,c)+0.26318644(8,1 l,s)+

0. 10442507(8,3,s)-0.27448785(8,5,s)-0.29541786(8,7,s)

0.51480396(3,1 ,s)+0.08758414(3,3,s)+0.26882274(4,1 ,c)+0.03259043(4,3,c)+0. 18171134(5,1 ,s)+

0.06740609(5,3,s)-0.25534521(5,5,s)-0.40227789(6,1 ,c)+0.05676101(6,3,c)+0. 1 3724393(6,5,c)-
8,12

0.07292561(7,1 ,s)+0.0545342 1(7,3,s)-0. 17023014(7,5,s)-0.29541786(7,7,s)-0.26318644(8,1 ,c)+

0. 10442507(8,3,c)+0.27448785(8,5,c)-0.29541786(8,7,c)

0.47968488(3,2,c)-0.17040762(4,2,s)-0.42850416(5,2,c)+0.08498618(6,2,s)-0.49581583(6,6,s)+
8,13

0.23768290(7,2,c)-0.17260774(7,6,c)+0.05292534(8,2,s)+0.46379324(8,6,s)

8,14 0.60302269(3,2,s)+0.58710899(7,2,s)+0.54006172(7,6,s)

0.52975071 (3,3,c)+0.20372540(4,1 ,s)+0.20020250(4,3,s)+0.22116843(5,1 ,c)-0. 12058217(5,3,c)-

0.15567313(5,5,c)+0. 18175210(6,1 ,s)+0.34868204(6,3,s)+0. 12796863(6,5,s)+0.16438861(7,1 ,c)-
8,15

0.29048154(7,3,c)+0. 10950536(7,5,c)-0.09099430(7,7,c)+0.03743293(8,1,s)-0.46679245(8,3,s)-

0. 14088853(8,5,s)+0.09099430(8,7,s)

8,16 0.52975071 (3,3,s)+0.20372540(4, 1,c)-0.20020250(4,3,c)-0.22116843(5,1 I,s)-O. 12058217(5,3,s)+
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0.15567313(5,5,s)+0. 18175210(6,1 ,c)-0.34868204(6,3,c)+0.12 7 9 6863(6,5,c)-0.16438861(7,1,s)-

0.29048154(7,3,s)-0.10950 5 36(7,5,s)-0.09099430(7,7,s)+0.03743293(8,1 ,c)+0.46679245(8,3,c)-

0. 1408 8 853(8,5,c)-0.09099430(8,7,c)

8,17 0.49090710(4,0,c)-0.31116917(4,4,c)+0.63466306(6,0,c)-0.27986010(6,4,c)+0.17114304(8,0,c)-
0.36406645(8,4,c)+0.13867505(8,8,c)

0.35846409(4,1 ,c)+0.22581115(4,3,c)-0.38915589(5,1,s)+0.30024029(5,3,s)+0.04475718(5,5,s)+

8,18 0.31980107(6,1 ,c)+0.39328325(6,3,c)-0.1
4 4 33757(6,5,c)-0.28924923(7, 1,s)+0.35255158(7,3,s)+

0.15105548(7,5,s)-0.16010861(7,7,s)+0.06586495(8, 1,c)+0.09367207(8,3,c)-0.06314769(8,5,c)-

0.16010861(8,7,c)

0.35846409(4,1,s)-0.22581115(4,3,s)+0.38915589(5,1 ,c)+0.3 0024029(5,3,c)-0.04475718(5,5,c)+

0.31980107(6,1 ,s)-0.39328325(6,3,s)-0. 14 433757(6,5,s)+0.28924923(7, 1,c)+0.35255158(7,3,c)-
8,19

0.15105548(7,5,c)-0.16010861(7,7,c)+0.06586495(8,1,s)-0.09367207(8,3,s)-0.06314769(8,5,s)+

0.16010861(8,7,s)

8,20 0.64940905(4,2,c)-0.32387514(6,2,c)-0.48038446(6,6,c)-0.20169401(8,2,c)+0.44935852(8,6,c)

0.58536941(4,2,s)-0.33968311 (5,2,c)-0.29193710(6,2,s)-0.1 4 4 33757(6,6,s)-0.18180452(7,2,c)+
8,21

0.59 292706(7,6,c)-0. 18180452(8,2,s)+0. 13501543(8,6,s)

0.51095231(4,3,c)-0.33968311(5,3,s)+0.25318484(5,5,s)-0.158910 4 3 (6 ,3,c)+0.40824829(6,5,c)+
8,22

0.41985956(7,3,s)-0.37977726(7,5,s)-0.07308817(8,3,c)-0.20412415(8,5,c)

0.51095231(4,3,s)+0.33968311(5,3,c)+0.25318484(5,5,c)-0.15891043(6,3,s)-0.40824829(6,5,s)-
8,23

0.41985956(7,3,c)-0.37977726(7,5,c)-0.07308817(8,3,s)+0.2041241 5(8,5,s)

8,24 0.44249768(4,4,c)-0.85280287(6,4,c)+0.27735010(8,4,c)

8,25 0.31289311(4,4,s)-0.55470020(5,4,c)-0.60302269(6,4,s)+0.43852901(7,4,c)+0.19611614(8,4,s)

8,26 0.78446454(5,2,s)+0.41985956(7,2,s)-0.45643546(7,6,s)

8,27 0.78446454(5,4,s)-0.62017367(7,4,s)
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E.2. Cystallographic Point Group 2

n,k Coefficients of the Expansion of the Symmetrized Hyperspherical Harmonics

0,1 1.00000000(0,0,c)

4,1 0.63245553(0,0,c)+0.59160798(4,0,c)+0.50000000(4,4,c)

4,2 0.63245553(1,0,c)-0.31622777(3,0,c)-0.70710678(4,4,s)

4,3 0.75592895(2,0,c)+0.42257713(4,0,c)-0.50000000(4,4,c)

4,4 0.75592895(2,2,c)-0.65465367(4,2,c)

4,5 0.53452248(2,2,s)-0.70710678(3,2,c)-0.46291005(4,2,s)

4,6 1.00000000(3,2,s)

6,1 0.37796447(0,0,c)-0.56407607(4,0,c)-0.47673129(4,4,c)+0.1973855 1(6,0,c)-0.52223297(6,4,c)

6,2 0.37796447(1,0,c)+0.40824829(3,0,c)+0.47673129(4,4,s)-0.43643578(5,0,c)+0.52223297(6,4,s)

6,3 0.48795004(2,2,s)+0.40824829(3,2,c)+0.13957263(4,2,s)+0.57735027(5,2,c)-0.49236596(6,2,s)

0.57735027(0,0,c)+0.27097338(4,0,c)+0.22901431(4,4,c)-0.07784989(6,0,c)+0.20597146(6,4,c)+
8,1

0.50383147(8,0,c)+0.26794565(8,4,c)+0.40824829(8,8,c)

0.57735027(1 ,0,c)-0.21320072(3,0,c)-0. 17739372(4,4,s)+0.24806947(5,0,c)-0. 15954481(6, 4 ,s)-
8,2

0.24428193(7,0,c)-0.20754981 (8,4,s)-0.63245553(8,8,s)

0.67098171(2,0,c)-0.07591750(4,0,c)+0.08982680(4,4,c)+0.21374669(6,0,c)+0.08078865(6,4,c)+
8,3

0.39823215(8,0,c)+0.10509693(8,4,c)-0.56044854(8,8,c)

0.67098171(2,2,c)+0. 11761089(4,2,c)+0.12773808(6,2,c)+0.18946619(6,6,c)-0.67255224(8,2,c)-
8,4

0.17722939(8,6,c)

0.50538229(2,2,s)-0.24037721(3,2,c)-0.05855574(4,2,s)-0.36999595(5,2,c)+0. 16959422(6,2,s)-
8,5

0.43206218(7,2,c)-0.34444748(7,6,c)-0.46086633(8,2,s)

0.56853524(3,0,c)-0.35478744(4,4,s)+0.08268982(5,0,c)-0.31908961(6,4,s)-0.41222575(7,0,c)-
8,6

0.41509962(8,4,s)+0.31622777(8,8,s)

0.47968488(3,2,c)-0. 17040762(4,2,s)-0.42850416(5,2,c)+0.08498618(6,2,s)-0.49581583(6,6,s)+
8,7

0.23768290(7,2,c)-0.17260774(7,6,c)+0.05292534(8,2,s)+0.46379324(8,6,s)

8,8 0.60302269(3,2,s)+0.58710899(7,2,s)+0.54006172(7,6,s)

0.49090710(4,0,c)-0.31116917(4,4,c)+0.63466306(6,0,c)-0.27986010(6,4,c)+0. 17114304(8,0,c)-
8,9

0.36406645(8,4,c)+0.13867505(8,8,c)

8,10 0.64940905(4,2,c)-0.32387514(6,2,c)-0.48038446(6,6,c)-0.20169401(8,2,c)+0.44935852(8,6,c)

0.58536941(4,2,s)-0.33968311(5,2,c)-0.29193710(6,2,s)-0. 14433757(6,6,s)-0. 18180452(7,2,c)+
8,11

0.59292706(7,6,c)-0. 18180452(8,2,s)+0. 13501543(8,6,s)

8,12 0.44249768(4,4,c)-0.85280287(6,4,c)+0.27735010(8,4,c)

8,13 0.3128931 1(4,4,s)-0.55470020(5,4,c)-0.60302269(6,4,s)+0.43852901 (7,4,c)+0.19611614(8,4,s)
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8,14 0.7 8 4 46454(5,2,s)+0.41 9 85956(7,2,s)-0.45643546(7,6,s)

8,15 0.7 84 4 6454(5,4,s)-0.62017367(7,4,s)

0.42640143(0,0,c)-0.29268470(4,0,c)-0.24736372(4,4,c)+0.08010688(6,0,c)-0.21194288(6,4,c)-

10,1 0. 4 2469327(8,0,c)-0.22585869(8,4,c)-0.34412360(8,8,c)+0.21385976(10,0,c)-0.30476098(10,4,c)-

0.36273813(10,8,c)

0.42640143(1,0,c)+0.23897606(3,0,c)+0. I 5644655(4,4,s)-0.28644595(5,0,c)+0.13404445(6,4,s)+

10,2 0.30785681(7,0,c)+0.14284558(8,4,s)+0.43528575(8,8,s)-0.29025018(9,0,c)+0.19274777(10,4,s)+

0.45883147(10,8,s)

0.2 89 68 2 73(2,0,c)+0.20906050(4,0,c)-0.24736372(4,4,c)-0.56074816(6,0,c)-0.21194288(6,4,c)-

10,3 0. 15872375(8,0,c)-0.22585869(8,4,c)+0.34412360(8,8,c)+0.18095826(10,0,c)-

0.30476098(10,4,c)+0.36273813(10,8,c)

0.2 8968273(2,2,c)-0.32387514(4,2,c)-0.33511112(6,2,c)-0.49705012(6,6,c)+0.43515890(8,2,c)-
10,4

0.07254763(8,6,c)-0.09760163(10,2,c)+0.49767260(10,6,c)

0.49707771 (2,2,s)+0.16412943(3,2,c)+0.03145753(4,2,s)+0.260251 82 (5, 2 ,c)-0.08679699(6,2,s)+

10,5 0.33168904(7,2,c)+0.26442827(7,6 ,c)+0.19321769(8,2,s)+0.35426202(9,2,c)+0.31605223(9,6,c)-

0. 4 5503559(10,2,s)

0 .27311550(3,0,c)+0.31289311(4,4,s)+0.50128041(5,0,c)+0.26808890(6,4,s)-0.12185999(7,0,c)+
10,6

0.28569115(8,4,s)-0.21764288(8,8,s)-0.39909400(9,0,c)+0.38549554(10,4,s)-0.22941573(10,8,s)

0.45018358(3,2,c)+0.110101 37(4,2,s)+0.04879722(5,2,c)+0.09154370(6,2,s)+0.47976040(6,6,s)-

10,7 0.41392028(7,2,c)-0.09640614(7,6,c)-0.10377903(8,2,s)+0.07002408(8,6,s)+0.31788690(9,2,c)-

0.11522738(9,6,c)-0.05391698(10,2,s)-0.48036122(10,6,s)

10,8 0.4 3452409(3,2,s)-0.49327022(7,2,s)-0.45374261(7,6,s)+0.26052505(9,2,s)-0.54232614(9,6,s)

0.4 0646007(4,2,s)+0.1801441 7 (5, 2 ,c)+0.33795090(6,2,s)-0.1 2995687(6,6,s)+0.35856101(7,2,c)-

10,9 0.35590153(7,6,c)-0.38311996(8,2,s)-0.01896803(8,6,s)+0.17710135(9,2,c)-0.42538369(9,6,c)-

0.19904474(10,2,s)+0. 13011962(10,6,s)

10,10 0.3 54 7 87 4 4 (4 ,4 ,s)+0.4 8038446(5,4,c)-0.25332020(6,4,s)+0.18421903(7,4,c)-0.49491340(8,4,s)-
0.48507125(9,4,c)+0.25498133(10,4,s)
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E.3. Cystallographic Point Group 3

n,k Coefficients of the Expansion of the Symmetrized Hyperspherical Harmonics

0,1 1.00000000(0,0,c)

4,1 0.44721360(0,0,c)+0.53452248(2,0,c)+0.71713717(4,0,c)

4,2 0.53452248(2,2,c)-0.70710678(3,2,s)-0.46291005(4,2,c)

0.23145502(1,1 ,c)+0.38575837(2,1 ,s)-0.40824829(3,1 ,c)-0.31209389(4,1,s)+0. 17251639(5,1,c)-
6,1

0.50000000(5,5,c)+0.06154575(6,1 ,s)-0.50000000(6,5,s)

0.23145502(1,1 ,s)-0.38575837(2,1 ,c)-0.40824829(3,1 ,s)+0.31209389(4,1 ,c)+0. 17251639(5,1 ,s)-
6,2

0.50000000(5,5,s)-0.06154575(6,1 ,c)+0.50000000(6,5,c)

6,3 0.48795004(2,2,s)+0.40824829(3,2,c)+0.1 3957263(4,2,s)+0.57735027(5,2,c)-0.49236596(6,2,s)

8,1 0.33333333(0,0,c)+0.37986859(2,0,c)+0.40229114(4,0,c)+0.44946657(6,0,c)+0.61703353(8,0,c)

0.30276504(1,1 ,c)+0.04909652(2,1 ,s)-0.34855072(3,1,c)+0.31642874(4,1,s)-0. 11450715(5,1,c)+

8,2 0.33187326(5,5,c)-0.37326273(6,1 ,s)+0. 17837652(6,5,s)+0. 15405792(7,1 ,c)+0.22124884(7,5,c)-

0.30151134(7,7,c)+0.09020708(8,1 ,s)+0.35675303(8,5,s)+0.30151134(8,7,s)

0.30276504(1,1 ,s)-0.04909652(2,1 ,c)-0.34855072(3,1 ,s)-0.31642874(4,1 ,c)-0. 11450715(5,1 ,s)+

8,3 0.33187326(5,5,s)+0.37326273(6, 1,c)-0. 17837652(6,5,c)+0. 15405792(7, l1,s)+0.22124884(7,5,s)+

0.30151134(7,7,s)-0.09020708(8, ,c)-0.35675303(8,5,c)+0.30151134(8,7,c)

0.44536177(2,1 ,c)-0.21956631(3,1 ,s)-0. 19933137(4,1 ,c)+0.40394327(5,1 ,s)-0.25087260(5,5,s)-

8,4 0.09958592(6,1 ,c)+0. 13483997(6,5,c)-0. 19652092(7,1 I,s)-0. 16724840(7,5,s)+0.39886202(7,7,s)+

0.04474978(8,1,c)+0.26967994(8,5,c)+0.39886202(8,7,c)

0.44536177(2,1 ,s)+0.21956631(3,1 ,c)-0.19933137(4,1 ,s)-0.40394327(5,1 ,c)+0.25087260(5,5,c)-

8,5 0.09958592(6,1 ,s)+0. I 13483997(6,5,s)+0. 19652092(7,1 ,c)+0.1 6724840(7,5,c)+0.39886202(7,7,c)+

0.04474978(8,1 ,s)+0.26967994(8,5,s)-0.39886202(8,7,s)

0.44136741(2,2,c)-0.27524094(3,2,s)+0.24584459(4,2,c)-0.42365927(5,2,s)-0.49472744(7,2,s)-
8,6

0.49472744(8,2,c)

0.42043748(3,3,c)+0.46933966(4,3,s)-0.09245003(5,3,c)+0.38924947(6,3,s)-0.56096819(7,3,c)-
8,7

0.35805744(8,3,s)

0.42043748(3,3,s)-0.46933966(4,3,c)-0.09245003(5,3,s)-0.38924947(6,3,c)-0.56096819(7,3,s)+
8,8

0.35805744(8,3,c)

8,9 0.31289311 (4,4,c)-0.55470020(5,4,s)-0.60302269(6,4,c)+0.43 852901(7,4,s)+0.19611614(8,4,c)

0.30895719(1,1 ,c)-0.00912415(2,1 ,s)-0.15003607(3,1 ,c)+0. 17311854(4,1 ,s)-0.33493206(5,1 ,c)-

0.27735010(5,5,c)+0. 19359163(6,1,s)-0. 10846523(6,5,s)+0.03512919(7,1 ,c)-0.20180184(7,5,c)+

10,1 0.27500955(7,7,c)-0.41001963(8,1 ,s)-0. I 17770466(8,5,s)-0. 15018785(8,7,s)+0.13645910(9,1 ,c)-

0. 15877684(9,5,c)+0. 17751790(9,7,c)+0. 11980362(10,1,s)-0.31545759(10,5,s)-

0.29083753(10,7,s)
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0.30895719(1,1 ,s)+0.00912415(2,1 ,c)-0. 15003607(3,1 ,s)-0. 17311854(4,1 ,c)-0.33493206(5,1 ,s)-

10,2 0.27735010(5,5,s)-0.19359163(6,1,c)+O. 10846523(6,5,c)+0.03512919(7, l,s)-0.20180184(7,5,s)-
0.2 7500955(7,7,s)+0.41001963(8,1 ,c)+0. 17770466(8,5,c)-0.15018785(8,7,c)+0.13645910(9,1 ,s)-

0. 15877684(9,5,s)-0.17751790(9,7,s)-0. 11980362(10,1,c)+0.31545759(10,5,c)-0.29083753(10,7,c)

0.37928372(2,1 ,c)-0. 14992506(3,1 ,s)+0. 14992506(4,1 ,c)+0.24019223(5,5,s)-0.27749837(6,1 ,c)-

10,3 0.09393364(6,5,c)+0.39549603(7,1,s)+O. 174 76552(7,5,s)-0.31755367(7,7,s)-0.05999194(8,1 ,c)-

0. 15389675(8,5,c)-0.17342199(8,7,c)-0.26665589(9,1 ,s)+O. 13 750477(9,5,s)-0.20498002(9,7,s)+

0.05533492(10,1 ,c)-0.27319428(10,5,c)-0.33583025(10,7,c)

0.37928372(2,1 ,s)+0. 14992506(3,1 ,c)+O. 14992506(4,1 ,s)-0.24019223(5,5,c)-0.27749837(6,1 ,s)-

10,4 0.09393364(6,5,s)-0.39549603(7,1,c)-0. 17476552(7,5,c)-0.31755367(7,7,c)-0.05999194(8,1 ,s)-
0. 15389675(8,5,s)+0.17342199(8,7,s)+0.26665589(9, I,c)-0. 13 7 50 4 7 7(9 ,5,c)-0.20498002(9,7,c)+

0.05533492(10,1 ,s)-0.27319428(10,5,s)+0.33583025(10,7,s)

0. 4 0394327(2,2,s)+0.201971 6 3 (3 ,2 ,c)+0.27097338(4,2,s)+0.32025631(5,2,c)+0.13351147(6,2,s)+

0.4081643 1(7,2,c)-0.07430205(8,2,s)+0.43594180(9,2,c)-0.48995628(10,2,s)

10,6 0.35478744(4,4,s)+0.48038446(5,4,c)-0.25332020(6,4,s)+0. 18421 9 03 (7 ,4 ,c)-0.49491340(8,4,s)-
0.48507125(9,4,c)+0.25498133(10,4,s)

12,1 0.39223227(0,0,c)-0.12642791(2,0,c)+0.49598049(4,0,c)+0.10676525(6,0,c)+0.29367108(8,0,c)+

0.27986801(10,0,c)+0.39775062(12,0,c)+0.50000000(12,12,c)

0.44474959(1,0,c)-0.45993311(3,0,c)+0.27967106(5,0,c)-0. I 0857496(7,0,c)+0.02542464(9,0,c)-

0.00291641(11,0,c)-0.70710678(12,12,s)

0.30109690(1,1 ,c)-0.02382466(2,s 22363 00806724 ,s)-0.028483698(5,1 ,c)+

0.2 4590434(5,5,c)+0.20345976(6, ,s)+0.07687976(6,5,s)-0.22501531(7,1,c)+0.18465922(7,5,c)-

0.25164810(7,7,c)+0.07194888(8,1,s)+0. 11980846(8,5,s)+0.10125663(8,7,s)+0.11546539(9,1 ,c)+
12,3

0. 15877684(9,5,c)-0.17751790(9,7,c)-0.41858859(10,1 ,s)+0. 17403079(10,5,s)+

0.16044846(10,7,s)+0. 11665626(11,1,c)+0.12878502(11,5,c)-0.13710212(11,7,c)+

0. 14543942(12,1 ,s)+0.29293746(12,5,s)+0.2786391 1(12,7,s)

0.30109690(1,1 ,s)+0.02382466(2,1 ,c)-0.02521365(3,1 ,s)-0.08056572(4,1 ,c)-0.28483698(5,1 ,s)+

0.24590434(5,5,s)-0.20345976(6,1 ,c)-0.07687976(6,5,c)-0.22501531(7,1 ,s)+0. 18465922(7,5,s)+

12,4 0.25164810(7,7,s)-0.07194888(8,1,c)-O. 11980846(8,5,c)+0.10125663(8,7,c)+0.11546539(9,1 ,s)+

0. 15877684(9,5,s)+0.17751790(9,7,s)+0.41858859(10,1 ,c)-0. 17403079(10,5,c)+

0.16044846(10,7,c)+0. 11665626(11,1 ,s)+O. 12878502(11,5,s)+0. 13710212(11,7,s)-

0.14543942(12,1 ,c)-0.29293746(12,5,c)+0.27863911(12,7,c)

0.56892559(2,0,c)-0.04065414(4,0,c)+0.36774696(6,0,c)+0.21390857(8,0,c)+

0.29352011(10,0,c)+0.39689062(12,0,c)-0.50000000(12,12,c)

0.31318323(2,1 ,c)-0. 10357562(3,1 ,s)+0.26231444(4,1 ,c)-0.09294310(5,1 ,s)-0.22447892(5,5,s)-

12,6 0.05183233(6,1,c)+0.07018130(6,5,c)+0.14085253(7,1,s)-O. 16 8 57003(7,5,s)+0.27566668(7,7,s)-

0.27654755(8,1,c)+0.10936966(8,5,c)+0.11092108(8,7,c)+0.33729599(9,1,s)-0.14494276(9,5,s)+
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12,7

0.19446112(9,7,s)-0.01930698(1 0,1 ,c)+0. 15886764(10,5,c)+0.17576248(10,7,c)-

0.31148941(11,1,s)-O. 11756410(11,5,s)+0. 15018785(11,7,s)+0.05974534(12,1,c)+

0.26741409(12,5,c)+0.30523385(12,7,c)

0.31318323(2,1,s)+0. 10357562(3,1 ,c)+0.26231444(4,1,s)+0.09294310(5,1,c)+0.22447892(5,5,c)-

0.05183233(6,1 ,s)+0.07018130(6,5,s)-0.14085253(7,1,c)+O. 16857003(7,5,c)+0.27566668(7,7,c)-

0.27654755(8,1 ,s)+O. 10936966(8,5,s)-0. 11092108(8,7,s)-0.33729599(9,1 ,c)+O. 14494276(9,5,c)+

0. 19446112(9,7,c)-0.0 1930698(10,1,s)+O. 1 5886764(10,5,s)-0.17576248(10,7,s)+

0.31148941(11,1 ,c)+0.11756410(1 1,5,c)+0.15018785(11,7,c)+0.05974534(12,1 ,s)+

0.26741409(12,5,s)-0.30523385(12,7,s)

0.38839304(2,2,c)-0.09146026(3,2,s)+0. 17853236(4,2,c)-0.33755924(5,2,s)+0.26653969(6,2,c)-

0.24864709(7,2,s)+0.01282681(8,2,c)-0.39865719(9,2,s)-0.10299171(10,2,c)+
12,8

0.09747754(10, 10,c)-0.37245661(11 ,2,s)+0. 13495155(11,10,s)-0.46610074(12,2,c)-

0.09332764(12,10,c)

0. 10482848(2,2,s)-0.21926450(3,2,c)-0.31332712(4,2,s)+0.35275259(5,2,c)+0.32917948(6,2,s)-

0.25983856(7,2,c)-0.1 7425376(8,2,s)+0.09846921(9,2,c)+0.04579053(10,2,s)+
12,9

0.36115756(10, 10,s)-0.0 1662607(11,2,c)-0.50000000( 1,1 0,c)-0.00410194(12,2,s)-

0.34578204(12,10,s)

0.25335246(3,2,s)-0.37544735(4,2,c)-0.27172884(5,2,s)+0.26715437(6,2,c)+0.33955076(7,2,s)-

12,10 0. 1 8456544(8,2,c)+0.00948148(9,2,s)+0.07642462(10,2,c)+0.3477541 0(10, 1 0,c)+

0. 12166870(11,2,s)+0.48144374(l 1,10,s)+O. 12639077(12,2,c)-0.33294920(12,10,c)

0.39556103(3,3,c)+0.21706562(4,3,s)+0.07110372(5,3,c)+0.43882795(6,3,s)+0.02267913(7,3,c)+

12,11 0.26210973(8,3,s)-0.32676784(9,3,c)-0.06625304(9,9,c)+0. 16907972(10,3,s)+0. 10965089(10,9,s)-

0.46456543(11,3,c)+0. 10475525(11,9,c)-0.38426547(12,3,s)-0.05779109(12,9,s)

0.39556103(3,3,s)-0.21706562(4,3.c)+0.07110372(5,3,s)-0.43882795(6,3,c)+0.02267913(7,3,s)-

12,12 0.26210973(8,3,c)-0.32676784(9,3,s)+0.06625304(9,9,s)-0. 16907972(10,3,c)+0. 10965089(10,9,c)-

0.46456543(11 ,3,s)-0. 10475525(11 ,9,s)+0.38426547(12,3,c)-0.05779109(12,9,c)

0.27648288(4,3,c)-0.34387124(5,3,s)-0.25992751 (6,3,c)+0.3404548 1(7,3,s)+0.33385690(8,3,c)-

12,13 0.08646488(9,3,s)+0.25891911(9,9,s)-0.04473958(10,3,c)+0.42851938(10,9,c)+

0. 15404559(11,3,s)-0.40938706(11,9,s)-0.08885931(12,3,c)-0.22584954(12,9,c)

0.27648288(4,3,s)+0.34387124(5,3,c)-0.25992751(6,3,s)-0.34045481 (7,3,c)+0.33385690(8,3,s)+

12,14 0.08646488(9,3,c)+0.25891911(9,9,c)-0.04473958(1 0,3,s)-0.42851938(10,9,s)-

0. 15404559(11,3,c)-0.40938706( 1 ,9,c)-0.08885931 (12,3,s)+0.22584954(12,9,s)

0.37384128(4,4,c)-0.32297388(5,4,s)-0.1 5346224(6,4,c)-0.40947817(7,4,s)-0.25380183(8,4,c)+

0.05488623(8,8,c)+0.06546112(9,4,s)+0. 10201378(9,8,s)-0.41763226(10,4,c)-
12,15

0. 11 620094(10,8,c)+0.45334140(1 1,4,s)-0.08834653(11,8,s)+0.28221985(12,4,c)+

0.04119178(12,8,c)

12,16 0. 10090092(4,4,s)-0.223 10033(5,4,c)-0.32917948(6,4,s)+0.37085408(7,4,c)+0.33367054(8,4,s)+
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0.32223077(5,4,s)-0.29885065(6,4,c)-0.27036871(7,4,s)+0. 19580829(8,8,c)+0.41767335(8,4,c)+

12,17 0.36393726(9,8,s)+0.23353452(9,4,s)-0.41455040(10,8,c)-0.02902433(10,4,c)-

0.31517891(11,8,s)-0.19168109(11,4,s)+0.14695293(12,8,c)-0.06005640(12,4,c)

12,18 0.26098171(6,6,c)-0.76088591(8,6,c)+0.58241841(10,6,c)-0. 11717499(12,6,c)

0. 18454194(6,6,s)-0.39147257(7,6,c)-0.53802759(8,6,s)+0.54232614(9,6,c)+0.41183200(10,6,s)-
12,19

0.22941573(11,6,c)-0.08285523(12,6,s)

12,20 0.55362582(7,6,s)-0.76696499(9,6,s)+0.32444284(11,6,s)
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0.20335531 (8,8,s)-0.24253563(9,4,c)-0.37796447(9,8,c)-0. 14066741(10,4,s)-0.43052839(10,8,s)+

0.06220908(11,4,c)+0.32732684(11,8,c)+0.01834446(12,4,s)+0. 15261692(12,8,s)



E.4. Cystallographic Point Group 4

n,k Coefficients of the Expansion of the Symmetrized Hyperspherical Harmonics

0,1 1.00000000(0,0,c)

4,1 0.44721360(0,0,c)+0.53452248(2,0,c)+0.71713717(4,0,c)

4,2 0.53452248(2,2,c)-0.70710678(3,2,s)-0.46291005(4,2,c)

6,1 0.48795004(2,2,s)+0.40824829(3,2,c)+0.13957263(4,2,s)+0.57735027(5,2,c)-0.49236596(6,2,s)

0.47140452(0,0,c)-0.10744306(2,0,c)+0.50571163(4,0,c)+0.25425669(6,0,c)+0.44254158(8,0,c)+
8,1

0.50000000(8,8,c)

8,2 0.51639778(1,0,c)-0.44494921(3,0,c)+0.18490007(5,0,c)-0.03413944(7,0,c)-0.70710678(8,8,s)

8,3 0.64465837(2,0,c)+0.06321395(4,0,c)+0.38138504(6,0,c)+0.43007562(8,0,c)-0.50000000(8,8,c)

0.4744557 1(2,2,c)-0. 13655775(3,2,s)+0.08316346(4,2,c)-0.52548465(5,2,s)+0.09032446(6,2,c)+
8,4

0.13397283(6,6,c)-0.41420286(7,2,s)+0.18344985(7,6,s)-0.47556625(8,2,c)-0.12532010(8,6,c)

0.1 7407766(2,2,s)-0.32566947(3,2,c)-0.39666441 (4,2,s)+0.35805744(5,2,c)+0.24618298(6,2,s)+
8,5

0.36514837(6,6,s)-0. 12543630(7,2,c)-0.50000000(7,6,c)-0.04181210(8,2,s)-0.34156503(8,6,s)

0.40394327(3,2,s)-0.45920154(4,2,c)-0. 17764624(5,2,s)+0.22901431 (6,2,c)+0.33968311 (6,6,c)+
8,6

0.29820379(7,2,s)+0.46513025(7,6,s)+0. 14261920(8,2,c)-0.31774445(8,6,c)

8,7 0.44249768(4,4,c)-0.85280287(6,4,c)+0.27735010(8,4,c)

8,8 0.31289311 (4,4,s)-0.55470020(5,4,c)-0.60302269(6,4,s)+0.43852901 (7,4,c)+0.19611614(8,4,s)

8,9 0.78446454(5,4,s)-0.62017367(7,4,s)

0.30151134(0,0,c)-0.20483662(2,0,c)-0.35478744(4,0,c)+0.45315295(6,0,c)-0.18806885(8,0,c)-
10,1

0.48666426(8,8,c)+0.02326488(10,0,c)-0.51298918(10,8,c)

0.38138504(1,0,c)+0.09160572(3,0,c)-0.48038446(5,0,c)+0.32985294(7,0,c)+0.48666426(8,8,s)-
10,2

0.08112739(9,0,c)+0.51298918(10,8,s)

0.20483662(2,2,c)+0.30725493(3,2,s)-0.22901431(4,2,c)-0.23695935(6,2,c)-0.35146751(6,6,c)-

10,3 0.34879472(7,2,s)-0.32084447(7,6,s)+0.3077038 1(8,2,c)-0.05129892(8,6,c)+0. 18421903(9,2,s)-

0.38348249(9,6,s)-0.06901477(10,2,c)+0.35190767(10,6,c)

0.45291081 (2,2,s)+0.04117371 (3,2,c)+0. 13810082(4,2,s)+0.28563102(5,2,c)+0.0 1190766(6,2,s)-

10,4 0.15895716(6,6,s)+0.52178299(7,2,c)+0. 14510737(7,6,c)+0.07289558(8,2,s)-0.02320081 (8,6,s)+

0.30549270(9,2,c)+0. 17343648(9,6,c)-0.46819658(10,2,s)+0. 15915623(10,6,s)

0.36538043(3,2,c)+0.32680619(4,2,s)+0.14484136(5,2,c)+0.27172275(6,2,s)+0.31346775(6,6,s)-

10,5 0. 12648468(7,2,c)-0.28615560(7,6,c)-0.30804004(8,2,s)+0.04575261(8,6,s)+0.36146384(9,2,c)-

0.34202136(9,6,c)-0. 16003799(10,2,s)-0.31386032(10,6,s)

10,6 0.35478744(4,4,s)+0.48038446(5,4,c)-0.25332020(6,4,s)+0. 18421903(7,4,c)-0.49491340(8,4,s)-

0.48507125(9,4,c)+0.25498133(10,4,s)

12,1 0.39223227(0,0,c)+0. 18964186(2,0,c)-0.0325233 1(4,0,c)+0. 18980488(6,0,c)+0.57646546(8,0,c)+
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0.2 9 083753(8,8,c)+0.09784004( 10,0,c)+0.25085666(10,8,c)+0.42570066(12,0,c)+

0.3 2 013196(12,8,c)

12,2 0.29649973(1,0,c)+0.25087260(3,0,c)-0.22882178(5,0,c)-0.33888547(7,0,c)-0.41130637(8,8,s)+
0.4 06 7 9 42 7(9,0,c)-0.35476488(10,8,s)-0. 12832188(11,0,c)-0.45273496(12,8,s)

12,3 0.2 52 8 558 2 (2 ,0,c)+0.48784967(4,0,c)+0.28470732(6,0,c)-0.06888581(8,0,c)-0.29083753(8,8,c)+
0.47554808(10,0,c)-0.25085666(10,8,c)+0.36894057(12,0,c)-0.32013196(12,8,c)

0.4 4 2 49768(2,2,c)-0.05666634(3,2,s)+0. 104968 5 4 (4,2,c)-0.06077652(5,2,s)+0. 10634073(6,2,c)+

0.15772879(6,6,c)-0.41597078(7,2,s)+0.11153110(7,6,s)-0.03377538(8,2,c)+0.06569350(8,6,c)-

12,4 0. 44 3 2 2 309(9,2,s)+0.1 4 568039(9,6,s)+0.06508714(10,2,c)-0.01843781(10,6,c)+

0.08555887(10,10,c)-0.22844730(11,2,s)+0. 15406492(11,6,s)-0. 11845089(11,10,s)-

0.45283924(12,2,c)-0.16692513(12,6,c)-0.08191638(12,10,c)

0.2 3652496(2,2,s)-0. 14135070(3,2,c)-0.23565378(4,2,s)-0.28425614(5,2,c)-0.09284114(6,2,s)+

0.2 9 508355(6,6,s)+0.25475038(7,2,c)-0.20865558(7,6,c)-0.161 4 8033(8,2,s)+0.12290129(8,6,s)+

12,5 0.21 820907(9,2,c)-0.27254305(9,6,c)+0.31118207(10,2,s)-0.03449399(1 0,6,s)-

0.16006598(10,1 O0,s)-0. 19158672(11,2,c)-0.28822906(11,6,c)-0.22160132(11,10,c)-

0.08362767(12,2,s)-0.31228832(12,6,s)+0. 15325151(12,10,s)

0.31448545(3,2,c)-0.23302069(4,2,s)-0.25297199(5,2,c)+0.41311697(6,2,s)-0.14589321(6,6,s)+

0.16391008(7,2,c)+0.10316208(7,6,c)-0.11455019(8,2,s)-0.06076402(8,6,s)-0.21773246(9,2,c)+

12,6 0. 13474889(9,6,c)-0.10277106(10,2,s)+0.0O 705428(10,6,s)-0.32374939(10,1 0,s)+

0.11327017(11,2,c)+0.14250426(11,6,c)-0.44821073(11,10,c)+0.03677071(12,2,s)+

0. 1 54 3 9948(12,6,s)+0.30996644(12,10,s)

0.37436021 (3,2,s)+0.00847410( 4 ,2 ,c)-0.00919965(5,2,s)-0.44312254(6,2,c)+0.25785185(6,6,c)+

0.1 1689443(7,2,s)+0.18232879(7,6,s)+0.00416576(8,2,c)+0.10739441(8,6,c)-0.17090299(9,2,s)+

12,7 0.23815536(9,6,s)+0.26374553(10,2,c)-0.03014176(10,6,c)-0.19858073(10,10,c)+

0.29651121(11,2,s)+0.25186222(11,6,s)+0.27492258( 1,10,s)+0.07080103(12,2,c)-

0.2 72 8 8 583(12,6,c)+0.19012658(12,10,c)

0.41641539(4,2,c)-0.45206900(5,2,s)-0.07533196(6,2,c)-0.13035791 (6,6,c)+0.12112924(7,2,s)-

0.0921 76 9 6 (7,6,s)+0.20470484(8,2,c)-0.05429362(8,6,c)-0.13670900(9,2,s)-0.12040027(9,6,s)-

12,8 0.21897345(10,2,c)+0.01523827(10,6,c)-0.28927523(1 0, 10,c)-0.25035837(11,2,s)-

0.12732983(11,6,s)+0.4004834 1(11,1 0,s)-0. 17741818(12,2,c)+0.13795839(12,6,c)+

0.27695994(12,10,c)

12,9 0.5090 7 0 34 (4,4,c)-0.09490244(6,4,c)-0.50503537(8,4,c)-0.55762317(10,4,c)+0.40723038(12,4,c)

12,10 0.35996709(4,4,s)-0.39795859(5,4,c)-0.06710616(6,4,s)-0.32130806(7,4,c)-0.35711394(8,4,s)-

0.39429912(10,4,s)+0.48825208( 11,4,c)+0.28795537(12,4,s)

12,11 0.56279844(5,4,s)+0.45439821(7,4,s)-0.69049271(11,4,s)

0.18454194(6,6,c)-0.391 4 7257(7,6,s)-0.53802759(8,6,c)+0.54232614(9,6,s)+0.41183200(10,6,c)-
12,12

0.22941573(1 1,6,s)-0.08285523(12,6,c)
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E.5. Cystallographic Point Group 6

n,, Coefficients of the Expansion of the Symmetrized Hyperspherical Harmonics

0,1 1.00000000(0,0,c)

4,1 0.44721360(0,0,c)+0.53452248(2,0,c)+0.71713717(4,0,c)

4,2 0.53452248(2,2,c)-0.70710678(3,2,s)-0.46291005(4,2,c)

6,1 0.48795004(2,2,s)+0.40824829(3,2,c)+0.13957263(4,2,s)+0.57735027(5,2,c)-0.49236596(6,2,s)

8,1 0.33333333(0,0,c)+0.37986859(2,0,c)+0.40229114(4,0,c)+0.44946657(6,0,c)+0.61703353(8,0,c)

0.4413674 1(2,2,c)-0.27524094(3,2,s)+0.24584459(4,2,c)-0.42365927(5,2,s)-0.49472744(7,2,s)-
8,2

0.49472744(8,2,c)

8,3 0.31289311 (4,4,c)-0.55470020(5,4,s)-0.60302269(6,4,c)+0.43852901(7,4,s)+0.19611614(8,4,c)

0.40394327(2,2,s)+0.20197163(3,2,c)+0.27097338(4,2,s)+0.3202563 1(5,2,c)+0. 13351147(6,2,s)+
10,1

0.40816431 (7,2,c)-0.07430205(8,2,s)+0.43594180(9,2,c)-0.48995628(10,2,s)

0.35478744(4,4,s)+0.48038446(5,4,c)-0.25332020(6,4,s)+0. 18421903(7,4,c)-0.49491340(8,4,s)-
10,2

0.48507125(9,4,c)+0.25498133(10,4,s)

0.39223227(0,0,c)-0.12642791(2,0,c)+0.49598049(4,0,c)+0.10676525(6,0,c)+0.29367108(8,0,c)+
12,1

0.27986801 (10,0,c)+0.39775062(12,0,c)+0.50000000(12,12,c)

0.44474959(1,0,c)-0.45993311(3,0,c)+0.27967106(5,0,c)-0.10857496(7,0,c)+0.02542464(9,0,c)-
12,2

0.00291641(11,0,c)-0.70710678(12,12,s)

0.56892559(2,0,c)-0.04065414(4,0,c)+0.36774696(6,0,c)+0.21390857(8,0,c)+
12,3

0.29352011(10,0,c)+0.39689062(12,0,c)-0.50000000(12,12,c)

0.38839304(2,2,c)-0.09146026(3,2,s)+0.17853236(4,2,c)-0.33755924(5,2,s)+0.26653969(6,2,c)-

0.24864709(7,2,s)+0.01282681 (8,2,c)-0.39865719(9,2,s)-0.10299171(10,2,c)+
12,4

0.09747754(10,10,c)-0.37245661( 11,2,s)+0.13495155(11,10,s)-0.46610074(12,2,c)-

0.09332764(12,10,c)

0. 10482848(2,2,s)-0.21926450(3,2,c)-0.31332712(4,2,s)+0.35275259(5,2,c)+0.32917948(6,2,s)-

0.25983856(7,2,c)-0. 17425376(8,2,s)+0.09846921(9,2,c)+0.04579053(10,2,s)+
12,5

0.36115756(10,10,s)-0.01662607(11,2,c)-0.50000000(1 1,10,c)-0.00410194(12,2,s)-

0.34578204(12,10,s)

0.25335246(3,2,s)-0.37544735(4,2,c)-0.27172884(5,2,s)+0.26715437(6,2,c)+0.33955076(7,2,s)-

12,6 0.1 8456544(8,2,c)+0.00948148(9,2,s)+0.07642462(10,2,c)+0.3477541 0(10,1 0,c)+

0.12166870(11,2,s)+0.48144374(11,10,s)+0. 12639077(12,2,c)-0.33294920(12,10,c)

0.37384128(4,4,c)-0.32297388(5,4,s)-0.1 5346224(6,4,c)-0.40947817(7,4,s)-0.25380183(8,4,c)+

0.05488623(8,8,c)+0.06546112(9,4,s)+0.10201378(9,8,s)-0.41763226(10,4,c)-
12,7

0.11620094(1 0,8,c)+0.45334140(11,4,s)-0.08834653(11,8,s)+0.28221985(12,4,c)+

0.04119178(12,8,c)
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12,8

0. 10090092(4,4,s)-0.223 10033(5,4,c)-0.3291 7 94 8 (6 ,4 ,s)+0. 3 70 854 08(7,4,c)+0.33367054(8,4,s)+

0.20335531(8,8,s)-0.24253563(9,4,c)-0.37796447(9,8,c)-0.14066741(10,4,s)-0.43052839(10,8,s)+

0.06220908(11,4,c)+0.32732684(11,8,c)+0.01834446(12,4,s)+0.15261692(12,8,s)

0.32 2 2 3077(5,4,s)-0.29885065(6,4,c)-0.27036871(7,4,s)+0.41767335(8,4,c)+0.19580829(8,8,c)+

12,9 0. 2 3 3 53 4 52(9,4,s)+0.36393726(9,8,s)-0.02902433(10,4,c)-0.41455040(10,8,c)-

0.19168109(11,4,s)-0.31517891(11,8,s)-0.06005640(12,4,c)+0.14695293(12,8,c)

12,10 0.26098171(6,6,c)-0.76088591(8,6,c)+0.58241841(10,6,c)-0.11717499(12,6,c)

0. 18454194(6,6,s)-0.39147257(7,6,c)-0.53802759(8,6,s)+0.54232614(9,6,c)+0.41183200(10,6,s)-
12,11

0.22941573(11,6,c)-0.08285523(12,6,s)

12,12 0.55362582(7,6,s)-0.76696499(9,6,s)+0.32444284(11,6,s)

0.25819889(0,0,c)-0.26986873(2,0,c)-0.16870346(4,0,c)+0.43800373(6,0,c)-0.34515908(8,0,c)+

14,1 0.14198182(10,0,c)-0.02995934(12,0,c)-0.49065338(12,12,c)+0.00221038(14,0,c)-

0.50917508(14,12,c)

14,2 0.35856858(1,0,c)-0.06517949(3,0,c)-0.35168417(5,0,c)+0.42557555(7,0,c)-0.23907119(9,0,c)+
0.07163761(11,0,c)+0.49065338(12,12,s)-0.00984467(13,0,c)+0.50917508(14,12,s)

0.1 3750477(2,2,c)+0.24753689(3,2,s)-0.27126499(4,2,c)-0. 17668546(5,2,s)-0.18029903(7,2,s)+

14,3 0.29293746(8,2,c)+0.31057362(9,2,s)-0.25335280(10,2,c)-0.35262987(10, 10,c)-

0.16542735(11,2,s)-0.33166248(11,10,s)+0.08616254(12,2,c)-0.03475240(12,10,c)+

0.03431933(13,2,s)-0.37416574(13,1 0,s)-0.00915182(14,2,c)+0.35276684(14, 10,c)

0.37560552(2,2,s)+0.02648903(3,2,c)+0.14993895(4,2,s)+0.25465896(5,2,c)+0.19120613(6,2,s)+

0.31987212(7,2,c)+0.22273124(8,2,s)+0. 19241091(9,2,c)-0.08099842(10,2,s)-

14,4 0.12909366(10,10,s)+0.39970269(11,2,c)+0.12141774(11,10,c)-0.10791059(12,2,s)-

0.01272245(12,10,s)+0.31912320(13,2,c)+0. 13697769(13,10,c)-0.44559984(14,2,s)+

0.12914380(14,10,s)

0.2 76423 4 9(3,2,c)+0.35048662(4,2,s)-0.08968362(5,2,c)+0.07522009(6,2,s)-0.06791204(7,2,c)-

0.2271681 5(8,2,s)+0.40943599(9,2,c)+0.24038793(10,2,s)+0.328 15035(10,1 O0,s)-
14,5

0.02052579(11,2,c)-0.30863851(11,1 0,c)-O. 13504194(12,2,s)+0.03233990(1 2,10,s)+

0. 16242190(13,2,c)-0.34819120(13,10,c)-0. 16546351(14,2,s)-0.32827781(14,1 0,s)

0. 13910372(4,4,c)+0.26098171(5,4,s)-0.29072345(6,4,c)-0. I 8029903(7,4,s)-0.02620112(8,4,c)-

0.2 3 9 52 3 88(8,8,c)-0.22332067(9,4,s)-0.348020 13(9,8,s)+0.32077105(10,4,c)+

14,6 0.21816795(10,8,c)+0.29875904(11,4,s)-0.08451543(11,8,s)-0.20367028(12,4,c)+

0.32837934(1 2,8,c)-0. 10125076(13,4,s)+0.34891135(13,8,s)+0.03267854(14,4,c)-

0.19286801(14,8,c)

0.3799731 8(4,4,s)+0.21313292(5,4,c)-0.07368261 (6,4,s)+0.3808001 5(7,4,c)-0.20585744(8,4,s)-

14,7 0.08768688(8,8,s)+0.25784294(9,4,c)+0. I 2740609(9,8,c)-0.22582792(10,4,s)+

0.07986873(10,8,s)-0.20815996(11,4,c)+0.03094011(11,8,c)-0.36587056(12,4,s)+

0. 12021582( 12,8,s)-0.40773386(13,4,c)-0. 12773235(1 3,8,c)+0.29908077(14,4,s)-
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0.07060671(14,8,s)

0.36429660(5,4,c)+0.28342439(6,4,s)-0.04394309(7,4,c)-0.05282820(8,4,s)+0.22289617(8,8,s)-

0.13854519(9,4,c)-0.32386062(9,8,c)-0.43354031(10,4,s)-0.20302276(10,8,s)+
14,8

0.23915633(11,4,c)-0.07864838(1 1,8,c)+0.07493106(12,4,s)-0.30558329(12,8,s)-

0.26920556(13,4,c)+0.32468997(13,8,c)+0.08254143(14,4,s)+0. 17947913(14,8,s)

0.24296075(6,6,s)+0.42557555(7,6,c)-0.40936780(8,6,s)-0. 14888045(9,6,c)-0.20999394(10,6,s)-
14,9

0.45034100( 1,6,c)+0.46241938(1 2,6,s)+0.30645235( 13,6,c)-0. 12433397(14,6,s)



E.6. Cystallographic Point Group 222

n,, Coefficients of the Expansion of the Symmetrized Hyperspherical Harmonics

0,1 1.00000000(0,0,c)

4,1 0.6 3245553(0,0,c)+0.59160 79 8 (4 ,0,c)+0.50000000(4,4,c)

4,2 0.75592895(2,0,c)+0.4225771 3 (4 ,0,c)-0.50000000(4,4,c)

4,3 0.7 55 9 2 89 5( 2 ,2 ,c)-0.65465367(4,2,c)

4,4 1.00000000(3,2,s)

6,1 0. 3 7 7 9 6 44 7 (0,0,c)-0.56407607(4,0,c)-0.47673129(4,4,c)+0.19738551 52223297(6,4,c)

8,1 0.5 7 7 35 02 7(0,0,c)+0.27097338(4,0,c)+0.22901431( 4 ,4,c)-0.07784989(6,0,c)+0.20597146(6,4,c)+
0.503831 4 7 (8 ,0,c)+0.26794565(8,4,c)+0.40824829(8,8,c)

0.67098171(2,0,c)-0.07591750(4,0,c)+0.08982680(4,4,c)+0.2 13 7 4 669(6,0,c)+0.08078865(6,4,c)+
8,2

0.39823215(8,0,c)+0.10509693(8,4,c)-0.56044854(8,8,c)

0.67098171(2,2,c)+0.11761089(4,2,c)+0. I 2773808(6,2,c)+0.18946619(6,6,c)-0.67255224(8,2,c)-
8,3

0.17722939(8,6,c)

8,4 0. 6 030 2 2 6 9 (3 ,2 ,s)+0.58710899(7,2,s)+0.54006172(7,6,s)

0.49090710(4,0,c)-0.31116917(4,4,c)+0.63466306(6,0,c)-0.27986010(6,4,c)+0. 17114304(8,0,c)-
8,5

0.36406645(8,4,c)+0.13867505(8,8,c)

8,6 0.64940905(4,2,c)-0.32387514(6,2,c)-0.48038446(6,6,c)-0.20169401(8,2,c)+0.44935852(8,6,c)

8,7 0.4 4 2 4 9 768(4,4,c)-0.85280287(6,4,c)+0.27735010(8,4,c)

8,8 0.78446454(5,2,s)+0.41 9 85 9 5 6( 7 ,2 ,s)-0.45643546(7,6,s)

8,9 0.78446454(5,4,s)-0.62017367(7,4,s)

0.426401 4 3(0,0,c)-0.29268470(4,0,c)-0.24736372(4,4,c)+0.08010688(6,0,c)-0.21194288(6,4,c)-

10,1 0.4 24 6 9 32 7(8,0,c)-0.22585869(8,4,c)-0.34412360(8,8,c)+0.21385976(10,0,c)-0.30476098(10,4,c)-

0.36273813(10,8,c)

0. 2 89 6 8 2 73 (2 ,0,c)+0.2 0906050(4,0,c)-0.24736372(4,4,c)-0.56074816(6,0,c)-0.21194288(6,4,c)-

10,2 0.1 5 8 7 23 75 (8 ,0,c)-0.22585869(8,4,c)+0.34412360(8,8,c)+0. 18095826(10,0,c)-

0.30476098(10,4,c)+0.36273813(10,8,c)

10,3 0.28968273(2,2,c)-0.323875 14(4,2,c)-0.335111 12(6,2,c)-0.49705012(6,6,c)+0.4351 5890(8,2,c)-

0.07254763(8,6,c)-0.09760163(10,2,c)+0.49767260(10,6,c)

10,4 0.43452409(3,2,s)-0.49327022(7,2,s)-0.45374261(7,6,s)+0.26052505(9,2,s)-0.54232614(9,6,s)

0.55470020(0,0,c)+0.18781254(4,0,c)+0. I 5 8 7 3057(4,4,c)-0.05032962(6,0,c)+0.3315966(6,4,c)+

12,1 0. 2 5380277(8,0,c)+0.13497638(8,4,c)+0.20565319(8,8,c)-0.10457949(10,0,c)+

0.14903106(10,4,c)+0.17738244(10,8,c)+0.45182779(12,0,c)+0.20406918(12,4,c)+

0.22636748(12,8,c)+0.35355339(12,12,c)

12,2 0. 62 5 7 8 622 (2,0,c)-0.09582272(4,0,c)+0.11337898(4,4,c)+0.25164810(6,0,c)+0.09511404(6,4,c)-
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0.02746783(8,0,c)+0.09641170(8,4,c)-0.02937903(8,8,c)+0.10871670(10,0,c)+

0. 10645076(10,4,c)-0.02534035(10,8,c)+0.38510913(12,0,c)+0.14576370(12,4,c)-

0.03233821(12,8,c)-0.55558390(12,12,c)

0.62578622(2,2,c)+0.14844793(4,2,c)+0.15038850(6,2,c)+0.22306220(6,6,c)-0.04776561(8,2,c)+

12,3 0.09290464(8,6,c)+0.09204712(1 0,2,c)-0.02607500(10,6,c)+0. 12099851(10, 10,c)-

0.64041139(12,2,c)-0.23606778(12,6,c)-0.11584725(12,10,c)

0.53545615(3,2,s)+0.25149461(7,2,s)+0.23134139(7,6,s)-0.14516015(9,2,s)+0.30217494(9,6,s)+
12,4

0.46295957(11,2,s)+0.31956640(11,6,s)+0.40949106(11,10,s)

0.58340853(4,0,c)-0.00953451(4,4,c)+0.15166192(6,0,c)-0.00799853(6,4,c)-0.16558015(8,0,c)-

0.00810766(8,4,c)-0.33044325(8,8,c)+0.41302841(1 0,0,c)-0.00895188(10,4,c)-
12,5

0.28501786(10,8,c)+0.22472726(12,0,c)-0.36372695(12,8,c)+

0.25484371(12,12,c)

0.58902222(4,2,c)-0.11926358(6,2,c)-0.17689648(6,6,c)+0.28955630(8,2,c)-0.07367677(8,6,c)-

12,6 0.30202226(10,2,c)+0.02067843(10,6,c)-0.41472611(10, 10,c)-0.24881807(12,2,c)+

0.18721037(12,6,c)+0.39707002(12,10,c)

0.58494024(4,4,c)-0.13280267(6,0,c)-0.10632148(6,4,c)-0.26382074(8,0,c)-0.23335193(8,4,c)+

12,7 0.01465856(8,8,c)-0.16933267(10,0,c)-0.43328124(10,4,c)-0.19639934(10,8,c)-

0.03022304(12,0,c)+0.49841587(12,4,c)-0.00843598(12,8,c)+0.01590182(12,12,c)

0.64520508(5,2,s)-0.09470759(7,2,s)+0. 10295800(7,6,s)+0.27994728(9,2,s)+0. 13448232(9,6,s)+
12,8

0.38541447(11,2,s)+0.14222236(11,6,s)-0.54672941(11 ,10,s)

0.64520508(5,4,s)+0.13989238(7,4,s)+0.16772893(9,4,s)+0.26138665(9,8,s)-0.64532342(11,4,s)-
12,9

0.22636748(11,8,s)

0.28053143(6,0,c)-0.28263207(6,4,c)+0.55729308(8,0,c)-0.34593719(8,4,c)+0.15044584(8,8,c)+

12,10 0.35769714(1 0,0,c)-0.46510176(10,4,c)+0.03080415(10,8,c)+0.06384294(12,0,c)-

0.12005453(12,4,c)+0.15396757(12,8,c)-0.03359089(12,12,c)

0.62437262(6,2,c)-0.36833295(6,6,c)-0.15340941(8,6,c)-0.37921592(10,2,c)+

12,11 0.04305652(10,6,c)+0.27245399( 10,10,c)-0. 10521198(12,2,c)+0.38980849(12,6,c)-

0.26085484(12,10,c)

0.42263864(6,4,c)-0.59067932(8,4,c)-0.27691474(8,8,c)+0.04104661(10,4,c)+
12,12

0.58626279(10,8,c)+0.08493257(12,4,c)-0.20782282(12,8,c)

12,13 0.26098171(6,6,c)-0.76088591(8,6,c)+0.58241841(10,6,c)-0. 11717499(12,6,c)

0.57490653(7,2,s)-0.21033293(7,6,s)+0.62389569(9 277339896 26632231,2,s)-
12,14

0.29054610(11,6,s)+0.1 8276769(11,10,s)

12,15 0.67968621(7,4,s)-0.29918901 (9,4,s)-0.46625240(9,8,s)-0.26091723(11,4,s)+0.40378643( 11,8,s)

12,16 0.55362582(7,6,s)-0.76696499(9,6,s)+0.32444284( 1l,6,s)
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E. 7. Cystallographic Point Group 32

n,, Coefficients of the Expansion of the Symmetrized Hyperspherical Harmonics

0,1 1.00000000(0,0,c)

4,1 0.44721 3 6 0(0,0,c)+0.53452248(2,0,c)+0.71713717(4,0,c)

4,2 0.5 3 4 52248(2,2,c)-0.70710678(3,2,s)-0.46291005(4,2,c)

0.23145502(1,1,c)+0.38575837(2,1,s)-0.40824829(3,1,c)-0.31209389(4,1,s)+0.17251639(5,1,c)-6,1
0.50000000(5,5,c)+0.06154575(6,1 ,s)-0.50000000(6,5,s)

8,1 0.3 3 3 3 3 333(0,0,c)+0.37986859(2,0,c)+0.4022911 4 (4 ,0,c)+0.44946657(6,0,c)+0.61703353(8,0,c)

0.30276504(1,1 ,c)+0.04909652(2,1 ,s)-0.34855072(3, I,c)+0.31642874(4,1 ,s)-0.11450715(5,1 ,c)+
8,2 0.33187326(5,5,c)-0.37326273(6,1 ,s)+0.17837652(6,5,s)+0.15405792(7,1 ,c)+0.22124884(7,5,c)-

0.30151134(7,7,c)+0.09020708(8,1,s)+0.35675303(8,5,s)+0.30151134(8,7,s)

0.44536177(2,1 ,s)+0.21956631(3,1 ,c)-0.19933137(4,1 ,s)-0.40394327(5,1 ,c)+0.25087260(5,5,c)-

8,3 0.09958592(6,1 ,s)+0.13483997(6,5,s)+0.19652092(7,1,c)+0.1 6 7 24 84 0(7,5,c)+0.39886202(7,7,c)+

0.04474978(8,1 ,s)+0. 2 6 9 6 7994(8,5,s)-0.39886202(8,7,s)

0.441 36 7 4 1(2 ,2,c)-0.27524094(3,2,s)+0.24584459(4,2,c)-0.42365927(5,2,s)-0.49472744(7,2,s)-
8,4

0.4 9472744(8,2,c)

0.4 2 04 3 7 4 8(3 ,3 ,c)+0.4 6 9 33 9 6 6 (4 ,3 ,s)-0.09245003(5,3,c)+0.38924947(6,3,s)-0.56096819(7,3,c)-
8,5

0.35805744(8,3,s)

8,6 0.31289311( 4 ,4,c)-0.55470020(5,4,s)-0.60302269(6,4,c)+0.43852901 (7,4,s)+0.19611614(8,4,c)

0.30895719(1,1 ,c)-0.00912415(2,1 ,s)-0. 15003607(3,1 ,c)+0.17311854(4,1 ,s)-0.33493206(5,1 ,c)-

0.27735010(5,5,c)+0.19359163(6,1 ,s)-0. 10846523(6,5,s)+0.03512919(7,1 ,c)-0.20180184(7,5,c)+

10,1 0.2 7500955(7,7,c)-0.41001963(8,1,s)-0.17770466(8,5,s)-0.15018785(8,7,s)+0.13645910(9,1 ,c)-

0.1 5877684(9,5,c)+0. 17751790(9,7,c)+0. 11980362(1 0,1 ,s)-0.31545759(10,5,s)-

0.29083753(10,7,s)

0.37928372(2,1 ,s)+0.14992506(3,1 ,c)+0. 14992506(4,1 ,s)-0.24019223(5,5,c)-0.27749837(6,1 ,s)-

10,2 0.09393364(6,5,s)-0.39549603(7,1,c)-0.17476552(7,5,c)-0.31755367(7,7,c)-0.05999194(8,1 ,s)-
0.15389675(8,5,s)+0.17342199(8,7,s)+0.26665589(9,1 ,c)-0.13 7 50477(9,5,c)-0.20498002(9,7,c)+

0.05533492(10,1 ,s)-0.27319428(1 0,5,s)+0.33583025(10,7,s)

12,1 0.39223227(0,0,c)-0.12642791(2,0,c)+0.49598049(4,0,c)+0.10676525(6,0,c)+0.29367108(8,0,c)+
0.27986801(10,0,c)+0.39775062(12,0,c)+0.50000000(12,12,c)

0.30109690(1,1 ,c)-0.02382466(2,1 ,s)-0.02521365(3,1 ,c)+0.08056572(4,1 ,s)-0.28483698(5,1 ,c)+

0.24590434(5,5,c)+0.20345976(6,1 ,s)+0.07687976(6,5,s)-0.22501531(7, l,c)+0.18465922(7,5,c)-

12,2 0.25164810(7,7,c)+0.07194888(8,1,s)+0.11980846(8,5,s)+0.10125663(8,7,s)+0.11546539(9,1,c)+

0.15877684(9,5,c)-0.17751790(9,7,c)-0.41858859(10,1 ,s)+0.17403079(10,5,s)+

0.16044846(10,7,s)+0. 11665626(11,1 ,c)+0. 12878502(11,5,c)-0. 13710212(11,7,c)+

161



0. 14543942(12,1 ,s)+0.29293746(12,5,s)+0.27863 9 11(12,7,s)

0.56892559(2,0,c)-0.04065414(4,0,c)+0.36774696(6,0,c)+0. 2 1390857(8,0,c)+
12,3

0.29352011(10,0,c)+0.39689062(12,0,c)-0.50000000(1 2 ,12,c)

0.31318323(2,1,s)+0.10357562(3,1,c)+0.26231444(4,1,s)+0.09294310(5,1,c)+0.22447892(5,5,c)-

0.05183233(6,1,s)+0.07018130(6,5,s)-0.14085253(7,1,c)+0. 16857003(7,5,c)+0.27566668(7,7,c)-

0.27654755(8,1,s)+0. 10936966(8,5,s)-0. 11092108(8,7,s)-0.33729599(9,1 ,c)+0. 14494276(9,5,c)+
12,4

0.19446112(9,7,c)-0.01930698(10, 1 ,s)+0. 15886764(10,5,s)-0.17576248(10,7,s)+

0.31148941(11,1,c)+0.11756410(11,5,c)+0.15018785(11,7,c)+0.05974534(12,1,s)+

0.26741409(12,5,s)-0.30523385(12,7,s)

0.38839304(2,2,c)-0.09146026(3,2,s)+0. 17853236(4,2,c)-0.33755924(5,2,s)+0.26653969(6,2,c)-

0.24864709(7,2,s)+0.01282681(8,2,c)-0.39865719(9,2,s)-0. 10299171(10,2,c)+
12,5

0.09747754(10, 10,c)-0.37245661(11,2,s)+0. 13495155(11,10,s)-0.46610074(12,2,c)-

0.09332764(12,10,c)

0.25335246(3,2,s)-0.37544735(4,2,c)-0.27172884(5,2,s)+0.26715437(6,2,c)+0.33955076(7,2,s)-

12,6 0. 1 8456544(8,2,c)+0.00948 148(9,2,s)+0.07642462(10,2,c)+0.34775410(10, 10,c)+

0.12166870(11 ,2,s)+0.48144374(11,10,s)+0.12639077(12,2,c)-0.33294920(12,10,c)

0.39556103(3,3,c)+0.21706562(4,3,s)+0.07110372(5,3,c)+0.43882795(6,3,s)+0.02267913(7,3,c)+

12,7 0.26210973(8,3,s)-0.32676784(9,3,c)-0.06625304(9,9,c)+0. 16907972(10,3,s)+0. 10965089(10,9,s)-

0.46456543(11,3,c)+0. 10475525( 1,9,c)-0.38426547(12,3,s)-0.05779109(12,9,s)

0.27648288(4,3,s)+0.34387124(5,3,c)-0.25992751 (6,3,s)-0.34045481 (7,3,c)+0.33385690(8,3,s)+

12,8 0.08646488(9,3,c)+0.25891911 (9,9,c)-0.04473958(10,3,s)-0.42851938(10,9,s)-

0. 15404559(11,3,c)-0.40938706( 11,9,c)-0.08885931(12,3,s)+0.22584954(12,9,s)

0.37384128(4,4,c)-0.32297388(5,4,s)-0. 15346224(6,4,c)-0.40947817(7,4,s)-0.25380183(8,4,c)+

0.05488623(8,8,c)+0.06546112(9,4,s)+0. 10201378(9,8,s)-0.41763226(10,4,c)-
12,9

0.11620094(10,8,c)+0.45334140(11,4,s)-0.08834653( 11,8,s)+0.28221985(12,4,c)+

0.04119178(12,8,c)

0.32223077(5,4,s)-0.29885065(6,4,c)-0.27036871(7,4,s)+0.41767335(8,4,c)+0.19580829(8,8,c)+

12,10 0.23353452(9,4,s)+0.36393726(9,8,s)-0.02902433(10,4,c)-0.41455040(10,8,c)-

0. 19168109(11,4,s)-0.31517891(11,8,s)-0.06005640(12,4,c)+0.14695293(12,8,c)

12,11 0.26098171(6,6,c)-0.76088591(8,6,c)+0.58241841(10,6,c)-0. 11717499(12,6,c)

12,12 0.55362582(7,6,s)-0.76696499(9,6,s)+0.32444284(11,6,s)

0.25819889(0,0,c)-0.26986873(2,0,c)-0.16870346(4,0,c)+0.43800373(6,0,c)-0.34515908(8,0,c)+

14,1 0.14198182(10,0,c)-0.02995934(12,0,c)-0.49065338(12,12,c)+0.00221038(14,0,c)-

0.50917508(14,12,c)

0.28970428(1,1 ,c)-0.02688710(2,1 ,s)+0.04940193(3,1 ,c)+0.03193759(4,1 ,s)-0. 19415133(5,1 ,c)-

14,2 0.22422740(5,5,c)+0.14260138(6,1,s)-0.05880706(6,5,s)-0.27991425(7,1,c)-0.1 7106223(7,5,c)+

0.23311852(7,7,c)+0. 17620802(8,1 ,s)-0.08962978(8,5,s)-0.07575099(8,7,s)-0. 11753027(9,1,c)-
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0. 151 9 4 692(9,5,c)+0. 16988182(9,7,c)-0.02767341(10,1 ,s)-O. 12373722(10,5,s)-

0.11408008(10,7,s)+0.15566414(11,1,c)-0.13478318(11,5,c)+0.14348765(11,7,c)-

0.41013017(12,1 ,s)-O. 17032 279(12,5,s)-0.16200928(12,7,s)+0.09767017(13,1 ,c)-

0.11038178(13,5,c)+0.11501518(13,7,c)+0.16703318(14,1 ,s)-0.27778806(14,5,s)-

0.2 6 836876(14,7,s)

0.26092069(2,1,s)+0.07426782(3,1,c)+0.28726816(4,1,s)+0.10483136(5,1,c)-0.21034395(5,5,c)+

0.10185681(6,1,s)-0.05516591(6,5,s)-0.16047060(7,5,c)-0.24850518(7,7,c)-0.15945123(8,1,s)-

0.08 4 08019(8,5,s)+0.08075083(8,7,s)-0.21359588(9,1 ,c)-O. 14 2 53884(9,5,c)-0.18109463(9,7,c)-

14,3 0.24431158(10,1,s)-0.11607581(10,5,s)+0.12160978(10,7,s)-0.26788769(l 1,1,c)-

0.12643783(11,5,c)-0.15295835(11,7,c)+0.01352166(12,1 ,s)-0. 15977694(12,5,s)+

0. 1 7270248(12,7,s)+0.34074575(13,1 ,c)-O. 10354729(13,5,c)-0. 12260660(13,7,c)+

0.06104845(14,1 ,s)-0.26058830(14,5,s)+0.28608206(14,7,s)

0. 13 7 50 4 77(2,2,c)+0.24753689(3,2,s)-0.27126499(4,2,c)-0.17668546(5,2,s)-0.18029903(7,2,s)+

14,4 0.29293746(8,2,c)+0.31057362(9,2,s)-0.25335280(10,2,c)-0.35262987( 10,10,c)-

0.16542735(11,2,s)-0.33166248(11,1 0,s)+0.08616254(12,2,c)-0.03475240(12,10,c)+

0.03431933(13,2,s)-0.37416574(13,10,s)-0.00915182(14,2,c)+0.35276684(14,10,c)

0.13406661(3,3,c)-0.25038670(4,3,s)-0.28273019(5,3,c)+0.18766118(6,3,s)+0.19134595(8,3,s)+

0.30395938(9,3,c)+0.29001678(9,9,c)-0.30931494(10,3,s)-0.35661452(10,9,s)-
14,5

0.23639449(11,3,c)-0. 12344268(11,9,c)+0. 13955100(12,3,s)-0.22700174(12,9,s)+

0.06177480(13,3,c)-0.38813937(13,9,c)-0.01 806374(14,3,s)+0.26701366(14,9,s)

0.13910372(4,4,c)+0.26098171(5,4,s)-0.29072345(6,4,c)-0.18029903(7,4,s)-0.02620112(8,4,c)-

0.23952388(8,8,c)-0.22332067(9,4,s)-0.34802013(9,8,s)+0.32077105(10,4,c)+

14,6 0.21816795(10,8,c)+0.29875904(11,4,s)-0.08451543(11,8,s)-0.20367028(12,4,c)+

0.32837934(12,8,c)-0. 10125076(13,4,s)+0.34891135(13,8,s)+0.03267854(14,4,c)-

0.19286801(14,8,c)



E.8. Cystallographic Point Group 422

n,k Coefficients of the Expansion of the Symmetrized Hyperspherical Harmonics

0,1 1.00000000(0,0,c)

4,1 0.44721360(0,0,c)+0.53452248(2,0,c)+0.71713717(4,0,c)

4,2 0.53452248(2,2,c)-0.70710678(3,2,s)-0.46291005(4,2,c)

0.47140452(0,0,c)-0.10744306(2,0,c)+0.50571163(4,0,c)+0.25425669(6,0,c)+0.44254158(8,0,c)+
8,1

0.50000000(8,8,c)

8,2 0.64465837(2,0,c)+0.06321395(4,0,c)+0.38138504(6,0,c)+0.43007562(8,0,c)-0.50000000(8,8,c)

0.47445571(2,2,c)-0.13655775(3,2,s)+0.08316346(4,2,c)-0.52548465(5,2,s)+0.09032446(6,2,c)+
8,3

0.13397283(6,6,c)-0.41420286(7,2,s)+0.18344985(7,6,s)-0.47556625(8,2,c)-0.12532010(8,6,c)

0.40394327(3,2,s)-0.45920154(4,2,c)-0. 17764624(5,2,s)+0.2290143 1(6,2,c)+0.33968311(6,6,c)+
8,4

0.29820379(7,2,s)+0.46513025(7,6,s)+0. 14261920(8,2,c)-0.31774445(8,6,c)

8,5 0.44249768(4,4,c)-0.85280287(6,4,c)+0.27735010(8,4,c)

8,6 0.78446454(5,4,s)-0.62017367(7,4,s)

0.30151134(0,0,c)-0.20483662(2,0,c)-0.35478744(4,0,c)+0.45315295(6,0,c)-0.18806885(8,0,c)-
10,1

0.48666426(8,8,c)+0.02326488(10,0,c)-0.51298918(10,8,c)

0.20483662(2,2,c)+0.30725493(3,2,s)-0.22901431 (4,2,c)-0.23695935(6,2,c)-0.35146751(6,6,c)-

10,2 0.34879472(7,2,s)-0.32084447(7,6,s)+0.30770381 (8,2,c)-0.05129892(8,6,c)+0. 18421903(9,2,s)-

0.38348249(9,6,s)-0.06901477(10,2,c)+0.35190767(10,6,c)

0.39223227(0,0,c)+0.18964186(2,0,c)-0.03252331(4,0,c)+0.18980488(6,0,c)+0.57646546(8,0,c)+

12,1 0.29083753(8,8,c)+0.09784004(10,0,c)+0.25085666(10,8,c)+0.42570066(12,0,c)+

0.32013196(12,8,c)

0.25285582(2,0,c)+0.48784967(4,0,c)+0.28470732(6,0,c)-0.06888581(8,0,c)-0.29083753(8,8,c)+
12,2

0.47554808(10,0,c)-0.25085666(10,8,c)+0.36894057(12,0,c)-0.32013196(12,8,c)

0.44249768(2,2,c)-0.05666634(3,2,s)+0. 1 0496854(4,2,c)-0.06077652(5,2,s)+0. 10634073(6,2,c)+

0.1 5772879(6,6,c)-0.41597078(7,2,s)+0. 11153110(7,6,s)-0.03377538(8,2,c)+0.06569350(8,6,c)-

12,3 0.44322309(9,2,s)+0.14568039(9,6,s)+0.06508714(10,2,c)-0.01843781(10,6,c)+

0.08555887(10,10,c)-0.22844730(11,2,s)+0.15406492(11,6,s)-0.11845089(11,10,s)-

0.45283924(12,2,c)-0.16692513(12,6,c)-0.08191638(12,10,c)

0.37436021 (3,2,s)+0.00847410(4,2,c)-0.00919965(5,2,s)-0.44312254(6,2,c)+0.25785185(6,6,c)+

0. 11689443(7,2,s)+0.1 8232879(7,6,s)+0.00416576(8,2,c)+0. 10739441(8,6,c)-0. 17090299(9,2,s)+

12,4 0.23815536(9,6,s)+0.26374553(10,2,c)-0.03014176(10,6,c)-0. 19858073(10,10,c)+

0.29651121(11,2,s)+0.25186222(11,6,s)+0.27492258(11,10,s)+0.07080103(12,2,c)-

0.27288583(12,6,c)+0.19012658(12,10,c)

12,5 0.41641539(4,2,c)-0.45206900(5,2,s)-0.07533196(6,2,c)-0. 13035791(6,6,c)+0. 12112924(7,2,s)-
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0.09217696(7,6,s)+0.20470484(8,2,c)-0.05429362(8,6,c)-0. I 3 670900(9,2,s)-0.120 4 00 2 7(9,6,s)-

0.21897345(10,2,c)+0.01523827(10,6,c)-0.28927523(1 0, 10,c)-0.25035837( 11,2,s)-

0.12732983(11,6,s)+0.40048341(1 1,10,s)-0.17741818(12,2,c)+0.13795839(12,6,c)+

0.27695994(12,10,c)

12,6 0.50907034(4,4,c)-0.09490244(6,4,c)-0.50503537(8,4,c)-0.55762317(10,4,c)+0.40723038(12,4,c)

12,7 0.56 2 79844(5,4,s)+0.45439821 (7,4,s)-0.69049271(11,4,s)

0. 18454194(6,6,c)-0.39147257(7,6,s)-0.53802759(8,6,c)+0.54232614(9,6,s)+0.41183200(10,6,c)-
12,8

0.22941573(11,6,s)-0.08285523(12,6,c)

0.25819889(0,0,c)+0.04151827(2,0,c)-0.27684671(4,0,c)-0.26954076(6,0,c)+0.14373999(8,0,c)-

14.1 0.36721654(8,8,c)+0.39227028(10,0,c)-0.30102799(10,8,c)-0.32322332(12,0,c)-

0.31414766(12,8,c)+0.05746975(14,0,c)-0.41933925(14,8,c)

0.25169111 (2,2,c)+0.05548112(3,2,s)-0. 17410727(4,2,c)+0.25740645(5,2,s)-0.17437574(6,2,c)-

0.25864102(6,6,c)+0.09850160(7,2,s)-0.15101382(7,6,s)-0.02051777(8,2,c)-0.13887740(8,6,c)-

0.35457447(9,2,s)-0.20377149(9,6,s)-0.12901808(10,2,c)-0.04790284(10,6,c)-

14,2 0. 19264999(10, 10,c)-0.10041873(11,2,s)-0.23567400(11,6,s)+0. 18119501(11,10,s)+

0.31546917(12,2,c)+0.06830252(12,6,c)-0.01898605(12,10,c)+0. 18749459(13,2,s)-

0.23561074(13,6,s)+0.20441554(13,1 0,s)-0.09666388(14,2,c)+0.28677626(14,6,c)+

0.19272482(14,10,c)

0.33172883(3,2,s)+0.21030506(4,2,c)-0.04305082(5,2,s)-0. 11373985(6,2,c)-0. I 16870346(6,6,c)-

0. 15101382(7,2,s)-0.09850160(7,6,s)-0.36312817(8,2,c)-0.09058539(8,6,c)+0. I 13952345(9,2,s)-

0. 13291378(9,6,s)+0.21832953(10,2,c)-0.03124553(10,6,c)+0.29535370(1 0,1 0,c)-
14,3

0.26300769(11 ,2,s)-0. 15372279(11 ,6,s)-0.27779195(11, 10,s)+0. 10289915(12,2,c)+

0.04455160(12,6,c)+0.02910772(12,10,c)+0. 16327154(13,2,s)-0. 15368153(13,6,s)-

0.31339159(13,10,s)-0.05212425(14,2,c)+0.1 8705520(14,6,c)-0.29546842(14,10,c)

0.4 2008403(0,0,c)-0.05245930(2,0,c)+0.28511260(4,0,c)-0.15313928(6,0,c)+0.17198292(8,0,c)+

0.19431273(8,8,c)+0.30926235(10,0,c)+O. 15568989(10,8,c)+0.37108806(12,0,c)+
16,1

0.15434190(12,8,c)+0.00938434(14,0,c)+0.16841070(14,8,c)+0.34595886(16,0,c)+

0.22909889(16,8,c)+0.40824829(16,16,c)

0.53498197(2,0,c)-0.20269253(4,0,c)+0.28745951(6,0,c)+0.05605603(8,0,c)+0.07621572(8,8,c)+

16,2 0.26088383(10,0,c)+0.06106660(10,8,c)+0.25093613(12,0,c)+0.06053787(12,8,c)+

0. 1 3260978(14,0,c)+0.06605611(14,8,c)+0.31396898(16,0,c)+0.08985998(16,8,c)-

0.56044854(16,16,c)

0.42375295(2,2,c)-0.04620774(3,2,s)+0.09611791(4,2,c)-0.07192806(5,2,s)+0.09559410(6,2,c)+

0.14178897(6,6,c)+0.00434756(7,2,s)+0.07089449(7,6,s)+0.03422133(8,2,c)+0.08557827(8,6,c)-

16,3 0.29589156(9,2,s)+0.09725485(9,6,s)+0.07730408(10,2,c)+0.04834222(10,6,c)+

0. 12079164(1 0,10,c)-0.45773762(11,2,s)+0. 11626302(11,6,s)-0.08938737( 11,10,s)-

0.08708594(12,2,c)+0.00581170(12,6,c)+0.04433590(1 2,10,c)-0.27391043(1 3,2,s)+
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0. 12716867(13,6,s)-0. 11033136(13,1 0,s)+0.06228744(14,2,c)-0.05186054(14,6,c)-

0.01936239(14,10,c)+0.06089190(14,14,c)-0.14639638(15,2,s)+0.12285661(15,6,s)-

0. 11190921(15,10, s)+0.08475794(15,14,s)-0.42931098(16,2,c)-0. 16364360(16,6,c)-

0. 12552126(16,10,c)-0.05895833(16,14,c)

0.36192787(3,2,s)-0.02568830(4,2,c)-0.00918314(5,2,s)+0.11838469(6,2,c)+0. 17559288(6,6,c)+

0.08616018(7,2,s)+0.08779644(7,6,s)-0.38720420(8,2,c)+0. 10598099(8,6,c)-0.08967022(9,2,s)+

0.12044138(9,6,s)-0.16131976(10,2,c)+0.05986749(10,6,c)-0.20819168(0,1 O0,c)+

0.12864364(11,2,s)+0. 14398129(11,6,s)+0. 15406453(11,10,s)+0.21774103(12,2,c)+

16,4 0.00719727(12,6,c)-0.07641559(12,10,c)-0. 17735016(13,2,s)+0. 15748695(13,6,s)+

0.19016275(13,10,s)+0. 14260284(14,2,c)-0.06422461(14,6,c)+0.03337225(14,10,c)+

0. 16558914(14,14,c)+0.25364233(15,2,s)+0.15214685(15,6,s)+0.19288227(15,10,s)+

0.23049033(15,14,s)+0.0 2 2 4 5931 (16,2,c)-0.20265787(16,6,c)+0.21634346(16,10,c)-

0.16033099(16,14,c)

0.38739174(4,0,c)+0.35670052(6,0,c)+0.27646503(8,0,c)-0.26401901(8,8,c)-0.03069989(10,0,c)-

16,5 0.21154091(10,8,c)-0.04168882(12,0,c)-0.20970935(12,8,c)+0.50382928(14,0,c)-

0.22882508(14,8,c)+0.25062322(1 6,0,c)-0.31128409(1 6,8,c)+0.13867505(16,16,c)

0.39868682(4,2,c)+0.08603557(5,2,s)-0.00650734(6,2,c)-0.00965195(6,6,c)-0.4495943 1(7,2,s)-

0.00482598(7,6,s)+0. 1231168 1(8,2,c)-0.00582554(8,6,c)-0.00848089(9,2,s)-0.00662039(9,6,s)-

0. 15126611(10,2,c)-0.00329078(10,6,c)-0.21143846(10, 10,c)+0.00060700(11,2,s)-

0.00791433(11,6,s)+0. 15646718(11,10,s)+0. 19085924(12,2,c)-0.00039562(12,6,c)-
16,6

0.07760730(12,10,c)-0.27582279(13,2,s)-0.00865671(13,6,s)+0.19312836(13,10,s)-

0.16934515(14,2,c)+0.00353028(14,6,c)+0.03389269(14,10,c)-0.22538833(14,14,c)-

0.12433559(1 5,2,s)-0.00836317(1 5,6,s)+0. 19589029(15,1 0,s)-0.31372727(15,14,s)-

0.19750765(16,2,c)+0.01113965(16,6,c)+0.21971736(16,10,c)+0.21823131(16,14,c)

0.49189671(4,4,c)+0.07974594(6,4,c)-0.07028370(8,4,c)-0.43732843(10,4,c)-

16,7 0.46518786(12,4,c)+0.04428275(12,12,c)-0.35172596(14,4,c)-0.09766847(14,12,c)+

0.45008453(16,4,c)+0.03598866(16,12,c)

0.39066271(5,2,s)-0.41536004(6,2,c)+0. 1 8377342(6,6,c)+0.03219942(7,2,s)+0.09188671(7,6,s)+

0. 11091844(8,6,c)+0.16147645(9,2,s)+0. 1260525 1(9,6,s)-0. 14367473(10,2,c)+

0.06265660(10,6,c)+0.09462337(10, 10,c)-0. 14698549(11,2,s)+0. 15068910(11,6,s)-

0.07002251(11,10,s)+0.00294910(12,2,c)+0.00753257(12,6,c)+0.03473098(12,10,c)+
16,8

0. 10062619(13,2,s)+0. 16482397(1 3,6,s)-0.08642920( 13,10,s)+0.29232818(14,2,c)-

0.06721671(14,6,c)-0.01516773(14,10,c)-0.21703634(14,14,c)+0.27866579(15,2,s)+

0. 15923508(15,6,s)-0.08766523(15,1 0,s)-0.30210180(15,14,s)+. 10238618(16,2,c)-

0.21209931(16,6,c)-0.09832837(16,10,c)+0.21014454(16,14,c)

0.44083102(5,4,s)+0.21993970(7,4,s)+0.52475932(9,4,s)-0.18217503(13,4,s)+
16,9

0.22964829(13,12,s)-0.59426107(15,4,s)-0.20700217(15,12,s)
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0.3411 7845(6,4,c)-0.49356660(8,4,c)+0.30194134(10,4,c)-0.23724974(12,4,c)-

16,10 0.27325335(12,12,c)-0.02048543(14,4,c)+0.60267796(14,12,c)+0.07006342(16,4,c)-

0.22207343(16,12,c)

0.2 77 48073(6,6,c)-0.36577006(7,6,s)-0.31972789(8,6,c)-0.13975100(9,6,s)-0.26183214(10,6,c)+

0.02479605(10,10,c)+0.36754281(11,6,s)+0.05504819(11,10,s)-0.05511764(12,6,c)-

16,11 0.07903718(12,1 0,c)+0.29759840(13,6,s)-0.08304548(13,10,s)+0.46309692(14,6,c)+

0.06558258(14,10,c)-0.33416427(15,6,s)+0.03790490(15,10,s)-0. 15284669(16,6,c)-

0.01417182(16,10,c)

16,12 0.58529349(7,4,s)-0.24531108(9,4,s)+0.29019050(11,4,s)-0. 18122473(13,4,s)-

0.47235975(13,12,s)-0.27529859(15,4,s)+0.42577932(1 5,12,s)

0.23119572(7,6,s)-0.18605425(8,6,c)-0.30496168(9,6,s)+0.41627990(10,6,c)+

0.11362978(10, 10,c)+0.24061325(11,6,s)+0.25226249(11,10,s)-0.22852546(12,6,c)-

16,13 0.36219388(12,10,c)-0.21533166(13,6,s)-0.38056220(13,10,s)-0.02439284(14,6,c)+

0.30053715(14,10,c)+0. 10318956(15,6,s)+0.17370208(15,10,s)+0.02529031(16,6,c)-

0.06494343(16,10,c)

0. 15426804(8,8,c)-0.59900757(10,8,c)+0.70693007(12,8,c)-0.33940244(14,8,c)+
16,14

0.04946881(16,8,c)

16,15 0.37300192(9,8,s)-0.73029674(1 1,8,s)+0.54977166(13,8,s)-0. 15901999(15,8,s)



E.9. Cystallographic Point Group 622

n,X. Coefficients of the Expansion of the Symmetrized Hyperspherical Harmonics

0,1 1.00000000(0,0,c)

4,1 0.44721360(0,0,c)+0.53452248(2,0,c)+0.71713717(4,0,c)

4,2 0.53452248(2,2,c)-0.70710678(3,2,s)-0.46291005(4,2,c)

8,1 0.33333333(0,0,c)+0.37986859(2,0,c)+0.40229114(4,0,c)+0.44946657(6,0,c)+0.61703353(8,0,c)

0.44136741(2,2,c)-0.27524094(3,2,s)+0.24584459(4,2,c)-0.42365927(5,2,s)-0.49472744(7,2,s)-

0.49472744(8,2,c)

8,3 0.31289311(4,4,c)-0.55470020(5,4,s)-0.60302269(6,4,c)+0.43852901 (7,4,s)+0.19611614(8,4,c)

0.39223227(0,0,c)-0.12642791(2,0,c)+0.49598049(4,0,c)+0.10676525(6,0,c)+0.29367108(8,0,c)+

0.27986801(10,0,c)+0.39775062(12,0,c)+0.50000000(12,12,c)

0.56892559(2,0,c)-0.04065414(4,0,c)+0.36774696(6,0,c)+0.21390857(8,0,c)+
12,2

0.29352011(10,0,c)+0.39689062(12,0,c)-0.50000000(12,12,c)

0.38839304(2,2,c)-0.09146026(3,2,s)+0.1726653969(6,2,c)-

0.24864709(7,2,s)+0.0 1282681 (8,2,c)-0.39865719(9,2,s)-0.10299171(10,2,c)+
12,3

0.09747754(10,10,c)-0.37245661(11,2,s)+0. 13495155(11,10,s)-0.46610074(12,2,c)-

0.09332764(12,10,c)

0.25335246(3,2,s)-0.37544735(4,2,c)-0.27172884(5,2,s)+0.26715437(6,2,c)+0.33955076(7,2,s)-

12,4 0.18456544(8,2,c)+0.00948148(9,2,s)+0.07642462(10,2,c)+0.34775410(10,10,c)+

0.12166870(11,2,s)+0.48144374(11,10,s)+0.12639077(12,2,c)-0.33294920(12,10,c)

0.37384128(4,4,c)-0.32297388(5,4,s)-0. 1 5346224(6,4,c)-0.40947817(7,4,s)-0.25380183(8,4,c)+

0.05488623(8,8,c)+0.06546112(9,4,s)+0.10201378(9,8,s)-0.41763226(10,4,c)-
12,5

0.11620094(10,8,c)+0.45334140(11,4,s)-0.08834653(11,8,s)+0.28221985(12,4,c)+

0.04119178(12,8,c)

0.32223077(5,4,s)-0.29885065(6,4,c)-0.27036871(7,4,s)+0.41767335(8,4,c)+0.19580829(8,8,c)+

12,6 0.23353452(9,4,s)+0.36393726(9,8,s)-0.02902433(10,4,c)-0.41455040(10,8,c)-

0.19168109(11,4,s)-0.31517891(11,8,s)-0.06005640(12,4,c)+0.14695293(12,8,c)

12,7 0.26098171(6,6,c)-0.76088591(8,6,c)+0.58241841(10,6,c)-0. 11717499(12,6,c)

12,8 0.55362582(7,6,s)-0.76696499(9,6,s)+0.32444284(11,6,s)

0.25819889(0,0,c)-0.26986873(2,0,c)-0. 16870346(4,0,c)+0.43800373(6,0,c)-0.34515908(8,0,c)+

14,1 0.14198182(10,0,c)-0.02995934(12,0,c)-0.49065338(12,12,c)+0.00221038(14,0,c)-

0.50917508(14,12,c)

0. 13750477(2,2,c)+0.24753689(3,2,s)-0.27126499(4,2,c)-0. 17668546(5,2,s)-0. 18029903(7,2,s)+

14,2 0.29293746(8,2,c)+0.31057362(9,2,s)-0.25335280(10,2,c)-0.35262987(10,10,c)-

0.16542735(11,2,s)-0.33166248(11,10,s)+0.08616254(12,2,c)-0.03475240(12,10,c)+
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0.03431933(13,2,s)-0.37416574(13,10,s)-0.00915182(14,2,c)+0.35276684(14,10,c)

0.13910372(4,4,c)+0.26098171(5,4,s)-0.29072345(6,4,c)-0.1 8 029903(7,4,s)-0.02620112(8,4,c)-

0.2 3 9 52 388(8,8,c)-0.22332067(9,4,s)-0.34802013(9,8,s)+0.32077105(10,4,c)+

14,3 0.21816795(10,8,c)+0.29875904(11,4,s)-0.08451543(11,8,s)-0.20367028(12,4,c)+

0.32837934(12,8,c)-0.10125076(13,4,s)+0.34891135(13,8,s)+0.03267854(14,4,c)-

0. 192 8 6801(14,8,c)

0.34299717(0,0,c)+0.09637388(2,0,c)-0.01636829(4,0,c)+0.33157318(6,0,c)+0.40050356(8,0,c)-

16,1 0.07264034(10,0,c)+0.39482075(12,0,c)+0.29523677(12,12,c)+0.22567494(14,0,c)+

0.25044763(14,12,c)+0.37465184(16,0,c)+0.31640359(16,12,c)

0.28912165(2,0,c)+0.40920726(4,0,c)+0.07033370(6,0,c)+0.01483347(8,0,c)+

16,2 0.50848236(10,0,c)+0.07439388(12,0,c)-0.29523677(12,12,c)+0.30737144(14,0,c)-

0.25044763(14,12,c)+0.36772987(16,0,c)-0.31640359(16,12,c)

0.37013093(2,2,c)-0.02314463(3,2,s)+0.09995556(4,2,c)-0. 10636681 (5,2,s)+0.18970141(6,2,c)-

0.36244578(7,2,s)+0. 16231335(8,2,c)-0.21395260(9,2,s)+0. 16949229(10,2,c)+

0. 1382911 1(10,10,c)-0. 18035539(11,2,s)+0. 10233720(11,10,s)-0. 14676464(12,2,c)+
16,3

0.05075898(12,10,c)-0.39160466(1 3,2,s)+0. 12631540(13,10,s)-0.09949065(1 4,2,c)-

0.02216748(14,10,c)+0.06971350(14,14,c)-0.26993630(15,2,s)+0.12812185(15,10,s)-

0.09703708(15,14,s)-0.42220133(16,2,c)-0. 14370591(16,10,c)-0.0674998 1(16,14,c)

0.30704815(3,2,s)-0.1 1236674(4,2,c)-0.13750541(5,2,s)-0.34726827(6,2,c)+0.01666412(7,2,s)+

0.2 2 772453(8,2,c)-0.01612728(9,2,s)+0.06847412(10,2,c)+0.27400450(1 0,10,c)+

16,4 0.35869748(11,2,s)+0.20276686( 1,10,s)-0.21106038(12,2,c)+0. 10057182(12,10,c)-

0.09046626(1 3,2,s)+0.25027632(1 3,10,s)+0. 14486022(14,2,c)-0.04392176(14, 10,c)-

0. 18076694(14,14,c)+0.13387134(15,2,s)+0.25385553(15,10,s)+0.25161692(15,14,s)+

0.11486507(16,2,c)-0.28473319(16,10,c)+0. 17502683(16,14,c)

0.38197496(4,2,c)-0.3062613 1(5,2,s)-0.1 3567619(6,2,c)+0.26645221(7,2,s)+0. 19813538(8,2,c)-

0.2 5786850(9,2,s)-0.14490959(10,2,c)-0. 13187609(10, 10,c)-0. 17263812(11,2,s)-

0.09759001(11,10,s)+0. 13496999(12,2,c)-0.04840438(12,10,c)-0.05509514(13,2,s)-
16,5

0. 12045592(13,1 0,s)-O. 11653783(14,2,c)+0.02113918(14,10,c)-0.30248240(14,14,c)-

0. 14013532(15,2,s)-0. 12217856(15,10,s)+0.42103768(1 5,14,s)-0. 16552630(16,2,c)+

0.13703972(16,10,c)+0.29287732(16,14,c)

0.37871758(4,4,c)-0. 14402102(5,4,s)-0.00712098(6,4,c)-0.30426666(7,4,s)-0. 16926291(8,4,c)+

0. 10547532(8,8,c)-0.33898501(9,4,s)+0.12751344(9,8,s)-0.18843081(10,4,c)-0.03900479(10,8,c)-

16,6 0.11523046(11,4,s)+0.08321910(11,8,s)-0.20997905(12,4,c)-0.11277897(12,8,c)+

0.28568263(1 3,4,s)-0.01 789938(1 3,8,s)-0.32671455(14,4,c)-0. 10497700(14,8,c)+

0.36380728(15,4,s)-0. 14496573(15,8,s)+0.31146755(16,4,c)+0.09019348(16,8,c)

16,7 0.354 90779(5,4,s)-0.23865376(6,4,c)+0.10658139(7,4,s)-0. 11508301 (8,4,c)+0.22659734(8,8,c)-
0. 11719072(9,4,s)+0.27394282(9,8,s)+0.23760841 (10,4,c)-0.08379572(10,8,c)-
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0.03494890(11,4,s)+. 17878331(11,8,s)+0.38192568(12,4,c)-0.24228810(12,8,c)+

0.20644141(13,4,s)-0.03845403(1 3,8,s)-0.1 1463622(14,4,c)-0.22552678(14,8,c)-

0.31563946(15,4,s)-0.31143635(15,8,s)-0.09409776(16,4,c)+0.19376667(16,8,c)

0.38339473(6,6,c)-0.38567009(8,6,c)-0.48728620(10,6,c)-0.00725295(12,6,c)+
16,8

0.64721506(14,6,c)-0.21881336(16,6,c)

16,9 0.57509210(7,6,s)+0. 10114435(9,6,s)-0.43528575(11,6,s)-0.47611622(13,6,s)+0.49282711(15,6,s)

0. 10908397(8,8,c)-0.26375219(9,8,s)-0.4235623 1(10,8,c)+0.51639778(11,8,s)+

16,10 0.49987505(12,8,c)-0.38874727(13,8,s)-0.23999377(14,8,c)+0.11244411(15,8,s)+

0.03497973(16,8,c)

0.22941573(0,0,c)-0.05151401(2,0,c)-0.29947299(4,0,c)-0.04726000(6,0,c)+0.31637246(8,0,c)+

0.05684638(10,0,c)-0.39346377(12,0,c)-0.37495107(12,12,c)+0.29427784(14,0,c)-
18,1

0.30205120(14,12,c)-0.08937307(16,0,c)-0.31185079(16,12,c)+0.00856571(18,0,c)-

0.41343179(18,12,c)

0.1 8927455(2,2,c)+0.08765295(3,2,s)-0.25214292(4,2,c)+0.16717565(5,2,s)-0.10163710(6,2,c)-

0.14341137(7,2,s)+0. 10013128(8,2,c)-0.28061113(9,2,s)+0.03857101(10,2,c)-

0.26842588(10,1 0,c)+0.24457709(11,2,s)-0. 16619298(11,10,s)+0. 16484150(12,2,c)-

0. 13121826(12,1 0,c)+O. 12528823(13,2,s)-0.21210436(13,1 0,s)-0.28564403(14,2,c)-
18,2

0.03493165(14,10,c)-0. 18675343(14,14,c)-0.18992696(15,2,s)-0.23544823(15,10,s)+

0.17832408(15,14,s)+0. 14009035(16,2,c)+0.07971938(16,1 0,c)-0.0 1390808(16,14,c)+

0.05892784(1 7,2,s)-0.22802833(17,10,s)+0. 19534424(17,14,s)-0.01909082(18,2,c)+

0.28843556(18,10,c)+0.18678482(18,14,c)

0.28757317(3,2,s)+0.14189871(4,2,c)-0. 16808028(5,2,s)-0.21429232(6,2,c)-0. 11402575(7,2,s)-

0. 13203666(8,2,c)+0.13309157(9,2,s)+0.36772305(10,2,c)-0.16732461(10, 10,c)-

0.15846219(11,2,s)-0.10359722(11,10,s)-0.13558321(12,2,c)-0.08179556(12,10,c)+

0.2352673 1(13,2,s)-0.13221631(13,10,s)-0.08883110(14,2,c)-0.02177482(14,10,c)+
18,3

0.29959404(14,14,c)-0.16153463(15,2,s)-0.14676783(15,10,s)-0.28607147(15,14,s)+

0.07000689(16,2,c)+0.04969347(16,10,c)+0.02231165(16,14,c)+0.04220239(17,2,s)-

0. 14214259(17, 10,s)-0.31337560(17,14,s)-0.01 071907(18,2,c)+0. 17979774(18,10,c)-

0.29964438(18,14,c)

0. 17097154(4,4,c)+0.24748023(5,4,s)-0.15350305(6,4,c)+0.06062003(7,4,s)-0.21403821 (8,4,c)-

0.25085666(8,8,c)-0.1 6772893(9,4,s)-0.26138665(9,8,s)-0.03572746(10,4,c)+0.0 1700967(10,8,c)-

0.21169921(11,4,s)-0.22555654(11,8,s)+0.20654324(12,4,c)+0.18067547(12,8,c)+
18,4

0.02743408(1 3,4,s)-0.09453818( 13,8,s)+0. 18560165(14,4,c)+0.25891667(14,8,c)+

0.29411257(1 5,4,s)+0.10882354(15,8,s)-0.26379619(16,4,c)+0.18978635(16,8,c)-

0. 15771609(17,4,s)+0.33169449(17,8,s)+0.05848269(18,4,c)-0.22601170(18,8,c)
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n,, Coefficients of the Expansion of the Symmetrized Hyperspherical Harmonics

0,1 1.00000000(0,0,c)

6,1 0.3 7 7 9 64 4 7(0,0,c)-0.56407607(4,0,c)-0.47673129(4,4,c)+0. 19738551 (6,0,c)-0.52223297(6,4,c)

8,1 0.3 33 33 3 3 3(0,0,c)+0.36504196(4,0,c)+0.30851 6 7 7(4 ,4 ,c)+0. 22473329(6,0,c)-0.59458839(6,4,c)+
0.3 6360905(8,0,c)+0.19337312(8,4,c)+0.29462783(8,8,c)

8,2 0.4 49 4 6657(2,0,c)+0.04407382(4,0,c)-0.0521 4 885(4,4,c)+0.55470020(5,4,s)+0.26590801(6,0,c)+
0.10050378(6,4,c)-0.43852901( 7,4 ,s)+0.2 9 9 8 5590( 8,0,c)-0.03268602(8,4,c)-0.34860834(8,8,c)

8,3 0.4 4 9 4 6 65 7 (2 ,2,c)-0.06827887(4,2,c)-0.55470020(5,2,s)+0. 15891043(6,2,c)+0.23570226(6,6,c)-

0.29688554(7,2,s)+0.32274861( 7 ,6 ,s)-0. 404 8 4 3 92 (8 ,2 ,c)-0.22047928(8,6,c)

0.3 9 2 23 2 2 7(0,0,c)-0.09485966(4,0,c)-0.08017104(4,4,c)-0.1 4 2 3 5366(6,0,c)+0.37663239(6,4,c)+

0.1 4 9 554 72(8,0,c)+0.07953560(8,4,c)+0.12118230(8,8,c)-0.29579546(10,0,c)+
12,1

0.42152349(10,4,c)+0.50171331(10,8,c)+0.22096659(12,0,c)+0.05170704(12,4,c)+

0.18007423(12,8,c)+0.15625000(12,12,c)

0.35196040(2,0,c)-0.07058309(4,0,c)+0.083515 0 4 (4 ,4,c)-0.34384723(5,4,s)+0.04474308(6,0,c)+

0.01691129(6,4,c)+0.24132897(7,4,s)-0. I 9 4 3 74 66(8,0,c)+0.32569833(8,4,c)+0.02611798(8,8,c)-

12,2 0.2284341 6 (9,4 ,s)-0.35598892(9,8,s)-0.06855353(1 0,0,c)+0. 17980615(10,4,c)-

0. 19148454( 10,8,c)+0.22265007(11,4,s)+0.30829545(1 1,8,s)+0. 18912760(12,0,c)+

0.11209021(12,4,c)+0.00359359(12,8,c)-0.30869661(12,12,c)

0.35196040(2,2,c)+0.10934685(4,2,c)+0.34384723(5,2,s)+0.02673910(6,2,c)+0.03966050(6,6,c)+

0. 16338049(7,2,s)-0. 17761331 (7,6,s)-0.01415456(8,2,c)+0.37992461 (8,6,c)+0.38126709(9,2,s)+

12,3 0. 18315479(9,6,s)+0.07046470( 10,2,c)-0.26078289(10,6,c)+0.02689195(1 0,10,c)+

0.28226048(11,2,s)-0. 12267422(11,6,s)-0.22338127(11,10,s)-0.36224302(12,2,c)-

0.10842997(12,6,c)-0.02574708(12,10,c)

0.51887452(3,2,s)+0.15860264(7,2,s)+0. 14589321(7,6,s)-0.23302069(9,2,s)+0.48507125(9,6,s)+
12,4

0.41803503(11,2,s)+0.28855641(11,6,s)+0.36975499(11,10,s)

0.40455600(4,0,c)-0.0 1668811(4,4,c)-0. 19822379(5,4,s)-0.00610151 (6,0,c)+0.26683570(6,4,c)-

0. 2 82 4 3 066 (7,4 ,s)-0.3 358 62 3 2 (8 ,0,c)-0.07979529(8,4,c)-0.39259862(8,8,c)+0.05387300(9,4,s)+

12,5 0.08395500(9,8,s)+0. 14453240(1 0,0,c)+0.20469066( 10,4,c)+0.00986666(1 0,8,c)+

0.29018077(11,4,s)-0.07270716(11,8,s)+0. 13051130(12,0,c)+0.06288932(12,4,c)-

0.39118051(12,8,c)+0.19004099(12,12,c)

0.41431120(4,2,c)-0.29985643(5,2,s)-0.07495130(6,2,c)-0. 1111 7074(6,6,c)+0.28924120(7,2,s)-

0.314 4 3834(7,6,s)+0.20367045(8,2,c)-0.10803854(8,6,c)+0.13601819(9,2,s)+0.06534103(9,6,s)-
12,6

0.21786696(10,2,c)+0.05651020(10,6,c)-0.28781349(10, 10,c)-0.09098088(11,2,s)-

0.29368215(11,6,s)+0.33204978(11,1 0,s)-O. 17652167(12,2,c)+0. 12894241(12,6,c)+
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0.27556044(12,10,c)

0.40702507(4,4,c)+0.22499158(5,4,s)-0.17252518(6,0,c)+0.17191303(6,4,c)+0.32056959(7,4,s)-

0.34273197(8,0,c)-0.29443672(8,4,c)-0. 14099194(8,8,c)-0.06114791(9,4,s)-0.09529213(9,8,s)-

12,7 0.21998164(10,0,c)-0. 15262601(10,4,c)+0.08366972(10,8,c)-0.32936625(11,4,s)+

0.08252541(11,8,s)-0.03926303(12,0,c)+0.41429801(12,4,c)-0.13106456(12,8,c)+

0.02065820(12,12,c)

0.61205637(6,2,c)-0.41264832(6,6,c)-0.37173558(10,2,c)-0.07290334(10,6,c)+
12,8

0.26707962(10, 10,c)-0. 10313659(12,2,c)+0.40527795(12,6,c)-0.25570927( 12,10,c)

0.25819889(0,0,c)-0.02385706(4,0,c)-0.02016289(4,4,c)+0.15927408(6,0,c)-0.42139961(6,4,c)-

0.29457543(8,0,c)-0.15665993(8,4,c)-0.23869075(8,8,c)-

0.12817803(10,0,c)+0. 18266018(10,4,c)+
14,1

0.21740910(10,8,c)-0.16206879(12,0,c)-0.35636326(12,4,c)+0.32723714(12,8,c)-

0.22488280(12,12,c)+0.17222506(14,0,c)-0.17910682(14,4,c)-0.19219716(14,8,c)-

0.23337191(14,12,c)

0.24824313(2,0,c)+0. 13323932(4,0,c)-0.1 5765088(4,4,c)+0.26098171(5,4,s)-0.25639398(6,0,c)-

0.09690782(6,4,c)-0. I 8029903(7,4,s)+0.04653020(8,0,c)-0. 11790505(8,4,c)+0.0 1996032(8,8,c)-

0.22332067(9,4,s)-0.34802013(9,8,s)-0.24851092(10,0,c)-0. 15274812(10,4,c)-

14,2 0.01818066(10,8,c)+0.29875904(11,4,s)-0.08451543(1 1,8,s)-0. 12152302(12,0,c)-

0. 12413624(1 2,4,c)-0.02736494(12,8,c)+0.24447338(12,12,c)-0. 10125076(13,4,s)+

0.34891135(13,8,s)+0.15639076(14,0,c)-0.19743286(14,4,c)+0.01607233(14,8,c)+

0.25370201(14,12,c)

0.24824313(2,2,c)-0.20641346(4,2,c)-0.26098171(5,2,s)-0.15322471(6,2,c)-0.22726897(6,6,c)-

0. 12206302(7,2,s)+0. 13269649(7,6,s)+0.03966392(8,2,c)-0. 12203216(8,6,c)+0.37273246(9,2,s)+

0. 17905488(9,6,s)-0.16326565(10,2,c)-0.04209243( 10,6,c)-0.23873155(10, 10,c)+
14,3

0.05565805(11,2,s)+0.20708776(11,6,s)-0.22453656(11,10,s)+0.29417351(12,2,c)+

0.06001772(1 2,6,c)-0.02352749(1 2,10,c)-0. 15799323(1 3,2,s)+0.20703217(13,6,s)-

0.25331140(13,10,s)-0.08674138(14,2,c)+0.25199153(14,6,c)+0.23882428(14,10,c)

0.24253563(0,0,c)+0.25205881(4,0,c)+0.21302858(4,4,c)+0.01894607(6,0,c)-0.05012660(6,4,c)+

0. 17306592(8,0,c)+0.09203923(8,4,c)+0.14023313(8,8,c)+0.18548283(10,0,c)-

0.26432242(10,4,c)-0.31460660(10,8,c)+0.21780861(12,0,c)-0.14258865(12,4,c)+
16,1

0.45668536(12,8,c)+0.08698497(12,12,c)+0.14158322(14,0,c)-0.14724060(14,4,c)-

0.15800194(14,8,c)-0.19185098(14,12,c)+0.28151346(16,0,c)+0.17753466(16,4,c)+

0.08709763(16,8,c)+0.07069282(16,12,c)+0.23938511(16,16,c)

0.33074329(2,0,c)-0.07595849(4,0,c)+0.08987530(4,4,c)+0.09215524(5,4,s)+0.22315950(6,0,c)+

0.08434636(6,4,c)-0.06307880(7,4,s)+0.06987654(8,0,c)-0. 11378304(8,4,c)-0.01155750(8,8,c)+
16,2

0. 1 5540884(9,4,s)+0.24218719(9,8,s)+0. 15737581(10,0,c)-0.01 815374(10,4,c)+

0. 10803635(10,8,c)-0.05407081(11,4,s)-0.47417588(11,8,s)+0. 14982585(12,0,c)-
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0.13351623(12,4,c)-0.10404093(12,8,c)-0.04779322(12,12,c)-0.00431613(13,4,s)+

0.35696238(13,8,s)+0.13602188(13,12,s)+0. 14617015(14,0,c)-0.06845402(14,4,c)+

0.06677919(14,8,c)+0.10541104(14,12,c)-0.07293361(15,4,s)-0.10325042(15,8,s)-

0.12260847(15,12,s)+0.22603456(16,0,c)+0.09656469(16,4,c)+0.00786771(16,8,c)-

0.03884162(16,12,c)-0.32882073(16,16,c)

0.3 3074329(2,2,c)+0. 11767439(4,2,c)-0.09215524(5,2,s)+0.13336331 (6,2,c)+0. I 9780976(6,6,c)-

0.0 4 2 70455(7,2,s)+0.04642474(7,6,s)+0.00208785(8,2,c)-O. 134 0 0 9 4 4 (8 ,6 ,c)-0.25938450(9,2,s)-

0. 12 460428(9,6,s)+0.04360387(10,2,c)+0.15563588(10,6,c)+0.10317330(10, 10,c)-

0.32750357(11,2,s)+0.32770720(11,6,s)+O. 11452436(11,10,s)-0.02496799(12,2,c)-

16,3 0.12707890(12,6,c)-0.19133903(12,10,c)-0.27429628(13,2,s)+0.08689615(13,6,s)-

0.25130326(13,10,s)+0.01005589(14,2,c)+0.10243519(14,6,c)+0.16434880(14,10,c)+

0.06338764(14,14,c)-0.13508587(15,2,s)+0.03232437(15,6,s)+0.06272860(15,10,s)+

0.08823186(15,14,s)-0.36699792(16,2,c)-0. 16036683(16,6,c)-0.07705939(16, 10,c)-

0.06137482(16,14,c)

0.17316517(4,0,c)-0.20489179(4,4,c)+0. 14339438(5,4,s)+0.15944611(6,0,c)+0.06026496(6,4,c)+

0.4 3644299(7,4,s)+0. 12358063(8,0,c)-0.10596021(8,4,c)-0.08296968(8,8,c)+0.01775583(9,4,s)+

0.02767047(9,8,s)-0.01372294(10,0,c)+0.26489326(10,4,c)-0.23064550(10,8,c)+

0. 18091894(11,4,s)-0.05417574(11,8,s)-0.0 1 863502(12,0,c)+0. 12876092( 12,4,c)+

16,4 0.06686396(12,8,c)-0.09331588(12,12,c)-0.17224260(13,4,s)+0.04078381(13,8,s)-

0.21979170(13,12,s)+0.22521307(14,0,c)+0.14089293(14,4,c)-0.17939292(14,8,c)+

0.20581421(14,12,c)-0.36493701(15,4,s)-0.01 179661(15,8,s)+0. 19811756(15,12,s)+

0. 11202926(16,0,c)-0. 16827842(16,4,c)-0. 12790622(16,8,c)-0.07583796(16,12,c)+

0.06198813(16,16,c)

0.26826632(4,2,c)+0.1 4 3 39438(5,2,s)-0.09528728(6,2,c)-0.14133387(6,6,c)-0.29547330(7,2,s)+

0.32121334(7,6,s)+0.08284220(8,2,c)+0.16285231(8,6,c)+0.02963530(9,2,s)+0.01423634(9,6,s)-

0. 13322882(10,2,c)+0.30918514(10,6,c)-0. 10103827(10,10,c)-0.03176185(11,2,s)-

0. 12764092(11,6,s)+0. 13551994(11, 10,s)+0. 12906984(12,2,c)-0.03658125(12,6,c)-
16,5

0. 11003668(12,10,c)-0. 16357045(13,2,s)-0.22604145(13,6,s)+0.04229893( 13,10,s)-

0.04996707(14,2,c)-0.31226569(14,6,c)+0.07376775(14,10,c)-0. 19916024(14,14,c)-

0.02267152(15,2,s)+0.27289069(15,6,s)+0. 14399605(15,1 0,s)-0.27721933(15,14,s)-

0.11048896(16,2,c)+0.06555390(16,6,c)+0.11459159(16,10,c)+0. 19283608(16,14,c)

0.32444284(0,0,c)-0.21705727(4,0,c)-0.18344687(4,4,c)-0.08454434(6,0,c)+0.22368331(6,4,c)-

0.02278519(8,0,c)-0.01211753(8,4,c)-0.01846255(8,8,c)+0.07872753(10,0,c)-0. 11219072(10,4,c)-

0. 13353367(10,8,c)-0.13069869(12,0,c)+0.04807753(12,4,c)-0.21997219(12,8,c)-
18,1

0.06517790(12,12,c)+0.23971486(14,0,c)-0.24929338(14,4,c)-0.26751342(14,8,c)-

0.32482332(14,12,c)-0.26617642(16,0,c)+0.14279781(16,4,c)-0.24327420(16,8,c)-

0.38283300(16,12,c)-0.10163592(16,16,c)+0.09429909(18,0,c)-0.08360100(18,4,c)-
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0.06557639(18,8,c)-0.10962766(18,12,c)-0.10458250(18,16,c)

0.21 584035(2,0,c)+0.06109595(4,0,c)-0.07228971(4,4,c)-0.28374106(5,4,s)-0.23101905(6,0,c)-

0.08731699(6,4,c)+O. 19306134(7,4,s)-0.00792365(8,0,c)+0.08452636(8,4,c)-0.04569838(8,8,c)+

0.08333198(9,4,s)+0.12986352(9,8,s)-0. 13291633(10,0,c)+0.02938662(10,4,c)-

0. 10305327(10,8,c)-0. 12876876(11,4,s)+0. 11206221(11,8,s)+0. 18118473(12,0,c)-

0.21342447(1 2,4,c)-0. 15080060(12,8,c)-0.01 180751(12,12,c)+0.20842461(13,4,s)+

18,2 0.04696896(1 3,8,s)+0.30426096( 13,12,s)-0.04329424(14,0,c)-0.03726886(14,4,c)-

0. 17852419( 14,8,c)+0.14367880(14,12,c)-0.23744920(1 5,4,s)-0.05406630(1 5,8,s)+

0.05432561(15,12,s)-0. 16546105(16,0,c)+0.01297944(16,4,c)-0.16802074(16,8,c)+

0. 17504492(16,12,c)+0.19439389(16,16,c)+0.09417951(17,4,s)-0. 16479424( 17,8,s)-

0.30457370(17,12,s)+0.09852300(18,0,c)-0.08735331(18,4,c)-0.07971753(18,8,c)+

0.00822272(18,12,c)+0.20002967(18,16,c)

0.21584035(2,2,c)-0.09464944(4,2,c)+0.28374106(5,2,s)-0. 3806029(6,2,c)-0.20477650(6,6,c)+

0.13070314(7,2,s)-0. 14208930(7,6,s)-0.06529242(8,2,c)+0.07094175(8,6,c)-0. 13908491(9,2,s)-

0.06681423(9,6,s)-0.02951280(10,2,c)-0. 14722541 (l0,6,c)-0.08126484(10,1 O0,c)+

0.02506124(11,2,s)-0. 14568738(11 ,6,s)+0.08536072(11,10,s)+0.03104514(12,2,c)-

0. 16330240(1 2,6,c)-0.27134235(12,10,c)-0.27326643(13,2,s)-0.25154273(13,6,s)-

18,3 0.01653319(13, 10,s)-0. 10209798(14,2,c)+0. 18391951(14,6,c)-0.08806768(14, 10,c)-

0.06141288(14,14,c)-0.04944471(15,2,s)-0. 13761907(15,6,s)-0.05161727(15, 10,s)+

0.19546977(15,14,s)+0.24563590(16,2,c)-0.00712571(16,6,c)+0.25258229(16,10,c)-

0.00457360(16,14,c)+0.20185529(17,2,s)-0. 19096043(17,6,s)+0.07570006( 17,10,s)+

0.21412640(17,14,s)-0.08643761(18,2,c)+0.18807089(18,6,c)+0. 13098403(18,10,c)+

0.06142320(18,14,c)

0.46658692(3,2,s)-0.13978274(7,2,s)-0. 12858142(7,6,s)-0.12790739(11,2,s)-0.08829044(11,6,s)-

0.11313500(11,10,s)+0.22047577(13,2,s)-0.21872825(13,6,s)-0.31628052(13,10,s)-
18,4

0.34904243(15,2,s)-0.05544939(15,6,s)-0.39665971(15,10,s)-0.23207521(15,14,s)+

0.22048401(17,2,s)-0.13603285(17,6,s)-0.21197250(17,10,s)-0.25422565(17,14,s)

0. 1 8860259(4,0,c)-0.14126926(4,4,c)-0. 10880359(5,4,s)+0.13402983(6,0,c)+0.10899634(6,4,c)-

0. 1 5990797(7,4,s)-0.32349420(8,0,c)-0.07793844(8,4,c)+0.04668319(8,8,c)+0. 12904724(9,4,s)+

0.20110561(9,8,s)-0.00547588(10,0,c)-0. I 1974085(10,4,c)-0.01165113(10,8,c)+

0.28160992(11,4,s)+0. 17353864(11,8,s)+0. 1 3225675(12,0,c)+0.04444824(1 2,4,c)-

0.04830880(12,8,c)+0.32466787( 12,12,c)-0. 13380474(13,4,s)+0.07273576(13,8,s)-
18,5

0.15441905(13,12,s)-0.22626487(14,0,c)-0.18411262(14,4,c)-0.06622469(14,8,c)+

0.05780579(14,12,c)-0. 17993402(15,4,s)-0.08372663(15,8,s)-0.02757143(15,12,s)-

0.00417484(16,0,c)+0.02066939(16,4,c)-0.05151353(16,8,c)+0.02416485(16,12,c)-

0. 14568218(16,16,c)+0.11331348(17,4,s)-0.25519904(17,8,s)+0.15457777(17,12,s)+

0.07786968(18,0,c)-0.10262728(18,4,c)+0.03897839(1,8,c)+0.32973691(18,12,c)-

174



0.14990573(18,16,c)

0.2 5902943(4,2,c)-0. 12272906(5,2,s)-0.1 0335540(6,2,c)-0.15330083(6,6,c)+0.12211387(7,2,s)-

0.13275178(7,6,s)-0.24102672(8,2,c)-0.12392048(8,6,c)+0.24295240(9,2,s)+0.11671056(9,6,s)+

0.05808990(10,2,c)-0.05949348(10,6,c)+0.06461298(10, 10,c)-0.24440014(11,2,s)-

0.00709532(11,6,s)+0.28184940(11,10,s)-0.21823411(12,2,c)-0.01758887(12,6,c)+

18,6 0.06014465(12,10,c)-0. 10711192(13,2,s)-0.20864026(13,6,s)+0.06962153(13, 10,s)+

0.20615176(14,2,c)-0.01126063(14,6,c)+0.01796345(14,10,c)+0.27344741(14,14,c)+

0. 10900297(15,2,s)+0.07611023(15,6,s)+0.00037884(15,10,s)-0. 18277350(15,14,s)+

0.11787237(16,2,c)+0.08010360(16,6,c)-0.04735757(16,10,c)+0.02036443(16,14,c)+

0.00600900(17,2,s)-0.06946066(17,6,s)+0.29095499(17,10,s)-0.20021834(17,14,s)-

0.07314393(18,2,c)+0.19024558(18,6,c)-0.07481310(18,10,c)-0.27349336(18,14,c)

0. 15691133(4,4,c)+0.05678204(5,4,s)-0. 11698513(6,0,c)+0.06756851 (6,4,c)+0.08345222(7,4,s)-

0.2 4 239836(8,0,c)-0.1 7802041(8,4,c)-0.35757118(8,8,c)-0.06734673(9,4,s)-0. 10495229(9,8,s)+

0.07917337(10,0,c)-0.04626371(10,4,c)-0. 12336228(10,8,c)-0. 14696560(11,4,s)-

0.09056574(11,8,s)+0.38169793(12,0,c)+0.35296700(12,4,c)+0.00207409(12,8,c)+

0.24302221(12,12,c)+0.06982955(13,4,s)-0.03795909(13,8,s)+0.08058768(13,12,s)+
18,7

0.09956210(14,0,c)+0.11534431(14,4,c)+0.05522904(14,8,c)-0.00507183(14,12,c)+

0.09390334(1 5,4,s)+0.04369496(15,8,s)+0.01438888(15,12,s)-0. 13005623(16,0,c)-

0.09965534(16,4,c)-0.01119235(16,8,c)-0.04024823(16,12,c)-0.03861591(16,16,c)-

0.05913565(17,4,s)+0. 13318238(17,8,s)-0.0806705 1(17,12,s)-0.04529146(1 8,0,c)+

0.14132392(18,4,c)-0.37575550(18,8,c)+0.24011337(18,12,c)-0.03973544(18,16,c)

0.25582460(6,2,c)-0.I 7247691(6,6,c)-0.54499850(10,2,c)-0. 10688300(10,6,c)+

0.39156325(10,10,c)+0.02601278(12,2,c)-0.10221790(12,6,c)+0.06449417(12,10,c)+

18,8 0.32735998(14,2,c)+0.10463604(14,6,c)+0.00849269(14,10,c)-0.24304537(14,14,c)-

0.00881879(16,2,c)+0.02283584(16,6,c)+0.00889275(16,10,c)-0.01810030(16,14,c)-

0.04762007(18,2,c)+0.17509730(18,6,c)-0.39682702(18,10,c)+0.24308622(18,14,c)

0.30860670(0,0,c)+0.10692591 (4,0,c)+0.09036889(4,4,c)+0.03714749(6,0,c)-0.09828302(6,4,c)+

0.01725994(8,0,c)+0.00917911(8,4,c)+0.01398551(8,8,c)-0.19286659(10,0,c)+

0.27484465(10,4,c)+0.32713056(10,8,c)+0.08617657(12,0,c)+0.14664311(12,4,c)-

0.11220149(12,8,c)+0.10473850(12,12,c)-0.09159011(14,0,c)+0.09524987(14,4,c)+

20,1 0.10221137(14,8,c)+0.12410830(14,12,c)-0.03471280(16,0,c)+0.35160510(16,4,c)-

0.20421064(16,8,c)-0.38862315(16,12,c)+0.12041342(16,16,c)-0.11958361(18,0,c)+

0.07568431(18,4,c)+0.21322666(18,8,c)-0.00850202(18,12,c)+0.17727782(18,16,c)+

0.23966156(20,0,c)+0.06328644(20,4,c)+0.09644250(20,8,c)+0.11474053(20,12,c)+

0.13216473(20,16,c)+0.16601562(20,20,c)

20,2 0.35053725(2,0,c)-0.02186478(4,0,c)+0.02587075(4,4,c)+0.06978870(5,4,s)+0.07228427(6,0,c)+
0.02732089(6,4,c)-0.04729098(7,4,s)-0.09437620(8,0,c)+0.08727756(8,4,c)+0.05918961(8,8,c)-
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0. 12124603(9,4,s)-0. 1 8894829(9,8,s)+0.07964932(10,0,c)+0.05164711(10,4,c)+

0.00356666(10,8,c)+0.05925982(11,4,s)+0.29431297(11,8,s)-0. 13771997(12,0,c)+

0. 16617974(12,4,c)+0. 11652586(12,8,c)+0.00547550(12,12,c)+0.02352125(13,4,s)-

0.14941331(13,8,s)-0.02718092(13,12,s)+0.00651766(14,0,c)+0.18420576(14,4,c)-

0.08013918(14,8,c)-0.07056325(14,12,c)-0.08842723(15,4,s)+0. 19814656(15,8,s)+

0.37115597(15,12,s)-0.07229762(16,0,c)+0.16761426(16,4,c)+0.03788113(16,8,c)+

0.11155041(16,12,c)-0.08601 102(16,16,c)+0.09202859(17,4,s)-0.23107847(17,8,s)-

0.26882778(17,12,s)-0.04061394(17,16,s)-0.06309614(18,0,c)+0.12337954(18,4,c)+

0.03279498(18,8,c)-0.03776827(18,12,c)-0. 13649215(18,16,c)+0.00713361(19,4,s)+

0.06272445(1 9,8,s)-0.05227723(19,12,s)+0.0374442 1(19,16,s)+0.20861601(20,0,c)+

0.05848529(20,4,c)+0.06519505(20,8,c)-0.00352024(20,12,c)-0.09505955(20,16,c)-

0.28321854(20,20,c)

0.35053725(2,2,c)+0.03387277(4,2,c)-0.06978870(5,2,s)+0.04319811 (6,2,c)+0.06407316(6,6,c)-

0.03201615(7,2,s)+0.03480522(7,6,s)+0.05749033(8,2,c)+0. 12931555(8,6,c)+0.20236519(9,2,s)+

0.09721309(9,6,s)+0.05372779(10,2,c)+0.0 1047046(10,6,c)+0.07763925(1 0, 10,c)+

0.21277827(11,2,s)-0. 19101281(11 ,6,s)-0.09149518(11, 10,s)-0.02825759(12,2,c)+

0. 12485992(12,6,c)+0.20928990(12,10,c)+0.09016904(1 3,2,s)-0.06369569(13,6,s)+

0.10690552(13,10,s)+0.07992799(14,2,c)-0.02449760(14,6,c)-0.17348645(14,10,c)+

20,3 0.09104689(14,14,c)+0.28364683(15,2,s)-0.23917610(15,6,s)-0.21719653(15, 10,s)+

0.00176882(15,14,s)-0.11704211(16,2,c)-0.00654495(16,6,c)+0.15781088(16,10,c)+

0. 12630079(16,14,c)+0.23020271(17,2,s)-0. 13808150( 17,6,s)+0.02704592(17,10,s)+

0.25098429(17,14,s)+0.07675479(18,2,c)-0.10470569(18,6,c)-0.11438020(18,10,c)-

0.09626379(18,14,c)+0.03363876( 18,18,c)+0.01 736304(19,2,s)+0.0297086 1(19,6,s)-

0.06713229(19,10,s)+0.04133877(19,14,s)-0.02684227(19,18,s)-0.32194583(20,2,c)-

0.10936078(20,6,c)-0.11421302(20,10,c)-0.10355924(20,14,c)-0.03278701(20,18,c)

0.20851441 (3,2,s)+0.34400370(7,2,s)+0.31643738(7,6,s)+0.05925242(9,2,s)-0. 12334375(9,6,s)+

0.17037471(11,2,s)+0. 11760429(11,6,s)+0. 15069765(11,1 0,s)-0.08698030(13,2,s)+

0.08629088(13,6,s)+0. 12477640(13,10,s)+0.0 1496693(1 5,2,s)+0.36039503(15,6,s)-
20,4

0.37603127(15,10,s)+0. 15822169(15,14,s)+0. 12124201(17,2,s)-0.07480314(17,6,s)-

0.11656162(17,10,s)-0.13979621(17,14,s)+0.30612521(19,2,s)+0.23733290(19,6,s)+

0.15430446(19,10,s)+0. 13606844(19,14,s)+0.28433458(19,18,s)

0.30739555(4,0,c)-0.04216267(4,4,c)+0.05604690(5,4,s)-0. 15031300(6,0,c)+0. 17813815(6,4,c)-

0. 12866275(7,4,s)+0.07014134(8,0,c)+0.05953192(8,4,c)-0.06438866(8,8,c)-0.05997538(9,4,s)-

0.09346488(9,8,s)+0. 15826749(10,0,c)-0.07389257(10,4,c)+0.03670440(10,8,c)-
20,5

0.09919828(11,4,s)+0.02673559(11,8,s)-0. 19673798(12,0,c)+0.05491651(12,4,c)-

0.23173425(12,8,c)-0.18836313(12,12,c)+0.00857445(13,4,s)+0.28763904(13,8,s)+

0.12612022(13,12,s)+0.0 1936822(14,0,c)+0.18394210(14,4,c)+0.19696950(14,8,c)+
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0.22830071(14,12,c)-0.04733037(15,4,s)-0.05934859(15,8,s)-0.06725873(15,12,s)-

0.07787541(16,0,c)-0.07623106(16,4,c)-0.06797752(16,8,c)-0.07214721(16,12,c)-

0.19857047(16,116,c)+0.14308718(17,4,s)-0.19552245(17,8,s)+0.07396372(17,12,s)+

0.06889338(17,16,s)+0.06926878(18,0,c)+0.12901359(18,4,c)-0.03766574(18,8,c)+

0.23447827(18,12,c)-0.17207688(18,16,c)+0.06585236(19,4,s)+0.03791770(19,8,s)-

0.10876601(19,12,s)-0.06351656(19,16,s)+0. 10702618(20,0,c)+0.04495160(20,4,c)-

0.0 6 587844(20,8,c)-0.15053777(20,12,c)-0.20996729(20,16,c)+0.2315 4 952(20,20,c)

0.33140192(4,2,c)+0.08053781(5,2,s)+0.06235437(6,2,c)+0.09248648(6,6,c)+0.12516754(7,2,s)-

0.13607146(7,6,s)+0.15271195(8,2,c)-0.00971961(8,6,c)-0.14384324(9,2,s)-0.06910006(9,6,s)-

0.04121460(10,2,c)-0. 19424246(10,6,c)-0. 11038602(10, O10,c)+0.02779190(11,2,s)+

0.09738445(11,6,s)-0. 10741950(11,10,s)+0. 10698042(12,2,c)+0.00063542(12,6,c)-

0.04214190(12,10,c)+0.33726383(1 3,2,s)-0.07882514(1 3,6,s)+0.28961565(13,1 0,s)-

0.10072026(14,2,c)-0.08926523(14,6,c)-0.10965708(14,1 0,c)-. 17792327(14,14,c)+

20,6 0.11074713(15,2,s)-0.02067183(15,6,s)-0.04851812(15,1 0,s)-0.07869874(15,14,s)+

0.11581606(16,2,c)+0.07104721(16,6,c)+0.04920921(16,10,c)+0.05738413(16,14,c)+

0.04044778(17,2,s)+0.06469281(17,6,s)+0.28397958(17,10,s)-0.23631810(17,14,s)-

0.18834503(18,2,c)+0.15817212(18,6,c)+0.05189256(18,10,c)-0.06611706(18,14,c)-

0. 15618356(18,18,c)+0.08510509(19,2,s)-0. 13293121(19,6,s)-0.00807971 (19,10,s)-

0. 11590170(19,14,s)+0.07917938(19,18,s)-0.20253351(20,2,c)-0.05879517(20,6,c)+

0.12108955(20,10,c)+0. 17102010(20,14,c)+0.15222891(20,18,c)

0.31160203(4,4,c)-0.05783669(5,4,s)-0.00036929(6,0,c)+0.22754086(6,4,c)+0. 13277143(7,4,s)-

0.02117700(8,0,c)-0.03420177(8,4,c)+0.10793496(8,8,c)+0.06189062(9,4,s)+0.09644956(9,8,s)-

0.09513539(1 0,0,c)-0.02091651(10,4,c)-0.15353045(10,8,c)+0.10236605(11,4,s)-

0.02758935(11,8,s)-0.21844143(12,0,c)-0.04449253(12,4,c)-0.26415037(12,8,c)-

0.06527373(1 2,12,c)-0.00884827(13,4,s)-0.29682444(13,8,s)-0. 13014771(13,12,s)-

0.29170262(14,0,c)+0.09275706(14,4,c)+0.09996599(14,8,c)+0.13259481(14,12,c)+

20,7 0.04884180(15,4,s)+0.06124382(15,8,s)+0.06940655(15,12,s)-0.21993970(16,0,c)-

0.08136711(16,4,c)-0.0379661 1(16,8,c)-0.03081449(16,12,c)-0.03866808(16,16,c)-

0. 14765650(17,4,s)+0.20176622(17,8,s)-0.07632566(17,12,s)-0.07109341(17,16,s)-

0.08361088(18,0,c)-0.04834930(18,4,c)-0.27013890(18,8,c)+0. 13218452(18,12,c)+

0.08204324(18,16,c)-0.06795527(1 9,4,s)-0.03912856(19,8,s)+0.11223932(19,12,s)+

0.06554488(19,16,s)-0.01066830(20,0,c)+0.36275618(20,4,c)+0.04291719(20,8,c)-

0.04364674(20,12,c)-0.03321840(20,16,c)-0.00038403(20,20,c)

0.35835701(5,2,s)+0.09508115(6,2,c)+0.14102814(6,6,c)-0.02557322(7,2,s)+0.02780102(7,6,s)-

20,8 0.05568802(8,2,c)-0.25864373(8,6,c)+0.23953680(9,2,s)+0.11506976(9,6,s)+0.01264681(10,2,c)+

0. 11408703(10,6,c)+0.04874425(1 0, 10,c)-0.04007385(11,2,s)+0.02523733(11,6,s)+

0.02561122(11,10,s)-0.03770717(12,2,c)-0.03633689(12,6,c)-0.04238231(12,10,c)+
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0. 12291815(13,2,s)+0. 16160493(13,6,s)-0.02607523(1 3,10,s)-0.00574301(14,2,c)+

0.13825671(14,6,c)-0.37411358(14,10,c)+0.03871446(14,14,c)-0.01255876(15,2,s)+

0. 10006259(1 5,6,s)+0.05426451(15,10,s)-0.09776751 (15,14,s)+0.05230422(16,2,c)-

0.21060168(16,6,c)+0. 18296858(16,10,c)-0.20129131(16,14,c)+0.09553091(17,2,s)+

0. 12793964(17,6,s)-0.00711988(17,10,s)+0.02032943(17,14,s)-0.02216420(18,2,c)+

0. 15496060(1 8,6,c)+0.17650828(18,10,c)+0. 17218010(18,14,c)+0.07019728(18,18,c)+

0.26967647(1 9,2,s)+0.09868386(19,6,s)+0.01957189(19,1 0,s)-0.09449283( 19,14,s)-

0.33811658(19,18,s)-0.01967032(20,2,c)-0.05576575(20,6,c)-0.02375874(20,10,c)-

0.01775177(20,14,c)-0.06841985(20,18,c)

0.35835701(5,4,s)-0. 15910119(6,0,c)-0.06013460(6,4,c)+0.03777415(7,4,s)-0. 16190808(8,0,c)+

0.19700543(8,4,c)+0.07051502(8,8,c)+0.14351720(9,4,s)+0.22365540(9,8,s)-0.08909906(10,0,c)+

0.03341262(10,4,c)-0.08060241(10,8,c)+0.02299269( 1,4,s)+0.04868375( 11,8,s)-

0.04833616(12,0,c)+0.01791377(12,4,c)+0.02146805(12,8,c)+0.03768682(12,12,c)+

0. 12423930(13,4,s)-0.02310906(13,8,s)+0. 16104505(13,12,s)+0.07817405(14,0,c)-

0.22646196(14,4,c)+0.31968873(14,8,c)-0.03178983(14,12,c)-0. 13008890(15,4,s)-

20,9 0.00096983(15,8,s)+0.07582417(15,12,s)-0.07572089(16,0,c)+0.00796601(16,4,c)+

0.30747876(1 6,8,c)-0.14338407(16,12,c)+0.01 360886(16,16,c)+0.06831740(17,4,s)+

0.06830528(17,8,s)-0.02021224(17,12,s)+0. 12734705(17,16,s)-0.20585604( 18,0,c)+

0.09908378(18,4,c)-0.00572225(18,8,c)-0.07932139(18,12,c)-0.17808405(18,16,c)-

0.33837982(19,4,s)-0.21865394(19,8,s)-0.17321531(19,12,s)-0.11740818(19,16,s)-

0.06369914(20,0,c)+-0.01352495(20,4,c)+0.05257209(20,8,c)+0.02884363(20,12,c)+

0.00178809(20,16,c)+0.03490182(20,20,c)

0.20865829(6,0,c)+0.07886542(6,4,c)+0.06858624(8,0,c)+0.27678287(8,4,c)-0.26630527(8,8,c)+

0.09074973(9,4,s)+0.14142324(9,8,s)-0.1 0020897(10,0,c)-0.07194027(10,4,c)+

0.00136165(10,8,c)-0.38524776(11,4,s)+0. 19454818(11,8,s)+0.02273093(12,0,c)+

0.05724576(12,4,c)+0.02147825(12,8,c)-0.07584297(12,12,c)-0. 15652982(13,4,s)-

0.01648108(13,8,s)-0.22103167(13,12,s)-0. 14728391(14,0,c)-0.12295979(14,4,c)-

0.00876887(14,8,c)-0.00710321(14,12,c)+0.21517453(15,4,s)+0.07235784(15,8,s)-

20,10 0.01166869(15,12,s)-0. 10376367(16,0,c)-0.08487318(16,4,c)-0.01572707(16,8,c)-

0.00015682(16,12,c)+0.19073734(16,16,c)+0.15206132(17,4,s)-0.07956213(17,8,s)-

0.03777364(17,12,s)+0. 14333506(17,16,s)+0. 11855009(18,0,c)+0.18406167(18,4,c)+

0.08258651(18,8,c)+0.00540018(1 8,12,c)-0.09768658(1 8,16,c)+0.02582884(19,4,s)-

0.20752869(19,8,s)+0.21811915(19,12,s)-0. 13214840(19,16,s)+0.05593948(20,0,c)+

0.08044285(20,4,c)-0.25337435(20,8,c)-0.07598285(20,12,c)+0.18423133(20,16,c)-

0.05838005(20,20,c)

0.35437360(6,2,c)-0.14425339(6,6,c)-0. 12343669(8,2,c)+0.06010538(8,6,c)-0.05329775(9,2,s)-
20,11

0.02560341(9,6,s)+0.24027674( 1 0,2,c)+0.05015177(10,6,c)-0.22603151(10, 10,c)-
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0.00572851(11,2,s)-O. 1642944(11642944(,6,s)+0.0973379 (11,10,s)+0.06479953(12,2,c)-

0.38789595(12,6,c)+0.25440403(12, 10,c)+0.06704309(13,2,s)+0.06798371(13,6,s)-

0.00028007(13,10,s)-0.03603568(14,2,c)-0.01537902(14,6,c)+0.00210649(14,10,c)-

0.05508415(14,14,c)+0.02714301(15,2,s)+0.03680490(15,6,s)+0.00900296(15,10,s)-

0.06500472(15,14,s)-0.0 1091734(16,2,c)+0.25620012(16,6,c)+0.09229774(16,10,c)-

0.17831408(16,14,c)-0.01937349(17,2,s)-0.05942888(17,6,s)-0.02967787(17,10,s)+

0.03974275(17,14,s)-0.22131894(18,2,c)-0.01012656(18,6,c)-0.28063484(18,10,c)+

0.14340409(18,14,c)+0.25460258(18,18,c)-0.01149902(19,2,s)-0.03288947(19,6,s)+

0.09213321(19,10,s)-0.05869253(19,14,s)+0.0 1792089(19,18,s)-0.09698626(20,2,c)+

0. 12 063543(20,6,c)+0.16541605(20,10,c)+0.07315743(20,14,c)-0.24815589(20,18,c)

0.25182101(6,6,c)-0.32835653(8,2,c)+0.15988759(8,6,c)-0.14177848(9,2,s)-0.06810818(9,6,s)-

0. 16641088(10,2,c)-0.02457668(10,6,c)-0.02249161(10, 10,c)-0.0 1523852( 1,2,s)-

0.30971641(11 ,6,s)+0.25893063(1 1,10,s)-0. 12598437(12,2,c)+0. 14055915(12,6,c)-

0.06298368(12,10,c)+0. 1 7834274(13,2,s)+0. 18084490(13,6,s)-0.00074502(13,10,s)-

0.09585926(14,2,c)-0.04091007(14,6,c)+0.00560351(14,10,c)-0. 14653052(14,14,c)+

20,12 0.07220368(1 5,2,s)+0.09790550(15,6,s)+0.02394898(1 5,10,s)-0. 17292042(15,14,s)+

0.23698837(16,2,c)-0.00734817(16,6,c)-0.02273753(16,10,c)+0.07168108(16,14,c)-

0.05153583(17,2,s)-0. 15808801(17,6,s)-0.07894673(17,10,s)+0. 10572054(17,14,s)+

0.25589230(18,2,c)-0.04479837(18,6,c)+0.05049144(18,10,c)-0.07486187(18,14,c)+

0.09862218(18,18,c)-0.03058878(1 9,2,s)-0.08748998(1 9,6,s)+0.24508550(19, 0,s)-

0.15612924(19,14,s)+0.04767174(19,18,s)+0.05402543(20,2,c)-0.29080507(20,6,c)+

0.03534201(20,10,c)+0. 13832813(20,14,c)-0.09612501(20,18,c)



E.11. Cystallographic Point Group 432

n,X Coefficients of the Expansion of the Symmetrized Hyperspherical Harmonics

0,1 1.00000000(0,0,c)

0.33333333(0,0,c)+0.36504196(4,0,c)+0.30851677(4,4,c)+0.22473329(6,0,c)-0.59458839(6,4,c)+
8,1

0.36360905(8,0,c)+0.19337312(8,4,c)+0.29462783(8,8,c)

0.44946657(2,0,c)+0.04407382(4,0,c)-0.05214885(4,4,c)+0.55470020(5,4,s)+0.26590801 (6,0,c)+
8,2

0. 10050378(6,4,c)-0.43852901(7,4,s)+0.29985590(8,0,c)-0.03268602(8,4,c)-0.34860834(8,8,c)

0.44946657(2,2,c)-0.06827887(4,2,c)-0.55470020(5,2,s)+0. 15891043(6,2,c)+0.23570226(6,6,c)-
8,3

0.29688554(7,2,s)+0.32274861(7,6,s)-0.40484392(8,2,c)-0.22047928(8,6,c)

0.27735010(0,0,c)-0.28171881 (4,0,c)-0.23809585(4,4,c)-0.01 677654(6,0,c)+0.04438655(6,4,c)+

0.44415485(8,0,c)+0.23620867(8,4,c)+0.35989308(8,8,c)-0.18301410(10,0,c)+
12,1

0.26080436(1 0,4,c)+0.31041927(10,8,c)+0.10535554(12,0,c)-0.1 9046457(12,4,c)+

0.39614309(12,8,c)

0.11826248(2,0,c)+0.22817079(4,0,c)-0.26997532(4,4,c)-0.39795859(5,4,s)+0. 13315966(6,0,c)+

0.05032962(6,4,c)-0.32130806(7,4,s)-0.03221839(8,0,c)+0.26783545(8,4,c)-0. 13602680(8,8,c)+
12,2

0.22241725(1 0,0,c)+0.29572434(10,4,c)-0. 11732746(10,8,c)+0.48825208(11,4,s)+

0.17255615(12,0,c)-0.21596652(12,4,c)-0.14972801(12,8,c)

0.11826248(2,2,c)-0.35348067(4,2,c)+0.39795859(5,2,s)+0.07957812(6,2,c)+0. 11803342(6,6,c)-

0.21752658(7,2,s)+0.23647633(7,6,s)-0. 19658475(8,2,c)+0.22941573(8,6,c)+0.22887667(10,2,c)-
12,3

0.14085045(10,6,c)+0.28011547(10,10,c)+0.18053364(11,2,s)+0.23538707(11,6,s)-

0.38780230( 11,10,s)+0.04454082(12,2,c)-0.15787909(12,6,c)-0.26819014(12,10,c)

0.36689969(3,2,s)-0.4327892 1(6,2,c)+0.29178643(6,6,c)+0. 11214901(7,2,s)+0. 10316208(7,6,s)-

0.1647705 1(9,2,s)+0.34299717(9,6,s)+0.26285675( 10,2,c)+0.05155045(10,6,c)-
12,4

0.18885381(10,10,c)+0.29559541(11,2,s)+0.20404020(11 ,6,s)+0.26145626(11,10,s)+

0.07292858(12,2,c)-0.28657478(12,6,c)+0.18081376(12,10,c)

0.24253563(0,0,c)+0.25205881(4,0,c)+0.21302858(4,4,c)+0.01894607(6,0,c)-0.05012660(6,4,c)+

0.17306592(8,0,c)+0.09203923(8,4,c)+0.14023313(8,8,c)+0.18548283(10,0,c)-

0.26432242(10,4,c)-0.31460660(10,8,c)+0.21780861(12,0,c)-0.14258865(12,4,c)+
16,1

0.45668536(12,8,c)+0.08698497(12,12,c)+0.14158322(14,0,c)-0.14724060(14,4,c)-

0.15800194(14,8,c)-0.19185098(14,12,c)+0.28151346(16,0,c)+0.17753466(16,4,c)+

0.08709763(16,8,c)+0.07069282(16,12,c)+0.23938511(16,16,c)

0.33074329(2,0,c)-0.07595849(4,0,c)+0.08987530(4,4,c)+0.09215524(5,4,s)+0.22315950(6,0,c)+

16,2 0.08434636(6,4,c)-0.06307880(7,4,s)+0.06987654(8,0,c)-0. 11378304(8,4,c)-0.0 1155750(8,8,c)+

0.1 5540884(9,4,s)+0.24218719(9,8,s)+0. 15737581( 10,0,c)-0.01815374(10,4,c)+

0.10803635(10,8,c)-0.05407081(11,4,s)-0.47417588(11,8,s)+0.14982585(12,0,c)-

180



0.13351623(12,4,c)-0.10404093(12,8,c)-0.04779322(12,12,c)-0.00431613(13,4,s)+

0.35696238(13,8,s)+0.13602188(13,12,s)+0. 14617015(14,0,c)-0.06845402(14,4,c)+

0.06677919(14,8,c)+0.10541104(14,12,c)-0.07293361(15,4,s)-0.10325042(15,8,s)-

0.12260847(15,12,s)+0.22603456( 16,0,c)+0.09656469(16,4,c)+0.00786771(16,8,c)-

0.03884162(16,12,c)-0.32882073(16,16,c)

0.33074329(2,2,c)+0.11767439(4,2,c)-0.09215524(5,2,s)+0.13336331(6,2,c)+0.19780976(6,6,c)-

0.0 4 2 70455(7,2,s)+0.04642474(7,6,s)+0.00208785(8,2,c)-O. 13400944(8,6,c)-0.25938450(9,2,s)-

0. 1 2460428(9,6,s)+0.04360387(10,2,c)+0. 15563588(10,6,c)+0.10317330(10,10,c)-

0.32750357(11,2,s)+0.32770720(11,6,s)+0. 11452436(11,10,s)-0.02496799(12,2,c)-

16,3 0. 12707890(12,6,c)-0. 19133903(12,10,c)-0.27429628(13,2,s)+0.08689615(13,6,s)-

0.25130326(13,10,s)+0.01005589(14,2,c)+0.10243519(14,6,c)+0.16434880(14,10,c)+

0.06338764(14,14,c)-0. 13508587(15,2,s)+0.03232437(15,6,s)+0.06272860(15,10,s)+

0.08823186(15,14,s)-0.36699792(16,2,c)-0. 16036683(16,6,c)-0.07705939(16, 10,c)-

0.06137482(16,14,c)

0. 17316517(4,0,c)-0.20489179(4,4,c)+0. 14339438(5,4,s)+0. 15944611 (6,0,c)+0.06026496(6,4,c)+

0.43644299(7,4,s)+0. 12358063(8,0,c)-0. 10596021(8,4,c)-0.08296968(8,8,c)+0.01775583(9,4,s)+

0.02767047(9,8,s)-0.01372294(10,0,c)+0.26489326(10,4,c)-0.23064550(10,8,c)+

0. 18091894(11,4,s)-0.05417574(11,8,s)-0.0 1 863502(12,0,c)+0. 12876092(12,4,c)+

16,4 0.06686396(12,8,c)-0.09331588(12,12,c)-0.17224260(13,4,s)+0.04078381 (13,8,s)-

0.21979170(13,12,s)+0.22521307(1 4,0,c)+0. 14089293(14,4,c)-0. 17939292(14,8,c)+

0.20581421(14,12,c)-0.36493701(15,4,s)-0.01 179661(15,8,s)+0. 19811756(15,12,s)+

0. 11202926(16,0,c)-0. 16827842(16,4,c)-0. 12790622(16,8,c)-0.07583796(16,12,c)+

0.06198813(16,16,c)

0.26826632(4,2,c)+0. 14339438(5,2,s)-0.09528728(6,2,c)-0. 14133387(6,6,c)-0.29547330(7,2,s)+

0.32121334(7,6,s)+0.08284220(8,2,c)+0.16285231 (8 ,6 ,c)+0.0 2 963530(9,2,s)+0.01423634(9,6,s)-

0. 13322882(10,2,c)+0.30918514(10,6,c)-0. 10103827(10, 1 0,c)-0.03176185(11,2,s)-

0.12764092(11,6,s)+0. 13551994(11,10,s)+0. 1 2906984(12,2,c)-0.03658125(12,6,c)-
16,5

0. 11003668(12,10,c)-0. 16357045(13,2,s)-0.22604145(13,6,s)+0.04229893(13,10,s)-

0.04996707(14,2,c)-0.31226569(14,6,c)+0.07376775(14,10,c)-0. 19916024(14,14,c)-

0.02267152(15,2,s)+0.27289069(15,6,s)+0. 14399605(15,1 0,s)-0.27721933(15,14,s)-

0.11048896(16,2,c)+0.06555390(16,6,c)+0.11459159(16,10,c)+0. 19283608(16,14,c)

0.22941573(0,0,c)-0.09178109(4,0,c)-0.07756918(4,4,c)-0.08926889(6,0,c)+0.23618327(6,4,c)-

0.27389653(8,0,c)-0. 14566256(8,4,c)-0.22193490(8,8,c)+0. 10350913(10,0,c)-0. 14750574(10,4,c)-

0.17556695(10,8,c)+0.19012686(12,0,c)+0.26980337(12,4,c)-0.17004792(12,8,c)+
18,1

0.21247228(12,12,c)+0.15789414(14,0,c)-0.16420327(14,4,c)-0.17620435(14,8,c)-

0.21395294(14,12,c)-0.27110993(1 6,0,c)+0.04526389(1 6,4,c)-0.19588976(16,8,c)-

0.28802885(16,12,c)-0.14373490(16,16,c)+0.06376261(18,0,c)-0.00409707(18,4,c)-
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0.26916934(18,8,c)+0.18087641(18,12,c)-0.14790199(18,16,c)

0. 18731716(2,0,c)-0.03004842(4,0,c)+0.03555377(4,4,c)-0. 1 8526992(5,4,s)-0.28641429(6,0,c)-

0. 10825443(6,4,c)+0.25716283(7,4,s)+0.07988926(8,0,c)+0.06676433(8,4,c)-0.14241317(8,8,c)-

0.09474068(10,0,c)+0.06760915(10,4,c)-0. 11265937(10,8,c)-0.26956980(11,4,s)+

0.18672626(12,0,c)-0.12366417(12,4,c)-0. 10911787(12,8,c)-0.0973 8651(12,12,c)+

18,2 0.25586728(13,4,s)+0.35059143(13,12,s)+0.08497167(14,0,c)+0.07526245(14,4,c)-

0.11306839(14,8,c)+0.09806517(14,12,c)-0.10523311(15,4,s)+0.06259789(15,12,s)-

0. 17165164(16,0,c)-0.02074667(16,4,c)-0. 12570029(16,8,c)+0. 13201781(16,12,c)+

0.22399467(16,16,c)+0.01823143(17,4,s)-0.35095179(17,12,s)+0.04079452(18,0,c)+

0.00187789(18,4,c)-0.17272299(18,8,c)-0.08290457(18,12,c)+0.23048861(18,16,c)

0. 18731716(2,2,c)+0.04655082(4,2,c)+0. 18526992(5,2,s)-0. 17116528(6,2,c)-0.25387913(6,6,c)+

0.17410006(7,2,s)-0.18926672(7,6,s)-0.17641225(8,2,c)+0.00324784(10,2,c)-0.15732751(10,6,c)-

0.03842437(10, 10,c)-0.09967478( 11,2,s)-0. 12996001(11,6,s)+0.21411028(11,1 0,s)-

0.08148170(12,2,c)-0. 15046067(12,6,c)-0.20560322(12,10,c)-0.29037033(13,2,s)-

0.32195926(1 3,6,s)+0.02024141(13,10,s)+0.0 1381564(14,2,c)+0. 15402008(14,6,c)-
18,3

0.06750489(14,10,c)+0.08255841(14,14,c)+0.01 124482(15,2,s)-0.08161929(15,6,s)-

0.04460786(15,10,s)+0.07883203(15,14,s)+0.27173723(16,2,c)+0.03361345(16,6,c)+

0.19567524(16,10,c)+0.00614837(16,14,c)+0.17816564(17,2,s)-0.20023493(17,6,s)+

0.21025016(17,10,s)+0.08635616(17,14,s)-0.11135469(18,2,c)+0.25773625(18,6,c)+

0.07650552(18,10,c)-0.08257228(18,14,c)

0.32992677(3,2,s)+0.1808953 1(6,2,c)-0. 12195959(6,6,c)-0.09884132(7,2,s)-0.09092079(7,6,s)-

0.38537213(10,2,c)-0.07557769(10,6,c)+0.27687703(1 0, 10,c)-0.09044418(11,2,s)-

0.06243077(11,6,s)-0.07999853( 1,10,s)+0.0 1839381(12,2,c)-0.07227897(12,6,c)+

0.04560426(12,10,c)+0.15589991(13,2,s)-0.15466423(13,6,s)-0.22364410(13,10,s)+

18,4 0.23147846(14,2,c)+0.07398885(14,6,c)+0.00600524(14,1 0,c)-0. 17185903(14,14,c)-

0.24681027(1 5,2,s)-0.03920864(15,6,s)-0.28048077(15,10,s)-0. 16410195(15,14,s)-

0.00623583(16,2,c)+0.01614738(16,6,c)+0.00628812(16,10,c)-0.01279885(16,14,c)+

0. 15590574(1 7,2,s)-0.09618975(17,6,s)-0.14988720(17,10,s)-0. 17976468(17,14,s)-

0.03367248(18,2,c)+0.12381249(18,6,c)-0.28059908(18,10,c)+0. 17188791(18,14,c)

0.21821789(0,0,c)-0.08048597(4,0,c)-0.06802306(4,4,c)+0.10277719(6,0,c)-0.27192289(6,4,c)-

0.01299202(8,0,c)-0.00690936(8,4,c)-0.01052727(8,8,c)-

0.16993041(10,0,c)+0.24215943(10,4,c)+

0.28822738(10,8,c)+0.26832959(12,0,c)+0.09769994(12,4,c)+0.16831857(12,8,c)+
20,1

0.20183119(12,12,c)+0.06894231(14,0,c)-0.07169711(14,4,c)-0.07693722(14,8,c)-

0.09341962(14,12,c)+0.12322731(16,0,c)+0.32737136(16,4,c)-0.09119766(16,8,c)-

0.22299882(16,12,c)+0.20500613(16,16,c)-0.07858940(18,0,c)+0.01179618(18,4,c)+

0.30283079(18,8,c)-0.19012432(18,12,c)+0.17236223(18,16,c)+0.12036860(20,0,c)-
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0. 15658146(20,4,c)+0.08052916(20,8,c)+0. 17905392(20,12,c)+0.21642112(20,16,c)

0.18140661(2,0,c)+0.14698569(4,0,c)-0.17391582(4,4,c)+0.11985333(5,4,s)-0.13905627(6,0,c)-

0.05255833(6,4,c)-0.158 74 4 56(7,4,s)-0.04147366(8,0,c)-0.01017195(8,4,c)+0.05786005(8,8,c)-

0. 15536067(9,4,s)-0.24211212(9,8,s)+0.20979806(10,0,c)+0.03256625(10,4,c)+

0.09632966(1 0,8,c)+0.09019730( 11,4,s)+O. 10147000(11,8,s)-0.06940336(12,0,c)+

0.11484118(12,4,c)+0.07367339(12,8,c)-0.02476130(12,12,c)+0.09607627(13,4,s)+

0.23397880(13,8,s)+0.22467947(13,12,s)+0.23612360(14,0,c)+0.17767986(14,4,c)+

20,2 0.03209228(14,8,c)+0.01146102(14,12,c)-0.19615508(15,4,s)+0.00866611(15,8,s)+

0.13061506(15,12,s)+0.07828926(16,0,c)+0.03215782(16,8,c)+

0.02735821(16,12,c)-0.20623667(16,16,c)+0. 13986010(17,4,s)-0.28913706(17,8,s)-

0.04580441(17,12,s)-0.0 1671719(18,0,c)+0.08455748(18,4,c)+0.10570417(18,8,c)+

0.02332506(1 8,12,c)-0. 17339683(18,16,c)+0.03996431 (19,4,s)+0. 14610927(19,8,s)-

0.24692998(19,12,s)+0. 14071957(20,0,c)-0. 17258191(20,4,c)+0.08805710(20,8,c)-

0.02196691(20,12,c)-0.21772018(20,16,c)

0.18140661(2,2,c)-0.22770925(4,2,c)-0.11985333(5,2,s)-0.08310202(6,2,c)-0.12326021(6,6,c)-

0. 10747058(7,2,s)+0.11683283(7,6,s)+0.06934019(8,2,c)+0.01905933(8,6,c)+0.25930409(9,2,s)+

0. 12 4 56566(9,6,s)+0.08767093(10,2,c)+0. 14374718(10,6,c)+0. 16126297(10,1 O0,c)+

0.09915581(11,2,s)-0.03222084(11,6,s)-0.08695778(11,10,s)-0.05088687(12,2,c)+

0.06868274(1 2,6,c)+0. 12938092(12,10,c)-0.29203601(13,2,s)-0.06749521(13,6,s)-

0.15689792(13,10,s)+0. 15973701(14,2,c)+0.06261062(14,6,c)+0.01402559(14,10,c)+

20,3 0.24259645(14,14,c)+0.03295268(15,2,s)-0. I 5959975(15,6,s)-0.09100916(15,10,s)+

0.14412351(15,14,s)-0.24229367(16,2,c)-0.07711025(16,6,c)+0.02817918(16,10,c)+

0.03460993(16,14,c)+0. 10612715(17,2,s)-0.05628782(17,6,s)-0. 15988318(17,10,s)+

0.25547056(17,14,s)+0. 11200103(18,2,c)-0.16236757(18,6,c)-0.08763629(18,10,c)-

0.00416653(18,14,c)+0.05107233(18,18,c)-0.05829180(19,2,s)+0. 14675627( 19,6,s)-

0.14117876(19,10,s)+0. 18429964(19,14,s)-0.07131863(19,18,s)-0.02238647(20,2,c)+

0.08815827(20,6,c)-0.18584747(20,10,c)-0.24481606(20,14,c)-0.04977915(20,18,c)

0. 14744196(3,2,s)-0.23455411 (6,2,c)+0. 15813635(6,6,c)+0.24324735(7,2,s)+0.22375501 (7,6,s)+

0.04189779(9,2,s)-0.08721720(9,6,s)-0.20044114(10,2,c)-0.03930974(10,6,c)+

0. 14401027(10,10,c)+0. 12047311(11,2,s)+0.08315879(11,6,s)+0. 10655933(11,10,s)-

0.07423682(12,2,c)+0.29171553(12,6,c)-0. 18405730(12,1 0,c)-0.06150436(13,2,s)+

0.06101687(13,6,s)+0.08823024(1 3,10,s)+0.0 1058322(1 5,2,s)+0.25483777(15,6,s)-
20,4

0.26589426(15,10,s)+0. 11187963(15,14,s)+0.06619278(16,2,c)-0. 17140303(16,6,c)-

0.06674786(16,10,c)+0. 13585866(16,14,c)+0.08573105(1 7,2,s)-0.05289381(17,6,s)-

0.08242151(17,10,s)-0.09885085(17,14,s)+0.21015779(18,2,c)-0.00444400(18,6,c)+

0. 19831077(18,10,c)-0. 1135 4 3 7 5(1 8,14 ,c)-0.1 4 3 9 7 8 4 1(1 8 ,18 ,c)+0.21646321(19,2,s)+

0. 16781971(19,6,s)+0.10910973(19,10,s)+0.09621491(19,14,s)+0.20105491(19,18,s)+

183



0.07763608(20,2,c)-0.15220390(20,6,c)-0.10069249(20,10,c)-0.01400330(20,14,c)+

0.14033279(20,18,c)

0.07427138(4,0,c)-0.08787908(4,4,c)-0.26130464(5,4,s)+0. 19180783(6,0,c)+0.07249654(6,4,c)-

0.09468225(7,4,s)+0. 18566081 (8,0,c)-0.00398492(8,4,c)-0.2265141 5(8,8,c)-0.10244875(9,4,s)-

0. 1 5965484(9,8,s)+0.08604452( 10,0,c)-0.07395114(10,4,c)+0.11286071(10,8,c)-

0.25195527(11,4,s)+0.06691188(11,8,s)+0.05679740(12,0,c)+0.03722921(12,4,c)+

0.00279426(12,8,c)-0.09586249(12,12,c)-0.17073072(1 3,4,s)+0. 15429152(13,8,s)-

0.17258701(13,12,s)-0.05600080(14,0,c)+0.14541978(14,4,c)-0.23957350(14,8,c)+

20,5 0.04437093(14,12,c)+0.18411197(15,4,s)+0.00571465(15,8,s)-0. 10033166(15,12,s)+

0.04761059(16,0,c)-0.04507713(16,4,c)-0.26266366(16,8,c)+0.10591635(16,12,c)+

0.04173020(16,16,c)+0.08883041(17,4,s)-0. 19066427(17,8,s)+0.03518455(17,12,s)+

0.26034270(18,0,c)+0.05111089(18,4,c)+0.10229643(18,8,c)+0.09030215(18,12,c)+

0.03508535(18,16,c)+0.31832533(19,4,s)+0.09634814(19,8,s)+0.18967869(19,12,s)+

0. 10664089(20,0,c)-0.05210186(20,4,c)-0.19000680(20,8,c)-0.08504412(20,12,c)+

0.04405379(20,16,c)

0. 11 506073(4,2,c)-0.26130464(5,2,s)-0. 11462710(6,2,c)-0. 17001947(6,6,c)+0.06410019(7,2,s)-

0.06968425(7,6,s)+0.26542859(8,2,c)+0. 12386340(8,6,c)-0. 17099166(9,2,s)-0.08214174(9,6,s)+

0.00947979(10,2,c)-0. 15697373(10,6,c)-0.02965383( 10, 10,c)+0.04976830(11,2,s)+

0. 17138987(11,6,s)-0. 19001918(11,1 0,s)+0. 1 1299003(12,2,c)+0.03190212(12,6,c)+

0.00498933(12,10,c)-0.07307580(13,2,s)-0.25004350(13,6,s)+0. 12198074(13,10,s)+

0.01855295(14,2,c)-0.12173012(14,6,c)+0.26105566(14,10,c)-0.01829617(14,14,c)+

20,6 0.01176552(15,2,s)-0.13787814(15,6,s)-0.07286125(15,10,s)+0. 13978106(15,14,s)-

0.10607088(16,2,c)+0.15491337(16,6,c)-0.13595152(16,10,c)+0. 18032914(16,14,c)-

0.03678720(17,2,s)-0.0001 9005(17,6,s)+0. 14460470(17,10,s)-0. 15237390(17,14,s)-

0.12466712(18,2,c)-0.04844967(18,6,c)-0.09988270(18,10,c)-0. 15257716(18,14,c)-

0.19772471(18,18,c)-0.1 7253593(19,2,s)-0.08119238(19,6,s)-0. 14359326(19,10,s)+

0. 11565786(19,14,s)+0.27610753(19,18,s)-0.06228964(20,2,c)+0. 13427962(20,6,c)+

0.01764158(20,10,c)-0.00039246(20,14,c)+0.19271821(20,18,c)

0.28284271 (0,0,c)+0.03664076(4,0,c)+0.03096710(4,4,c)-0.04968430(6,0,c)+0.13145231(6,4,c)+

0.20201592(8,0,c)+0.10743531(8,4,c)+0.16369096(8,8,c)+0.03487224(10,0,c)-

0.04969470(10,4,c)-0.05914852(10,8,c)-0.09514261(12,0,c)-0.11557284(12,4,c)+

0.05705293(12,8,c)-0.09959180(12,12,c)+0.09105097(14,0,c)-0.09468919(14,4,c)-

24,1 0. 10160971(14,8,c)-0.12337775(14,12,c)+0.35099402(16,0,c)+0.01513987(16,4,c)+

0.21541201(16,8,c)+0.29789168(16,12,c)+0.21568883(16,16,c)-0.00059807(18,0,c)-

0.02676303(18,4,c)+0.11744976(18,8,c)-0.13204638(18,12,c)+0.04084228(18,16,c)+

0.16953941(20,0,c)-0.20030099(20,4,c)+0.10997652(20,8,c)+0.23914778(20,12,c)+

0.28870412(20,16,c)+0.00896113(20,20,c)-0.01171547(22,0,c)+0.03233190(22,4,c)-

184



0.06574711 (22,8,c)+0.02592305(22,12,c)+0.07966922(22,1 6 ,c)-0.02 0 52 303(22,20,c)+

0.20155167(24,0,c)+0.09913791(24,4,c)+0.13953282(24,8,c)-0.11095195(24,12,c)+

0.22333086(24,16,c)+0.00784151(24,20,c)+0.16682943(24,24,c)

0.29789301(2(,0,c)0.0668552(4,4,c)-0.03946952(5,4,s)+0.19724399(6,0,c)+

0.07455122(6,4,c)+0.00793207(7,4,s)-0.0839231 9 (8 ,0,c)+0.0 2 7 5 82 4 3(8,4,c)+0.08546894(8,8,c)+

0.06738839(9,4,s)+0.10501722(9,8,s)+0.00355927(10,4,c)+

0.03801213(1 0,8,c)+0.02765624(11,4,s)-0.07554288( 11,8,s)+0.08653981(12,0,c)-

0.06554541(12,4,c)-0.05452961(12,8,c)-0.03784877(12,12,c)-0.00960339(13,4,s)+

0. 11006348(13,8,s)+0.03060495(13,12,s)+0. 11898596(14,0,c)-0.05293321(14,4,c)+

0.09850461(14,8,c)+0.04730971(14,12,c)-0.04313638(15,4,s)-0.21713158(15,8,s)-

0.32341712(15,12,s)+0. 10126223(16,0,c)-0.05177283(1 6,4,c)+0.01141447(16,8,c)-

0.08078008(16,12,c)-0.06098462(16,16,c)+0.01478968(17,4,s)+0.06791755(17,8,s)+

24,2 0.34241858(17,12,s)+0.08282285(17,16,s)+0. 19555856(18,0,c)-0.06184758(18,4,c)+

0.11539113(18,8,c)+0.12213715(18,12,c)+0.02538636(18,16,c)+0.05155777(19,4,s)+

0.00896826(19,8,s)-0.27838801(19,12,s)-0. 18344690(19,16,s)+0.08906762(20,0,c)-

0.09748700(20,4,c)+0.05106323(20,8,c)-0.02556599(20,12,c)-0. 11791820(20,16,c)-

0.00953562(20,20,c)-0.06232500(21,4,s)+0.08623955(21,8,s)+0. 14763612(21,12,s)+

0. 15451806(21,16,s)+0.01418374(21,20,s)+0.04371962(22,0,c)-0.00914056(22,4,c)-

0.00069381 (22,8,c)+0.02959519(22,12,c)+0.00556189(22,16,c)+0.02183874(22,20,c)-

0.00762014(23,4,s)-0.06242130(23,8,s)+0.05460663(23,12,s)-0.04948795(23,16,s)-

0.01 326768(23,20,s)+0.20080813(24,0,c)+0.09409078(24,4,c)+0.08991604(24,8,c)-

0.02942963(24,12,c)-0.05887724(24,16,c)-0.00834422(24,20,c)-0.31408220(24,24,c)

0.2978930 1(2,2,c)+0.08753412(4,2,c)+0.03946952(5,2,s)+0. 11787583(6,2,c)+0. 17483811(6,6,c)+

0.00537003(7,2,s)-0.00583784(7,6,s)+0.09656326(8,2,c)+0.07605503(8,6,c)-0.11247432(9,2,s)-

0.05403092(9,6,s)+0.02529639(10,2,c)+0.05577500(10,6,c)+0.05043347(1 0,1 0,c)-

0.03876473(11,2,s)+0.06969442(1 1,6,s)-0.01056309( 11,10,s)-0.02806156(12,2,c)-

0.07125716(12,6,c)-0.10161846(12,10,c)-0.07518662(13,2,s)+0.03720244(1 3,6,s)-

0.07813966(13,10,s)+0.02776472(14,2,c)+0.03238670(14,6,c)+0.15447342(14,10,c)+

0.05673742(14,14,c)-0.29586015(15,2,s)+0.15347964(15,6,s)+0.17864610(15,10,s)+

24,3 0.10296527(15,14,s)-0.06369172(16,2,c)-0.02894389(16,6,c)-0. 11954505(16,10,c)-

0.06421758(16,14,c)-0.24937156(17,2,s)+0.12210836(17,6,s)-0.19316177(17,10,s)-

0.12055513(17,14,s)+0.06956519(18,2,c)-0.00207814(18,6,c)+0.11687606(18,10,c)+

0.20591934(18,14,c)+0. 10019439(18,18,c)-0.21124364(19,2,s)+0. 17212018(19,6,s)+

0.02329926(19,10,s)+0. 19640807(19,14,s)-0.02287058(19,18,s)-0.02042619(20,2,c)+

0.03749722(20,6,c)-0.09865843(20, 10,c)-0. 14834480(20,14,c)-0.03362327(20,1 8,c)-

0. 15674146(21,2,s)+0.08923401(21,6,s)+0.00754570(21,10,s)-0.06942222(21,14,s)-

0. 14067026(21,18,s)+0.00656403(22,2,c)+0.01 124875(22,6,c)+0.03518644(22,1 0,c)+

185



0.01229191(22,14,c)+0.03754080(2 2 ,18,c)+0.02027481(22,22,c)-0.02521138(23,2,s)-

0.00351961(23,6,s)-0.02374203(23,10,s)+0.07664500(23,14,s)-0.04086941(23,18,s)+

0.02837267(23,22,s)-0.33130577(24,2,c)-0.19312418(24,6,c)-0.03085889(24,1 0,c)-

0.05002341(24,14,c)-0.09696775(24,18,c)-0.01984793(24,22,c)

0.31124766(3,2,s)-0.04461842(6,2,c)+0.03008173(6,6,c)-0.09992669(7,2,s)-0.09191918(7,6,s)-

0.04358693(9,2,s)+0.09073344(9,6,s)+0.22198799( 10,2,c)+0.04353543(10,6,c)-

0. 15949097(10,10,c)+0.01819741(1 1,2,s)+0.01256110(1 1,6,s)+0.01609574( 1,10,s)-

0.02295591(12,2,c)+0.09020583(12,6,c)-0.05691518(12,10,c)-0.02234137(13,2,s)+

0.02216429(13,6,s)+0.0320495 1(13,10,s)-0.34825186(14,2,c)-0. 11131384(14,6,c)-

0.00903469(14,10,c)+0.25855636(14,14,c)+0.06698960( 15,2,s)-0.00540771(15,6,s)+

0.09374831(15,10,s)+0.03789389(15,14,s)+0.01767163(16,2,c)-0.04575985(16,6,c)-

0.01781982(16,10,c)+0.03627049(16,14,c)-0.12243116(17,2,s)+0.0755368 1(17,6,s)+

0. 11770486(17,10,s)+0. 14116734(17,14,s)+0.20704101 (18,2,c)+0.08911460(18,6,c)+
24,4

0.00639151(18,10,c)+0.00486921(18,14,c)-0.15936355(18,18,c)+0.19344482(19,2,s)-

0.05181514(19,6,s)+0.14652315(19,10,s)+0.24529286(19,14,s)+0.07909555(19,18,s)+

0.00067875(20,2,c)-0.00133068(20,6,c)-0.00088033(20,10,c)-0.00012243(20,14,c)+

0.00122690(20,18,c)-0.20100861(21,2,s)+0.09834708(21,6,s)+0. 10264816(21,10,s)+

0.21785194(21,14,s)+0. 18435362(21,18,s)-0.03459572(22,2,c)-0.02992165(22,6,c)+

0.01094133(22,10,c)+0.00883331(22,14,c)-0.01449181(22,18,c)+0.03029068(22,22,c)+

0. 10275760(23,2,s)-0.01550126(23,6,s)+0.04460411(23,10,s)+0.08595817(23,14,s)+

0.10266497(23,18,s)+0.04238892(23,22,s)+0.00079774(24,2,c)-0.03744958(24,6,c)+

0.16937359(24,10,c)-0.26098341(24,14,c)+0.15866379(24,18,c)-0.02965291(24,22,c)

0.35534213(4,0,c)+0.08324150(4,4,c)-0.04647044(5,4,s)+0.00658191(6,0,c)-0.01690247(6,4,c)+

0.04497559(7,4,s)-0.04514960(8,0,c)-0.02503581(8,4,c)+0.00378440(8,8,c)+0.07410784(9,4,s)+

0. 11 548873(9,8,s)-0.00386580(1 0,0,c)+0.0 1454210(10,4,c)-0.01428397(10,8,c)+

0.08289530(11 ,4,s)+0.06775289(1 1,8,s)+0.27129340(12,0,c)+0.03331795(12,4,c)+

0.07895439(1 2,8,c)+0.08690697(12,12,c)-0.01 955140(13,4,s)-0. 13640505(13,8,s)-

0.08102705(13,12,s)+0. 10130947(14,0,c)-0.01634197(14,4,c)-0.07104674(14,8,c)-

0. 12558276(14,12,c)-0.03612239(15,4,s)-0.04281698(15,8,s)-0.04734835( 15, 12,s)-

24,5 0.12670222(16,0,c)-0.09103205(16,4,c)+0.06192186(16,8,c)+0.22039490(16,12,c)-

0.20892540(16,16,c)+0.01684595(17,4,s)-0.08491918(17,8,s)-0.07079018(17,12,s)-

0.03473871(17,16,s)+0.29526714(18,0,c)-0.03672854(18,8,c)-

0.31145766(18,12,c)-0.24495882(18,16,c)+0.05953292(19,4,s)+0.09260374(19,8,s)+

0.02006670(19,12,s)+0.07694385(19,16,s)+0.01571797(20,0,c)+0.02947965(20,4,c)+

0.01266813(20,8,c)+0.07966034(20,12,c)-0.07784233(20,16,c)+0.00008663(20,20,c)-

0.09969734(21,4,s)+O. 12284784(21,8,s)+0.04073624(21,12,s)-0.06481011(21,16,s)-

0.02053493(21,20,s)+0. 11887382(22,0,c)-0.04546562(22,4,c)+0.01928123(22,8,c)-

186



0.07150843(22,12,c)-0.23337201(22,16,c)-0.00019840(22,20,c)-0.03755817(23,4,s)-

0.10011782(23,8,s)+0.09735385(23,12,s)+0.02075692(23,16,s)+O.01920867(23,20,s)+

0. 160 2 2 627(24,0,c)+0.06069435(24,4,c)+0.00578285(24,8,c)+0.06528319(24,12,c)-

0.24006350(24,16,c)+0.00007580(24,20,c)+0.19931780(24,24,c)

0.30210831 (4,2,c)-0.08467719(5,2,s)-0.000 I 8426(6,2,c)-0.00027330(6,6,c)-0.05548265(7,2,s)+

0.06031600(7,6,s)-0.06008845(8,2,c)-0.00569504(8,6,c)+0.22538350(9,2,s)+0.10827073(9,6,s)-

0.01137045(10,2,c)+0.03552908(10,6,c)-0.00612781(10,10,c)-0. 13591550(11,2,s)+

0.01928836(11 ,6,s)+0. 13860978(11,1 0,s)+0.09966509(12,2,c)+0.11299534(12,6,c)+

0. 13888978(12,10,c)-0.23483376(13,2,s)+0.01189590(13,6,s)-0. 17192688(13,10,s)-

0.07894746(14,2,c)+0.03586339(14,6,c)+0.03978474(14,10,c)-0.08950492( 14,14,c)+

0. 10093163(15,2,s)-0.01611893(15,6,s)-0.04286027(15,10,s)-0.07469430(15,14,s)+

0.16543664(16,2,c)+0.04024477(16,6,c)-0.21518523(16,10,c)-0. 13555108(16,14,c)-

0. 15269026(17,2,s)+0.02833056(17,6,s)-0.00150368(1 7,10,s)-0. 14633028(17,14,s)-

24,6 0.17799842(18,2,c)+0.00673271(18,6,c)+0.02318920(18,14,c)-

0.22523202(18,18,c)-0. 16354811(19,2,s)-0.03949446(19,6,s)+0. 10652768(19,10,s)+

0.00973863(19,14,s)+0. 14657633(19,18,s)+0.07206753(20,2,c)-0.09743603(20,6,c)+

0. 15282576(20,1 0,c)-0.04937495(20,14,c)-0.04081861(20,18,c)-0.00695235(21,2,s)+

0.01829903(21,6,s)-0. 19453980(21,10,s)-0. 11635447(21,14,s)+0.22847428(21,18,s)-

0.01843706(22,2,c)-0.06999056(22,6,c)-0.09627907(22,10,c)+O. 10565081(22,14,c)+

0.01634283(22,18,c)-0.07840907(22,22,c)-0.04260023(23,2,s)+0. 11262485(23,6,s)+

0.04971930(23,10,s)-0. 11038405(23,14,s)+0. 17576802(23,18,s)-0. 10972601(23,22,s)-

0.14497317(24,2,c)-0.01045015(24,6,c)-0.03083578(24,10,c)+0. 11084532(24,14,c)+

0.22785259(24,18,c)+0.07675816(24,22,c)

0.33066491 (4,4,c)+0.07078647(5,4,s)+0.00395212(6,0,c)-0.01123566(6,4,c)-0.06850943(7,4,s)+

0.00651140(8,0,c)+0.00502350(8,4,c)-0.05621562(8,8,c)-0. 11288537(9,4,s)-0. 17591914(9,8,s)+

0.00575532(1 0,0,c)-0.02196141(10,4,c)+0.02198427(10,8,c)-0. 12627094(11,4,s)-

0. 10320513(1 1,8,s)+0.00207888(12,0,c)+0. 10245984(12,4,c)+0. 13739219(12,8,c)+

0. 18070746(12,12,c)+0.02978183(13,4,s)+0.20778009(13,8,s)+0. 12342511(13,12,s)+

0.00094177(14,0,c)-0.13657317(14,4,c)-0.06504473(14,8,c)-0.01909166(14,12,c)+

24,7 0.05502373(15,4,s)+0.06522131(15,8,s)+0.07212376(15,12,s)+0.00080141 (16,0,c)-

0.32055256(16,4,c)+0.02130084(16,8,c)-0.04017308(16,12,c)+0.01912516(16,16,c)-

0.02566074(17,4,s)+0. 12935383(17,8,s)+0. 10783171(17,12,s)+0.05291602(17,16,s)-

0.00262602(18,0,c)-0.30973038(18,4,c)-0.11440804(18,8,c)-0.20485667(18,12,c)-

0.07450133(18,16,c)-0.09068399(19,4,s)-0. 14105939(19,8,s)-0.03056676(19,12,s)-

0.11720534(19,16,s)+0.00354903(20,0,c)+0.00174613(20,4,c)-0.01494496(20,8,c)-

0. 13357430(20,12,c)+0.10235740(20,16,c)+0.03634837(20,20,c)+0. 15186477(21,4,s)-

0. 18712896(21,8,s)-0.06205181(21,12,s)+0.09872253(21,16,s)+0.03127999(21,20,s)+

187



0.00829905(22,0,c)-0.15188194(22,4,c)+0.09311948(22,8,c)-0.09795966(22,12,c)-

0.05234676(22,16,c)-0.08324604(22,20,c)+0.05721078(23,4,s)+0. 15250527(23,8,s)-

0. 14829503(23,12,s)-0.03161815(23,16,s)-0.02925975(23,20,s)+0.00258059(24,0,c)+

0.27986436(24,4,c)-0.03270100(24,8,c)+0.16847006(24,12,c)+0.01077491(24,16,c)+

0.03180692(24,20,c)-0.00064469(24,24,c)

0.21917668(5,2,s)-0.07636419(6,2,c)-0. 11326639(6,6,c)-0.07055967(7,2,s)+0.07670645(7,6,s)+

0. 19662563(8,2,c)+0.22987652(8,6,c)+0.03222453(9,2,s)+0.01 548016(9,6,s)-0.13652115(10,2,c)-

0.00073673(10,6,c)-0.19021849( 10, 10,c)-0.07547170( 1,2,s)+0.03614984(11,6,s)+

0.05711498(11,10,s)-0.04407586(12,2,c)+0.06569898(12,6,c)+0.12190478(12,10,c)+

0.09184151(13,2,s)+0.26582275(13,6,s)-0.11981173(13,10,s)-0.05149080(14,2,c)+

0.03004312(14,6,c)+0.02856013(14,10,c)-0.05542126(14,14,c)-0.08464033(15,2,s)-

0.08125335(15,6,s)-0.01134930(15,10,s)+0.16611135(15,14,s)-0.09656341(16,2,c)+

0.10276476(16,6,c)-0.09512740(16,10,c)+0. 12996184(16,14,c)+0.06340358(17,2,s)-

0.20373661(17,6,s)+0.19316650(17,1 0,s)+0.00294370(17,14,s)+0. 10711896(18,2,c)-

24,8 0.12677229(18,6,c)+0.00731948(18,10,c)+0.07236616(18,18,c)+

0.00107006(19,2,s)+0.05632524(19,6,s)+0.24018022(19,10,s)-0.08851256(19,14,s)-

0.13615129(19,18,s)+0.07209823(20,2,c)+0.08250365(20,6,c)+0.10662992(20,10,c)-

0.04068136(20,14,c)+0. 12204641(20,18,c)-0.06576929(21,2,s)+0.07640682(21,6,s)-

0.05660303(21,10,s)-0.07587451(21,14,s)+0.00870624(21,18,s)+0.00 165339(22,2,c)-

0.20399501(22,6,c)-0. 14606927(22,10,c)-0. 16664797(22,14,c)-0.09951870(22,18,c)-

0.14587419(22,22,c)+0.1001 8707(23,2,s)+0.10415914(23,6,s)+0.00855267(23,10,s)+

0. 15646562(23,14,s)-0.1 3498488(23,18,s)-0.20413702(23,22,s)+0.00309040(24,2,c)+

0.01085502(24,6,c)+0. 14951309(24,10,c)+0.02913377(24,14,c)-0.08244835(24,18,c)+

0.14280281(24,22,c)

0.21917668(5,4,s)+0. 12778172(6,0,c)+0.04829695(6,4,c)+0. 10422354(7,4,s)+0.21052940(8,0,c)-

0. 11941103(8,4,c)-0. 1 8144760(8,8,c)+0.0 1930715(9,4,s)+0.03008803(9,8,s)+0. 18608346(10,0,c)+

0.14179495( 10,4,c)-0.00942224(10,8,c)+0.05584266(11,4,s)+0.08453701(11,8,s)+

0.06721527(12,0,c)-0.10680254(12,4,c)-0.06922650(12,8,c)+0.02007055(12,12,c)+

0. 18410325(13,4,s)-0. 14970166(13,8,s)+0. 19273519(13,12,s)+0.03044982(14,0,c)+

0.06918014(14,4,c)+0.01136797(14,8,c)-0.03998469(14,12,c)+0.18884157(15,4,s)+

24,9 0.07574667(15,8,s)+0.00944360(15,12,s)+0.02591151(16,0,c)-0.04227514(16,4,c)-

0.18886037(16,8,c)+0.07351536(16,12,c)+0.04788580(16,16,c)-0.02032203(17,4,s)-

0.09290311(17,8,s)+0.26382120(17,12,s)-0.06484585(17,16,s)-0.08490556( 18,0,c)-

0.00153113(18,4,c)-0.14269707(18,8,c)-0.09201916(18,12,c)+0.11060064(18,16,c)-

0.21472546(19,4,s)+0.06081782(19,8,s)-0.12960214(19,12,s)+0. 14362909(19,16,s)+

0.11474886(20,0,c)+0.00908054(20,4,c)-0.12910959(20,8,c)+0.03197369(20,12,c)-

0.03566307(20,16,c)-0.08781818(20,20,c)-0.01738970(21,4,s)+0.04442606(21,8,s)-
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0.04761257(21,12,s)-0. 12097936(21,16,s)+0.00460501 (21,20,s)+0.26832880(22,0,c)-

0.0 07 2 6865(22,4,c)-0.00659035(22,8,c)-0.01881619(22,12,c)+0.09490178(22,16,c)+

0.2011 2 365(22,20,c)-0.24620563(23,4,s)-.04004003(23,8,s)-0.20394558(23,12,s)+

0.03874641(23,16,s)-O.00430760(23,20,s)+0.08343687(24,0,c)+0.00524308(24,4,c)-

0. 18233860(24,8,c)+0.01359179(24,12,c)+0.06131559(24,16,c)-0.07684599(24,20,c)-

0.0 2 084433(24,24,c)

0.08388712(6,0,c)-0.22194445(6,4,c)+0.138 2 0994(8,0,c)+0.07350226(8,4,c)+0.11198977(8,8,c)+

0.12216148(10,0,c)-0. I 17408629(10,4,c)-0.20720413(10,8,c)+0.04412599(12,0,c)+

0.30724605(12,4,c)-0.39231571(12,8,c)+0.13403094(12,12,c)+0.01998993( 14,0,c)-

0.02078869(14,4,c)-0.02230806(14,8,c)-0.02708716(14,12,c)+0.01701058(16,0,c)+

0.01804862(16,4,c)+0.00147064(16,8,c)-0.00317499(16,12,c)+0.01740380(16,16,c)-

24,10 0.05573944(18,0,c)-0.0000 1112(18,4,c)+0.25070549(18,8,c)-0.17559000(18,12,c)+

0.13458051(18,16,c)+0.07533120(20,0,c)+0.20473917(20,4,c)-0.00117768(20,8,c)-

0.08309151(20,12,c)-0.10569595(20,16,c)+0.1 3 4 004 84(20,20,c)+0.17615453(22,0,c)-

0.03931797(22,4,c)-0.40496878(22,8,c)-0.07536620(22, 2,c)+0. 10626839(22,16,c)-

0.306901 6 2( 2 2,20,c)+0.05477527(24,0,c)-0.08811635(24,4,c)-0.00497883(24,8,c)+

0.12320661(24,12,c)+0.03319172(24,16,c)+0.11726198(24,20,c)-0.01368405(24,24,c)

0. 19957921(6,2,c)-0.13455628(6,6,c)+0. I 13848575(7,2,s)+0. 12 738836(7,6,s)-0. 13336600(9,2,s)+

0.2 7762347(9,6,s)+0.01977721(10,2,c)+0.00387863(10,6,c)-0.01 420927(10, 10,c)-

0.05426244(11,2,s)-0.03745565( 11,6,s)-0.04799552( 11,1 0,s)-0.08291048(12,2,c)+

0.32579891(12,6,c)-0.20556213(12,10,c)-0.09343305(13,2,s)+0.09269248(13,6,s)+

0.13403311(13,10,s)+0.05451770(14,2,c)+0.01742582(14,6,c)+0.00141435(14,10,c)-

0.04047616(14,14,c)-0.01768360(15,2,s)-0. 17244316(15,6,s)+0. 16613214(15,10,s)-

0.08201033(15,14,s)-0.05251590(16,2,c)+0.13598742(16,6,c)+0.05295629(16,10,c)-

0.10778729(16,14,c)+0.07372555(17,2,s)-0.04548673(17,6,s)-0.07087947(17,10,s)-

0.08500810(17,14,s)-0.00343395(18,2,c)-0.01456336(18,6,c)+0.02634355(18,10,c)-
24,11

0.01641826(18,14,c)+0.00509535(18,18,c)-0.11335160(19,2,s)-0.18155180(19,6,s)-

0.03438192(19,10,s)+0.02356973(19,14,s)-0. 15197298(19,1 8,s)+0. 10110578(20,2,c)-

0.19821577(20,6,c)-0.13113224(20,10,c)-0.01823656(20,14,c)+0.18275597(20,18,c)-

0.08774140(21,2,s)-0.00122685(21,6,s)+0. 18801531(21,10,s)-0.05030596(21,14,s)+

0. 13189922(21,1 8,s)-0.09003566(22,2,c)-0. I 8636679(22,6,c)+0. 15051635(22,10,c)+

0.09906389(22,14,c)-0. 15772502(22,18,c)+0. 10331512(22,22,c)+0.01 288541(23,2,s)+

0.24431177(23,6,s)+0.03104566(23,1 0,s)-O. 10044870(23,14,s)-0. 13503030(23,18,s)+

0. 14 4 57 96 6(2 3,22,s)-0.06270920(24,2,c)+0.10226503(24,6,c)+0.06766872(24,10,c)+

0.05878800(24,14,c)-0.02057873(24,1 8,c)-0. 10113982(24,22,c)

0. 16966889(7,2,s)-0.18444953(7,6,s)-0.17721338(8,2,c)+0.15185292(8,6,c)+0.10893088(9,2,s)+
24,12

0.05232870(9,6,s)-0. 10202311(1 0,2,c)+0.2200921 6( 10,6,c)-0.08192376(1 0, 10,c)+
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0.09141114(11,2,s)+0.21606364(11,6,s)-0.27196282(11,10,s)-0.08880913(12,2,c)+

0.01395911(12,6,c)+0.05794390(12,10,c)-0.0O 691959(13,2,s)+0. 11507478(13,6,s)-

0.09137604(13,10,s)+0.00446780(14,2,c)-0.13566655(14,6,c)+0.18927771(14,10,c)-

0.04577563(14,14,c)+0.03818836(1 5,2,s)+0.05480569( 15,6,s)+0.01417542(15,10,s)-

0.09475858(15,14,s)+0.00680446(16,2,c)-0.14294978(16,6,c)+0.21897145(16,10,c)-

0.07608316(16,14,c)-0.01355475( 17,2,s)-0.05601810(17,6,s)+0.07202647(17,10,s)-

0.04183660(17,14,s)-0.07031713(1 8,2,c)+0.13965806(18,6,c)+0.03077903(18,10,c)-

0.06412665(18,14,c)-0.01398362(18,18,c)-0.05343255(19,2,s)-0.01983759(19,6,s)+

0.08375821(19,10,s)-0.02520598(19,14,s)+0.04069374(19,18,s)+O. 10133642(20,2,c)+

0. 14367868(20,6,c)-0.19929464(20,10,c)+0.02054522(20,14,c)-0.04117840(20,18,c)+

0.14769734(21,2,s)+0.30445529(21,6,s)+0.07501290(21,10,s)-0.02386259(21,14,s)-

0.01494560(21,18,s)+0. 16123535(22,2,c)-0.19616744(22,6,c)-0.20274571(22,10,c)-t-

0.08173359(22,14,c)+0.03445676(22,18,c)+0.05625725(22,22,c)+0.13027898(23,2,s)-

0.03929019(23,6,s)-0.27815075(23,10,s)-0. 10361416(23,14,s)+0.03876501(23,18,s)+

0.07872666(23,22,s)+0.04003686(24,2,c)-0.09106704(24,6,c)+0.04579580(24,10,c)+

0.05976103(24,14,c)+0.01742434(24,18,c)-0.05507275(24,22,c)

0.25061756(7,4,s)+0. 19510551(8,4,c)-0. 12805362(8,8,c)-0.06526536(9,4,s)-0. 10170871(9,8,s)-

0. 19604127(10,4,c)+0. 16470761(1 0,8,c)+0.35397531(11,4,s)-0.06086665(11,8,s)+

0.07535705(12,4,c)+0.03623147(12,8,c)-0.06669340(12,12,c)-0.06929356(13,4,s)+

0. 12217410(13,8,s)-0.04636756(13,12,s)-0. 12198083(14,4,c)+0.19289938(14,8,c)-

0.06524827(14,12,c)+0. 11079088(1 5,4,s)+0.03615161(15,8,s)-0.00778393(15,12,s)+

0.07234671(16,4,c)-0.20347288(16,8,c)+0.16370896(16,12,c)-0.02796787(16,16,c)-

0.00838500(17,4,s)+0.07605442(17,8,s)-0.05837095(17,12,s)+0.03159306(17,16,s)+

0.00289320(18,4,c)-0.10597661(18,8,c)-0.05664466(18,12,c)+0.12351502(18,16,c)-
24,13

0.01346641(19,4,s)-0.08221152(19,8,s)+0.02680567(19,12,s)-0.06997646(19,16,s)-

0. 101 18506(20,4,c)-0.06433850(20,8,c)+0. 13867131(20,12,c)-0.16399610(20,16,c)+

0. 1 1066362(20,20,c)-0.16767433(21,4,s)-0. 10841220(21,8,s)+0.0 1408729(21,12,s)+

0.05894145(21,16,s)-0.27818488(21,20,s)+0.02985467(22,4,c)+0.20825832(22,8,c)+

0.02100128(22,12,c)+0.08762795(22,16,c)-0.25344489(22,20,c)-0. 18941519(23,4,s)+

0.0884218 1(23,8,s)+0.05054028(23,12,s)-0.01 887735(23,16,s)+0.26021812(23,20,s)+

0.02628372(24,4,c)-0.05880503(24,8,c)-0.07195183(24,12,c)-0.01407340(24,16,c)+

0.09683706(24,20,c)

0.45561901(9,4,s)-0.29236568(9,8,s)+0. 18110681(13,4,s)+0.05255548(13,8,s)-

0. 13217467(13,12,s)-0.12256185(15,4,s)+0.33124247(15,8,s)-0.20603835(15,12,s)+

24,14 0.07039568(17,4,s)+0.03347216(17,8,s)+0.00365695(17,12,s)-0.05513798(17,16,s)+

0.08386855(1 9,4,s)-0. 14033892(19,8,s)-0.06946531(19,12,s)+0. 12212683(19,16,s)-

0.27864907(21,4,s)-0.27914402(21,8,s)+0. 12797287(21,12,s)-0. 10286792(21,16,s)+
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0.26142513(21,20,s)-0. 1 8604964(23,4,s)+0.21766349(23,8,s)+0. 19329241(23,12,s)+

0.03294581(23,16,s)-0.24454082(23,20,s)
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Appendix F: Correlated Grain Boundary Distributions in Two-

Dimensional Networks10

Correlations relating grain boundary species arise in polycrystalline materials

even in the absence of correlations relating grain orientations due to the requirement for

crystallographic consistency among the misorientations of grain boundaries. Although

this need for consistency substantially influences the connectivity of grain boundary

networks, the nature of the resulting correlations are generally only appreciated in an

empirical sense. Here a rigorous treatment of this problem is presented for a model two-

dimensional polycrystal with uncorrelated grain orientations, or equivalently, a cross-

section through a three-dimensional polycrystal in which each grain shares a common

crystallographic direction normal to the plane of the network. The distribution of

misorientations 0, boundary inclinations (p, and the joint distribution of misorientations

about a triple junction are derived for arbitrary crystal symmetry and orientation

distribution functions of the grains. From these, general analytical solutions for the

fraction of low angle boundaries and the triple junction distributions within the same

subset of systems are found. The results agree with existing analysis of a few specific

cases in the literature, but nevertheless present a significant generalization.

F. 1. Introduction

The properties and behaviour of polycrystalline materials are strongly influenced

by granular crystalline nature of their microstructure. Generally, the more information

that a particular function provides about the microstructure, the more difficult it is to

measure and to relate to actual material behaviour. As a result, it is a continuing

challenge to express the microstructure in terms of a simple function that still captures

enough of the relevant crystallographic information to allow reasonable predictions of

material properties. This is especially true for the broad range of properties that depend

on the character of grain boundaries, for which the classical orientation distribution

function [4, 74, 111, 112] does not directly apply. Many of the physical properties of

'0 The content of this appendix has previously been published in Ref. [107].
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grain boundaries appear to be principally related to their misorientation [5, 14, 20, 21, 75,
90, 95, 96, 108, 112-115], and determination of the distribution of this quantity is often
the focus of grain boundary characterization (for further discussion, refer to Section 6).
The coincidence site lattice (CSL) theory provides a specific model to understand the
relationship connecting misorientation to physical properties, and is frequently used in

the literature [108, 109]. A more refined analysis of boundary properties reveals a

dependence on the orientation of the interface as well; interest in the distributions of

boundary normals [116-118], the indices of the crystallographic planes meeting at an

internal interface [119-123], and joint distributions of the misorientation and plane of a

boundary [124-126] is increasing.

While these distributions provide significant information about individual grain

boundaries in a microstructure, a number of investigations suggest that this description is

insufficient for certain applications. For example, the connection between orientation

and misorientation distributions is ambiguous; materials sharing a single orientation

distribution function may exhibit different CSL misorientation fractions [99, 127]. Some

findings suggest that this is due to neglect of orientation correlations of adjoining grains

[99, 125, 127, 128], or to differences in the connection length for boundaries of a distinct

type [129]. The development of theories to satisfactorily explain these variations in grain

boundary character necessarily involves structures more complicated than a single grain

boundary; any analysis must begin with the structures within which the observed

correlations occur. Since a triple junction is the smallest segment of the boundary

network more inclusive than a single grain boundary, this structure is a natural candidate.

Analyses of triple junctions within the CSL theory reveal that the granular nature of the

material sharply constrains the sets of misorientations allowed at these junctions [130-

134]. In other words, there are necessary correlations in the misorientation distributions,
even when the grain orientations are completely uncorrelated. The experimental

importance of this constraint upon the properties of polycrystals was first emphasized by

Kumar et al. [135]. Gertsman presented a particularly rigorous analysis of these

correlations for ideal CSL misorientations, and further extended his analysis to higher

order structures including quadruple nodes [136-138]. Alternatively, triple junctions and

their effect on the connectivity of boundaries in the network have been investigated using

193



percolation theory [97, 98, 139-142], although studies on correlations in structures more

complicated than triple junctions remain, for the most part, empirical observations [143-

145].

The purpose of this paper is to develop a methodology for analyzing correlations

in the quantities that uniquely specify the states of grain boundaries, for which the

correlations arise purely from the granular nature of polycrystalline materials. Our

approach differs from the pertinent literature described above in the sense that we do not

classify the boundaries (e.g. by the CSL model) prior to examining the strength of the

correlations. Rather, we perform classification as a subsequent step, since boundary

classification reduces the available information and thereby obscures the effects of

correlations. This further allows our results to be interpreted using classification schemes

other than the one used herein. The approach is worked out in detail for an arbitrary two-

dimensional polycrystal with no spatial correlation in grain orientations.

F.2. Defining the System

Our system consists of a two-dimensional polycrystal, in which the orientation of

each grain is fully specified by a single rotation in the plane, through an angle co relative

to a fixed reference orientation. This construct also applies to a cross-section through a

three-dimensional polycrystal in which each grain shares a common crystallographic

direction n normal to the plane of the network, with co the rotation about n. The area

orientation distribution function is, for a uniform grain size, identical to the distribution

of orientations of the crystallites [4], and expresses the probability that the orientation of

a given grain is defined by c. Similarly, the distribution in the orientations of the

boundary planes is specified as a function of the angle 0, measured with respect to the

same reference orientation. Assuming that there are no correlations among grain

orientations and none relating the grain orientations to the boundary normal, this

information is sufficient to determine the distribution function describing the types of

grain boundaries present in the material. While a two-dimensional polycrystal is a

significant simplification from the three-dimensional polycrystals typically studied in

practice, the majority of the literature on grain boundary correlations currently focuses on
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grain boundary types in two-dimensional cross-sections. The present treatment therefore

allows ready comparison with the existing literature.

We represent the orientation distribution function fow) as a Fourier series with

periodicity co, = 2r/k, where an axis of k-fold rotational symmetry coincides with the n

direction. This yields, for an arbitrary distribution function of the appropriate symmetry,

1
f(w) = - + a, cos(kno)+ b,, sin(knc), (192)

C.' n=l

where the Fourier coefficients an and b, prescribe the details of the preferred orientation.

Notice that Jf(w) is normalized over - o /2 w < c, /2, since this range contains all

unique crystallite orientations. Meanwhile, we shall constrain our attention to simple

systems based on a single triple junction schematically represented in Figure 30, with the

grains and boundaries labeled as A, B, and C in the manner depicted. Grain orientations

and grain boundary descriptors will be labeled with these subscripts in some cases, e.g.,

cA denotes the orientation of grain A.

A single boundary is completely specified by the rotations w and C' of the

adjacent grains and by the inclination b, each measured with respect to the reference

orientation. Although co is a natural variable of the orientation distribution function

.=5;4 , = ,T/6

0=0

', =3'r/2

Figure 30: Representative triple junction depicting the physical significance of the quantities w and 0.

Grain A is rotated by the angle OA and is located opposite the boundary with orientation OA; a

similar geometry applies for grains B and C.
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Figure 31: Comparison of the quantities used to define the state of a grain boundary. A single boundary is

depicted in terms of (a) co, co' and b and (b) 0 and (p. Notice that in (b) the grains share the

misorientation equally, resulting from a rotation of the system in (a).

describing the state of the grains, it is not a clear descriptor for a grain boundary. Since

the properties of a grain boundary must remain invariant under an arbitrary rotation of the

material, the natural quantities to describe a grain boundary must be defined with respect

to the local crystal orientation. The misorientation of adjoining grains is given by

0 = W' -C. (193)

Meanwhile, following the notation of Read and Shockley [146], we define the orientation

qp of the boundary plane in a manner that shares the misorientation equally between the

grains, or

0 = + 6) (194)
2

These relationships may be derived from examination of Figure 31, which depicts a

single boundary defined relative to the reference and crystal orientations.

Each grain orientation w is symmetrically equivalent to the value w + nM, for any

integer value of n, and similarly c' is symmetrically equivalent to the value co'+ mw, for

any integer value of m. Then, according to Equation (194), 0 is symmetrically equivalent

to 0 + C, (m - n), and the distribution of 0 displays a periodicity of co. Similarly, 0 is

symmetrically equivalent to (p- w, (m + n)/2, and the distribution of v displays a
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periodicity of w,/2. However, when 0 and (p refer to the same boundary and share

values for the indices m and n, the periodicities change to 2cos and cos, respectively. Since

simple distributions, e.g. of the misorientation alone, display the periodicity

corresponding to the first case, 0 and (p shall be defined to fall within the ranges

- co,/2 < 0 < w, /2 and - c, /4 + 0: 5p < c, /4 + ~ . As we shall see, in some cases this

necessitates the application of further symmetries in order to enforce the required

periodicity on joint distribution functions.

Crystallographic constraints impact the local grain boundary statistics only when

considering the values of 0 and p for multiple boundaries simultaneously; in other words,

the granular crystalline nature of the material generates spatial correlations in grain

boundary character, despite the absence of correlations in grain orientations. For

example, consider the grains and boundaries around a triple junction, as appears in Figure

32. The orientations o of the three grains are specified independently. 0 and (p for each

boundary depend on the orientations of the adjoining grains, or alternatively, the

orientation of a single grain influences the type of each of the adjoining boundaries.

Therefore, the 0 and (p for multiple boundaries may not be considered independently.

Since these quantities uniquely specify the state of a grain boundary, and our purpose is

to examine correlations in boundary character arising from the granular crystalline nature

of the material, the remainder of this paper shall be devoted to finding distributions of

Figure 32: Labeling scheme for the grain rotations co and the quantities 0 and po around a triple junction.

The misorientations 0 are the rotations that bring the grain at the tail of the arrow into coincidence

with the grain at the head. Our labeling scheme differs in sense from some similar examples in the

literature [97].
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and correlations among the 0 and p given a set of grain orientations co, each

independently distributed according to the arbitrary orientation distribution functionj(co).

The procedure for finding a joint distribution of a set of the quantities 0 and 0 is as

follows:

i. Construct the function

F(o) = f(c )f(W2 )... f(W ) (195)

to provide the joint distribution of rotations c, of each of the n grains involved in

the problem, where co is a vector quantity containing the n c as elements. For

example, n = 2 for a single grain boundary and n = 3 for a triple junction.

Notice that this equation expressly forbids the introduction of correlations in grain

orientations.

ii. State the equations relating the known grain rotations co to the grain boundary

character parameters; these desired quantities are called y,, with each of the y,

denoting either a 0 or a qp as in Equations (193) and (194). Examination of the

definitions of 0 and V reveals that these are linear or affine functions of the grain

rotations, suggesting a compact expression for the transformation equations as

y = Ao, (196)

where y is a vector quantity containing the m y, as elements and A is the m-by-n

transformation matrix. Situations where A is affine will require the modification

of (o and y to conform with the use of homogenous coordinates by appending a

constant term to these vectors.

iii. Determine the equations of the inverse transformation, relating the y, to the cq.

Provided the transformation matrix A is invertible, the equation containing the

inverse transformation equations is

co = A-y . (197)

When the matrix A is not invertible, A must be decomposed by singular value

decomposition (as discussed in Ref. [147]), and the noninvertible component

removed by integration.
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iv. Substitute the expressions for the co in terms of the y, into the joint probability

distribution of the ao in Equation (195) to find the joint probability distribution of

the desired quantities y,. This amounts to a transformation of space, from one

spanned by the wo to one spanned by the y,, in which a single probability

distribution function is embedded. Since this transformation generally includes a

stretching component, the transformed probability density function must be

multiplied by an appropriate factor to remain normalized; in situations where A is

invertible, this factor is the magnitude of the determinant of A- . Otherwise, the

necessary multiplicative factor is found by multiplying the inverses of the singular

values ofA.

v. Adjust the distribution function to account for symmetry defined to be present in

the distributions of the y, that is not captured by the inherent periodicity of the Co.

Generally, this requires summing the derived distribution function with an

equivalent distribution function shifted by an appropriate distance in the y space.

Since the full transformation procedure is often quite involved, a series of examples

follow.

F.3. Distribution Functions for a Single Boundary

As defined above, a single boundary is uniquely specified by a pair of values 0

and (o; the distribution function completely characterizing a single boundary is given by

the joint probability distribution function of these quantities. We perform this derivation

for the boundary type described by OA and (pA, which depend exclusively on we and e, as

indicated by Figure 32.

F.3.1. Joint Distribution of Oand qi

Step (i) is to construct the joint distribution function for oB and coc; reference to

Equations (192) and (195) indicates that the relevant distribution function of the grain

rotations is
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F(, = -[a, {cos(knB ) + cos(kn c, )}+ b, {sin(kno, )+ sin(kng(, )J]

+ [{a,, cos(kmB, )+ b,,, sin(kmo, )}{a, cos(kno, ) + b,, sin(kno )}].
tn=1 n=l

(198)

To execute step (ii), we refer to Equations (193) and (194), which indicate that the

desired quantities may be expressed in terms of the grain rotations as

OA -1 1 0 CO

A= -1/2 -1/2 A C (199)

S 0 1 1

Since the expression for pA includes a constant term, the transformation A contains a

translational component; A is therefore affine instead of linear, and is expressed in matrix

form using homogeneous coordinates. Since A is invertible, step (iii) is straightforward:

-1/2 -1 A A B

1/2 - 1 A  A C (200)

0 0 1 1

from which we obtain )B = - OA/2- pA + A and o,. = A /2 - (A + A . Substitution of

these equalities into Equation (198), and multiplication by the magnitude of the

determinant ofA -' in Equation (200), completes step (iv). The joint distribution of 0 and

q is

F(0, ) = + 2 _[cos(kn9/2){a, cos(kn(p - 0))- b, sin(kn(yo - ))}]

+ [{a,,, cos(km(O/2 + - ))- b,, sin(km(/2 + - )) (201)
n=I n=1

x {a,, cos(kn(O/2 - ( + ))+b,, sin(kn(9/2 - p + ))}]

where the subscript A has been dropped, since this result applies to any boundary with an

arbitrary inclination qS in the external reference frame.

Recall that the periodicity of the o implies the symmetric equivalence of 0 with

0 + o, (m - n), and of V with (9 - co, (m + n)/2. If these periodicities are independent of
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Figure 33: Lattices of symmetrically equivalent points and corresponding unit cells for 0 and p at a single
grain boundary. (a) 0 and (p display independent periodicities of w, and W,/2, respectively,
resulting in a rectangular lattice and simply described boundaries. (b) 0 and 0p display joint
periodicities, leading to a sparser lattice, an extended range of unique quantity pairs, and more
complicated boundaries.

one another (i.e., if m and n are independent), the symmetries of the system can be
represented by the lattice of symmetrically equivalent points displayed in Figure 33a,
which is consistent with the required boundary conditions on 0 and p. However, in the

present case 0 and p refer to the same grain boundary, and the indices m and n are shared.

Therefore, the symmetry of Equation (201) is represented by the lattice in Figure 33b;

observe that this lattice misses some of the required symmetries in the definition of 0 and

(p, i.e., Figure 33b is of lower symmetry than is Figure 33a. Therefore, Equation (201)
must be modified to incorporate the required symmetries. Examination of these figures
indicates that the lattice in Figure 33a may be constructed by combining the lattice in
Figure 33b with the equivalent lattice shifted in the 0 direction by wO~ or in the p direction

by co, /2; this leads to the equation

F(0,( )= F(O,qp)+ F(9 - 4 ,p) = F(9O,q)+ F(, p- w,/2), (202)

where the symbol Fdenotes the final distribution function with the proper symmetry that

is consistent with the specified periodicities. The conversion from the function F to F

completes step (v) of the derivation.
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F.3.2 Individual Distributions in 0and qi

The function F allows several sub-distributions to be determined. For example,

the joint distribution function of 0 and qo contains information specifying the distribution

functions for 0 and (p separately; these separate distributions may be found by integrating

over the dependence of one or the other variable. The integration actually gives identical

results for either F or , provided that the range of integration is specified as one period

of the distribution in the dimension of the variable to be removed. While F is consistent

with the preceding definitions of 0 and p, the integration is often simpler in F due to the

nature of the trigonometric functions present.

The probability density function describing the distribution of misorientations 0 is

given by

w, /4+ w, /2+0 , /2+

F(O)= I( ., '1" 2 JF(O, ()+ F(O -co,, I d( : IF(9,o)do. (203)
-o /4+0 -w, /2+0 -w,/2+0

The trigonometric terms in this integral either vanish for all values of the indices m and n,

or evaluate to constants for m = n and vanish for other values, according to the relations

provided in Appendix G. With simplification, this integral returns

(8O) -+ - (a2 +b )cos(kn0). (204)
( S  2 =1

for the distribution of misorientation angles in the boundary network. Similarly, the

distribution of boundary plane normals p is found to be

((P) = j/(0,piO = 2 iF(O,V)+ F(O,(- co,12)dO = F(O, 1)dO. (205)
-o,/2 -to -as

Following simplification with reference to Appendix G, this gives the function

-(P) = 2 + {(a - b,2 )cos(2kn((p - )) - 2ab, sin(2kn((p - 0))}. (206)
01 n=l
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F.4. Triple Junction Misorientation Distribution

Within the literature, studies of the effects of crystallographic constraints on grain

boundary networks frequently concentrate on the character and influence of the

constraints on boundaries joining at triple junctions [97, 98, 130-133, 135-144, 148, 149].

The reason for this is probably related to the increasing difficulty of analysis with the

extent of the boundary structure considered, and to the decrease in strength of the

correlations in boundary character with the spatial separation of the boundaries [145].

Therefore, analyses of triple junctions provide descriptions of some of the more

mathematically accessible correlations, and substantial information about the nature of

the network. The analysis of correlations in grain boundary character around a triple

junction is hence not only of practical interest, but provides an opportunity to compare

the results derived using our method to those appearing in the literature. For the sake of

simplicity, the joint distribution function of the three misorientations OA, OB and Oc is

determined, without consideration of the boundary plane inclinations.

Reference to Figure 32 reveals that the misorientations of the three boundaries

around a triple junction depend on the rotations of the three grains meeting at the triple

junction; that is, OA, O and Oc depend upon cA, cB and co. The joint distribution

function constructed in step (i) includes each of these grain rotations, and is found, as

before, from Equations (192) and (195):

1 1
F(COA , C ) [a, CosknOA+ COs kn) cos(k )+ cos(knCo )}

Gh n=1

+ b,, sin(knomA )+ sin(kn o)+ sin(kno, )}]
+ l 1[{a , cos(kmcA)+ b, sin(kmoA)}{a, cos(knco)+ b, sin(kn w)}

,o m=1 n=l1 (207)
+ {a,n cos(km o,)+ bm sin(km )}{a, cos(knc. )+ b, sin(knwco )}
+ {a,m cos(kmwco)+ b. sin(kmco,.)}{a cos(kncoA)+b,, sin(knwA )}]

+ : [{a , cos(kjoA )+ b, sin(koA )}{a m cos(kmco)+ b, sin(kmCO)}
1=1 m=1 n=1

x {a, cos(knco )+b, sin(knco)}].
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Transformation from a distribution of grain rotations to one of misorientations requires a

description of the misorientations in terms of the grain rotations, as in step (ii). This

appears in the form

S 1 0 - 1 (208)

o0, x - 1 0 ,

derived by use of Equation (193). Regrettably, the transformation matrix A is not

invertible due to the linear dependence of the misorientations; a Frank-Nabarro circuit

around the triple junction must start and finish in material of the same orientation,

implying that the combination of the misorientations accumulated from grain to grain

must be described by the identity operation [133]. Given two rotations, this constraint

uniquely specifies the third. Since A is not invertible, we resort to singular value

decomposition and piecewise application of the transformation components to perform

steps (iii) and (iv), as outlined in Appendix H. This provides the probability distribution

function

F(A , B IC) 2 a ± b )cos(knoA )+ cos(kno,)+ cos(kn6(,)}]

+ -------- i (aian -b,,,b,, )+ b,,.,+, (a,, bm + am b,,) }12 ,,,= l (209)

+ {a,,,+,, (ab,,, + a,,,b ) - b,,,+,, (a,,,a,, - b, b )}
x {sin(kmOA - knOB)+ sin(kmO, - knOc( )+ sin(kmO(c - knOA )}])
8(A B OC )

Our definitions of OA, OB and Oc require that the quantities display independent

periodicities of period co, as represented by the cubic lattice and cubic unit cell in Figure

34a. To perform step (v) and satisfy this requirement, we must initially determine the

periodicity of F. As above, oA, cB and cOc are symmetrically equivalent with CA +

Oc + mo, and oe + nce, respectively, where j, m and n are integers. From equation

(17), this implies the symmetric equivalence of OA, 9 B and Oc with bA Cs,(-m + n),

0 B+ C, (j - n) and 0( + c, (- j + m), respectively. Systematically varying the allowed
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Figure 34: Lattices of symmetrically equivalent points and corresponding unit cells for OA, 06 and Oc at a

triple junction. (a) OA, OB and Oc each display independent periodicities of co, resulting in a cubic

lattice. The size of the markers indicates the relative positions of points residing in the three (111)

type planes shown. (b) The three misorientations display joint periodicities, such that the lattice

resides entirely in the (111) plane and each lattice point satisfies the constraint 0
A + O8 + 0 c = 0.

values of j, m, and n results in a lattice of symmetrically equivalent points in the (111)

plane, i.e. the OA + B+ 
9 

c = 0 plane, as displayed in Figure 34b. Examination of these

figures indicates that the lattice in Figure 34a may be constructed by imposing the

necessary infinite translational symmetry on the lattice in Figure 34b, or

F(OI,,s,OBC)= ,F(OA B, +). (210)
-0

Practically speaking, though, F need only include those terms that contribute probability

density to the unit cell centered about the origin. Since the terms of Equation (210)

represent distributions on parallel ( 1) planes, only those planes that pass through the

cubic unit cell of edge length co centered on the origin need be retained. Only three of

the planes included in Equation (210) satisfy this condition, reducing the expression for F

to

F(OA, B, c ) = F(OA,O, c - w, )+ F(OA,O, Oc ) + F(OA, B, c + C, ), (211)

giving the joint distribution function for the misorientations around a triple junction, for

arbitrary textures described by Equation (192).
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F.5. Derived Quantities

In order to better appreciate the correlations in grain boundary networks, the full

information content of the distributions F may be reduced to a few, easily understood

parameters by applying a classification criterion to separate the boundaries into discrete

types. Although any classification scheme dependent on the boundary misorientation

may be used with the above distributions, we restrict ourselves to two types of quantities

appearing frequently in the literature pertaining to this problem. These are the special

fraction p-the fraction of boundaries within the networks whose disorientation falls below

a threshold value 0,-and the triple junction fractions J3, J2, J1 and Jo-the fractions of triple

junctions coordinated by the subscripted number of special boundaries. In this section we

derive these quantities from Equation (204) and Equation (211), respectively.

F.5.1. Special Fraction

The fraction of boundaries with disorientation less than the threshold angle Ot is

given by the integral

p= JF(Oto)d, (212)
-,

with the constraint 0 < 0, < w, /2, since this spans the unique range of the disorientation

9. Performing this integral using Equation (204) for F(O) gives

p 2, + I (a2 +b )sin(knO,). (213)
o, 2z ,,, n

F.5.2. Triple Junction Fractions

Determining the fractions of triple junctions is rather more involved, since the

joint distribution of misorientations around a triple junction must be manipulated rather

than the distribution of a single misorientation. The steps required to determine the triple

junction populations are:
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i. Specify the disorientation O, that separates low disorientation special boundaries

from high disorientation general boundaries. O, is by definition unsigned, and

must fall within the range 0 < 0, < c, /2.

ii. Classify every region within the fundamental zone of the joint misorientation

distribution in terms of the number of misorientations OA, OB and Oc in that region

smaller in magnitude than the threshold disorientation O. Within a particular

region this provides the number of special boundaries coordinating a given triple

junction, or equivalently the subscript of the triple junction fraction to which

probability density falling within this region contributes. An example of this

classification is performed for Equation (211) in Figure 35a and for Equation

(209) in Figure 35b for the case of 0 0, < w, /3, where white regions containing

no special boundaries contribute to Jo, and the three successive shades of grey

Y

03 " Oc

figure, 0 < 0, < co /3 . Darker shading corresponds to more special boundaries, e.g., white is a

region, and dark grey is a J3 region. Solid lines indicate unit cell borders in the current

representation, and dashed lines in the alternate representation. (a) Classification of triple

junctions as defined by Equation (211). For clarity of representation, the distribution is projected

into the plane spanned by OA and OB. This representation is preferred for integration due to the

simplicity of the equations of the region boundaries. (b) Classification of the triple junction

distribution defined by Equation (209). Bands of special boundaries occur in a high symmetry

configuration, and classification is continued outside of the fundamental zone to emphasize this

symmetry. The three regions in dashed lines correspond to the three parallel planes that intersect

the unit cell appearing in Figure 34a.
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contribute to J1, J2 and J3 respectively.

iii. Integrate the surface distribution function over the ranges specified above, and

construct the triple junction fractions by summing the results from regions of the

same special boundary coordination. Integration over a single region is

performed by parameterizing the surface in OA and 6 B, or

)dA = ( B X d Od , (214)
a OA BO

where y = OAY, + Oy2 + OCy 3 is expressed as a function of OA and OB alone using

the equation of the surface, OA + + 0 , = 0. The magnitude of the cross product

of the partial derivatives of y appearing in Equation (225) is a numerical factor

related to the ratio of a unit surface area to the projected area in the plane spanned

by A and OB, and in this case, is a constant equal to V1.
For the sake of brevity, we omit the equations for the boundaries of the regions within the

fundamental zone, as well as the integral equations leading to the derivation of the triple

junction fractions. The final results of this analysis appear in Appendix I, where we

present a complete analytical solution for the triple junction distribution for arbitrary

texture functions. The reader will notice that these expressions satisfy several physically

necessary constraints; for example, since every triple junction must be one of J 3, J2, JI or

Jo, the sum of these quantities must be unity, or

J 3 
+ J 2 

+ J1 
+ J 0 = 1. (215)

A further constraint arises when each boundary in the system may be uniquely assigned

to a single triple junction, namely, that the triple junction fractions must be consistent

with the fraction of special boundaries around that junction, i.e.,

J 3 
+ 2J, /3 + J, /3 = p. (216)

F. 6. Comparison with Prior Literature

The majority of investigations into correlated grain boundary structures consider

two-dimensional networks similar to our system [97, 98, 139, 142-145]; this restriction is
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due principally to the complexity of the three-dimensional case. Of these, only the works

of Frary and Schuh [97] and Van Siclen [98] provide analytical solutions for the special

fraction and triple junction fractions of correlated networks. The present solution is exact

for arbitrary two-dimensional polycrystals, and therefore more general as compared with

these studies. When specific simplifying assumptions are used, the results of [97, 98] can

be recovered. In this section, we demonstrate agreement with their results by simplifying

our expression for the special fraction to a form that corresponds with their solutions, and

further by numerical evaluation and comparison of triple junction fractions.

F.6.1. Simplification for Sharp Textures

Our decision to representJf(o) in Equation (192) as a Fourier series allows us to

predict grain boundary character distributions for arbitrary orientation distribution

functions, and naturally captures the effect of the k-fold rotational axis consistent with

any chosen crystal symmetry. For certain situations, the above distributions may be

converted to integrals, and potentially evaluated to provide simple, closed-form

expressions. The necessary, though not sufficient, conditions for this to be done while

maintaining accurate distributions are:

i. A closed-form analytic expression for J(co), the orientation distribution function,

exists and is readily available.

ii. The texture is sufficiently sharp that any distributions of probability density

arising from symmetrically equivalent points do not impinge on the fundamental

zone of the distribution being converted.

As an example of the procedure, we shall convert the orientation distribution

function in Equation (192) to integral form. By condition (i), the Fourier coefficients

may be calculated as analytic functions of n; that is, an and bn in Equation (192) may be

expressed as a(n) and b(n), respectively. This allows the Fourier series representation of

the orientation distribution function to be written as

kf (co) = {+ a(n)cos(knco)+ b(n)sin(knco)}An, (217)
2.'r ,,
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where An is the difference in magnitude of successive values of n, in this case unity. We

then perform the substitution kn = m, giving the equation

f() = + cos(m)+ b sin(m Am, (218)
2; ,k t k k M

where m is an integer multiple of k. Now, allow the period of the function to approach

infinity, or equivalently, allow k to approach arbitrarily small values. While this

effectively removes any symmetrically equivalent points, the distribution within the

fundamental zone of - , /2 co < o, /2 remains unchanged by condition (ii). Am, of

magnitude k, becomes a differential quantity, and f'(c) = lim f(w) becomes the integral
k-O

f '(W) = Ja'(n)cos(nco) b'(n)sin(noln, (219)
0

where the index m is relabeled as n, and we define a'(n) and b'(n) in terms of the Fourier

coefficients a(n) and b(n) as a'(n)= lima(n/k)/k and b'(n)= limb(n/k)/k. The
k->0 k--

existence of nonzero values of a'(n) and b'(n) for some value of n is implied by the

normalization of J(co), i.e., that f(co) is nonzero somewhere in the range

- w, /2 < co < m, /2. Notice that neither k nor cos appear explicitly in Equation (219); by

removing all symmetrically equivalent points, the distribution function is made

independent of crystal symmetry.

Although the above example is circular, deriving an integral form for f(co) given

the existence and availability of a closed-form analytic expression forf(co), the utility of

this procedure lies in the ability to derive integral forms for other distribution functions in

terms of a'(n) and b'(n). For instance, applying this procedure to Equation (213) gives an

expression for the special fraction of the network:

p'= 2rC Ja'(n)2 + b'(n)2  sin(nO )dn, (220)
0 n

where the prime symbol denotes quantities derived for sharp textures. Comparison of

this result with the expressions provided by Frary and Schuh or Van Siclen requires the

evaluation of Equation (220) using the Fourier coefficients that describe their orientation
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distribution functions. Since they define c to be uniformly distributed on the interval

- ,max O < omax, the appropriate Fourier coefficients are

a(n)= - sin(knwax )
nax (221)

b(n)= O.

Evaluation and simplification of Equation (220) using these Fourier coefficients provides

the piecewise function

1 0 ! C0Omax < 0,/2
p ' = 1 9 t  /2(222)

Omax 4 Kmax ma

which is quite similar to the results in the literature. For comparison, our Equation (213)

and the simplification Equation (222) appear along with the solutions by Frary and Schuh

[97] and Van Siclen [98] in Figure 36.

The three regions of Figure 36 separated by vertical dashed lines correspond to

three distinct physical situations, and are identifiable by considering the limiting values

of the misorientation. Equation (193) and the orientation distribution function reveal that

misorientations exist only from -20max to 2 Omax, or equivalently within 2Omax of any of

the symmetrically equivalent points occurring at integer multiples of co,. For sharp

textures where 2(Omax is smaller than the threshold disorientation 08, or 0 6Wmax < , /2,

every boundary in the network is special. The upper limit of this region is denoted by the

vertical dashed line at small values of Wmax. For weak textures, the distributions centered

on other multiples of co begin to contribute to the probability that a misorientation is

smaller than B0, and the symmetry of the crystal influences the special fraction. This

occurs when w, - 2omax is less than 0,, or for w,/2 - ,/2 < wmax ; the lower bound of the

region is denoted by the vertical dashed line at higher values of Wnax.

Frary and Schuh [97] and Van Siclen [98] separately derived the expression for p

shown by the dashed grey line in Figure 36. This solution is accurate for

0, /2 (O,,ax < w, /2 - 0, /2, and within this range the special fraction is independent of

crystal symmetry exactly as claimed by Frary and Schuh [97]. However, Frary and
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Figure 36: Analytic solutions for the special fraction of boundaries in correlated boundary networks, for the

specific case where o is uniformly distributed on the interval - omax co < o  max , and 0, = s, /6

with o, the angle of rotational symmetry of the crystallites. Our exact solution (Equation (213)) is

given by the solid black line, and is valid over the full range of Omax / o s . The vertical dashed

lines appear at toma = 9, /2 and co, = os, /2 - 0,/2. The solutions of Frary and Schuh [97]

and Van Siclen [98] are represented by the dashed grey line, which deviates for omax < 9, /2 and

excludes the effects of crystal symmetry for co, /2 - , /2 < o .x. A further result for

Omax = s, /2, found by Van Siclen, is denoted by the black dot. Equation (222), our

simplification for sharp textures, is shown by the series of grey points.

Schuh as well as Van Siclen neglected the component of the piecewise solution for

wma < 0,/2, which Equation (222) includes. Furthermore, neither the solution by Frary

and Schuh and Van Siclen nor Equation (222) consider contributions from symmetrically

equivalent distributions, and hence deviate from the crystallographically consistent

special fraction for co, /2 - 0,/2 < wmax. Van Siclen acknowledged this, and with an

independent calculation found the value of the special fraction for max = 0-, /2, or in his

terminology, for an isotropic polycrystal [98]. Notice that our exact solution, expressed

in Equation (213) and given in Figure 36 by the dark solid line, is physically reasonable

for 0 Omax < C0 /2 -0,/2, incorporates the effects of crystal symmetry for
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c, /2-9,/2 < c(max, and includes the result provided by Van Siclen for an isotropic

crystal.

F. 6.2. Numerical Evaluation of Triple Junction Fractions

Triple junction fractions contain significant information about the structure of
special boundary clusters; in particular, the presence or absence of J2 junctions in a
boundary network influences the fraction of special boundaries necessary to develop a
percolating cluster [97], and presumably affects a variety of intergranular phenomena.

0.8

0.2

I0.

Figure 37: Triple junction fractions plotted as a function of the special boundary fraction in correlated

boundary networks, for the specific case where w is distributed uniformly on the interval

- tmax o < )max ' For comparison, the dotted lines show the predicted triple junction fractions

for a random (uncorrelated) spatial distribution of misorientations. Solutions by Frary and Schuh

[97] and Van Siclen [98] for cmax < c, /2 - 0, /2 appear as the solid lines, and the specific case

derived by Van Siclen for Wmax = co, /2 is given by the dashed lines. Our solutions, presented in

Appendix 1, migrate continuously over the regions shaded in grey with changes in the values of cow

and 0,.
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Frary and Schuh [97] and Van Siclen [98] developed closed-form, analytical solutions for

the triple junction fractions with an orientation distribution function distributed uniformly

on the interval - omnax : co < Cmax . These author's results for 0 I _lnax < O, /2 - 0,/2 are

identical and appear in Figure 37 as the dark, solid line. A second solution found by Van

Siclen for Cnax = Wc /2 is denoted by the heavy dashed line. For comparison, the

fractions in a random polycrystal without crystallographic consistency are given as dotted

lines. Imposing the requirement of crystallographic consistence clearly affects the triple

junction fractions, and through them, the topology of the boundary network.

For comparison with our results, we use the Fourier coefficients of Equation (221)

to numerically evaluate the equations presented in Appendix I. By independently varying

the threshold disorientation 0, over 0 0, < c, /2 and Omax over 0 __ nmax < 2c,, we find

a continuous range of allowable triple junction fractions, shown in Figure 37 as the

shaded grey region. Although Frary and Schuh and Van Siclen developed equations

within the allowable range of values, they do not describe the boundaries of our results.

While this subtle effect is difficult to see in Figure 37, our results for this specific texture

include those of Frary and Schuh [97] and Van Siclen [98], the transitional solutions

between theirs, and further allowable triple junction fractions outside of their equations.

F. 7. Conclusions

The analysis of correlations in grain boundary distributions is critical to

understanding intergranular and transgranular phenomena, and is presumably of interest

for those investigating any material behaviour strongly affected by boundary character.

Our contribution in this appendix is an analytical method to describe and determine

correlations in grain boundary character arising solely from the requirement for

crystallographic consistency in polycrystals with uncorrelated grain orientations. For the

specific case of two-dimensional or two-dimensionally textured polycrystals, we present

an exact solution for the misorientation correlations at triple junctions. Extension of the

method to more complex structures, e.g. grain clusters of more than three boundaries,

quadruple nodes in three dimensional structures with the required texture, etc., is possible

using the same approach. Our results differ from prior analytical work along these lines
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in a few respects. Most notably, our expression of distribution functions as Fourier series
provides a general solution equally pertinent to all allowed textures and crystal systems,
thereby avoiding the necessity of lengthy derivations for individual instances.

Furthermore, the prior literature almost exclusively examines correlations in

classification of boundaries arising from the granular nature of the material, particularly

in terms of the triple junction fractions of "special" and "general" boundaries. Our

analysis instead considers correlations among the quantities describing the boundaries,
e.g. misorientation angles. This allows classification to be performed as a distinct,

secondary step, and thereby clarifies the nature and extent of correlations in the structure.
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Appendix G: Definite Trigonometric Integrals"

Integration of texture functions expressed using the Fourier series representation

in Appendix F generally requires integration of trigonometric functions over intervals

corresponding to a single period. The values of these definite integrals may be found by

expansion of the trigonometric terms as complex exponentials, followed by evaluation of

the integral of each exponential independently. A reference for integrals of trigonometric

terms used in Appendix F follows, omitting the integrals of odd functions, which vanish

identically:

Jcos(nx)dx = 0

fcos(mx)cos(nx)dx = I,,

Jsin(mx)sin(nx)dx= 6,,,

cos(jx)cos(mx)cos(nx)dx = (dx ,+n, + 6(S + 6, )
-7

Jcos(jx)sin(mx)sin(nx)d = 1 (-5j +6 , + +,n

where the indicesj, m, and n are positive integers and 6 is the Kronecker delta.

" The content of this appendix has previously been published in Ref. [107].

(223)

(224)

(225)

(226)

(227)
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Appendix H: Singular Value Decomposition' 2

The matrix A in Equation (208) is not invertible due to the mutual dependence of

the misorientations on the rotation angles. Performing singular value decomposition on

A results in the factorization

I/r -/v2 1/T NV3 0 o l/W2 -1/12 0
A=U UV' = 1/, 1/V2 1/,13 0 5 0 ,1/6 1/ -2/V (228)

-2/03 1/5)o 0 oX j(1/ 1/,F 1/5

where the transformation A is expressed in terms of an orthogonal matrix V, a matrix E

that contains the singular values of A and performs a stretching of space, and a further

orthogonal matrix U; a single transformation A is now replaced by three component

transformations. The columns of V and U form orthonormal bases for the co and y

spaces, respectively.

We now consider these transformations in order. The initial component of the

desired transformation in Equation (228) is a change in coordinates from CA, COB and coC

to vl, v2 and v 3, the columns of V. This transformation is performed by the matrix VT, and

is given explicitly by

V2 =/1/ 1/ - 2/F v. (229)

Inversion of this equation provides the functional relations wOA v,/N2 + v + v

O = - v/i + 2 v+ v 3/V/3, and . = - 2v2/6 + v3/l3. Since V is an orthogonal

matrix the distribution will remain normalized during direct substitution of the above

equalities into Equation (207); this completes one component of the transformation A.

The remaining components of the transformation A appear as

12 The content of this appendix has previously been published in Ref. [107].
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OA 1V -1/ 1 '/V 3 0 ov,I

S / / 0 0 (230)
0,, - 2/, 0 1/,5 0 0 0 v3

Examination of £ reveals that the nullspace of the transformation A is spanned by a unit

vector pointing along v3; the dependence of F(v, 2,v2 3,) on this quantity must be

removed by integration before the remaining transformation may proceed. To determine

the limits of integration, recall the symmetric equivalence of COA, COB and coc with

WA + j, , B + mow and o,, + nw,, respectively, where j, m and n are integers. From

Equation (229), this implies the symmetric equivalence of vi, v2 and v3 with

v, + (j - m)o, / 2 , v2 + (j + m - 2n), /4 6 and v3 + (j + m + n)c%,/ f, respectively.

Notice that setting the values of j, m and n each to unity shifts the value of v3 by the

smallest amount that simultaneously leaves the values of vi and v2 invariant; hence, the

distribution is periodic in v3 with a period of -3co5 , and the dependence on v3 may be

removed by integrating over this range. The appropriate integral is therefore

V5w,/2

F(v , V 2 )= JF(v, v 2, 3 )d3 (231)

-FSt /2

Performing this integral, with reference to the integrals of trigonometric functions in

Appendix G, allows the joint distribution function of vl and v2 to be expressed by

F(v,,v 2 )= + a + b os(kn )+cos(kn(v + v2 )/)
CO 2 n=1

+ Cos(kn(VI - VV2 )/ )] [{am+n (aman - b,mbn)+bm+n (anb,, +amb,,)}
4 m=l n=l

x cos(Nkm + kn(v,+ 2 )/N )+ cos(-Fkmv, + kn(v, -- v, )/ )

+ cos(km(v, + v,2 )/ , - kn(v , - JV2 )/ )}

+ {a,,+ (a,,b,,, + a,b, )- b,,+ (ama n -,, - b, )}{- sin (J2kmv, + kn(v 1 + v 2 )/V2)

+ sin(vkmv + kn(v, - v2 )/, 2)+ sin(km(v + J -2  - kn(v - v,v2 )/)}J.
(232)

At this point, the remaining v, and v2 must be found in terms of the misorientations OA, OB

and Oc. Our procedure is similar to the construction of the pseudoinverse A +, as
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explained in, e.g. Ref. [147]. Recall the decomposition of A and the subsequent

completion of the transformation VT; this situation is expressed mathematically by

y = Ac = UZVT"co = UZv. (233)

Left multiplication of the sides of this equation by UT and L£, defined as the matrix Z r

with the nonzero diagonal values inverted, provides the equation

Z+U'y = X+UT Uv = Z+Ziv, (234)

where U'U = I since U is orthogonal. Explicit evaluation using the matrices provided

in Equation (228) gives the matrix equation

-5/6 NF2/6 -52/3 'OA' (1 0 0" VI"

S1//6 116- 0 0, = 0 1 0 v, (235)
0 0 0 0 0 v

from which vi =ViOA/6 + J 9,/6-- - /3 and v2 A=-OA 6+0 /6 . We point

out that an expression for v3 is not necessary, since integration already removed the

dependence of F on this quantity. Substituting these relations into Equation (232), and

multiplication by the product of the nonzero diagonal values of ZL, in this case 1/3,

results in the equation

F(OA, OB, ) V + --N [(a + b cos(kn(- 20 + 9, + O)/3)

+ cos(kn(OA - 20, + O. )/3)+ cos(kn(OA + 0 - 20 c )/3)}]

+ ~ [{am+ (ama,, - b,,b, )+ bm+,(a,,b + a,,b, )}12 ,,=1 n,=1

x {cos(km(- 20A + 0 + 0c )/3- kn(0A - 20, + 0 )/3) (236)
+ cos(km(OA - 20B + 0(, )/3 - kn(OA + OB - 20 c )/3)

+ cos(km(OA + 0 - 20 c )/3 - kn(- 20A + 9B + 09 )/3)}

" {am+n (a,b + amb, )- b+, (ama,, - b,,b, )}
x {sin(km(- 20A + OB + )/3 - kn(OA - 20, + 0(. )/3)

+ sin(km(OA - 29, + 0( )/3 - kn(OA + 9 B - 20(. )/3)

+ sin(km(OA + 98 - 20c )/3 - kn(- 20A + B + . )/3)}])6(9A + O9 + Oc )
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for the joint probability distribution of the misorientations around a triple junction. The

Dirac delta function reduces F from a volumetric probability distribution to a surface

probability distribution; to understand appearance of this term, recall that for a circuit

around a triple junction, the combination of the misorientations accumulated from grain

to grain must be described by the identity operation. Mathematically, this is expressed in

our current system as

0A + OO + ,C = 0 . (237)

This requires the allowable sets of misorientations, considered as vectors in y space, to

contain no component in the [ 1] direction. This is actually apparent directly from

Equation (228); since the column vector of U spanning the left nullspace, or the subspace

unreachable by the transformation A, points in this direction, a surface probability density

function must result. The constraint expressed by the Dirac delta function allows the

expression for F(OA ,B,O () to be considerably simplified, to the form appearing in

Equation (209).
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Appendix I: Triple Junction Fractions'3

Following the procedure outlined in Section F.5.2 provides the equations for the

triple junction fractions J3, J2, J and Jo in terms of the Fourier coefficients a, and b,, and

the threshold angle ,O. Due to the disappearance of certain regions and the appearance of

others when 0, = co,/3, the form of the equations depends to a certain extent on the

choice of the threshold angle. For 0 <: 0, < c, /3,

J3 = +  a +b, -cos(kn9, )+ kn9, sin(kn9,)}

303  1 (238)
+42 In-- = (m(aa,, - bmb, )+ b,,,(anb,n + ab,)}

x {cos(kn, )- cos(k(m + n)O, )}]

J2 + 3 - (a[ 2 + b ){- 2 + 3cos(kn9,)- cos(2kn 0,)
2 4 2 n

Skn, sin(kn9, }+ -- a m+ (a a - bmb) (239)
4 =1 n= (m + n)m239)

+ b,,, (ab m, + abn )}{- 2 cos(kn O,)+ 2 cos(k(m + n), )+ cos(k(m - n),)

- cos(k(2m + n),)}]

J 30, (2, - 50 , )2 4(a 2 + (a + b2 1 - 3cos(kn, )+ 2 cos(2kn0, )+

2 3' (20
n(2- 5k9, )sin(knO, )}] + (m {a,,,,, (aman - bb,) (240)

+ bm+,,(a,,bm + a,,b,,)}{cos(kn, )- cos(k(m + n)O,)- 2 cos(k(m - n)9,)
+ 2 cos(k(2m + n)O,)}]

13 The content of this appendix has previously been published in Ref. [107].
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J 2, - ,)2 + 2 (a + b, )cos(kn9,)-cos(2knO,)
co, 4; n , n

303 00 (241)
+ n(3k, -2)sin(knO, )I+4 3 n)m ( a m+n4;T 1 ,,,= (m + n)m
+ b,,,,,+(anbm + a,b,n)}{cos(k(m - n)9,)- cos(k(2m + n), )}]

Otherwise, when co, /3 < 0, < w, /2, the equations

60, (20, - , ) + a 2 (b, +)sin(kn,){2kn9, nz +J0 + 2 2 2ff 1  + b )njkn}j

303 0 (242)
+ --- ( a nan -b,,,b,,)+ b,,,, (a,b,, + a,, b,)4+ 2 =1 ,n=l (m + n)m a -bb )+bm+n (abn ainb)} (242)

x {cos(kn0, )- cos(k(m + n)0, )+ cos(k(m - n), )- cos(k(2m + n)o, )}]

J -3+ 6, 2 o 4) 3. 2+b)sin(kn, ){-4knO, +3nTJ2 = -3 + 2n
(0, 2 2  n[ n

-2sin(kn,) 3 a,,a - b,, b,,) (243)
2 m= n=l (m + n)m {a+ (aa 4

+ bi+(a,,bl + amb)}{-cos(knO, )+ cos(k(m + n)0,)- cos(k(m - n)O,)

+ cos(k(2m + n)O, )}]

J= 3(o,- 2 )2 230)2 1(a2 + b,2 )sin(kn9, ){2kn0, - 2n; + sin(kn0, )}

3w 31 (244)
+42 ( = m{a

+ n
(aiiian - b,,,) b +n(anbm a, bn)}{cos(kn0, )

4 in=1 n=1 (m + n)m

- cos(k(m + n)O, )+ cos(k(m - n)9, )- cos(k(2m + n)O, )}]

J =-0 (245)

are used instead.
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