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Abstract

A vertically adjustable electrostatic probe array was made to observe the previously seen low-
frequency angular oscillations in LDX and identify if they are related to computationally expected
convective cells. The array rests one meter from the centerline and measures edge fluctuations at
field lines near the separatrix. It spans ninety degrees and has 24 probes mounted on it for total
probe tip separation of 6.8cm. Bispectral analysis of the fluctuations show that that an inverse
cascade of energy is present at times in LDX. The cascade transfers energy from small spatial
scale structures to large scale structures. The wavenumber spectrum is xc k- 1.4 to oc k-2 5 at high
wavenumbers, which encompasses the inverse energy cascade regime of c k - 5 /3 . The plasma also
has a linear dispersion relation which gives a phase velocity of 2-16 k. This phase velocity is
inversely correlated with neutral gas pressure in the vessel. The velocity also has a local maximum
at 5 pTorr which is the pressure that produces maximum plasma density. The radial E x B drift
velocities are observed to have a mean near zero, which indicates a closed structure like a convective
cell. The instantaneous radial drift velocities are on the order of the ion sound speed, which is 35
km/s.
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Chapter 1

Introduction

1.1 The Levitated Dipole Experiment

LDX is a concept exploration experiment being conducted at MIT's Plasma Science

and Fusion Center. It aims to examine the merit of a dipole field as a potential

magnetic configuration for a fusion reactor. The observation of plasmas with high

kinetic to magnetic pressure ratios (/3) around Jupiter spawned the idea of dipole

confinement, and it has many benefits over more traditional toroids. The most no-

table being intrinsically high / stabilized by high compressibility and radial particle

convection [3].

This thesis aims to characterize the previously observed low-frequency angular

oscillations and identify if they are related to convective cells. Convection is another

name for the E x B cross-field drift that occurs in plasmas. "Cross-field" means

that the drift causes particles to move across magnetic field lines instead of only

spiraling around a single line. The name "convection" arises from the fact that ions

and electrons drift with the same speed and direction in E x B drift. Therefore, the



drift does not cause ions and electrons to separate, and the plasma is transported like

a fluid in thermal convection. Electrostatic potential is constant along the magnetic

field lines, so convective cells are "interchange-like" since they cause fluid elements

of the plasma to swap positions in potential, or interchange.

Convective cells in plasmas are similar to conventional fluid convective cells in

that they can transport both energy and mass across a gradient. In a plasma, they

can cause particles to cross magnetic field lines, transporting them out of magnetic

confinement [19]. The reason for studying whether convective cells occur in LDX

comes from their ability to transport plasma between the core and edge of the plasma.

A common problem in tokamaks is the removal of fusion products, or ash, from

the hot plasma to keep the fusile particle density high enough to maintain fusion.

Previous computational models similar to the magnetic configuration in LDX have

yielded results where convective cells transport particles without transporting energy

[22] [12]. If convective cells occur in a dipole geometry naturally, they could prove

advantageous since they could remove ash from the center without decreasing the

temperature of the plasma [12]. This would be a strong positive feature of dipole

confinement, and would be illustrated by experimentally demonstrating that the

particle confinement times are smaller than the energy confinement times.

Another property that convective cells create in a dipole geometry is that they

can peak the temperature and density profile in the center, which is ideal since this

localizes where fusion could occur, eases the damage done to the vessel walls, and

reduces the sputter contamination from the walls.

Previous probe data from LDX indicate that low-frequency potential fluctuations

occur [2], but the probes were too distantly spaced to properly capture the phe-

nomenon with enough spatial resolution. I constructed a vertically movable probe

array with tight angular spacing to provide more spatial information in hopes to



differentiate whether the potential fluctuations are convection related or related to

some other phenomenon. It consists of 24 individual floating potential probes and

sits on the bottom of the vacuum vessel one meter from the vessel's center with the

probes extending upward. It is adjustable in the types of probes mounted on it and

the vertical height they intersect the underside of the plasma. The vertical height is

remotely adjustable, and can be changed during or between shots for probe insertion

scans. The probe modularity allows other kinds of probes to be inserted into the

array at another time.

The goal of the research is to observe the toroidal edge potential fluctuations

in LDX, determine their spatial and temporal modes, report the conditions under

which they arise, and characterize the energy transport between modes. The results

are compared to both well-known and new computational models to determine if

the fluctuations are related to convection, and to basic laws governing turbulence

to see if similar turbulence is occurring in LDX. Edge measurements were taken

since they describe the characteristics of energy and particle transport at the surface

where the plasma interacts with the outside environment. This area is important in

determining the effects that the potential fluctuations have on confinement times.

The probes also would not be able to withstand the heat flux of the more dense

interior plasma and would either melt to start emitting electrons, both of which

would make the measurements unpredictable. The higher density of the plasma's

interior is also believed to reduce the fluctuation magnitude, so edge measurements

produce the best fluctuation results.



1.2 Energy Cascades

The LDX plasma is essentially two-dimensional due to it having equal potential on

a field line (VI - B = 0). This gives rise to unusual phenomenon when inspecting

turbulence in the flow equations. One phenomenon is the cascade of energy from

small-scale turbulence to large-scale turbulence. Three-dimensional fluids dissipate

the energy in flows into smaller-scale structures, which eventually turns macroscopic

kinetic energy into thermal energy. However in two dimensions, the equations suggest

that energy is taken from small-scale flows and given to large-scale ones, producing a

so-called "inverse cascade" of energy. This is a counter-intuitive phenomenon in that

small perturbations in the fluid are dissipative and large-scale ones grow, turning

microscopic energy into macroscopic flows. Such flows are important in LDX in that

they could give rise to zonal flows which increase particle confinement.

Grierson, et. al. have observed the inverse engergy cascade in Columbia Uni-

versity's CTX, which produces a plasma confined by a supported dipole magnet [6].

The analysis examined temporal frequencies, which were assumed to correspond to

spatial modes. In addition to investigating convective cells, this thesis also sets out to

determine the agreement between measuring floating potential fluctuations captured

by the probe array in time and space, and examining the direction of the energy

flows between spatial modes.

1.3 Electrostatic Probe Array

The electrostatic probe array is composed of twenty-four cylindrical, tungsten-tipped

floating potential Langmuir probes. The array is positioned at a radius of one meter

and sweeps out a ninety degree arc at the bottom of the LDX vacuum vessel. This



gives a probe separation of about 7 centimeters, giving the array a resolution of 14

centimeters. This resolution corresponds to a detectable mode number range of 1 to

46. The flow velocities arising from E x B drifts can be measured by computing the

electric field from the plasma potential, and the energy cascades computed from the

evolution of the spatial wavenumber spectrum.





Chapter 2

Theory

2.1 Probes

Langmuir probes are tools that measure the electrical characteristics of plasmas, and

are among the oldest and simplest kinds of plasma diagnostics. In a general sense, a

probe is simply an electrode placed within the plasma, as figure 2-1 shows. To get a

local measurement, they are shielded from the plasma by a non-conductive material

with a high melting point, typically a ceramic. Some types of probes simply measure

the potential the electrode develops while in the plasma, others bias the electrode to

a fix potential and measure the current drawn by it, and still others apply a time-

varying potential to measure the whole I-V characteristic curve of the plasma. The

probes in the LDX probe array are the floating potential variety, meaning they have

a large resistor in series with the electrode. This is done to keep the current flowing

in the probe low so that the electrode "floats" up to a potential called, surprisingly,

the floating potential.



Figure 2-1: Schematic of a Langmuir probe.

2.1.1 Floating Potential

Ideally, the probes would measure plasma potential directly, but since they are not

completely transparent to the plasma, they perturb the local environment they are

placed in. An ideal probe draws no current, but even so it is not at the same potential

as the plasma. This is due to the mass difference of the ions and electrons. Assuming

their temperatures are equal, the electrons have a much higher velocity than the ions

due to their smaller mass. Therefore, an electrode placed in the plasma would collect

many more electrons than ions and emit a net current. Since the ideal floating probe

does not allow current to pass through it, the current causes the electrode to charge

up to a negative potential until sufficiently many electrons are repelled to equalize

the rate at which ions and electrons are collected [10].



V = Vf + Te in 2x V + 2.5Te (for a deuterium plasma) (2.1)

The floating potential is related to the plasma potential by equation 2.1, where T

is the electron temperature, Vf is the floating potential, V, is the plasma potential,M

is the ion mass, and m is the electron mass [17]. In LDX, the electron temperature

is approximately 25 eV, so the plasma potential is really about 75 volts higher than

the measured floating potential. However, since its is an additive term, it does not

affect the analysis of the fluctuations or the magnitude and direction of the electric

field.

The potential measured directly from the probes is also not the floating potential.

The probes are not ideal and draw a small amount of current. The current drops

the measured potential from the actual floating potential as if there were another

resistor between the probe tip and the floating potential. To get the real value of

the floating potential, the slope of the linear region of the plasma's I-V curve (the

plasma resistance) must be known. There are other probes in LDX that "sweep,"

i.e. they are driven with a certain potential waveform and the current flowing in

the probe is measured. This way, the I-V curve of the plasma can be measured

with a single probe while only sacrificing time resolution. As long as the plasma

is relatively constant during the sweep period, the measurement is valid and can

still measure time changes that take longer than a sweep period. To get an idea of

the typical size of the resistance in LDX, a swept probe signal was taken from shot

81217011 and the slope of the linear portion was taken to be the resistance. The

portion of the curve at higher voltages corresponds to "electron saturation," where

the the electrons being drawn into the probe start repelling ions as well as creating



a current, and the net current formed departs from linearity. This shot was chosen

since it was a "wedding cake" shot in that it uses all of the heating sources in different

configurations. First 2.5KW of 2.45GHz ECRH was turned on, then 2.5KW more

of 6.4GHz, and then 10KW more of 10.5Ghz for a total of 15KW. The resistance

decreases with more heating, and has a maximum value of about 5.4 KQ2 for cooler
plasmas. With this resistance, Vpasm/Voat Rprobe (1M+lOk) = 995.

plasmaVfloat Rprobe+Rplasma (1M+10Ok)5.4k

This is a multiplicative correction, so it can affect the magnitude of the fluctuation

and electric field measurements. Therefore, it is important to keep its value close

to one. The resistor in the probe was chosen to be much larger than the plasma

resistance, so that the multiplicative term is close to one and the floating potential

can be closely approximated by the measured potential.

Shot 81217011

5 ... .. .. . .. .. . .. .* .*

-- S *. * *

-50 2.5kw |
5e4*x-66

* 5kw
3.2e4*x-65

* 15kw

-100 - .-. 2.4e4*5-47

-0.005 0 0.005 0.01 0.015 0.02 0.025 0.03
Current (A)

Figure 2-2: I-V curve of a typical LDX plasma, shot 81217011



2.1.2 Frequency Response

The probes need to measure potential fluctuations, so their response time must

be faster than the regime of interest. Having a very large resistor in the probe is

problematic if it causes the RC time of the probe to become unacceptably large.

Placing the resistor close to the probe tip reduces the capacitance of the probe,

but there is still a small amount of capacitance associated with the sheath and the

cabling. The capacitance of the sheath is 0.13pF as by equations 2.2 and 2.3 [11] [4].

AD is called the Debye length, and is the characteristic length for which perturbative

effects from te probe take place. The coefficients a and b in equation 2.3 depend on

electron temperature, but the equation can be further approximated to only depend

on the plasma sheath area As and the Debye length. The sheath area is the surface

area of the probe if it had a radius about five Debye lengths, making the capacitance

proportional to another characteristic length, As/AD.

AD = 2NT = 2.35 x 10-5  Tk (2.2)

C(Vf) = a oA (2.3)
b - 4AD 5AD

Together with the sheath resistance of 5.4KQ, an ideal probe would have a re-

sponse time of about 0.7ns or 230MHz. The capacitance of RF coaxial cable is about

30pF per foot, which typically has a grounded shield very close to the conductor. The

cables inside the array have no shields and enamel insulation and therefore should

have much lower capacitances than equivalent runs of coaxial cable. The resistor is

less than two feet from the probe tip, so a very conservative estimate of the cable

capacitance is IpF. Together with a series resistance of 1MQ, this gives the probes



a -3db rolloff at f-3db = 2 - 160KHz. This lower bound of the frequency knee

intrinsic to probe electronics is well above the digitization rate and the frequencies

of interest, and therefore it will not affect the measured signals.

2.2 Inverse Energy Energy Cascades in Plasma

Fluctuations

Analysis done by Grierson, et. al. at Columbia University's dipolar plasma in CTX

inspired similar investigations in LDX. In order to measure the energy cascades in

LDX, a signal from a model plasma had to be made to test the analysis method. A

set of equations have been written by Hasegawa and Mima to describe the turbulence

found in magnetized, nonuniform plasmas that have an electron temperature much

higher than the ion temperature, where the time scales are much longer than an ion

cyclotron period, and the turbulence is high enough that the wave-particle iterations

are negligible [8]. Their turbulence equations were used to create a synthetic data

signal similar to turbulent plasma that has nonlinear wave-wave coupling effects.

This signal was used to test the analysis methods explained in the next section.

They derived these equations to explain the broad frequency spectrum observed

in tokamaks that couldn't be explained by weak turbulence theories which assume

a small departure from linear eigenmodes (and therefore have strongly peaked spec-

tra). The equations are similar to mass conservation in a fluid element, and are

shown in equation 2.4 where n and no are the perturbed and unperturbed densities,

respectively, wei is the ion cyclotron frequency, and VI is the gradient perpendicular

to the magnetic field. Qualitatively, the equations state that the rate of change of

the particle density in a fluid element plus the net movement of particles in and



out of it is equal to zero. The velocities vE and vp are the E x B and polarization

drift velocities, respectively. These equations assume that the only phenomena that

transport particles are related to these two drifts, and that the parallel phase ve-

locity is much greater than the electron thermal speed, making the parallel motion

unimportant. Both drifts depend on electric field (the E x B being static and the

polarization being time-varying), and therefore are tied to the plasma potential.

On
+ V - [no(VE + Vp)] = 0[8]

VE = -v 1 X Bo/Bo2 (2.4)

1 8a
vp = V. - (vE. V)V I

weBo [at

Assuming the electrons follow the Boltzmann distribution, the relation n/no =

e¢/T can be written by quasi-neutrality. It can also be shown that V - (nvE) = 0

by continuity [8]. Expanding equation 2.4 in a Fourier series gives equation 2.5 [8].

00k(t) 1
at -)+ ZWk (t) 2 Z Ak',k",k1(t)0k"(t)

k=k'+k"

Ak',k" = 1 k 1 x(k' x k") [(k")2 - (k') 2 ] (2.5)

-kyTeO(lnno) /ax
k = eBo(1 + k2)wci

Hasegawa and Mima also cover the consequences of this model, saying that that

the mode coupling will rotate the plasma in the plane perpendicular to the mag-

netic field. They also mention that large potential amplitude convective cell modes

were directly excited by drift-wave turbulence in their computer simulations. This

suggests that convective cells not only coexist with turbulence characterized by the

Hasegawa-Mima equations, but could be powered by it. Due to their similarity to



the Navier-Stokes equations, the Hasegawa-Mima equations could lead to an inverse

energy cascade that concentrates energy into low wavenumbers [8], and will obey

Kraichnan's power laws shown in equation 2.6 [9].

E(k) = CE2/3k -5/a

E(k) = C'r2/3k
-3

In Kraichnan, 2D turbulence is shown to conserve kinetic energy and the mean-

squared vorticity (vorticity = Q = V 2E, where E is the stream function [18]), called

enstrophy. From this, the power laws in equation 2.6 were derived [15], where

C and C' are dimensionless constants and e and T are the rates of cascade of en-

ergy and enstrophy per unit mass, respectively. The k- 5/ 3 power law corresponds to

a "downward" energy cascade where E < 0, i.e. that energy is transferred from the

wavenumbers where this law holds to smaller wavenumbers with zero transference

of enstrophy. The k-3 power law corresponds to an "upward" cascade in enstrophy,

and zero transference of energy. These regimes can occur in the same spectrum, and

cause energy to be transported to small wavenumbers and vorticity is transported to

high wavenumbers. The downward cascade of energy implies that if high wavenum-

bers are excited externally, their energy will be transferred to lower wavenumbers.

This gives the plasma a "self-organizing" characteristic that will cause energy from

high modes excited by heating to move to large-scale structures in the plasma [15]. If

the LDX plasma has these regimes, it is another indicator of fluid-like 2D turbulence

and an inverse cascade of energy.



2.3 The Ritz Bispectral Method

The method derived by Ritz, et. al., is used to determine the direction, magnitude,

and coupling of the energy cascades in the LDX plasma. The method assumes a

stationary state, i.e. the power spectrum is unchanging. This implies that the linear

growth rate of each mode is balanced by the energy transfer from nonlinear wave-

wave coupling. It also is only accurate for systems where the majority of the power is

in the linear and quadratic terms described by the wave coupling equation in equation

2.8. If incoherent or higher-order terms make up a large portion of the power, the

computed transfer coefficients will not be accurate [21]. This equation is identical

in form to equation 2.5, showing that this method is valid for characterizing the

interactions that arise from the Hasegawa-Mima turbulence. The Hasegawa-Mima

equations were derived for tokamaks, however, and are not directly applicable to a

dipole plasma. They are useful to create a synthetic signal to test the the analysis

routines using the Ritz method, as will be shown later.

0(k, t) = 3 O(x, t)eikx (2.7)
k

00(k, t) = ALO(k, t) + A (k, k 2 )4(k, It)(k 2, t) (2.8)
at 2 kl,2

Ak = (7k + iwk) (2.9)

The first step in deriving the method is Fourier transforming then replacing the

differential in equation 2.8 with the finite difference shown in equation 2.11. A

finite difference is basically replacing the partial derivative with the definition of a

derivative. The finite difference approximation of the partial derivative is only valid



for functions of 0 with slowly changing phase over the time interval 7 [21].

0(k, t) = I(k, t)Iee(k,t)

84(k, t) = l( I (k , t + 7)J - I(k, t)l 1
at -*O T I (k, t)

o(k, t + 7) - O(k, t) )+i(kt) T )

(2.10)

(2.11)

If the Fourier transform is represented in magnitude and phase in complex no-

tation as in equation 2.10, substituting equation 2.11 into equation 2.8 yields an

approximation to the wave coupling equation shown in equation 2.12.

(, ) A + 1 - i(|O(k, t + 7)J - IO(k, t)J)
e(i(e (kt+r)_(k,t+T)e(kt)) ' (k, t)

1 AQ(k, k2) T
kk2 (k k)

(2.12)

Redefining a few quantities gives a neat expression show in equation 2.16. The

quantities Lk and Qkl,k 2 are the linear and quadratic transfer coefficients, respectively.

They characterize the linear and quadratic processes of the system and in conjunction

form the "black box" system that modifies an "input" signal Xk to produce an

"output" Yk.



Xk = 0(k, t), Yk = 0(k, t + 7) (2.13)

Lk AT + 1 - i((k, t + T) - (k, t)) (2.14)
Lk k -i((k,t+7)-(k,t)) (2.14)

AQ(ki, k2)7
Qk = ( k2)T (2.15)

ek _i(e(k,t+r)-(k,t))

Yk LkXk + I E QkYkXk,Xk 2  (2.16)
ki,k2

This system is not directly invertible, and more involved methods must be used

to obtain the transfer coefficients from the input and output of the system. This is

due to the nonlinear nature of the system desribed by Qkl,k 2 . To create a solvable set

of equations, moments are built from equation 2.16. The first moment is made by

multiplying equation 2.16 by the complex conjugate of Xk and ensemble averaging

(denoted by (...) in the equations) over many independent realizations. These ensem-

ble averaged quantities are call "estimators" since the estimate the true value of the

autopower, crosspower, bispectrum, et cetera by averaging many different instances

of the same quantity. An individual measurement may be far from the true value,

but averaging over many should make the value converge to the true value. Its like

computing the temperature of a material by measuring and averaging the kinetic

energy of individual molecules.

(YkXk) = Lk(XkXk) + Qk,k 2 (XkXkiXk2) (2.17)
k ,k 2

(YkX,X, = Lk (XkXk X ) + E Qklk2 (Xk X~ X k lX k 2 )  (2.18)
ki,k2



The second moment equation is made by multiplying by X*, X*, and ensemblek1 k2

averaging. This produces the fourth order moment (X*, X *,XkiXk2), which is a

very computationally intensive quantity to compute, so a closure approximation is

made assuming all off-diagonal terms (k', k) 4 (k1 , k2) are zero. Approximating

(X*,X ,XkXk 2) with the second order moment (XXkXk2) is called the Million-

schikov approximation [21]. This approximation causes the summation in 2.18 to

drop out, and the quadratic transfer coefficient can be directly extracted from the

equation [21].

The transfer coefficients are the only unknowns in the two coupled moment equa-

tions and thus can be solved for. The transfer coefficients are given by quantities

shown in equation 2.19. They can be solved iteratively by using an initial guess for

Lk where Qkl,k 2 = 0. The equations should be self-consistent and converge onto the

proper transfer coefficient values for a given set of estimators [20].

(YkXZ) - E Qkl,k2 (X XkXk 2)
kl>k2 (YkXklXk2) - Lk(XkXkXj 2.19)

Lk - klk2 12k .X2)19)
(XkXk) 2 (IXklXk 2 2

To determine the direction on magnitude of the power transferred between cou-

pled waves, the coupling coefficient, AQ (k, k2 ) (which is equal to the transfer coef-

ficient multiplied by the phase shift, which can be approximated by equation 2.23

[21]), is multiplied by the bispectrum and the real part is taken (shown by the "R"

operator). This new quantity is called the quadratic power transfer coefficient, and is

shown in equation 2.21. When it is plotted, the negative regions show the wavenum-

bers that have power being drawn out of them into waves with smaller wavenumbers.

Positive regions show the converse, or wavenumbers that have two smaller wavenum-



bers putting power into them. Figure 2-4 shows an illustration of this three-wave

breakdown/buildup process. By summing along all contributions to a single k, a

quadratic power transfer function similar to the linear growth rate (eqn. 2.20 [13])

can be computing from Tk, as shown by equation 2.22. These plots are shown in the

results section, and represent the net power transferred into a wavenumber, k, from

positive and negative contributions (buildup and breakdown) of other wavenumber

pairs, k1 and k 2 's [21].

S= - 1 (2.20)
T

T (kl, k2)= R(AQ(kl, k2) (klklk 2 )) (2.21)

k= ZT (k, k2) (2.22)
k ,k2

e-i(o(k,t+_)-e(k,t))  (YkX) (2.23)

Ritz deals with the spatial spectra, but the method can be applied in both time

and space. If temporal frequencies are examined, the signals need to come from

two probes separated in space. In a mathematical sense, the spatial method com-

pares many 0(k, t) and 0(k, t + 7)'s, whereas the temporal method compares many

O(x, w) and O(x + Ax, w)'s. If spatial frequencies are examined, the signals need

to come from a probe array signals separated in time. The majority of the analysis

done here deals with the spatial application of the Ritz method since the probe array

allows direct measurement in wavenumber space. The plasma is assumed to rotate,

however, and there should be a relation between the wavenumbers and frequencies

shown in either analysis. I will discuss the time method first since the routines were

tested with "time-like" synthetic signals. It is easier to create synthetic time sig-
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Figure 2-3: Graphical description of how the quadratic coupling coefficients relate to

the input and output signals taken directly from Ritz. The figure shows how a set

of wavenumbers that satisfy the condition k = ki + k2 are multiplied by the value of

Qk(kl, k2) and summed to produce the resultant value of k. It highlights the areas of

the coupling coefficient like lines of constant k, Nyquist cutoffs, and symmetry axes.

[21]
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k, k
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Power

Figure 2-4: Illustration showing how the three waves interact depending on the sign

of Tk



nals and this is the only reason it was tested in time rather than in space. If the

algorithms are valid for time analysis, they should also work for space since the only

difference between the two is along which dimension the Fourier transform is made.

The method in time space starts by taking the fast Fourier transform (FFT)

of the two input signals and normalizing (dividing) the transform by its length.

These two signals are offset by a distance Ax in space. The signal is assumed

to have gone through a linear and non-linear change described by a "black box"

operation during the distance Ax, shown in figure 2-9. The input to the black box

is the signal measured at x and the output is the the signal measured at x + Ax.

From these two long time signals, small samples are taken at equal times and used

to compute the estimators. The window is then moved down the signal and the

estimators are recomputed. Figure 2-5 shows this process diagrammatically. The set

of estimators acquired by this process make up the ensembles used to compute the

ensemble averaged estimators and ultimately the transfer coefficients.

Signal x

Previous windows Fourier Transformed t compute (..) quantities

.. ... .. ..... .

Signalx+A x

Figure 2-5: How samples are taken from two time signals to make ensembles.

To test the method, a synthetic signals had to be made where the linear and

quadratic transfer coefficients were know a priori. Such a signal set was created by

using Fourier transformed Gaussian random noise to excite the "black box" system

described by equation 2.16 then inverse Fourier transforming the input and output



signals back into time. A large number of points had to be used in constructing

the signal so sampling the signal in time with a moving window would produce a

reasonable approximation. The ideal signal is continuous, so the appropriate length

the synthetic signal needed to be was determined by sampling theory.

Sampling can be thought of as multiplying a function with a Dirac comb function.

Since multiplication in normal space is convolution in Fourier space, sampling a signal

with a finite Dirac comb is the same as convolving its frequency spectrum with the

transform of a finite comb. The Dirac comb is simply a train of Dirac delta functions,

and its Fourier transform is a complex exponential. Since the Fourier transform is a

linear operator, the Fourier transform of a finite comb is simply a sum of harmonic

complex exponentials with the fundamental at the sampling width, T, and the last

harmonic at half the sample points, Ny, as shown in equation 2.24. The sum of

complex exponentials converges to a dirac comb function with spacing 2, shown

in figure 2-6. For the signal to be perfectly reconstructed in frequency space, the

width of the frequency space comb must be twice as wide than the highest frequency

present in the signal (the Nyquist sampling theorem).

comb = 6(x - nT) + COMB = e i k n T  (2.24)
n n

If this condition is satisfied, then the convolution will produce a train of spectra

that do not overlap, i.e. every frequency is perfectly resolved. The effect of trun-

cating the comb in normal space is that the sum of sine waves in frequency space is

also truncated, and therefore the sampling kernel is not a perfect Dirac delta. The

resulting pseudo-delta has some finite width from truncation, and smears out the

details of the frequency spectrum when the signal is convolved in frequency space.

Figures 2-7 shows the sampling kernels corresponding to sampling in normal space
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Figure 2-6: The Dirac comb function and its Fourier transform [161

with a truncated Dirac comb. Since adding points in normal space is the same as

adding additional terms to the sum in frequency space, adding two additional points

in normal space is the same as adding one harmonic term in frequency space, so the

first harmonic corresponds to 3 points, the second to 5 points, etc. Figure 2-8 illus-

trates the effect of sampling on a slightly noisy signal. The lower harmonics average

over the signal by their FWHM. Using smaller windows effectively smudges out the

details in the spectrum, and therefore shorter time series can be used to construct

the synthetic signal if small windows are used to sample it. If wide windows are

used, the imperfections in the construction will become apparent and will no longer

look like the coefficients used to construct the signal. A fit to the FWHM trends of

the sampling kernels yields FWHM = 2.126/x-7 493 where x is the harmonic number

(or x= samples-1

The experimental data has a width of 22 points (since the first and last channels

were broken on installation), but is padded up to 92 points, so the analysis was tested

with a window of 92 points. Using a very conservative 100 signal widths within one

window width, a synthetic signal width of 8signal = 74 100(Ssample - 1)+ 1 45, 000

was determined. This fact was important for computing the test case since running

fyx)



the signals through the quadratic sum in equation 2.16 takes many hours to run.

This in mind, the test case was done using the temporal method since only two long

signals needed to be created. To directly test the spatial method, many consecutive

signals needed to be made, and doing so for signals of this length would have taken

months of computing time. Using the temporal method to test the code apposed to

the spatial method should still give an indication if the code is working as it should.

Figure 2-7: Progression of sampling ker- Figure 2-8: Effect of finite sampling in

nels as more points are added in time. time on frequency spectrum construction.

The test signal was made by feeding 150,001 Gaussian random points (to ab-

solutely ensure accuracy) through 5 black box nonlinear systems in series, and the

input and output of the fifth box was used to test the analysis routines. The transfer

coefficients used are shown in equation 2.25 and resemble the the form of the coeffi-

cients in the Hasegawa-Mima equations in equation 2.5 [20]. Ensembles were built by

moving a window of 92 points across the time signal with an overlap of one-sixteenth
.. . .... ...... ..... .... ... .... .. ... ....... .. .. .. ... ..... ............. .......... ... "........ . .. . ..T.... ... .. ....... . ....... .. . .. ... ...

of the window width. The overlap introduced phase changes large enough to enhance
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Figure 2-7: Progression of sampling ker- Figure 2-8: Effect of finite sampling in

nels as more points are added in time. time on frequency spectrum construction.

The test signal was made by feeding 150,001 Gaussian random points (to ab-

solutely ensure accuracy) through 5 black box nonlinear systems in series, and the

input and output of the fifth box was used to test the analysis routines. The transfer

coefficients used are shown in equation 2.25 and resemble the the form of the coeffi-

cients in the Hasegawa-Mima equations in equation 2.5 [20]. Ensembles were built by

moving a window of 92 points across the time signal with an overlap of one-sixteenth

of the window width. The overlap introduced phase changes large enough to enhance

convergence of the ensembles. This method is useful for determining the coupling

between the frequencies in LDX assuming the turbulence is well-characterized by the



Hasegawa-Mima equations and there are very few iterations other than linear and
quadratic. Figure 2-9 illustrates the evolution of the random signal into the signals
used to test the analysis. The input coefficients used to calculate the test signal are
shown in figures 2-10 and 2-11. The curvatures of the linear and quadratic coeffi-
cients are in opposition so the system tends to an equilibrium spectrum where the
two growth rates sum to zero.

k2  kLk(k) = 1 - 0.4 k2 + i0.8 k
Nyquist kNyquist

i kik2(k 2 - k2 (2.25))
Qk(k, k2) 4  2

Nyquist 1 + k 2 /kNyquist

Noise L(k) k L(k) L-pectru klk21 k2 k1l, 1 1,k2
Spectru kl,k2 Q kl,k2 klk2 Q k1,k2)

Xk 1 Yk1 Yk 2 k

Figure 2-9: Block diagram analogous to taking temporal measurements showing the
modification of an input signal by five series block box systems (top), and a diagram
analogous to taking spatial measurements showing the modification of an input signal
another series block box systems (bottom).

In the analysis, negative wavenumbers do not imply wave propagation in an op-

posite direction, they simply give an alternate amplitude and phase that can describe

an identical wave as the positive wavenumber value. Therefore, including the nega-

tive wavenumber space allows all possible combinations of three wave iterations to

be considered.

Since Qk is symmetric (since the order of wavenumber addition does not matter),
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Figure 2-10: Linear transfer function used Figure 2-11: Quadratic transfer function
to produce the synthetic data used to produce the synthetic data

i.e. Qk(kl, k2) = Qk(k 2, kl), only the non-redundant quadrants where kl k2 are

plotted in the following figures. The axis of symmetry is shown by the green dashed

line and the Nyquist limit by the red dashed line. The "upper triangle" is limited

by the Nyquist condition in k and the "lower triangle" is limited by the Nyquist

condition in kl and k2.

The plots show that the analysis routines can indeed measure the quadratic and

linear transfer coefficients since the simulated and analytic coefficients have good

agreement. However, the analysis carried out in most of this thesis will be the spatial

kind since the probe array was constructed to directly measure spatial fluctuations.

These measurements can be compared to similar temporal ones to ensure agreement

or to point out interesting differences.
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2.4 Phase Velocity, Drifts, and Wavenumber Spec-

trum

The data collected by the probe array can be used for more direct analysis than

the Ritz bispectral method. The plasma rotation speed can be calculated directly

from stripey plots, which simply plot the probe fluctuation amplitude versus time.

The phase speed is simply the slope of the line when the probe number is scaled to

distance. If the plot is extended to 27, or 92 probes, the mode number in the plasma

can also be determined by the number of times a line on the stripy plot overlaps

itself. Since the array spans ! radians, the resolution spectrum created by taking

the FFT of the 22 data points is only 4 mode numbers, despite having a Nyquist

frequency at n=46. Most of the phenomena of interest is at low-frequencies, so the

resolution of the signal is increased by padding the input signal from the array to

92 points (which corresponds to 27 radians) with zeroes. This way, the FTT has

a resolution of 1 mode number and each mode can be distinguished. Padding is in

essence the same as interpolating the stripey plot to determine the mode numbers.

E= -Vb (2.26)

B 2 (2.27)

Uplasma = R a (2.28)

The wavenumber power spectrum itself if also of interest, and can be measured

by averaging the autopower spectrum, (XkXk), over a time interval. From this, it

can be measured if the spectrum obeys the power laws stated in Kraichnan, and if



it is suggestive of inverse energy cascades. The dominant modes are also easily seen

from the power spectrum, and determining their common values and relation to the

frequencies present is important information.

Since the potential is measured by the probes, the azimuthal/toroidal electrical

field can be directly determined from the gradient of the potential as shown in equa-

tion 2.26 [7]. The elctric field can be used to compute the E x B drift velocity,

as shown in equation 2.27 [4] . These drifts are directly related to convection, and

measuring their magnitude shows its strength in transporting particles to and from

the core of the plasma.
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Chapter 3

Experimental Setup

The LDX vacuum vessel is a large, puck-shaped, half inch thick stainless steel cham-

ber. It has is three meters tall, 5 meters in diameter, and has a volume of about 65

cubic meters. High vacuum is established in the chamber by means of turbo- and

cryo-pump systems. Figure 3-1 Shows a cutaway of the vacuum vessel and highlights

the main components of LDX.

The magnetic dipole field is created by the floating coil, or "F-coil," which is

levitated in the center of the vacuum chamber during plasma shots. Levitation

clears the path inside the coil ring, and allows particles to move freely along the

entire field line. This reduces particle losses and improves confinement times. The

F-coil must be able to stay levitated for an extended period of time and cannot have

any external connections to keep current flowing in it. Therefore it is made of the

low temperature superconducting material Nb 3Sn and be charged inductively. The

F-Coil weighs 565 kg, is cooled with helium, and can remain superconducting for up

to 2.5 hours [1].

During a run, the F-coil is charged by a second coil located underneath the
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Figure 3-1: A cutaway of the Levitated Dipole Experiment. This view shows the

floating coil in the center of the vacuum vessel, levitation coil on top of the vessel,
charging coil inside the charging station underneath the vessel, launcher/catcher,
and laser position system.



vacuum vessel. This coil is called the charging coil (C-coil), and is made of another

low-temperature superconductor, NbTi. The warm, non-superconducting F-coil rests

inside the C-coil prior to charging while the C-coil is charged to 425 amperes (3.6

MA-turns). Then the F-coil is cooled with helium, which makes it superconducting,

and the C-coil is discharged. This causes current to flow in the F-coil. The F-coil is

then raised to the middle of the vacuum vessel mechanically. A third, copper coil on

top of the vessel is turned on to levitate the F-coil, and its mechanical supports are

backed away. At this point, LDX is ready to make plasmas [1].

Plasmas are made by releasing a small amount of gas (deuterium or helium)

into the vessel before high power microwaves are injected. The microwaves ionize

the gas by means of ECRH (electron cyclotron resonance heating), where most of

the power is absorbed by electrons that have a cyclotron frequency the same as the

microwave frequency. The microwaves therefore heat the plasma at shells of constant

field strength. The microwave powers and frequencies using in LDX are 2.5 kilowatts

of 2.45GHz, 2.5 kilowatts of 6.4GHz, and 10 kilowatts of 10.5GHz. The microwaves

themselves are weakly attenuated by the plasma, so they bounce inside the vessel

many times before being dissipated. By this reflection mechanism, the microwaves

heat the plasma isotropically [1].

The probe array enters the vessel through a port on the bottom southwest side

of the vessel. The tips of the probes are at a constant 1 meter radius, and can be

positioned from -65cm to -45 cm from the midplane. Figures 3-2-3-4 show the posi-

tion of the array with respect to the floating coil and the magnetic fields. The probe

is usually positioned close the the "seperatrix" during plasma shots. "Seperatrix" is

another word for the last closed field line. Inside the seperatrix, particles can stream

along a field line without being lost. Outside the seperatrix, field lines intersect ob-

jects, and a particle streaming along a field line is almost immediately lost. Figures



Figure 3-2: Top-down view of LDX's midplane showing the position and extent of

the probe array are.

r (cm)

Figure 3-3: The probe array position rela-
tive to the field lines at the separatrix. The
red line shows the direction of the mag-
netic field at that point. The ExB direc-
tion measured by the array is at a right
angle to the red line, pointing radially in-
wards. The blue line shows the field line
intersecting the probe tip.

Figure 3-4: The probe array position rela-
tive to the field lines at full insertion. The
red line shows the direction of the mag-
netic field at that point. The ExB direc-
tion measured by the array is at a right
angle to the red line, pointing radially in-
wards. The blue line shows the field line
intersecting the probe tip.



3-3 and 3-4 show the region inside the seperatrix in pink.



3.1 Probe Array Design

Figure 3-5: SolidWorks model of the entire array system.

3.1.1 Mechanical

Construction

The floating potential probes alumina ceramic tubes with long tungsten tips. The

ceramic has 16 inches of exposed length from the top of the array arc. This length

was chosen so the tips are 10 cm out of the separatrix when fully extracted (the array

hits the bottom of the vessel).

The positioning of the probe array is critically important since the plasma fluc-

tuations under investigation occurs near the edge. The probe tips are one centimeter

of exposed 0.125 inch diameter, 2% thoriated tungsten, which required them to be



Figure 3-6: The probe array installed in the LDX vacuum vessel.

placed at a position with half centimeter accuracy. The structure of the array arc was

designed to keep the probe tips positioned accurately by reducing lever arm errors

due to the flexing of the support materials under gravity.

SolidWorks was used to simulate the probe array structure under gravity. A box-

like structure was initially attempted to create a rigid arc without much weight. This

designed was improved upon by making the back wall 0.3185 inches thick, the top

and bottom walls 0.109 inches thick, and cutting out a pattern of holes in the back

wall. The circular holes have a hexagonal distribution and an area that increases

exponentially approaching the ends of the arc. Less weight is supported further out ,

so less material is needed to support it. Using this pattern greatly reduced the total

weight of the structure without sacrificing much strength, and therefore reduced the

amount of flexion it experiences under gravity.

Since there needs to be access to the wiring in order to swap probes, the front

edge of the array arc is supported by 0.25 inch diameter tubes instead of a large

plate. This allows easy access to the array internals while keeping the structure rigid

and reducing total weight. A 20 mil plate of 316 stainless steel was placed over the



Figure 3-7: A probe tip.
Figure 3-8: The PEEK insulator and solid
copper conductor.

front to protect the wiring from the plasma. This plate is tack welded so it could be

easily removed if access is needed.

The probes are held into the array arc by stainless steel holders like that shown

in figure 3-10. The holders are welded to the bottom of the arc's top plate and use

set screws to secure the probes' ceramic housing to the arc. There is a set screw in

the PEEK insulator at the bottom of the holder which fixes the length of tungsten

electrode protruding from the probe tip while keeping the conductor electrically

isolated. The copper conductor is passed out through the holder's bottom and is

terminated in a pushpin connector. A 1 megaohm resistor is connected in series with

the conductor with similar pushpins and sockets for easy removal. The resistor is

connected to a socket clamped into a ceramic terminal block which is hardwired to

the a 32-pin vacuum feedthrough.



Figure 3-9: Closeup of the probe array 'K MW J
without the front shield. This view clearly
shows the cutout pattern of the back rib, Figure 3-10: Detail of the probe holder

the probe holders, the front braces, and and terminal block highlighting the resis-

the ceramic terminal blocks tor and connection pins/sockets.

Movement

The probe array's drive system is composed of a ball screw attached to a vacuum

nipple that rides on two rails. The ball screw drive is 98% efficient at converting

rotational to linear motion, and allows a small Pittman GM9413-2 electrical motor

to power the system. This motor provides a maximum continuous 45 oz-in of torque

with 0.6 amperes of current and 65 rpm. The probe array pipe is connected to

the drive system by a double-faced flange welded to its bottom. This flange has

a full nipple above it and the 32-pin electrical feedthrough below it. A machined

aluminum clamp holds the nipple to the rails. Above the nipple is a custom edge-

welded bellows that keeps vacuum while allowing the array to move. This bellows

has a compressed and extended length of 20 and 70cm, respectively, for a total travel

of 50 centimeters. The pipe is preventing from rubbing against the vessel by a boron

nitride sleeve bearing welded to the back of the vessel flange. This bearing also



Figure 3-11: SolidWorks simulation of the probe array. Colors show the amount of
deviation from a perfectly rigid model. Maximum deviation is 1.6mm.

relieves the torque put on the weld in holding the pipe upright. The entire assembly

is mounted to the vessel by a large aluminum channel. This channel is screwed to

gussets that are welded onto the vessel itself. Figure 3-12 illustrates how the various

components of the drive system connect to each other.

Automation

The vertical position of the probe array is remotely controlled by a programmable

logic controller (PLC) system. A Rockwell Automation/Allen Bradley MicroLogix

1500 PLC was installed at LDX prior to the probe array's construction, and was

modified to control the probe array in addition to the other probes it controls. A

1769-HSC high-speed counter module was added to the PLC to count the pulses from

an optical encoder and determine the array's position. The Dynapar M151000/8291A

optical encoder sends 1000 pulses per revolution of the ball screw and has three

channels of quadrature which allow the counter to count forward backward. The
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Figure 3-12: Diagram pointing out the various components of the probe array move-
ment system.



PLC was programmed such that the last movement of the probe is always in the

same direction. The ball screw has some backlash and always driving the probe in

the same direction ensures that the probe tips are consistently positioned despite

being withdrawn or inserted into the vessel. The constant direction is in, so when

a withdraw signal is given to the PLC, it retracts the probes one centimeter past

the target and drives them back in at half speed until the target is reached. The

relay outputs on the PLC were all occupied, so an external relay box was constructed

to handle the motor control logic. This allows the PLC to control the probes via

low-current digital outputs.

Figure 3-13: A picture of the programmable logic controller that controls the probe
array movement system.

Materials

Since the array is an in-vacuum, plasma-facing component, it was required to be

nonmagnetic and stainless steel. The field produced by the charging coil below the

vessel reaches approximately 0.5 Tesla at the array location, and the force applied



to it from charging cycles could deform or fatigue the structure and cause it to

become inaccurate or fail prematurely. Stainless steel also has a low vapor pressure

and outgasses slowly compared to other materials, allowing a high vacuum to be

maintained in the vessel. These criteria restricted the material choice to the 314

or 316 alloys of stainless steel. Alloy 316 was chosen due to its lower magnetic

permeability and higher resistance to cold work magnetization.

The electrodes at the probe tips are 0.125 inch diameter, 2% thoriated tungsten.

The electrodes are 3.5 inches in length, with 1 centimeter exposed at the tip. Their

large size increases their heat loading capability and prevents the tips from melting

during deep plasma penetration or high-intensity plasma bursts. The electrode is

hard silver brazed to a solid copper conductor that runs the length of the ceramic

insulator. Solid conductor was chosen since rigidity was needed in positioning and

maintaining the exposed tip length.

The protective insulators that make up most of the probes themselves are 99.8%

non-porous alumina ceramic. This ceramic was chosen for its high melting point,

low gas trapping, and availability in many shapes and sizes. The terminal blocks are

also made of high-alumina ceramic and 314 stainless steel. The electrical insulators

at the base of the probe holders are made of the high temperature thermoplastic

polyetheretherketone (PEEK), which is more suited to high vacuum applications

compared to other plastics due to its low outgass rate, high melting point, and

mechanical durability.

The in-vacuum wiring was done with 24 gauge enamel coated magnet wire.

The terminal block connections are bare wire clamped in the terminal block. The

feedthrough connections are soldered sockets slipped over the feedthrough pins. The

solid probe conductors are soft tin soldered to the pushpin connectors.

The bearing immediately behind the vessel flange is made of boron nitride. Boron



nitride is chemically nonreactive, has a high melting point, and does not rely on water

molecules for lubricity (like graphite). Therefore, it does not degrade the vacuum or

contaminate the plasma and maintains lubricity under vacuum.

3.1.2 Electrical

3.1.3 Probes

99.8% Alumina
Ceramic Tube

Tungsten Electrode

Hard Silver
Brazing

Solid Copper
Conductor

Top of Array Arc

316 SST Holder

PEEK Insert

Set Screws

1M Resistor
1M Resistor To Am lifiers

Figure 3-14: Diagram higlighting the various components of a single floating potential
probe.



A diagram of a single probe is shown in figure 3-14. The tungsten electrode is not

tight in the ceramic tube, and is held in place by the large solid copper conductor.

This is done with two set screws, one that clamps the conductor to the PEEK insert

below the ceramic, and on that clamps the ceramic to the steel holder. This way all

probe components are secured to the array while maintaining the electrical isolation

of the conductor.

Cabling

The signals are sent to the digitizers on shielded, 25 twisted pair, round-to-flat ribbon

cable. Twisted pair was chosen to reduce pickup, and the single outer shield also

helps reduce the external noise pick up by the cable run. The cable's round-to-flat

feature made running it much easier since it wouldn't tangle and could pass through

tight areas. The outer PVC jacket also protected against abrasion while running it.

The ribbon style of the cable made the job of termination much simpler, faster, and

less prone to faulty connections. Termination was done all at once with press-on,

three-tier, 50 pin D-subminiature connectors.

Amplification

The electronics used for measuring the floating potential signals needed to be uniform

across the channels since the signals are directly compared in the analysis. Gains

are the most important since they directly affect the fluctuation magnitudes. The

amplifiers are inverting and have a a gain of g = - -10k = -00099. They also

have a 33pF capacitor in their feeback loops to prevent self-oscillation and give the

amplifiers a -3db knee of f 1 - 1 -= 482kHz. This is well above
27rR 2 C 27r(10e3)(33e-12)

the digitization frequency and the amplifiers start to alias well before an observed



Figure 3-15: The signal cable showing the round-to-flat feature, twisted pairs, shield-

ing, and termination.
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Figure 3-16: Schematic of the floating probe amplifiers.

signal attenuation from the amplification circuitry. The results of a SPICE simulation

are shown in figure 3-17 and clearly show that the amplifiers have a flat frequency

response until 480kHz. The measured frequency response of one channel is shown in

figure 3-18 to closely agree with the simulation results. Expecting identical rolloff for

every channel, testing each of the other gains only had to be done at one frequency.

They were measured with an input signal of 10.5V at 10kHz. The results are shown

in figure 3-19, and show a 3% maximum difference between any two channels.

The amplifiers we designed on custom printed circuit boards with quad ampli-

fier chips. Quad amplifier chips were chosen in effort to keep the signal paths and

operating conditions of every channel as close to identical as possible. Signal trace

lengths were kept to a minimum with as few bends as possible to reduce pickup. The

top and bottom traces were also not run on top of one another as to reduce parasitic



Figure 3-17: Spice simulation of an ampli- Figure 3-18: Measured gain and phase

fier channel. shift of channel 2.

capacitance. Each board has eight channels and its own positive and negative power

supply regulators. Each amplifier chip also has 0.1uF ceramic decoupling capaci-

tors connected at the chip's power pins. The entire system is powered by a remote

switching power supply that resides in a shielded electronics rack on the main floor

of the experiment. Power is sent to the amplifier box on a shielded three conductor

cable terminated in a keyed circular connector. The enclosure also has a conducting

braid gasket to to ensure uniform electrical connection between the lid and the case

and helps shield out interference. The case is 1/8 inch die-cast aluminum, which also

attenuates EMI better than a thin case.

Since the probes need to measure the floating potential, they need to draw as

little current as possible while still being able to take and accurate measurement.

A one megaohm resistor was placed in series with each probe, expecting that the

plasma resistance is much lower than this value (as was shown in chapter 2). This

resistor was placed as close to the probe tips as possible to minimize the probe

capacitance and therefore keep the response time as fast as possible. The resistor

is terminated into the virtual ground created by the operational amplifier shown in



Amplifier gains at 1 KHz-0.00945.
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Figure 3-19: Probe gains at 1kHz

figure 3-16. The amplifier used is the Texas Instruments TLE2074CDW. It is a jfet-

input amplifier with a 10MHz bandwidth-gain, 45 V/s slew rate, and 0.0000251pA

input bias current. The smaller, 10K resistor in series with the megaohm resistor

resides on the amplifier boards, and protects the amplifiers in case of arcing to the

conductor after the megaohm resistor. There are barrier diodes placed at the opamp

inputs to shunt excess current to the power supply rails in case the input signal

becomes so large as to pull the inverting input away from ground. This way, the

digitizers are protected from excessive voltages.

The signal to noise ratio (SNR) is shown in figures 3-20 and 3-21. It was measured

by comparing pre-plasma and plasma signals during shot 90311005. The lowest

the SNR ever becomes is 40dB, showing that noise is not a problem in the probe

electronics.
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Figure 3-20: The signal to noise ratio from
shot 90311005.

Figure 3-21: The signal and noise spectra
from shot 90311005.

Figure 3-22: The amplifier box showing the amplifier stack, internal cabling, wall
thickness, and electrical gasket.



Figure 3-23: The top of the amplifier
printed circuit board.

Figure 3-24: The bottom of the amplifier
printed circuit board.



Digitization

Signal digitization is done by two INCAA Computers TR10 CompactPCI analog

input boards. The TR10 is a 16-channel, 16-bit, bipolar digitizer with ±10V fully

differential inputs capable of 200kHz digitization and an onboard memory bank of

2 megasamples. Digitization was typically done at 80kHz, giving a record length

of 25 seconds. Frequencies of interest are in the 10kHz range, making the 80kHz

digitization rate well above the required Nyquist frequency.

There is a problem with the digitizers in that the 24 channels are spread across

two digitizer cards, and these cards do not produce identical time stamps on the

signals. This means there is a temporal jog in the data when looking between the

signals from the two cards. It is apparent in the "stripey plot" show in figure 3-25.

The lower 8 channels are lagging 11 data points behind the first 16 channels. This

problem changed shot to shot so it had to be corrected by hand by direct inspection.

The jogs appear to be normally distributed.
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Figure 3-25: Stripey plot showing the jog in
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Figure 3-26: Stripey plot showing a jog
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Chapter 4

Experimental Observations

The data presented in this thesis came from LDX's October 2008, December 2008,

and March 2009 runs. The runs each spanned three days, and produced hundreds

of plasma shots. There usually are two or three lifts, or periods where the F-coil

is levitated in between re-cooling, each day. The primary goal of the runs were to

produce plasma conditions that allowed for observing fluctuations with a variety of

conditions but with long enough periods of steady-state to be useful for statistical

analysis such as presented in chapter 2.

In LDX, strong fluctuations are present at low gas pressures on the order of

10-6pTorr. As neutral gas pressure rises, the neutrals damp fluctuations via colli-

sions and therefore fluctuation intensity typically decreases with neutral gas pressure.

The gas pressure normally rises throughout a lift due to buildup of fueling gas, and

therefore the first few shots of a lift are the ones that exhibit the strongest fluc-

tuations. Fluctuations were first identified using a time spectrogram of probe 4

then analyzed with the bispectral method during different heating regimes and the

afterglow.



A spectrogram is formally called a "time-frequency domain" plot, or TFD, and

shows the frequencies present in a signal over a time interval. The spectrograms

presented here were constructed by plotting the Fourier transform of 4096 data points

from the input signal along the y-axis with color representative of intensity. The

window was then shifted 512 points down the signal, and the Fourier transform was

plotted on the y-axis again. This process was repeated until the entire signal was

plotted.

Each of the RF heating sources can be turned on independently, and the heating

sequence is shown underneath the spectrogram in the following results subsections.

The afterglow is the time after all the heating sources have been turned off and the

plasma is sustained by the confined particles. The initial spectrogram is good for

picking up where interesting things happen since as the plasma rotates any spatial

wave spectrum will be picked up in time as well. It is also quick to perform, thus

allowing every shot to be briefly examined.

4.1 E x B Drift

An eight millisecond period from shot 81003019 is shown in figure 4-1. It is a "stripey

plot," which is constructed by plotting each signal from the probe array side by side

and representing the signal amplitude with color. This stripey plot is very similar to

most of the shots taken and displays the features set out to examine here. Therefore,

it is the only one reported. The computed average radial E x B drift velocity over this

period is -0.11 millimeter per second. The instantaneous velocity, however, ranges

from 34.7 km/s to -20.8 km/s, depending on position and time. The sound speed

for cold ions and 25 eV electrons is cs = c/ Te/mic 2 - 35 km [10]. The E x B drift
s

velocities have a near-zero mean are the same magnitude as the ion sound speed.



Having an average drift velocity close to zero is consistent with a convective flow

type. It transports the same amount of particles in as it does out, just like a thermal

convective cell.
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Figure 4-1: Stripey plot showing the electric field in color and the drift
vector field.

velociy as a

4.2 Fluctuation Phase Velocity

The fluctuation phase velocity is easily determined from a stripey plot. The slope of

the lines on a stripey plot gives phase velocity per equation 2.28. Figure 4-2 shows the

plasma rotating with a velocity of 8 s )(22probes) (7 = 6678m . The
18saples 46 probes "

mode number can also be determined from the stripey plot by counting the number

of samples in between the "stripes." In figure 4-2, there are 23 points between stripes

on a single channel, giving the mode number m = 9 mod- 3 23points f 5. The

stripey plot also shows that the phase velocity is in the counter-clockwise direction



when looking down at the floating coil. The coil is dipole-up, so the phase velocity is

in the electron diamagnetic drift direction. The source of the velocity is unclear, since

the potential fluctuations can be caused by a flow of plasma across the array or by

a wave propagating through the plasma. Whatever the source, the linear dispersion

relations shown in the following subsection indicate that either the flow rotates at a

constant velocity or that the waves have a constant propagation speed.

Shot 90312040, Time 1.37s
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Figure 4-2: Stripey plot showing how the phase velocity is computed from the slope

of the "stripes," and how the mode number can be determined from the distance

between "stripes."

A trend appears when plotting the phase velocity against the neutral pressure

measured on the vessel ion gauge. Figure 4-3 shows the data with a 5th degree poly-

nomial overlaid show the trends. Every shot plotted other than 90312015-90312024

were deuterium plasmas, and are the lower pressure shots. Shots 90312015-90312024

were helium plasmas, and are the higher pressure shots. There is a large increase in

velocity around 5p/Torr, which corresponds to the maximum density profile in LDX



[5] as shown by figure 4-4. The velocity decreases with pressure above 5pTorr, but
there is another trend at lower pressures. The velocities lower than 5pTorr decrease

and then increase again at lower pressures. This may be because the plasma density

is not constant below 5pTorr, as seen in figure 4-4, and may give rise to a more

complicated relation between neutral pressure and phase velocity. Above 5pTorr,
the plasma density seems to be relatively constant, and the velocities decrease with

neutral pressure as expected.

Shots 90312001-90312044
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Figure 4-3: The plasma rotational velocity plotted against the vessel neutral pressure.
There is a maximum at 5/Torr where the plasma density is greatest. Phase velocity
decreases with neutral pressure when the plasma density is constant ( > 5/pTorr).
Below 5pjTorr, the plasma density is not constant with neutral pressure, and the
velocity/pressure relationship is unclear.

The general structure of the potential fluctuations also follow that predicted by

simulations in a dipole field. Figure 4-5 shows the predicted structure of the poten-
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Figure 4-4: Plasma density vs. neutral pressure. Measured with the microwave
interferometer on LDX.

tial fluctuations after the development of the Kelvin-Helmholtz instability where x

is the radial direction and y is the azimuthal [14]. The outboard side of the fluctua-

tions show large turbulent "blobs" that are azimuthally periodic. The stripey plots

taken from the probe array clearly show constant, evenly spaced fluctuations in the

azimuthal direction and could very well be turbulent blobs like those shown in figure

4-5.
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Figure 4-5: Potential structure results from a gyrokinetic simulation by Kobayashi
in a dipole magnetic field after the Kelvin-Helmholtz instability is developed. [14]
The "blobs" on the outer midplane (dimension x) have similar structure to the
fluctuations measured by the probe array.



4.3 Bispectral Analysis

Since bispectral analysis is time consuming to process and understand, I have selected

a few shots to illustrate the trends in the nonlinear coupling in LDX. The analysis

must be performed over a 1 second period (80,000 time points) for the estimators to

be well-converged. The self-consistent iterative solver often had stability problems

and would cause the linear transfer function to grow a very large low wavenumber

value within tens of iterations. However, there are several datasets that did result

in convergent transfer coefficients, and convergence is a necessary condition for anal-

ysis validity. The spectrogram in the following shots have regions outlined in red

where the transfer coefficient iteration diverges and regions outlined in green where

it converges. The convergent results are shown in figures 4-6 through 4-11.

As an illustration, figures 4-17 and 4-18 show the results of a divergent time

period before and after the linear transfer coefficient diverges. The before results

are after 1 iteration so the quadratic term is subtracted out of the linear one. The

diverged result are after 100 iterations. Figure 4-19 shows the result of analysis done

in time at the same time interval as one of the spatial analysis.

Table 4.1: Summary of converged bispectral analysis results showing the heating and
neutral pressure present during a time interval and whether or not the inverse energy
cascade is observed.

Shot Time Heating N. Pressure Inv. Cascade

81003019 11.5 - 12.5 2.45 1.26 pTorr yes
14.8- 15.8 afterglow 2.09 pTorr no

81217011 0.5- 1.5 2.45 0.66 pTorr no
15.5 - 16.5 afterglow 0.94 pTorr no

80312025 0.9- 1.9 2.45 1.86 pTorr no
80312028 1.0- 2.0 2.45 1.71 pTorr no



4.3.1 Shot 81003019

This shot is from the October 2008 run, and is the last shot of the first lift. The

initial vessel neutral pressure was 0.22 pTorr. During 11.5 to 12.5 seconds the vessel

pressure steadily decreased from 1.26 to 1.17 pTorr, and during the 15.5 to 16.5

second period it steadily increased from 1.79 to 2.43 pTorr. The probe array was

inserted to -52 centimeters from the midplane, which is 3 centimeters inside the

approximate position of the separatrix at -55 centimeters. All three heating sources

were used, as shown in figure 4-7. This style of heating is called a "wedding cake"

shot since the plot of the heating looks like one due to the sources' staggered turn

on and turn off times.

The convergence of the bispectrum estimator and the linear transfer coefficient

are shown in figure 4-6. The convergence of the bispectrum was tracked by following

a single, small wavenumber value and dividing it by the number of realizations at

that point. The convergence of the linear transfer coefficient was done by tracking

the sum of the entire coefficient. All of the convergence plots look very similar, so

this is the only shot where it is explicitly shown. Notice that the only time which

yielded a convergent result was during a heating period with 2.45GHz only and in

the afterglow. An explaination for divergence in periods of strong heating is that the

plasma is not changing slowly enough for the assumptions in the method to be valid.

The summed quadratic power transfer (lower left plot in figure 4-8) from 11.5

to 12.5 seconds show that high wavenumbers are quadratically damped and low

wavenumbers are quadratically grown. The linear growth rate also shows a peak

around the n=12 region. The linear growth rate is entirely negative, but this is a

consistent result. The plasma has just gone through strong heating and the power has

been decreased in this period. Therefore the plasma is relaxing despite being driven



with 2.45GHz. The afterglow region does not have any heating, so it is relaxing as

well. Modes 1, 3, and 5 dominate this shot, as can be seen from the spatial spectro-

gram and the power spectra. The combination of high linearly excited wavenumbers,

quadratic transfer from high to low wavenumbers, and low mode domination suggest

that an inverse cascade of energy is occurring in this time interval. The results from

the 14.5 to 15.8 period shown in figure 4-9 also show higher modes being excited, but

the quadratic power transfer is negative for all modes. Mode 3 is dominant during

this interval.

Convergence of <YkX*klX*k2>
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Figure 4-6: Convergence of the bispectrum and Lk in shot 81003019 from 11.5 to

12.5s. The bispectrum appears converged since 40,000 data points, and Lk converges

after 10 iterations. Iterative solving for Lk does not change its value by much, either.
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Figure 4-8: Spatial analysis during 11.5 to 12.5 seconds in shot 81003019. The

quadratic power transfer shows that the inverse energy cascade is present, and the

linear growth rate is least damped at modes where the quadratic power transfer is

most negative. Modes 1 and 3 are dominant in the spectrum.
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4.3.2 Shot 81217011

This shot is one from the first day of the December run, and is the eleventh shot of

the single lift that day. The initial vessel pressure was 0.34 pTorr. During 0.5 to

1.5 seconds the vessel pressure was a relatively constant 0.66 pTorr, and during the

15.5 to 16.5 second period it steadily increased from 0.93 to 0.96 pTorr. The probe

array was inserted to -55 centimeters from the midplane, which the approximate

position of the separatrix. All three heating sources were used, as shown in figure

4-7. Like shot 81003019, the "wedding cake" style of heating was used. The spatial

spectrogram is plotted from .3 seconds onward since the initial mode was so strong

that it threw the scale off. The only convergent periods were in the first 2.45GHz

region and in the afterglow.

Both time periods in this shot show quadratic damping of low modes, but there

is some quadratic growth in modes 12 to 21 during 15.5 to 16.5 seconds. This is the

opposite effect the quadratic term had in shot 90312019. The earlier time period's

spectrum is peaked at the first mode, and shows a very linear dispersion relation up

to about n=10. The linear growth rate is entirely negative, but is peaked at low

mode numbers. Again, this is a consistent result since the plasma is relaxing from

the intial burst before 0.3 seconds, and then after the heating in the afterglow. The

later time period is also peaked at n=l1, but has positive linear growth from n=2 to

9. This is curious since the most energy is in n=l1, but is neither quadratically or the

linearly grown. The dispersion relation is also very linear, but only to around n=-5

in this period.



-6

-12

-18 Zo

-24

-30

-36

-42

-48

t v iU 11
Time (s)

6 - .4 . ........... ................... ............................Hz......
4 4- . G. ...

0 5 10 15 20
Time (s)

Time (s)

Figure 4-10: Temporal and spatial spectrograms of shot 81217011. The temporal
spectrogram shows an initial wideband burst until 0.3 seconds, followed by a coherent
mode. There are more coherent, but lower frequency modes during the higher heating
periods. The spatial spectrogram shows that modes 1 and 3 are dominant.

69



Quadratic Transfer Function, IQ(kl,k2)

-17.00

-27.00

-37.00

Linear Transfer Function, L(k)

................... . ............. .....

.......... ...... ..... ................................... .. . . ........

Real
Imaginar

6 -40 -o20 o o 40
n

Quadratic Power Transfer

0 10 20 30 40

Shot 81217011, 0.5 to 1.5s

Quadratic Power Transfer Function, T(kl,k2)
S0.16 23.00

0.14

0.12

0.10

0.08 C

0.06

0.04

0.02

0.00

Linear Growth Rate

-10000............

- 2 0 0 0 0 .................... ........ . . ........ . . . . . .

-50000

- 6 0 0 0 0 ................................................................ ......... ...... -

0oo 10 30 30 40o
n

Power Spectrum
35i35

30

25

20
0

Z 15

10

5

o 10 20 30 40

Figure 4-11: Spatial analysis during 0.5 to 1.5 seconds in shot 81217011. The

quadratic power transfer shows that all modes are damped, and the linear growth

rate is least damped at modes where the quadratic power transfer is most negative.

Mode 1 is dominant in the spectrum. The dispersion relation is very linear to about

n=10.

0.06

0.00

-0.06

-0.12C

-0.18 

-0.24

-0.30

-0.36

-0.42

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.

-1

-2

~-3

-4

-5

-6

I ,
. .......
..... ..... ..... .... . ... ... ...... .... ..... .. -- ----

...... -- ----*... .... -- - ..... ......

-

u
I I

P. I | 1 . . . . .

.......... ......... ......... .......... ... .... - ......

.. .. .. .. ... .. .. .. .. .. .. .. .. . .. .. .. .. .. .. . .. .. .. .. .. ..

.. . .... . . . . .. . . . . . . . .I. .. . . . . . . . . . .. . . . . . . . . . . .



Ouadratic Transfer Function. IO(kl.k2)I

nl

Linear Transfer Function, L(k)

20 40

Shot 81217011, 15.5 to 16.5s

Quadratic Power Transfer Function, T(kl,k2)
23.00M

3.0 N

2.4 -17.

1.8
-27.

1.2

U.2

0.7

0.6

0.5

So.4

0.3

0.2

0.1

0.0

nl

Linear Growth Rate

n

Power Spectrum

... ......... ..... ......... ........................

10 20 30 40

Figure 4-12: Spatial analysis during 15.5 to 16.5 seconds in shot 81217011. The
quadratic power transfer shows that all low modes are damped, and n=12 to 21 are
slightly grown. The linear growth rate is least damped at modes where the quadratic
power transfer is most negative again. Mode 1 is dominant in the spectrum.

0.005

0.000

-0.005

-0.010'C

r-

-0.015

-0.020

-0.025

-0.030

-0.035

-17.0C

-27.0C

-37.0(

1.2

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-40 -20 0
n

" "I

... ... ... ... ... . .... .. ... ... .. ....... 1..... .. . ....... ....... ....... ......

- Real
- Imaginary

I _r I

L



4.3.3 Shot 90312025

This shot is from the second day of the March run, and is the first shot of the third

lift that day. The initial vessel pressure was 1.77 pTorr, and steadily rises from

1.83 to 1.91 pTorr during the period where the analysis was done. The probe array

was positioned at -60 cm, further withdrawn than the previous two shots. All three

heating sources were used with staggered start times, as shown in figure 4-13, but

were all turned off after 10 seconds. This is the "truncated wedding cake" style

of heating. The only period where the bispectral analysis converges is in the first

2.45GHz region.

It shows strong modes in all three heating regimes which can be seen in the time

spectrogram in Figure 4-13. The spatial spectrogram in figure 4-13 also shows the

time evolution of the spatial modes. It clearly shows that modes 1 and 3 are the

dominant modes in this shot. There was only one period that produced a convergent

result, and it shows linearly grown modes of n=3 to 6, and quadratically grown modes

of n=7 and 8. The linear growth rate is positive in this time period because there was

no initial burst and this is the first period of heating, so the plasma is building up.

The quadratic and linear transfer coefficients appear to resemble a forward energy

cascade where low modes are grown linearly and their energy is transferred to higher

modes quadratically. The dispersion relation is linear to n=8.
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4.3.4 Shot 90312028

This shot is one from the second day of the March run, and is the first shot of the

third lift that day. The initial vessel pressure was 1.71 pTorr and steadily increased

from 1.6 to 1.74 pTorr during the 1 to 2s period. The probe array was still -60 cm

below the midplane, and was heated in the "truncated wedding cake" style, as it was

in the previous shot. Again, the only period where the bispectral analysis converges

was in the first 2.45GHz region.

The heating, gas pressures, and spectrograms, and dominant modes (n=3,5) in

this shot are almost identical to those in shot 90312025, but is very different from

it in every other way. All modes are linearly damped, but the growth rate has a

large peak at n=l1 and several more gradual, smaller peaks around n=27, 36, and

43. All modes are quadratically damped as well (no cascades at all), the low modes

having the strongest negative summed power transfer. The linear transfer coefficient

is rather chaotic after n=3.
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4.3.5 Divergent Analysis

It is worthwhile to mention the characteristics of the analysis in a divergent case, if

simply for completeness. The results from 2.5 to 3.5s in shot 81003019 are shown

after 1 solver iteration in figure 4-17 and after 20 iterations in 4-18. Performing one

iteration subtracts the quadratic transfer coefficient out of the linear coefficient (the

Oth iteration guesses Qk = 0), and would be the closest guess to an accurate solution

in a divergent case (assuming the estimators are well-converged).

Notice that it is qualitatively similar to the convergent results from 11.5 to 12.5

seconds in the same shot. This may mean that the first iteration is close to the real

result but is numerically unstable. Its divergence makes the results untrustworthy,

nonetheless, unless they are proven to be close in the future by comparison to con-

vergent analysis during the same time period. The large low mode that is grown in

both transfer coefficients after several iterations can clearly be seen in figure 4-18. It

dominates the plots and no other features can be seen.



Quadratic Transfer Function, IQ(kl,k2)I

nl

Linear Transfer Function, L(k)

-40 -20 0 20
n

Quadratic Power Transfer4C0

Shot 81003019, 2.5 to 3.5s

Quadratic Power Transfer Function. T(kl.k2)

0.12

0.09

0.06

0.03

0.00

40

u0 10 20 30 40
n

1.5

1.2

0.9

0.6

0.3

0.0

-0.3

-0.6

-0.9

nl

Linear Growth Rate

-10000

-40000 . . . . . . . . . . . . - - -

- 5 00 0 0 .................... .........................................................................

80000 iD 10 20 30 40- -----

40

35

30

25

20

15

10

5

0 10 20 30 40
n

Power Spectrum

0 10 20 30 40

Figure 4-17: Divergent results after one iteration.
79

-17.00

-27.00

-37.00

1.2

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

..... ......... ........ ... .. . ............. .....

..........----- .---- :......

... ................ ............. . .....................,.............. ...

Real
Imaginary

-U-4--

-- "l "'

...... ...... ...... .... .... .... .... .. ...

. ..... ...... ............. ..........

.... .. .. .. .. .. ... .. .. .. ... . .. .. ... .. .. ... . .. .. ... .. .. .. .. .. .. ..

.... .... . .. ... .. . .... .... ... .... .... .... ... .... .... ...

.... .... ... .... ... .. .... ....... .... .... ... ... .... ... .... .... .. .... ...

-- - ............

........... ................................. .... ...... ---------.... .... ...................

............. ............................--



Quadratic Transfer Function, IQ(kl,k2)1

-27.00

-37.00

nl

4 1e9 Linear Transfer Function, L(k)

2

0

-1

-4

-40 -20 0 20 40
n

lell Quadratic Power Transfer

2.5 .

2.0

1.5

1.0

0.5

0.0

05o 10 20 30 40
n

Shot 81003019, 2.5 to 3.5s

Ipq Quadratic Power Transfer Function, T(kl,k2) lelo

-17.0C

-27.0(

1.4

1.2

1.0

0.8

0.6

0.4

0.2

-0

0.75
0

of
0.60

0.45

0.30

0.15

0.00

nl

Linear Growth Ratele24

.. ...... .. ........................... .....................

.. ........ ...... ............... ............ ... .. .. ... ... .. ... ...

... .. .. .. .. ... .. ... .. ... .. ... .. ... .. ... .. .. .. ... .. ... .. . . .. ... ..

0.0

0.2 10 20 30 40
n

Power Spectrum
40

35

30

25

20

15 35 ----- - 3 . . . ... . . . . .. . . . . . . . . . ..3 0 .... ... .. . .. . .. ... ..... .... .... .... .... --- ---2 5 - - .. ... ....... . ..... ...... .... .. ....... ....... .. .... ......
2 0 .. ... .. ..... . ... ... ... .. .. ... ... .. ... .. ... .. ... ... ... .. ... ... ..

i s .. ... .. ... ... .. ... ... .. ... .... ... .. ... ... .. ... .. ... . ... ... .

10 20
n

Figure 4-18: Divergent results after twenty iterations.
80

30 40



4.3.6 Time Analysis

Figure 4-19 shows the time method results from 2.5 to 3.5s in shot 81003019. To

reiterate, the analysis in time is performed on two long time signals that are seperated

in space. Short time Fourier transforms are taken from the two signals at identical

times and their bispectrum, crosspower, autopower, et cetera, are computed. The

window is shifted down a few data points in time and the quantities are computed

again. This is done many times to build the statistical estimators used to calculate

the transfer functions. If the plasma is rotating, any spatial structures should be

translated into time signals, and the spatial analysis should match the temporal

analysis.

The time method compares two adjacent probes separated by 7 cm. The close

spacing of the two probes increases the correlation of the signals measured from

them, but also reduces the magnitudes of the estimators compared to those computed

spatially. All of the plots look qualitatively similar to the spatial results of the same

time interval in the single iteration plot in 4-17. They both show an inverse energy

cascade to low modes, similar power spectra, and a linear dispersion relations until

n=20. The spatial analysis has a different linear growth rate shape that show only

higher modes being linearly excited. The temporal analysis shows strongest linear

excitation for low modes. Unfortunately, they are also both similar in that they are

divergent. I was unable to get any time analysis to converge even for time periods that

were convergent in the spatial case. The agreement between spatial and temporal

bispectral analysis supports the observations made by Grierson, and validates the

use of a two-point temporal method to study the characteristics of spatial modes.
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4.4 Power Spectra

According to Kraichnan, the wavenumbers where energy is cascading away have a

characteristic spectrum c k- 5/3 . Fits of the function axb to the upper regions of the

spectra are shown in the following figures. Only the shots and times that resulted in

convergent bispectral analysis are examined. The data are plotted on log-log scale,

which makes curves of the form azb appear as straight lines. The slope of lines fit to

the data correspond to the exponent bin the linear case. Table 4.2 summarizes the

values for b found for each time interval. The values range from -1.45 to -2.5, which

encompasses the -1.66 value in Kraichnan. If a line of slope -1.66 were plotted along

with the computed fits, they would look very similar, so it is not outside the realm

of possibility that the spectra fit a -1.66 sloped line reasonably well. The average

value of b from these six shots is -2.13.

There is a clear break in the spectrum's slope between high and low mode numbers

in every plot. This implies that different processes are occurring in the low modes

and high modes. In spectra from shots 9031202x and the 14.8-15.8 second interval of

shot 81003019, the highest modes seem to have shallower slope and do not fall along

the line fit to the middle modes.

Table 4.2: Summary of power fits.

Shot Time b

81003019 11.5 - 12.5 -1.45
14.8- 15.8 -2.545

81217011 0.5 - 1.5 -1.959
15.5- 16.5 -2.124

80312025 0.9- 1.9 -2.35
80312028 1.0 - 2.0 -2.372
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Shot 90312025, 0.9 - 1.9s
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Figure 4-24: Power fit to large wavenumbers in shot 90312025.

Shot 90312028, 1.0 - 2.s
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Figure 4-25: Power fit to large wavenumbers in shot 90312028.



Chapter 5

Conclusions

This is the first time that spatial modes have been directly measured in a dipole

plasma, and overall the probe array functions very well as a diagnostic. It has

very high signal-to-noise ratio, high frequency response, can measure wide range

of potential, has modular/replaceable electronics, and has provided data suggestive

of many predicted phenomena. The matching between the spatial and temporal

bispectral analysis indicate that the two-point analysis done by Grierson, et. al. is

valid for characterizing spatial modes in a dipolar plasma.

The spatial spectrograms show that odd, low mode numbers are dominant in

LDX. These modes correspond directly to frequencies in time, as shown by both the

temporal spectrograms and the linear dispersion relations in the bispectral analysis.

The linear dispersion is consistent with a constant plasma rotational velocity, at

least in the "toroidal" direction at a constant radius. The dispersion relation could

be more complicated at different array elevations or at different radial positions. The

average wavenumber power spectra span the k-5/3 power law given by Kraichnan.

This implies that the turbulence could be 2D in nature and that the inverse cascade of



energy shown by the bispectral plot is correct. The relation between time and space

bispectral analysis and spectrograms suggest that the plasma is rotating, however.

The instantaneous E x B radial drift velocities are the same magnitude as the ion

sound speed, but average to near zero.

The bispectral analysis shows that the inverse energy cascade can occur in LDX

plasmas. In the shot where it occurs, the linear growth rates show that wavenumbers

on the order of 7-20 are excited by heating and their energy is transferred nonlinearly

by way of three-wave coupling to lower wavenumbers on the order of 1-5. It can

therefore be concluded that small-scale spatial structures transfer their energy to

large-scale structures, which give rise to the large-scale potential fluctuations. The

potential fluctuations cause radial E x B flows that average to near zero, meaning

they form closed structures which are consistent with the notion of convective cells.

The quadratic coupling coefficient plots also show that small wavenumbers have

very strong coupling to low wavenumbers. This may cause them to damp out im-

mediately due to very strong nonlinear coupling, and therefore they are not present

in the spectrum. Most of the power in the fluctuations, however, is not in very high

wavenumbers, as shown by the power transfer plots, so they have minimal effect

in the nonlinear power transfer. It could also be evidence that the inverse energy

cascade is very much present in LDX since the power is concentrated in low modes.

The higher modes are excited linearly and transferred to lower n values via nonlinear

coupling of the waves.

The Ritz bispectral method does not always seem to work. This could be due to

the disturbances RF heating impart on the plasma thus making the power spectrum

continually varying, or that the plasma isn't normally stationary enough for the

method to function correctly. The transfer functions were only convergent during

2.45GHz heating only or in the afterglow, never in times of strong heating. Another



reason could be that it is difficult for the method to differentiate quadratic and linear

growth when there is very strong linear growth in low modes. Also, assuming that

the off-diagonal terms in (Xk, X, Xk Xk 2) are zero might be a bad approximation in

LDX.

The cascade is also only present when there is a high frequency component in the

plasma. This can be seen directly from the spectrograms. This makes sense with the

direction of the cascade, since there has to be power in the higher modes in order for

it to be transferred away. Along the same lines, three wave coupling could explain

why the strong low mode numbers are present in the two 090312x shots when the

10.5GHz source is turned on. If the source excites higher modes, its energy eventually

ends up in a low mode.

Adding a radial arm to the array would enable a two-dimensional analysis to be

conducted and both the toroidal and poloidal structure of the fluctuations deter-

mined. Then it could be found whether the toroidal fluctuations are constant in a

flux tube or if they have some helicity to them. A whole new toroidal arm at another

radius would also show if there is any velocity shear by showing if the dispersion

changes slope at different radii. A 2D array would also provide a measure of vortic-

ity, which could be compared to its predicted values to further validate the inverse

cascade phenomena.

Another possible upgrade to the probe array would be to add ion saturation

probes to measure the density fluctuations. This could be done by replacing every

other probe, and reducing the resolution of both new arrays, or making new double-

tipped probes that measure both ion saturation current and floating potential at

every tip. This would be a more involved and expensive upgrade since the signal

feedthrough and all probes would have to be replaced. Replacing every other probe

would involve removing the series resistor in the array and making new amplifier



boards and backplanes to route the signals correctly.

An improvement to the analysis would be to use the method set forth by J. S. Kim,

et al. in the paper "Technique for the experimental estimation of nonlinear energy

transfer in fully developed turbulence." Their method modifies the Ritz method to

reject non-ideal, non-quadratic interactions in the spectrum. It is therefore a more

robust analysis that can measure the three-wave coupling in the presence of other

phenomena, and would most likely yield better results from the probe array data [13].

Kim also starts with a matrix-based algorithm in the paper, and implementing this

would speed up the analysis greatly. Currently, the analysis is run in Python using

loops and takes about twelve hours to analyze run 1 second of array data. Using the

Kim method and porting the routines to a compiled language would greatly increase

the speed with which this analysis could be performed and produce more reliable

results, thus allowing more data to be more accurately examined. The Kim method

also computes the full fourth-order moment (X*,X~,XkXk 2), and therefore has one
1 2

less assumption that can be violated.

Faster digitization would also improve the quality of the data analysis. One

assumptions in the Ritz method is that the phase varies slowly in time and therefore

the time differential of potential can be represented by a finite difference. Faster

digitization would reduce the time between compared spectra and move the analysis

further into the slowly varying phase regime. Another assumption is that the power

spectrum is stationary. Faster digitization would ensure this by allowing the analysis

to be done in smaller time frames, where things are more likely to be stationary.

Going by the appearance of the stripey plots, the phase does not vary slowly. If it

did, the stripey plots would look very smooth whereas they look very "digital" now

and each "stripe" is only a few data points wide. If the digitization rate were made

three to four times higher ( 250-300KHz), the stripes would be substantially wider



and the slowly varying phase criteria would be more satisfactorily met.
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Appendix A

Hardware

Figure A-1: Floating probe amp printed circut board layout
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