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Abstract

In this thesis, we present simulations, using Finite Element Method (FEM), of phonon-

polariton generation and coherent control in ferroelectric crystals LiNbOs and LiTaO 3

through nonlinear electro-optic interactions with ultrashort laser pulses. This direct

space-time monitoring platform is used to investigate the nature of the excitation

mechanism, the science of propagation in patterned structure, and the waveform

control via multi-dimensional pulse shaping. Compared with previous simulation

methods, this platform demonstrates considerable improvement in complex domain

by achieving varied accuracy over space based on the level of interest of the region,
which may facilitate scientific exploration in high power terahertz generation and

polaritonic signal processing.
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Chapter 1

Introduction

The continuing rapid development of terahertz (THz) science and technology [30, 85,

102, 64, 87], whose spectral region lies between 100 GHz and 10 THz, has sparked

intense scientific research interest across many fields and brought numerous break-

throughs in a wide range of applications in high power THz generation, THz imag-

ing and THz spectroscopy. Among many sources of terahertz radiation, generation

through nonlinear electro-optic effects using ultrashort laser pulses has spearheaded

THz research for the past few decades with its simplicity and high efficiency. The ra-

diation originates from the collective elementary excitation called phonon-polariton in

nonlinear electromagnetic media, such as ferroelectric materials LiNbO 3 and LiTaO 3,

among others.

In this thesis we present novel simulations, using Finite Element Method (FEM),

of phonon-polariton generation and propagation in bulk, thin and patterned ferroelec-

tric crystals, mainly LiNbO 3 and LiTaOs . We also treat terahertz waveform control

through the temporal and spatial shaping of ultrashort optical driving pulses. This is

particularly interesting since the results coming from the solutions of the governing

partial differential equations (PDE), or the ideal solutions, could be compared with

experiments in which many more expected and unexpected factors are involved. Fur-

thermore, the parametric optimization for the output field and the direct space-time

monitoring of the field could be greatly helpful in the early design stage of experi-

ments.



Before the introduction of related experimental history, materials, techniques and

recent developments, a typical picture of interactions of cylindrically focused fem-

tosecond laser pulses and bulk uniaxial ferroelectric LiNbO 3 is presented in Figure

1-1. Both the polarization of the pump optical pulse (blue) and the generated phonon-

polariton wave (orange) are along the crystal optical axis, which is the vertical Z axis

in the figure. The properties of the Z component of the polariton electrical field, i.e.

the lateral propagation in the Z-X plane from the front view and the cherenkov-like

propagation in the Y-X plane from the top view, are illustrated. It is worth mention-

ing that the polariton wavevector, perpendicular to the optical axis, is also almost

perpendicular to the Y axis in this case, which allows polariton detection and imaging

in a region far away from the optical excitation.

Z (opcal aids)

CL L F !

Pump (300 nm) LIbo, Ez
Pump

Figure 1-1: Schematic illustration of essential concepts for phonon polariton response to a cylin-

drically focused line source.

1.1 What are polaritons?

It is well known that in crystalline materials with translational symmetries, atoms

vibrating around their equilibrium sites with small amplitude could be well approx-

imated by harmonic oscillations, which could be further resolved into normal modes

with each mode representing a plane wave with a certain eigenfrequency. The energy

quantum of this collective excitation is called a phonon. When a long-wavelength

transverse optical phonon is induced in a polar or ionic crystal, the oscillating dipoles

in turn generate electromagnetic radiation, which in some cases could be in phase to

form a macroscopic field as part of an electromagnetic wave propagating through the

crystal. This newly formed electromagnetic wave, coupled to the transverse phonon



mode with comparable frequency and wavevector, propagates in such a special way

that different frequency components propagate with different speeds, depending on

the strength of their interaction with the transverse phonon wave. The energy quan-

tum of this strongly coupled excitation is called phonon-polariton.

On the other hand, given the nature of the phonon-polariton as the internal de-

grees of freedom of the medium, the physical response our macroscopic system shows

against a certain external perturbation, there should exist a variety of excited states

of diverse character and origin, which constitute the families of elementary excitations

[75] and their weak interactions [72] with each other in a wide range of materials.

In general, the coupling of electromagnetic waves and polarization waves induced

by elementary excitations, or quasi-particles consisting of photons and matter exci-

tations are referred as polaritons. Some other examples include: coupling with spin

waves in ferromagnetic crystals could form magnon-polaritons [93]; coupling with col-

lective electron vibrations could form plasmon-polaritons; coupling with electron-hole

excitations could form exciton-polaritons; also, all bulk polaritons have their coun-

terparts at the crystal surface, such as surface plasmon polaritons [66, 76], surface

exciton polaritons, etc.

The existence of polaritons was first predicted by Huang [46, 47] in an isotropic

diatomic ionic crystal in 1951, first denominated as polariton by Hopfield [44] in 1958,

and first observed experimentally by Henry and Hopfield [43] in GaP in 1965. From

a historical and experimental point of view, the discovery and early fundamental

research of these quasi-particles in solids have been conducted by means of inelastic

light scattering spectroscopy [11, 15, 39], on which a brief introduction would be

presented next.

1.2 History with Raman and Brillouin Scattering

Brillouin studied the interaction of light with acoustic waves [14] in 1922. The now

named Raman effect was predicted in a two quantized energy level system by Smekal

[95] in 1923, and discovered in liquids and gases by C.V. Raman [81, 82] and in crys-



tals by Landsberg and Mandelstam [62] both in 1928. In Raman's ground-breaking

experiment, scattering from a beam of sunlight converged by telescopes was detected

with the method of complementary light-filters. It was demonstrated that in or-

dinary light scattering, "the diffuse radiation of the ordinary kind, having the same

wave length as the incident beam, is accompanied by a modified scattered radiation of

degraded frequency [81]", which are called Rayleigh scattering and Stokes scattering

respectivplv qt nrPoPnt.

Lot
II

II

III S LA0

wavee
UII_ 1O4

...- f

Iwo,.

/" ,°1 ~ ~ E (LO) I

SA(TO) ." Aro)

LA
I 0 0.5 1.0 1.5

I... evector (M - I)-- - 0. 1.0 -------

Figure 1-2: Dispersion curves of the long-wavelength optical phonons, photons and polaritons near
the center of the first Brillouin zone.

This newly discovered effect was used extensively in the study of excitations of

molecules and crystals, also the observation of Raman scattering by optical phonons

in diamonds [80] in the early days of mercury arcs. However, theoretical develop-

ment of quantum treatment [24, 27, 58], polarizability theory [77], lattice dynamics

[12, 44, 46, 47], general polarization waves in polyatomic crystal [60], and Stimulated

Brillouin and Raman Scattering [90, 92] had been dominating experimental work until

the advent and development of the laser in 1960s. Since then elementary excitations

in solids, including acoustical and optical phonons [84], single and collective electronic

excitation, magnetic excitations, surface and bulk polaritons had been observed and

systematically studied by inelastic Raman and Brillouin scattering in metals, semi-

conductors, insulators, superconductors and magnetic materials, among which the



study of ferroelectric crystal LiNbO 3 and LiTaOs was particularly interesting due to

its excellent nonlinear optical properties [37, 114].

Raman scattering by optical phonons in LiNbO 3 was conducted in 1960s with

focus on its dielectric dispersion [61], assignments of polar phonon modes (4A1 + 9E)

[4, 9, 86] and measurement of electro-optic coefficients [49]. Scattering by phonon-

polaritons in LiNbO was observed several years later [94] since the polariton wavevec-

tor region lies around the center of the first Brillouin zone (Figure ??) that the angle

between the incident light and scattered light is as small as several degrees. Direc-

tional dispersion of extraordinary polaritons [78], polaritons in LiTaO3 [3], nonlinear

interactions of polaritons [70] and upper polariton branch [36] were all carefully stud-

ied in the 1970s.

DI1racted
Probe I
Pulse

Induced

Figure 1-3: Schematic representation of (a) traditional light scattering experiment (b) the Impul-
sive Stimulated Scattering (ISS) experiment [115].

With the rapid development of laser technology, especially the advent of fem-

tosecond lasers [35, 89] in early 1980s, observations on time scales shorter than an

individual vibrational oscillation period came into reality [88, 23]. Many fundamen-

tal elementary excitations, including coherent acoustic phonons, optic phonons and

polaritons were carefully studied with a novel Impulsive Stimulated Scattering (ISS)

technique [115, 116, 117]. As shown schematically in Figure 1-3, a spatially periodic,

temporally impulsive interference pattern, created by crossing two ultrashort pulses

into the sample, was used to excite coherent vibrational waves, which could be further



monitored by diffraction of a third variably delayed probe pulse. This allowed the di-

rect time resolved characterization at various stages of stretched molecules, distorted

crystal lattices, anharmonic vibrations and their relaxation behavior. The light scat-

tering processes were denominated Impulsive Stimulated Raman Scattering (ISRS)

[115] and Impulsive Stimulated Brillouin Scattering (ISBS) [28] accordingly.

In 1990s a series of ISRS experiments were conducted to study lattice dynamics of

ferroelectric materials in the polariton regime[23, 25, 113]. The improvement on sen-

sitivity and accuracy based on heterodyne detection technique [68, 21] was achieved

several years later, in which the novel grating arrangement was used to overcome the

pancake effect [67]. An even more direct technique, spatiotemporal phonon-polariton

imaging [1, 54, 53], was developed to fully characterize the collective vibrational re-

sponse travelling at light-like speeds. With this powerful tool, research about coherent

control over lattice vibrational waves was made possible and brought into reality re-

cently.

1.3 Phonon Polariton Generation and Control

Ferroelectric materials, especially LiNbO 3 and LiTaO 3, have long been seen in use as

highly functional components in optical technologies such as optical communications,

signal processing and interconnection, thermal detection and frequency conversion

[37, 65, 104]. The potential use in technologies of polariton regime, or terahertz

polaritonics, has been explored in the past few years with many fundamental research

and development efforts conducted with these materials.

As early as the 1970s, a series of experiments demonstrated far-infrared genera-

tion through optical rectification [118, 91] and ultrafast photoconductive switching

[71]. The coherent Cherenkov-like far-infrared radiation from femtosecond optical

pulse propagation in electro-optic media, which was LiTaO 3 in the experiment, was

observed in 1984 at Bell Laboratories [7, 51, 8, 6]. Phonon-polariton generation with

spatiotemporal pulse shaping [100, 31, 32], spatiotemporal imaging [1, 54, 53], and

integrated functional elements such as waveguide, resonator, reflector and diffractive



elements [101, 98, 33, 99, 107, 111, 109], constitute the main polaritonic toolset.

Along with the development of terahertz polaritonics [30] in the linear regime,

some research in the nonlinear response regime has been conducted via phonon po-

lariton focusing in the crystal [45] and high power terahertz generation with a tilted-

pulse-front technique [40, 42, 121, 122, 123]. Much fundamental research in the non-

linear terahertz spectroscopy and potential applications in many other fields are yet

to be explored.

Given that the goal of this thesis is to directly simulate phonon-polariton gen-

eration, propagation and coherent control, the detailed theoretical background of

the coupled polariton wave and its excitation through Impulsive Stimulated Raman

Scattering (ISRS) follow next in Chapter 2. In Chapter 3, the basics of the Finite

Element Method (FEM) and simulations in two and three dimensions are elaborated.

The results of polaritons in bulk crystals, including the isotropic case and directional

dispersion in anisotropic case, and broadband, narrowband and tilted-pulse-front ex-

citation are in Chapter 4. Following that in Chapter 5 are generation and propaga-

tion in ferroelectric waveguides, including the dispersion properties and narrowband

tunability. Finally in Chapter 6, THz field amplification through phonon-polariton

focusing is presented.
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Chapter 2

Theoretical Background of

Phonon-Polariton Generation

The phonon-polariton as an elementary excitation in solids [12], the light scattering by

phonon-polaritons [11, 39, 20], and the optic phonons and polaritons in ferroelectric

crystals [4, 5] have been understood for decades. The theoretical treatment of phonon-

polariton excitation by intense femtosecond laser pulses was developed as well [51,

8, 115, 116, 117, 83, 13, 23]. Given that the purpose of simulations is to better

understand and explain experiment, we would try to present a brief but complete

description of the assumptions and parameters of the mathematic model used for the

phonon-polariton generation and propagation in this thesis. First and foremost, the

platform lithium niobate (LiNbO 3) and lithium tantalate (LiTaO 3) are introduced.

2.1 Ferroelectric Crystals

LiNbO 3 and LiTaO 3 consist of planar sheets of oxygen atoms in a distorted hexagonal

configuration below its Curie temperature as shown in Figure 2-1. The Li and Nb (Ta)

ions are forced to move from the positions in higher symmetric non-polar paraelectric

phase to the positions in ferroelectric phase. It can be seen that Nb ions are slightly

above the centers between two oxygen planes, and Li ions are slightly above the oxygen

planes. This structure lacks inversion symmetry and shows spontaneous polarization



along the c axis, which is also the optic axis and extraordinary axis for this uniaxial

crystal.

The polar lattice phonon modes in LiNbO 3 and LiTaO3 are the well know 4A1 +

9E [49], where A means symmetry with respect to the most-fold axis, and E means

twofold degeneracy. The phonon-polaritons in LiNbO 3 and LiTaO3 discussed in this

thesis are primarily coupled to the lowest frequency optic phonons along any direction,

in which the coupling with lowest A, soft mode corresponds mostly to the vibrations

of Li and Nb atoms along the optic axis, and the coupling with E mode corresponds

mostly to the stretching of the oxygen tetrahedra in the plane perpendicular to the

optic axis. Both transverse and longitudinal optic phonons can be A or E modes.

Z(optlcaxis)

S I

0 Nb (a)

Oo

Figure 2-1: The crystal structure of lithium niobate and lithium tantalate.



2.2 Phonon Polaritons in Ionic Crystals

2.2.1 Phonon Equation

While it is a long standing effort to probe anharmonic lattice vibrations, most of the

terahertz polaritonics work [30] are in the linear regime. The ion motion is modelled

as a forced harmonic oscillator, which can be described by the linear macroscopic

equations [12],

Q b 11Q + b12E (2.1)

P = b21Q + b22E (2.2)

where P is the dielectric polarization, E is the macroscopic electric field, b coefficients

are constants characteristic of the substance and direction relative to the optic axis

of the uniaxial crystal, and Q is the phonon normal mode displacement expressed as

Q= VNM- v (2.3)

where

1 E i (2.4)

4 1
N = (2.5)

N3a2C

= (2.6)

where M is the reduced mass of the unit cell, i iterates over every single atom in the

unit cell, ri are the displacement of each atom from their equilibrium positions, N is

the oscillator density expressed with hexagonal lattice coordinates a and c, and W is

the reduced mass displacement.

To account for interactions among different eigenmodes of lattice vibrations, a



phenomelogical damping term F is introduced into equation (2.1),

Q + Q - blQ = bl2 E (2.7)

2.2.2 Photon Equation

To rigourously describe the motion of the electromagnetic fields, Maxwell's equations

are introduced,

VxE

VxH

V.D

(2.8)at

Ot= Dat
-0

(2.9)

(2.10)

(2.11)= 0

which combined with vector and scalar potentials,

B=v x A, Ot
at

and coupled with displacement fields of polar phonon motions (2.2),

D = oE + P = (Eo + b22 ) -+ b21Q

can lead to the wave equation,

(V2- - ((V

if we choose the polariton gauge,

1
A) + / ) = -I OWTO

C0/,.o
NICOEO -

V. A

(2.12)

(2.13)

(2.14)

(2.15)



the coupled vector potential equation is described as,

(V 2 - A) = - 0WTO 60(E0 - 0c)Q (2.16)

2.2.3 Phonon-polariton Equation

The governing equations to describe the joint vibrational modes of radiation field and

lattice behavior, or phonon-polariton dynamics, are summarized as,

Q + FQ - bQ = b12 E
(2.17)(V2 -J.) = -OTO 60(60 --(21

e, E (LO)
Gilt~

AI(TO)

Al(TO)
A(TO)

E (LO)

wavevector

Figure 2-2: Qualitative sketch of phonon-polariton dispersion in LiNbO3 when the wave vector
is perpendicular to the optic axis. All longitudinal lattice vibrations are without dispersion while
there is strong interaction between lowest A, transverse mode and electromagnetic wave.

Complete solutions should include the lattice longitudinal and transverse modes,

which can be derived from the phonon equation alone; optical waves propagating in

the crystal, which can be derived from the photon equation alone; and new coupled

solutions corresponding to the inseparable interactions between them. In another

word, solutions of phonon-polariton equations include all possible phonon, photon

and polariton waves in this system. The detailed derivation has been worked out

before [12], and the general conclusions can be shown qualitatively with the LiNbO 3

I •I

\,/ E (LO)
\ \ 1



dispersion sketches in Figure 2-2, where only the coupling with lowest A1 mode is

considered.

As can be easily seen, all longitudinal vibrations are without dispersion within

the phonon-polariton wave vector range, which means there is no interaction between

the longitudinal mode and the radiation field, and evidently Q 11 E 1 P I H = 0

in this case. On the other hand, the strong coupling of the lowest transverse lattice

wave and electromagnetic wave leads to the partial phonon partial photon dispersion,

which lifts the crossing between the pure light curve (dotted line) and the pure lattice

A1 (TO) curve, and evidently Q E I P 1 H I k in this case.

2.2.4 Quantitative Dispersion

With the constitutive relation P(w) = co(E&() - 1)E(w), the dielectric function can

be derived from equation (2.2),

b22  1 b12b21
-o co WLo - 2 - iwF

Comparing the two off-resonance limits

b22 b12b21
=+ = - o + 2 (2.19)

C0 C0WTO

and the rigorous transverse solution of the phonon-polariton equation, the coupling

b coefficients can be written as,

all = IO (2.20)

b12 = 21 TO 60(EO0 - C0) (2.21)

b22 = 0(" - 1) (2.22)

The dielectric function itself becomes

E,() =6 0 (0 (2.23)
WTO -32

32



so the dispersion relations are,

woo + C2k2 0 C2k2 2 4oEC2k2
w(k) = 2, ( ) -

2E, 2 coo 500
(2.24)

in which the positive and negative roots correspond to the upper and lower branches

respectively, as shown by the blue lines in Figure 2-3.
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Figure 2-3: Dispersion curve for the lowest transverse phonon mode of LiNbO 3.

It is clear that the dispersion relations are characterized by three parameters: WTO

is the resonance frequency of the lowest transverse optic phonon mode, and eo and

,60 are the dielectric constants in low and high frequency limits. The high frequency

here means it is much higher than the resonance frequency wTo but still smaller

than the first brillouin zone boundary so that the wave vector-dependence of phonon

frequencies can be eliminated. The low frequency limit wLO of the upper branch is

marked LO because the mechanical and electromagnetic motions are completely out



of phase in this case, and it has the same resonance frequency as the longitudinal

branch. The analytical expression is,

WLO = WTO0/ (2.25)

2.2.5 Anisotropy in Uniaxial Dielectrics

Uniaxial crystals are characterized by the dielectric tensors 6xx(w)=cyy(w)=q(w) and

Eczz(w)=rE (W), where the I and II stand for polariton wave polarization perpendicu-

lar or parallel to the optic axis. The dielectric function in equation (2.23) will be

characterized by more parameters,

EWTO) = 2 (2.26)
S2Coo To (01 - 00 1  (2.27)

W(To1 - Lo 2 - iwF

which combined with the phonon-polariton motion equation can lead to the direc-

tional dispersion relation in the general case (0 < 0 < 900) [70],

c 2k2  Ei(W)cI(W)
E(W, 0) = 2  EL (W) Sin2 0 + el () COS2 028)

where 0 denotes the angle between the polariton wave vector and the optic axis.

Only the lowest transverse polar mode is taken into account along any direction.

More rigorous solutions can be derived based on the Kurosawa equation [60], so

it is obvious that the approximation comes from the influence of higher frequency

transverse polar modes. This makes equation (2.28) legitimate enough for directional

dispersion calculation because even for the familiar 0 = 900 case, the influence of

higher frequency polar modes is ignored.

Also interesting is that polariton waves in uniaxial crystals are not always trans-

verse. They are mixed TO+LO type in the general propagation direction 00 < 0 < 900

as shown in Figure 2-4. The phonon modes listed in the table are for two limiting

cases 0 = 900 and 0 = 00, which do not mean the polaritons are coupled with all



z (optical axis)

Figure 2-4: Polariton electric field of the mixed LO+TO wave when 00 < 0 < 900.

phonons. For instance, when 0 = 900, the polarization is along the optic axis, and

the electromagnetic wave is only coupled with the A1 phonon mode.

It is derived from the directional dispersion equation (2.28) that phonon polari-

ton waves propagate linearly along three Cartesian coordinate axis, so the phonon-

polariton equations can be expressed with physical constants characteristic of the

substance, and for LiNbO3, those constants are [4, 30],

WTr/27 (THz) F/27r (THz) 0o oo

21z, 0 = 900 wTI11/27r = 7.6 r11F/27r = 0.63 oll = 26.0 e,1 = 10.0

l z, O = 00 WTL/27r = 4.6 rF/2 = 0.42 Eo = 41.5 E = 19.5

Table 2.1: Physical constants for phonon-polaritons in LiNbO3.

2.3 Phonon-Polariton Excitation with Femtosec-

ond Laser Pulses

The governing equations responsible for phonon-polaritons in last section clearly in-

dicates that the phonon-polartion is an internal degree of freedom intrinsic to the

substance, an elementary excitation the crystal shows against certain external per-



turbation. Actually, even just taking thermal effects into account, phonon-polariton

can be excited in the crystal. However, in this section, we will present the theoretical

background of coherent phonon-polariton generation with femtosecond laser pulses

via Impulsive Stimulated Raman Scattering (ISRS).

2.3.1 Impulsive Stimulated Raman Scattering (ISRS)

Since the coherent terahertz radiation from LiTaO 3 was observed in early 1980s [7],

there have been many experimental and theoretical work explaining the driving mech-

anism of this nonlinear optical process [51, 8, 25, 23, 113]. In [13], a detailed discussion

about the nature of the driving force was presented.

The driving force can be put in the polariton equations,

f + IQ - bll = b12 E + FISRS
(2.29)

(V2 A - A)= - TO 60 - +00)Q+ F'

where the F' is due to pure electronic nonliearity, whose contribution to the polariton

excitation is significantly smaller than the ISRS driving force [25, 23, 113], so it will

be ignored in the simulations throughout this thesis.

When an intense optical beam, whose central frequency is approximately 375

THz for an 800 nm laser, irradiates ferroelectric crystals, the electronic system (with

resonance frequency in the ultraviolet range) responds much more strongerly than

the ionic system (with resonance frequency around 7.6 THz), so the electrons will

be driven in phase with the optical field. The ionic system, on the other hand,

will oscillate in the far-infrared frequency range through nonlinear coupling to the

electronic system. In ionic crystals with no inversion center in the unit cell, the

Raman active modes are also IR active, so ion oscillations radiates electromagnetic

waves, which in turn influence the ionic motion. Including the time-dependent ISRS



driving force [106, 103], phonon-polariton generation equations are,

(V+ - b A)
(70276-

= b12E + ECo ( ()pump(t)

-= -0WTO o060 - 0)

In the ISRS driving term, the constants for LiNbO 3 are N =

M = 11.4 amu, (2)a3 = 1.14 x 10-1 M2 , and the pump intensity

following.

(2.30)

6.285 x 1027 rn-3 ,

is described in the

2.3.2 Beam Profile

The intensity profile is assumed to be a Gaussian. In three dimensional simulations,

assuming the beam is propagating along y axis, the intensity can be written,

I(, z,t) = Ioe -( Xx ,.....4a (2.31)
I( ) I TX C Ct 2-1

where ua, az and at are expressed with experimental parameters,

spotsize
2 n2

duration
at =2 n220

(2.32)

(2.33)

where the spotsize and duration are the full-width at half-maximum (FWHM) in a

Gaussian form.

Other intensity profiles can be achieved in similar ways. For instance, a Gaus-

sian form can be rotated to simulate a tilted-pulse-front, or modulated by a squared

sinusoidal function to achieve laser induced grating, etc.
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Chapter 3

Simulations with Finite Element

Method

The understanding of phonon-polariton started with the theoretical prediction in a

cubic diatomic crystal by analytically solving the equations governing the coupling

of electromagnetic waves and lattice vibrations [46, 47]. Several models were intro-

duced to explain and calculate the interactions of ultrashort pulses with ferroelectric

crystals, and how the phonon-polariton wave is generated through this process. How-

ever, when it comes to a more engineering side, namely the spatiotemporal coherent

control over the lattice response via pulse shaping and patterned structures, it is

natural to pursue a discrete-assembly computational approximation, whose accuracy

and capability have long been witnessed in engineering implementations [125, 126].

The essential idea of this approach is to subdivide the system into a number of

elements, whose behavior is already well understood with given parameters and sur-

rounding conditions, and then rebuild the original system as an approximation from

those components. It is widely used to find solutions of partial differential equa-

tions (PDEs) and of integral equations across many fields in science and engineering.

Among the spectrum of simulation schemes that are being used for ultrafast processes

in ultrasmall systems, two approaches stand out withsubstantial research, namely the

Finite Difference Time Domain (FDTD) method [119] and Finite Element Method

(FEM) [126, 50, 127].



In this chapter, the basics and fundamentals of the partial differential equations

(PDEs) are briefly mentioned first, following which are the introduction of FEM

and FDTD methods, then the essential concepts, ideas and implementations of the

simulation in this thesis are presented, both on the physical and computational side in

two and three dimensions. The governing equations responsible for phonon-polariton

generation and propagation in ferroelectric crystals are based on the theory presented

in Chapter 2.

3.1 Partial Differential Equation

Partial differential equations (PDEs) are usually found as the local infinitesimal con-

straint imposed by the universal conservation of mass, momentum and energy in fields

such as the propagation of sound or heat, electrostatics, electrodynamics, fluid flow,

and elasticity, etc. PDEs are classified according their order, boundary conditions,

and degree of linearity, of which the second order are usually encountered in the

physical world, from the Schr6dinger equation to Maxwell equations. The classical

boundary value problem can be defined in domain Q enclosed by boundary F:

LO = f (3.1)

where the L is a differential operator, ¢ is the unknown quantity, and f is the source

term. A general second order time-dependent example may look like:

82U Ou
e a,0 2 + d- + V - (-cVu - au + 7) + au + 3. Vu = f (3.2)

where those coefficients may stand for diffusion, absorption, mass, damping and con-

vection terms depending on the specific problems. The boundary conditions, including

the exterior and interior ones, can vary from the simple Dirichlet and Neumann, to

complicated impedance, periodic, scattering and radiation, etc. In the basic Neumann

condition,

n - (cVu + au - y) + qu = g (3.3)



the coefficients q and g. Specify what values the derivative of the solution should

take, while in the basic Dirichlet condition,

n - (cVu + au - 7) + qu = g - hT u, hu = r (3.4)

the coefficients specify what the values of the solution should take. When it comes

to the electromagnetic case, the specific boundary condition can be perfect electric

conductor, perfect magnetic conductor, general continuity and even surface current

and potential, etc.

exterior
boundary

Figure 3-1: Exterior and interior boundaries.

Most physical problems can be specified by those PDEs or the strong form, while in

some cases the weak form expressed as integral equations can be useful. For instance,

heat transport in gas can be expressed in PDEs, but the ideal gas law for low pressure

and high temperature cases should be specified by an integral, or a weak term.

3.2 Finite Difference in Time Domain (FDTD)

The Finite Difference Time Domain (FDTD) invented by Yee [119] in 1966 is a grid-

based numerical modelling method widely used in the computational electrodynamics.

It directly uses the E and H fields, and the time-dependent Maxwell's equations

are discretized using central difference approximations to the space and time partial

derivatives. The temporal discretization in the one dimensional case, for example,

can be written as,

Of(x, t) _ f(x, t + 1/2) - f(x, t - 1/2) (3.5)
at At

interiorboundary
boundary



and the spatial discretization as,

f(x, t) _ f(x + 1/2, t) - f(x - 1/2, t)

(x Ax

Similarly, the Z components of the equations (2.30) can be,

At
E [1, m, n] = Ez[l, m, n] + b22) ( H y[l, m, n] - Hy[1 - 1, m, n])

(Eo + b22)AX
At At

+ (Hx [1, m - 1, n] - H[1, m, n]) - + b22 ) Q[1, m, n]
(ro + b22)A y 6 + b22)

and

Qz[1,m,n] = (1 - FzAt)Qz[1,m,rn] + At(bllQ,[1, m,n]

+bl2Ez [1, m, n]) + FISRs -

(3.6)

(3.7)

(3.8)

.. Ey

Ex

Figure 3-2: Illustration of a standard Cartesian Yee cell. The E components are in the middle of
the edges and the H components are in the center of the faces [119].

In general, as illustrated in Figure 3.2, the entire simulation space is divided into

a large number of uniform rectangular grids, where the electric fields are solved at a

given time; then the magnetic fields in the same spatial volume are solved at the next



instant in time. This leapfrog manner is repeated until the desired time-dependent

or steady-state electromagnetic field behavior is fully evolved.

The FDTD algorithm is straightforward and can be quickly put into implemen-

tation. It is worth mentioning that in previous simulations [97, 106, 103, 112, 108],

the effective perfectly matched layer (PML) boundary condition invented by Berenger

[10], which has been proved not to reflect the incoming waves of any radiation pattern,

was used to accurately simulate an infinite space problem in a manageable size.

FDTD method has weaknesses as well, especially when it comes to simulation near

a curved structure and resolving the skin-depth. One issue is that the rectangular

grids FDTD utilizes are not efficient in discretizing the space near a curve, another

is that since the grids are uniform, the dense elements in one region would have to

span the entire space which makes it unnecessarily expensive to compute.

3.3 Finite Element Method (FEM)

The Finite Element Method (FEM) method has a relatively longer history that dates

back to complex problems in structural engineering and aeronautics in 1940s. On

the mathematic side, general techniques applicable to differential equations were de-

veloped, such as finite difference approximations, weighted residual procedures, trial

functions, and variational finite differences, while on the engineering side, it was ap-

proached in a more intuitive way such as structural analogue substitution and direct

continuum elements, etc. While the approaches developed along the history might

be different from each other and the way we implement them today, the essential

discrete-assembly approach should be the same.

The discretization of the domain is the first and foremost important step since

the mesh shape and density distribution directly affect the computation efficiency

and accuracy. In the finite element method, the mesh does not need to be uniform,

and the basic shape in one dimension, either straight or curved, is a segment; in two

dimensional domain triangles and quadrilaterals; and in three dimensional case, it

could be tetrahedra, triangular prisms, irregular hexahedra and chisels as shown in



Figure 3-3. These subdomains are called finite elements. Corners of an element are

called nodes, and there could be nodes in between corner points as well, i.e. edge

nodes. It is ideal to generate as many elements as possible to have more elements

in the region of particular interest, but the effect of improvement in accuracy with

an increasing number of elements becomes negligible beyond a certain point. Many

well-developed algorithms have the capability of subdividing an arbitrarily shaped

domain and providing the optimization. This discretization process shows flexibility

and efficiency as illustrated in Figure 3-4, which is also reflected in the second step,

selection of interpolation functions.

(a) (b)

(c)

Figure 3-3: Mesh elements used in the finite element method: (a) one dimension, (b) two dimen-
sion, (c) three dimension.

The corner nodes and edge nodes are where the solutions are calculated, and

interpolation can be used to provide a further approximation of the unknown solution

within an element. The commonly used interpolation is the Lagrange polynomial,

which uses values of the function at nodes as its degrees of freedom. The Hermite

polynomial is another interpolation method, which uses the values and first derivatives

at nodes as its degrees of freedom for approximation.

In terms of solving the boundary-value problem, there are two classical methods,

Ritz method and Galerkin method. Both of them involve a fair amount of matrix

preconditioning, assembly and decomposition in the calculation procedure, which is



Figure 3-4: For the 2D computation of a dielectric waveguide with air as cladding, the number

of mesh elements with FEM method (a) is much less than that with FDTD method (b) while

maintaining better accuracy in the region of interest.

expensive in terms of memory use. This is a major weakness of FEM. However, FEM

is a good choice for solving partial differential equations over complex domains, es-

pecially when the desired precision varies over the entire domain, or when it comes

to real industries like car crash, airplanes, chemical reactions, weather patterns, op-

toelectronic devices, etc.

3.4 Multiphysics

On the simulation side, there are similar terms multifield, multiscale, and multido-

main, but multiphysics in this thesis exclusively means simulations that involve mul-

tiple physical models, mechanisms and phenomena on the same space and time scale,

and most importantly the partial differential equations of different models should

couple with each other. Most physical simulation involves coupled system, like micro-

electro-mechanical system (MEMS), thermal stress system, electromechanical system,

etc.

The phonon-polariton excitation through Impulsive Stimulated Raman Scattering

i3



(ISRS) is a multiphysics problem as well. The govering equations (2.30)

Q + Q + wO Q = b12 + FISRS (3.9)

(V 2A- T A) =-ob21Q (3.10)

couple the phonon motion and electromagnetic propagation together, and E and Q
appear in both equations.

Many commercial software packages, such as CFD-FASTRAN, COMSOL, LS-

DYNA and ANSYS, could be used for simulating multiphysics models, and they

mainly rely on the finite element method.



Chapter 4

Phonon-Polaritons in Bulk

Ferroelectric Crystals

In bulk uniaxial ferroelectric crystals, properties of phonons, photons and polaritons

along different directions can be fully studied. In this chapter, phonon polariton

generation and propagation in bulk LiNbO 3 and LiTaO 3 crystals are introduced and

simulated in both two and three dimensional cases. With some existing excitation

schemes in lab, such as point source, line focus, ring excitation, and spatial-temporal

pulse shaping, phonon-polariton properties and coherent control are discussed.

4.1 Three Dimensional Overview

In terms of phonon polariton generation and propagation through interactions of

cylindrically focused femtosecond laser pulses and bulk uniaxial ferroelectric LiNbO 3,

the typical experimental setup and schematic illustration are in Figure 4-1. In this

special case, the polarization of the pump optical pulse (blue) and the generated

phonon-polariton wave (orange) are both along the crystal optical axis, which is the

vertical Z axis in the figure, and the polariton wave vector is perpendicular to it.

The majority contribution is from the coupling of the electromagnetic wave and the

lowest transverse optic phonon, which was proved to be the most efficient. It is worth

mentioning that the polariton wave propagates far away from the optical excitation



region, and the second 400 nm probe beam can be used for polariton imaging, where

the data are collected with a CCD camera.

Z (optical axis)

Probe (400 mm)

Pump (800 rm) LINbO3

Figure 4-1: Experimental setup (a) and schematic illustration (b) for phonon polariton response
to a cylindrically focused pump line source. The light blue beam is the probe, which is sensitive to

the index change and can be imaged onto the camera.

The simulations of this case were implemented in a 100 pm x 100 pum x 50 Mm

LiNbO 3 crystal, with the cylindrically focused line of width 15 um and pulse time

duration 50 fs. As in Figure 4-2, Z component of the polariton electrical field of

snapshots at 0.2 ps, 0.4 ps, 0.6 ps and 0.8 ps are shown. The lateral propagation

in the Z-X plane from the front view and the cherenkov-like propagation in the Y-X

plane from the top view, are the most important planes in which most simulations

will be conducted since simulations in three dimension are computationally expensive

in terms of memory use.

4.2 Broadband Excitation

4.2.1 Top View Plane

Broadband near single cycle polariton waves are usually excited with cylindrically

focused pump light. The central frequency or the central wavelength of the polariton
wavepacket is tuned by the dimension of the line width, or the wavevector range that

could be driven by the pump laser.

The broadband polariton profile in both time and frequency domain for those two

cases are shown below in Figure 4-4,



100 1lmf
0.4 ps

Z (optical axis)

50 pm

- 00 pm

0.6 ps

Figure 4-2: In a 100 pm x 100 pm x 50 pm LiNbO 3 crystal, the cylindrically focused line of
duration 50 fs, width 15 ,m was used to excite phonon polaritons. The Z component of generated
polariton electrical fields are shown at 0.2 ps, 0.4 ps, 0.6 ps and 0.8 ps snapshots. The lateral
propagation in the Z-X plane and the cherenkov-like propagation in the Y-X plane are illustrated.
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Figure 4-3: Two dimensional plots of the top view plane where the crystal optical axis is pointing
out of the plane. The 800 nm pump laser with line width or the spot size of 5 pm (a) and 50 pm
(b), and time duration 50 fs, are used to excite the broadband polariton wave. The evolution over
time in each case are characterized.

50
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Figure 4-4: Broadband polariton profile in both time and frequency domains. The 50 fs, 800 nm

pump laser pulse with spot size of 10 pm and 50 pm is used to excite the polariton wave packet.
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Figure 4-5: Two dimensional plots of the top view plane where the crystal optical axis is pointing
out of the plane. The 50 fs, 800 nm pump laser with spot size of 10 pm, 20 pm, 30 pm, 40 pm
and 50 pim are used to excite the broadband polariton wave respectively. The snapshots are all at
2.36 ps.
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The above tunability in Figure 4-5 could be formulated as,

4AF
Acenter = Wo - r (4.1)

where F is the focal length of the lens, D the diameter of the spot incident on the lens,
A the wavelength of the pump light (in this case 800 nm), and Acenter is the central

wavelength of the generated polariton wavepacket. More results showing this effect

are in Figure 4-6. This tunability is a very useful tool of polariton waveform control,
which will be presented from different point of views in Chapter 5 and Chapter 6 as

well.

1.4

1 FEM Simulation
Fit with 20.235/(2wo)
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Figure 4-6: The central frequency of the terahertz waveform depends inversely on the excitation
beam spot size. Shown here are the simulated and fitted results.

4.2.2 Front View Plane

The Z dimension of phonon-polariton generation and propagation from the front view

plane, or the Z-X plane, is trivial for a cylindrically focused line beam, as shown in

Figure 4-7. The polariton polarization is along the optical axis. As indicated before,



lateral propagation greatly benefits polariton detection, which can be implemented

with another probe beam around or far away from the excitation region. This plane

is also the view when the polariton imaging technique is applied.

Figure 4-7: Two dimensional simulation plots of the front view plane where the crystal optical

axis Z is pointing up. The 50 fs, 800 nm pump laser with spot size 30 tm is used to excite the

broadband polariton wave.

This plane is characterized by its anisotropy. The dielectric tensor 6xx(w) = EYY(w)

= Ec(w) and E,,(w) = Ell(w), where the I and I1 stand for directions perpendicular

and parallel to the optic axis Z. Many interesting phenomena could happen from the

view of this plane. if there is a certain structure in the LiNbO 3 medium, such as a

curved structure, through which field amplification will be presented in Chapter 6; or

with different excitation schemes, such as a round spot or ring excitation, which is in

the following.

To initially demonstrate the anisotropy, a tightly focused round spot with radius

30 ym could be used to excite the phonon-polariton response. The wave propagates

faster in the horizontal direction than in the vertical dimension with speed ratio

6.46 : 5.11, since no = 5.11 and ne = 6.46. Also, the polariton wave pattern is more

or less similar to dipole radiation, where the intensity is strongest in the horizontal



direction while gradually decreasing to zero in the vertical direction. Furthermore,

round spot excitation with radius 300 pm is also shown in Figure 4-9. It is amazing

to see that when the line width is set as 30 pum, the near single-cycle feature of the

polariton wave is again clearly demonstrated.

0.3 ps

100 wn X
.. ... !l ItH H t

Figure 4-8: Two dimensional simulation plots of the front view plane where the crystal optical
axis Z is pointing vertically. The 50 fs, 800 nm pump laser tightly focused to a spot with radius 30
pm was used to excite the polariton wave.



Figure 4-9: Two dimensional simulation plots of the front view plane where the crystal optic axis

Z is pointing vertically. The round ring with radius 300 pm from a 50 fs, 800 nm pump laser was

used to excite the polariton wave.



4.3 Narrowband Excitation

A narrowband polariton wave can be achieved by spatial shaping, temporal shaping

or spatial-temporal shaping. Temporal shaping can be achieved through excitation

pulse trains with a constant repetition rate, as shown in Figure 4-10.

Central frequency: 1 THz

A- --- ------

spotsize: 20 pm Time (ps)

Figure 4-10: Two dimensional simulation plots of the temporal shaping via pulse train with 1 ps
interval. The spotsize is 20um, so the bandwidth is narrowed around the central 1THz

One example of spatial shaping is the crossed beam excitation scheme as shown in

Figure 4-11. A transmissive binary phase mask can be designed to primarily diffract

the -1 orders of diffraction, which are focused into the crystal through the telescope

to form the interference pattern. It is clear that the polariton wavelength is strongly

dependent on the grating wavelength, which is tunable by changing the crossing angle

between the two excitation beams. This laser induced grating has been used to excite

coherent optic and acoustic waves as early as 1980s [115, 116, 117] in thin medium,

the details of which will be discussed in next chapter.
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Figure 4-11: Illustration of the spatial shaping via two crossed beam excitation.
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Chapter 5

Phonon-Polaritons in Thin

Ferroelectric Crystals

When the crystal thickness d is gradually decreased from the bulk regime (usually

d > 500 pm) to the waveguide regime (usually d < 100 pm), polariton generation and

propagation should be increasingly influenced by the interference of confined waves,

and it takes a shorter time for the polariton wave originally propagating according to

the bulk dispersion properties at the very beginning of the generation process to turn

to follow the rules intrinsic to the confined geometry. This two-fold evolution of the

transition and the unique phenomena in the waveguide regime will be characterized

in this chapter. Following that, polariton coherent control via different excitation

schemes will be discussed.

5.1 Theory of Dielectric Waveguide

A simple dielectric waveguide structure is illustrated in Figure 5-1, which is charac-

terized by a slab dielectric core of thickness d with refractive index nl surrounded by

cladding of lower refractive index n2. As is well known in guided wave optics, if the

incident angle 0' is smaller than the critical angle 0c, waves will be partially trans-

mitted into the cladding at each reflection, thus will vanish over a certain amount of

distance; but if 01 > 0~, waves will undergo total internal reflection at the boundaries



and propagate down the waveguide with little loss from damping and absorption of

the materials.

-d/2

Figure 5-1: Illustration of a high-dielectric-waveguide and total internal reflection of the polariton

wave with line excitation.

For the high-dielectric-contrast uniaxial LiNbO 3 waveguide in this thesis, the optic

axis Z is pointing out of the plane as in Figure 5-1, which makes the core an optically

isotropic media for in-plane waves, and the cladding is air. For the phonon-polariton

wave with the same cylindrically focused line excitation as in the bulk case, the

refraction index in this case is 5.11 since the polariton frequency content is between

0 and 3 THz, which makes the critical angle 11.30, smaller than the cherenkov angle

typical in this plane. Since the electric field of the polariton wave is pointing out of

the plane, this geometry will make a perfect TE dielectric waveguide.

5.1.1 Multi-mode Behavior

There are many ways to analytically solve the eigenmodes in the dielectric slab waveg-

uide. Here we define the wavevector k = (kr, ky, kz) in the dielectric medium, where

kz is 0, and k. is the propagation constant 0. For a TE waveguide, the perfect

waveguide solutions are assumed as,

Ez(x, y, t) = Ez(y)ei(kzx-wt)i (5.1)

Hy(x, y, t) = Hy(y)ei(kz2-wt)y (5.2)

Hx(x, y, t) = Hx(y)ei(kz-t)i (5.3)



so the Helmholtz equation (V2 + n2k 2)Ez(x, y) = 0 becomes,

02

y 2 + -_ k )Ez(y) = 0
C2 -

or given that the fields have to be zero at infinity,

02
2 + k)Ez(y) = 0,

a2
a2 _ )Ez() =0,

where ky and 7y are real positive numbers. So the field pattern is,

E cos kYy,

Ez(y) = Eo cos (k,y - 2),

ly| < d/2, symmetric mode;

lyj < d/2, antisymmetric mode;

jyl > d/2.

The fields themselves and their first derivative with respect to y are continuous at

the boundaries, which lead to

tan(k d
2

= , y tan(ky (5.8)- )) =y
2 ky

Figure 5-2: Intuitive solutions of the symmetric and antisymmetric modes in dielectric waveguide.

(5.4)

Iyl < d/2

Iyl > d/2

(5.5)

(5.6)

(5.7)



Taking into account the assumption in writing equations (5.5) and (5.6),

k - 7 2 , k + kY = c2 (5.9)

(5.10)y CW2(k - 1)

I% = V C B-k -

5.1.2 Phase Shift

The reflection and transmission coefficients can be expressed with the angle of inci-

dence 01 and the angle of refraction 02,

ni Cos 01 - n2 COS 02
r= t=l+r

ni Cos 01 + n 2 COS 02'
(5.11)

and the phase shift is,

t p cos2 1,tan - = CS 2 - 1
2 cOS2 0

Ir

8C 6Ge

(5.12)

900

0 ,

Figure 5-3: Reflection coefficient and phase shift in the internal reflection of a LiNbO 3 waveguide.

5.1.3 Field Distribution

The transcendental equation solutions could be intuitively illustrated as in Figure 5-2.

The crossing points in the blue curves and red curves stand for the symmetric and

antisymmetric solutions respectively, and each point corresponds to a mode. From



(5.10), when freqency w is decreasing, ,y/ky will move towards the origin, and the

number of crossing points, or the number of modes will decrease accordingly, which

means all the higher order modes have a cutoff frequency. There is always a dominant

mode though, which is the lowest symmetry type. This mode can remains when the

dielectric slab is sufficiently thin.

Y

-d/2

Figure 5-4: The field distribution of TE dielectric waveguide modes characterized by the harmonic
patterns in the core and evanescent waves extending into the surrounding medium.

The field distributions of these modes are characterized by the evanescent part

in the cladding, which decreases exponentially into the lower index medium, and the

harmonic wave with certain symmetry type in the core, as sketched in Figure 5-4.

Note that the field is continuous and not zero at the boundaries.

5.1.4 Dispersion Relation

The calculated dispersion relation and effective index for a phonon-polariton wave

in a bulk crystal and the multi-mode 50 Mm and 10 /pm waveguides are shown in

Figures 5-5, 5-6, 5-7 and 5-8, taking into account the transcendental equations (5.8)

and (5.10). All the waveguide modes lie between the curve of a bulk crystal and the

curve of light propagation in a homogeneous lower index surrounding medium, which

is air in this thesis.

The effective index is defined as ck/w. Its dispersion curves indicate that different

modes have different velocities, which results in the effect that an original wave packet

will spread in time and space and different modes will separate with each other. This



Figure 5-5: Dispersion curves of a 50 pm LiNbO 3 waveguide, where the first seven modes are
ploted.
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Figure 5-6: Effective index of the first seven modes of a 50 pm LiNbO 3 waveguide.
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Figure 5-7: Dispersion curves of a 10 pm LiNbO 3 waveguide, where the first six modes are ploted.
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Figure 5-8: Effective index of the first six modes of a 10 /m LiNbO3 waveguide.



is modal dispersion. At the same time, the curve of any specific mode is not a straight

line, which means the wave packet of any mode itself will spread in time and space

as well, which is the group velocity dispersion. In multi-mode waveguides, modal

dispersion is more significant than the group velocity dispersion, and the difference

is more significant in thinner waveguides, as shown in the dispersion figures.

5.2 Transition to the Waveguide Regime

From the derivation of the dielectric waveguide analytical multi-mode solutions, it

was assumed that the electric field distributions of all modes are spatially harmonic

with different symmetry and degeneracy along the vertical dimension, and temporally

harmonic along the propagation direction with planar wave fronts. This multi-mode

behavior is intrinsic to the geometrical confinement in one dimension regardless of

the excitation scheme and the wave propagating in the crystal. When it comes to the

line excitation scheme as shown in Figure 5-1, it is the interference between the waves

bouncing back and forth that directly form the waveguide multi-mode behavior.

As mentioned before, the transition has a two-fold meaning for the line excitation

scheme in this thesis. On one hand, as the crystal thickness d is gradually decreased

from the bulk regime (usually d > 500 pm) to waveguide regime (usually d < 100

Pum), the eventual angle between the wave front and vertical line over infinite time

and distance is decreased from the cherenkov angle, which is a signature of the bulk,

to zero, which is the signature of a multi-mode waveguide. On the other hand,

in a specific dielectric crystal with a certain thickness, the phonon-polariton wave

experiences the transition from the initial cherenkov-like pattern, which is a signature

of the bulk regime, to the straightened multi-mode pattern of different symmetry and

degeneracy, which is a signature of the waveguide regime, over a certain amount of

time, distance, modal and group velocity dispersion. The time and distance it takes

for the polariton wave to eventually reach the gradually straightened multi-mode

pattern becomes shorter with longer polariton wavelength or in a thinner crystal.

In this section, the first kind of transition over crystal thickness, and the second of



transition over propagation time and distance will be characterized.

5.2.1 Transition over Crystal Thickness

20um, 100fs, 1THz broadband excitation snapshots at 20 ps t,

Figure 5-9: Transition over crystal thickness.

The transition over crystal thickness is shown in Figure 5-9, in which the geometry

and the excitation scheme is the same as in Figure 5-1. The crystals are excited with

the same 20 Mm cylindrically focused line beam, which results in 1 THz broadband

phonon polaritons, as demonstrated in the bulk case, and the snapshots are all taken

at 20 ps. In the 500 pm LiNbO3 crystal, the polariton wave experienced two bounces

after the optical excitation pulse went through the crystal. The interference between

the waves bouncing back and forth can be seen, but it has little effect on the lateral

wave propagation due to the long distance between bounces. It is predictable that
over infinite time and distance, the eventual angle between the wave front and the
crystal plane will not deviate much from the cherenkov angle before the polariton



wave vanishes due to the damping in the crystal. In this case, no signature of the

waveguide regime is observed.

In the other extreme the 10 pm crystal, the polariton wave got quickly straight-

ened out and all the cycles are propagating laterally after the countless bounces and

interference. It is hard to see any bounce and interference anymore, which is a strong

evidence that the polariton wave is propagating with the perfect waveguide pattern

and following the exact waveguide dispersion rules, where there is no remaining sign

of any tiny bulk effect. The mode in the figure is the lowest dominant symmetric

mode, which has no node between the boundaries.

In between the two extreme cases, in 100 irm crystal for example, the interference

is obvious, and part of the wave packet may be still bouncing, but the multi-mode

behavior and straightened wavefront of every single observable mode indicates that

the waveguide effect is significantly dominant. There are three observable modes, in

which the one propagating fastest on the right is the lowest symmetric mode without

node, in the middle is the lowest antisymmetric mode with one node on the crystal

plane, and the slowest one is the second symmetric mode with two nodes between the

boundaries.

The quantitative modal dispersion will be presented in the next section, but qual-

itatively several characteristics are already clear here.

* In the multi-mode dielectric waveguide, lower modes propagate faster, and the

separation increases over time and distance, in agreement with waveguide ana-

lytical solutions.

* The modal dispersion is significantly stronger than the group velocity dispersion

of each mode, since the modes are separated well over time but it is hard to see

any shape change for each mode.

* For any single mode, more electric field will exist in the lower index medium

surrounding the dielectric core in thiner crystals. This effect is strongly evident

for the lowest symmetric mode.



5.2.2 Transition over Time and distance

Along with the transition to multi-mode behavior over time and distance as shown

in Figures 5-10 and 5-11, two effects namely modal dispersion and group velocity

dispersion will be discussed.

In the 100 pum waveguide, even though there is a little deviation from the cherenkov

angle, the polariton wave front is still tilted in the first 5 ps as shown in Figure 5-10,

which means it is propagating as in bulk. At 10 ps, the first three modes start to

separate from each other; the separation increases over time, and the polariton wave

gradually turns to propagate in a more multi-mode way, which marks the end of the

transition. The modal dispersion is very strong but the group velocity dispersion is

hard to observe in this case.

In the 10 m waveguide shown in Figure 5-11, it takes much less time for the

wave to propagate in a waveguide manner since the time interval between bounces is

much shorter. Since the dominant mode forms quite early and there is only one mode

in this waveguide, the effect of group velocity dispersion is very strong. According

to the curves in Figure 5-7 and 5-8, the lower frequency part should propagate faster

within any given mode. In the figure at 16.08 ps, it is obvious that the front cycles

have lower frequency content and more electric fields extending into the surrounding

air as far as several hundreds of microns, and those small cycles lagging behind have

higher frequency content.



100fs, 1 Tf broadband excitation

Figure 5-10: Transition over time and distance: modal dispersion.
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Figure 5-11: Transition over time and distance: group velocity dispersion.



y fOfs line excitation with vwidth 10pm, 0Spn and 100pm, snapshots at 15ps
It:X tA

Figure 5-12: Transition over time and distance: line excitation tunability.

With line excitation, the polariton wave vector content can be varied by changing

the line width as demonstrated in Chapter 4. In a 10 ,pm waveguide as in Figure 5-12,

this tunability can be qualitatively shown with snapshots taken at the same time 15ps

after excitation. The 100 pm line source excites a smaller wave vector range, while

the 10 pm line source excites a larger wave vector content. The quantitative results

from the dispersion curves are presented in next section.

5.3 Quantitative Dispersion Characterization

In section 5.1, the theoretical dispersion curves of a dielectric waveguide have been

calculated as shown in Figure 5-5 and 5-7. As indicated before, it is intrinsic to

the geometric confinement regardless of the excitation scheme and the type of the

wave propagating in the crystal. However, different excitation schemes do control the



intensity distribution or relative pump efficiencies among different modes and different

wavevector content. These properties are characterized quantitatively in polaritonic

and EM waveguides in the following.

5.3.1 Polaritonic Waveguide

For the polaritonic waveguide, the simulation dispersion curves and analytical solu-

tions have been put on the same plots in Figures 5-13, 5-14, 5-15 and 5-16, in which

the line excitation geometry is the same as in Figure 5-1 and the pulse duration is

100 fs. On the left of these figures are space-time plots, in which the time evolution

of different modes can be directly observed, and on the right side are two-dimensional

Fourier transformed dispersion curves, where the simulation can be compared with

the analytical theory.

The waveguide mode change over the crystal thickness are shown in series 1-

4, where the time dimension covers 10-80 ps, and the line width are all 100 Aum

corresponding to broadband polariton wave with 0.3 THz central frequency. Several

conclusions can be easily derived.

* The number of modes increases as the crystal thickness increases, and the in-

tensity distribution moves up to higher modes accordingly.

* The mode velocity increases as the crystal thickness decreases. Taking the

lowest symmetric mode for example, it takes -60 ps to travel 4 mm in the 100

Mm crystal while it takes -35 ps in the 10 /Lm case.

* The effect of modal dispersion becomes stronger as the crystal thickness de-

creases.

In series 5-8 and 9-12 with higher resolution, the time dimension covers 50-200

ps, and the crystal thicknesses are 200 Mm and 100 pm. As discussed before, the

frequency and wave content of the polariton wave can be varied by the changing the

line width in this excitation sheme. This effect can be directly seen in the figures: the

smaller the line width, the broader wave vector range the optical beam can excite,
and the higher the central frequency of the broadband polariton wave.
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Figure 5-13: Space-time plots and dispersion curves for three crystal thickness with the same

excitation width 100 pm. Waveguide multi-mode shifts over the crystal thickness are illustrated.
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Figure 5-14: Space-time plots and dispersion curves in 200 pm and 100 m LiNbO3 waveguides.
Polariton frequency and wave vector variation are achieved by changing the excitation line width.
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Figure 5-15: Space-time plots and dispersion curves in 200 pm and 100 pm LiNbO 3 waveguides.
Polariton frequency and wave vector variation are achieved by changing excitaion line width.
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Figure 5-16: Space-time plots and dispersion curves in 200 ym and 100 Mm LiNbO3 waveguides.

Polariton frequency and wave vector variation are achieved by changing the line width.
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5.3.2 EM Waveguide

The purely electromagnetic waveguide corresponds to a different excitation scheme,
different dispersive waveguide core, and different types of waves propagating inside.

The purpose is to demonstrate that the waveguide dispersion only relates to the

optical refractive index of the core and the surrounding media, and to the geometrical

confinement, which are the only conditions set in the EM waveguide. With that, the

following EM waveguide is assumed.

1. air cladding;

2. dielectric core, with the analytical LiNbO 3 dispersive permittivity;

3. excitation confined within a certain range to allow propagation over time.

and what are naturally not included are,

1. phonon contribution;

2. ISRS driving.

Figure 5-17: Multi-mode behavior in a 50 pm EM waveguide.

The resulting field distribution is shown in Figures 5-19 and 5-18, where it is clear

that there are three modes in this 50 pm EM waveguide. The vertical distance in

Figure 5-18 means the distance along y with the lower boundary of the core as the

origin. The field patterns of these modes are in quantitative agreement with the

analytical solutions here. In fact, the intensity distribution among the three modes

should be different from the polaritonic waveguide due to the different excitation

scheme, but the dispersion curve should be exactly the same, which is confirmed in

Figure 5-19.
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Figure 5-18: Field distribution in a 50 pm EM waveguide and the surrounding medium.
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Figure 5-19: The space-time plot and dispersion curves of a 50 Am EM waveguide, which is in

agreement with analytical solutions while there is a little difference in the intensity distribution

among the modes.



5.4 Narrowband Tunability

Laser induced grating by crossing two beams has been used to excite coherent optic

and acoustic waves as early as 1980s [115, 116, 117]. The use of specially designed

phase mask [67] and heterodyne detection [68] improved this traditional method.

The intensity profile of a grating was assumed as a gaussian envelope modulated by

squared sinusoid function. As shown in Figure 4-10, the grating wavelength can be

tuned by changing the crossing angle between two excitation pulses. In this section,

we present simulation results of laser induced grating excitation in a 33 um waveguide.

Y

.x laser induced grating excitatng ecitation in 33 pn UNbO waveglde

Figure 5-20: Laser induced grating excitation in a 33 pm waveguide.

Tunable multi-cycle or narrowband phonon-polariton wave by grating periodicity

is shown in Figure 5-21. The spot size was assumed as 5mm, and there are as many

as 100 cycles of polariton waves in the envelope, which will result in an extremely

narrowed bandwidth. The tunability completely follows the dispersion properties of

the fundamental mode in a 33 pm LiNbO 3 waveguide.

With relatively large grating wave number and smaller spot size, the polariton

wave frequency content can be influenced by both the grating periodicity and the

envelope function, the latter of which is similar to the line excitation scheme discussed

before. In Figure 5-22, the spot size is 0.5 mm and the grating wave number is 25

mm - 1 . Low and high frequency contents are excited initially, and both of them

belong to the fundamental mode. The lower frequency part propagates faster, and

the higher frequency part damps faster. These features are shown in Figure 5-23,

where the time evolution are probed at different spots with L as the distance away

from the center of the excitation region.
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Figure 5-21: Narrowband phonon-polariton waves by tuning the grating periodicity. The disper-
sion properties follows the fundamental mode.
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Figure 5-22: Narrowband phonon polariton wave, launched by laser induced grating excitation, is
influenced by both the grating periodicity and the envelope function.
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Chapter 6

Terahertz Field Enhancement

Nonlinear lattice dynamics and spectroscopy have long been particularly interest-

ing and require large amplitude vibrational motion [115]. Recent progress in field

enhancement includes phonon-polarition focusing in patterned material [45, 97, 30],

spatial-temporal waveform control [100, 101, 33] and high power terahertz generation

via a tiled-pulse-front [123, 41, 42, 40, 122, 121]. While many other methods will

keep pushing this forward, in this chapter we present simulations of phonon-polariton

focusing, the associated phase anomaly or gouy phase shift, and a simple multi-

reflection method for gaining larger amplitude. Some of the following simulations

can be further optimized because there are more tunable parameters in complicated

geometries, and some are difficult to achieve in experiment, but as preliminary results

and exploration, the unique phenomena are already clear and can be characterized.

6.1 Phonon-polariton Focusing

Phonon-polariton focusing is a straightforward way of enhancing the field amplitude.

It is natural to think about focusing the polariton wave in three dimensional space,

but in this chapter, we exclusively discuss the case in the Z-X plane as shown before,

which can be compared with experiment, where the polariton imaging technique can

be used to directly visualize the phonon-polarition generation and propagation.

Visualization of phonon-polariton focusing has been demonstrated experimentally



via an elliptical reflective mirror [97, 30], and full-circle and semicircular excitation

[100, 101]. The associated gouy phase shift was observed as well [29, 30]. In this

section, simulations of focusing through parabolic reflection, ellipse excitation and

semicircular excitation are presented. In each method the gouy phase shift can be

observed, and narrowband polariton wave can be easily achieved via either spatial,

temporal or spatial-temporal pulse shaping.

6.1.1 Parabolic Reflection

As shown in Figure 6-2, the parabolic structure is designed to focus the phonon-

polariton wave, which is near single cycle from line excitation scheme. Since the

critical angle for total internal reflection of LiNbO 3-Air interface is 11.30, the polari-

ton wave propagating laterally to the left will be directed to the focus with little

transmission loss. The crystal optical axis is along Z, and because of anisotropy the

actual polaritonic focus will be shifted to the right of the geometric focus in this

particular LiNbO 3 reflector. The distance between these two foci depends on the

structure dimensions and parabolic parameter, but both foci are on a horizontal line.

An improved off-axis reflector, or the central part of this parabolic curve, was de-

signed to focus polariton waves as shown in Figure 6-1. Since the focus is far from

the excitation region, clear field enhancement can be expected.

sample

UNbos Z

THz wave
L .4; - ----------------------------

Figure 6-1: A simple off-axis parabolic reflector to focus phonon-polariton wave into the sample

of interest.



Figure 6-2: Simulations of phonon-polariton focusing through a parabolic reflector. Due to the
anisotropy, the actual polaritonic focus is shifted to the right of the geometric focus.
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Figure 6-3: Full-cllipse excitation.
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Figure 6-4: Resonator.



Figure 6-5: Resonator.
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6.1.2 Ellipse Geometry

In chapter 4, it was shown that a phonon-polariton wave generated in LiNbO 3 through

full-circle excitation can not focus well due to anisotropy. Here, an ellipse excitation,

which can achieved through two cylindrical lenses for example, can be used to focus a

polariton wave as shown in Figure 6-3, where the two main axis are 600 pm and 474.6

,um. Also, a LiNbO 3 resonator with an ellipse structure is shown in Figure 6-4 and

6-5. Single-cycle polariton waves, launched with a tightly focused round spot beam,

propagated to the edge of LiNbO 3 , reflected back, and focused again at the original

position. Furthermore, polariton waves excited with either spatially or temporally

shaped puleses can be in phase to scale up the enhancement.

6.1.3 Semielliptical Excitation

Circular excitation can be achieved with an axicon-lens combination in experiment,

and for semicircular excitation, half of the ring is blocked. In [29] and [100], the

semicircular polariton wave is focused with little spatial distortion due to anisotropy

in LiTaO 3. In LiNbO 3 , however, the actual focus will be significantly shifted. While

it is more convenient to achieve semicircular excitation in experiment, here instead

we present a semielliptical excitation as shown in Figure 6-6.

6.1.4 Multi-cycle Wave Focusing

Multi-cycle phonon-polariton waves can be realized with either spatial or temporal

pulse shaping as shown in Figure 6-7 and 6-8 respectively. As indicated in Chapter 4,

the bandwidth of multi-cycle waves will be narrowed, and the more cycles there are,

the narrower the bandwidth will be. The central frequency can be tuned by changing

the spatial or temporal delay. In the spatial shaping figures, there are 10 cycles and

in the temporal shaping ones, there are 6 cycles between the place of the excitation

and the focus. The frequency-dependent phenomena can be better observed with

narrowband waves, and in the next section, we present the phase anomaly or gouy

phase shift in both single-cycle and multi-cycle cases.



Figure 6-6: A single-cycle semielliptical phonon polariton wave propagates from left to right and
focuses at the center with an increase in amplitude.
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Figure 6-7: A multi-cycle semielliptical phonon polariton wave, excited by spatially shaped pulses,

propagates from left to right and focuses at the center. The distance between two wave packets along

the central horizontal line is 50 pm.
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4 1.2 mm
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Figure 6-8: A multi-cycle semielliptical phonon polariton wave, excited by temporally shaped
pulses, propagates from left to right and focuses at the center. The temporal delay between two
wave packets is 1.5 ps. GA
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6.2 Gouy Phase Shift

The gouy phase anomaly can be observed whenever a wave focuses to the diffraction

limit, where the wavevector content relocates due to the spatial confinement and

shifts back after the focal region. The gouy phase by focusing phonon polaritons

has been demonstrated and visualized before [29, 100] in one dimension confinement

along the optic axis, in which the phase shift is expected to be 7r/2. The following

simulations show excellent agreement with experiments and give preliminary results

of multi-cycle phonon-polariton wave focusing.

0o25

02

0.16

0

0.1

4.15
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0.26

2 4 6 8 10 12
Time (ps)

Figure 6-9: Space-time plot of the field distribution of the single-cycle phonon-polariton wave
shown in Figure 6-6. The two dotted lines indicate the normal phase peak traces.

The space-time plot of single-cycle phonon-polariton focusing in Figure 6-6 is

shown in Figure 6-9, which shows the electric field distribution of the polariton wave

as a function of time and position along the propagation direction. It is clearly shown

that when the wave packet propagates around 8.5 ps, the phase velocity increases



in the focal region and decrease back to the original value after the focus. The two

dotted lines in the figure give the extrapolation of normal phase peak based on the

traces before and after the focal region. Along the lower free space propagation line,

the phase shifts from the peak position to somewhere between the peak and the valley

after the focal region, which gives the phase shift value around 7r/2 qualitatively.
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Figure 6-10: Quantitative determination of gouy phase shift of the single-cycle phonon-polariton
wave shown in Figure 6-6. The Ax and At are the distance and time delay between the phase peak
and valley.

Quantitatively as in Figure 6-10, the normal phase propagation information can be

extracted by averaging the distance between the phase peak and valley at a certain

time, and the time delay between the phase peak and valley at a certain point.

Subtracting the free space propagation from the single-cycle phonon-polariton wave,

the phase anomaly in the focal region is clearly revealed. The phase difference between

any two points with the exactly same time delay before and after the focusing 8.2 ps

gives the shift amount 7r/2.



For the multi-cycle polariton wave, we will discuss the temporal shaping in Figure

6-8 in detail. The time delay between two wave packets was set as 1.5 ps just to make

the waveform in time domain as smooth as possible. The space-time plot accordingly

is shown in Figure 6-11.

Single Cycle Multi Cycle
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Figure 6-11: Space-time plots of the field distribution of single-cycle and the temporally shaped
multi-cycle phonon-polarition wave packets along the propagation direction.
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Figure 6-12: Distribution of wave vector components along the propagation direction as a function
of time for the single-cycle and the temporally shaped multi-cycle phonon-polarition wave packets.

With the spatial confinement perpendicular to the propagation direction, the

wavevector components along that will be shifted positively according to the un-

certainty principle, so the wavevector contents along the propagation direction will

ME., - . -
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decrease in the focal region.

6.3 Multi-reflection

High power terahertz generation via tilted-pulse-front [41, 42, 40, 122, 121] has been

demonstrated recently, and a multi-reflection scheme was proposed [123, 41] to further

improve the velocity matching and re-use the optical pulses to achieve even higher

terahertz output. As illustrated in Figure 6-13, the blue lines are the pump beam

traces with a tilted-pulse-front, and the orange lines are the expected enhanced tera-

hertz output. The pump beam enters the crystal at the complement of the Cherenkov

angle so that the generated THz wave propagates laterally down the crystal; when

the pump beam is further bounced back and forth with total internal reflection, the

THz response will be greatly enhanced.

LiNbOs

imm

1mm

Figure 6-13: Illustration of multi-reflection scheme.

Preliminary simulation results of the THz response are shown in Figures 6-14

and 6-15, where the maximum and minimum electric field amplitudes at periodic

moments right before each bounce are indicated. With a LiNbO3 crystal of length

6 mm, the field amplification is 3.6 for maxima and 3.3 for minima, which means a

10 times enhancement in peak intensity. It is also obvious that the near single cycle

phonon-polariton spreads over time in the vertical dimension, which means the THz

intensity and power enhancement is even larger. Further optimization can be made

by adjusting parameters like pulse duration and crystal thickness, etc.



Figure 6-14: Simulation results of the multi-reflection scheme for enhancing terahertz field.
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Figure 6-15: Simulation results of the multi-reflection scheme for enhancing terahertz field.
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