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suppression of the probability of overbarrier reflection changes nonmonotonically with energy. The suppression
is minimal at certain “optimal” energies where reflection occurs with exponentially larger probability than at
other energies.
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I. INTRODUCTION

Tunneling and overbarrier reflection are the characteristic
nonperturbative phenomena in quantum mechanics. They
typically occur with exponentially small probabilities,

P � e−F/�, �1�

where F is the suppression exponent; still, the above phe-
nomena are indispensable in understanding a wide variety of
physical situations, from the generation of baryon number
asymmetry in the early Universe �1� to chemical reactions
�2� and atom ionization processes �3�.

During the last decades extensive investigations of tunnel-
ing processes in systems with many degrees of freedom have
been performed �2,4–13�. These studies revealed a rich vari-
ety of features of multidimensional tunneling which are in
striking contrast to the properties of one-dimensional tunnel-
ing and overbarrier reflection. In particular, the following
phenomenon has been observed: the probability of tunneling
may depend nonmonotonically on the total energy of the
system and exhibit resonancelike peaks. One can envisage
three physically different mechanisms of this phenomenon.
The first mechanism, present already in the one-dimensional
case, is tunneling via creation of a metastable state. In this
case the tunneling probability at the maximum of the reso-
nance is exponentially higher than at other energies. On the
other hand, the resonance width �E is exponentially sup-
pressed; so, after averaging with an energy distribution of a
finite width the effect of the resonance is washed out in the
semiclassical limit �→0. The second possible mechanism of
nonmonotonic behavior of P�E� is quantum interference
�7,13� �see also �14��. In this case the peak value of the
tunneling probability is only by a factor of order one higher
than the average value, while the width of the resonance
scales as �E��. Again, the resonances become indiscernible
in the semiclassical limit. In both these cases the resonances
can be attributed to the subleading semiclassical corrections,
i.e., nonmonotonic behavior of the preexponential factor
omitted in Eq. �1�. The third possibility is that the suppres-

sion exponent F�E� is nonmonotonic. In this case the exis-
tence of the “resonances” is the leading semiclassical effect:
the optimal tunneling probability at the maximum of the
resonance is exponentially higher than the probability at
other energies. At the same time the resonance width scales
as1 �E���. This last possibility of “optimal tunneling” is
definitely of interest; yet, it did not receive much attention in
literature. We are aware of only a few works mentioning
nonmonotonic dependence of the suppression exponent on
energy �14–16�. It is worthwhile studying this phenomenon
in detail; this can provide insight into the dynamics of mul-
tidimensional tunneling.

In this paper we consider the process of overbarrier re-
flection in a simple model with two degrees of freedom. Our
setup is interesting in two respects. First, the model under
study is essentially nonlinear and the variables cannot be
separated; still, overbarrier reflections in this model can be
described analytically within the semiclassical framework.
Thus, this model can serve as an analytic laboratory for the
study of multidimensional tunneling. Second, the suppres-
sion exponent F of the reflection process behaves nonmono-
tonically as the total energy E changes. We demonstrate that
the function F�E� possesses a number of local minima E
=Eo, where reflection is optimal. We stress that the process
we study is exponentially preferable at “optimal” energies as
compared to other energies.

Our model describes the motion of a quantum particle in
the two-dimensional harmonic waveguide �see Refs.
�8,10,14� for similar models�. The Hamiltonian is

H =
px

2

2m
+

py
2

2m
+

m�2

2
w2�x,y� ,

where x, y are the Cartesian coordinates and m is the mass of
the particle. The function U=m�2w2 /2 represents the wave-
guide potential in two dimensions: a particle with small en-
ergy is bound to move along the line w�x ,y��0. We do not
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1This follows from the representation

P�E� � exp�−
F�Eo�

�
−

F��Eo��E − Eo�2

2�
�

of the tunneling probability in the vicinity of the maximum.
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introduce a potential barrier across the waveguide and con-
sider the case when the line w=0 stretches all the way from
x→−� to x→ +�. We also assume that the function w�x ,y�
is linear in the initial asymptotic region,

w�x,y� → y as x → − � .

In the present paper we consider two particular cases of the
function w�x ,y� describing waveguides with one and two
sharp turns,2 see Fig. 1.

The motion of the particle at x→−� is a superposition of
free translatory motion in x direction and oscillations of fre-
quency � along y coordinate; the state of such a particle is
fully characterized by two quantum numbers, the total en-
ergy E and y-oscillator excitation number N. The particle
sent into the waveguide from the asymptotic region x→−�
with given E, N may either continue to move towards
x→ +�, or reflect back into the region x→−�. We are inter-
ested in the probability P�E ,N� of reflection.

Let us discuss reflections at the classical level. �Note that
the classical counterpart of N is the energy of transverse
oscillations.� Consider first the waveguide with one sharp
turn �Fig. 1�a��. One observes that the outcome of the clas-
sical evolution, i.e., whether or not the particle reflects from
the turn, depends not only on the total energy E, but on other
dynamical quantities as well. In particular, the direction of
the momentum of the particle in the vicinity of the turn
�point C on the graph� is important. This means that the
entire dynamics in the waveguide should be taken into ac-
count in order to determine the possibility of classical reflec-
tion. This is in sharp contrast with the situation in the one-
dimensional case, where reflection from the potential barrier
�or transition through it� is ensured by the value of the con-
served energy of the particle.

Now, consider the waveguide with two turns. The model
is characterized by the angles of the turns and the distance L
between them �see Fig. 1�b��. Suppose the particle starts
moving classically from x→−� with N=0 along the valley
w=0. Then, the transverse oscillations become excited only
after the particle crosses the first turn, point C� on the plot,
so that at the time of arrival to the second turn �point C�
approximately �� /2� oscillations are made, where �

	L�m /2E is the time of motion between the two turns. The
state of the particle �coordinates and momenta� at which it
comes across the second turn depends periodically on the
phase of transverse oscillations ��. Hence, one expects that
the regime of motion of the classical particle can change
from transmission to reflection and back as the energy grows
�� decreases�; the energies where it happens can be roughly
estimated as

En 	
m�2L2

2�2�n�2 . �2�

We will see that this is indeed the case for the waveguides
with certain angles of the turns.

At some values of E, N the reflection process cannot pro-
ceed classically. Then, at the quantum mechanical level its
probability is exponentially suppressed, F�E ,N��0. It is
natural to call such a process “overbarrier reflection”3. The
central quantity to be studied below is the suppression expo-
nent F�E ,N� of this process. The above discussion suggests
that F�E ,N�, being determined by the entire dynamics in the
waveguide, may be a highly nontrivial function. For the par-
ticular case of the waveguide with alternating regimes of
classical reflections and transmissions F should oscillate: F
=0 at the energies where the classical reflections are allowed,
and F�0 at the energies where the reflections are classically
forbidden. One can expect that the similar oscillatory behav-
ior of the suppression exponent persists for other two-turn
models as well. Now, instead of reaching zero, F may pos-
sess a number of local positive minima implying that the
reflection at the optimal energies is still a tunneling process.

Let us emphasize the difference of the optimal tunneling
from quantum interference and resonance phenomena in our
two-turn model. The interference of the de Broglie waves
reflected from the two turns can, in principle, lead to oscil-
lations in the reflection probability P�E�. One can estimate
the positions of the interference peaks by equating the de
Broglie wavelength of the particle to an integer fraction of
the distance between the turns, 2�� /�2mE	L /n. This
yields the energies of the interference peaks,

En
int 	

�2�n�2�2

2mL2 .

This formula is completely different from Eq. �2� for the
peaks due to optimal tunneling. In particular, the distance
between the adjacent inteference peaks,

�Eint 	
2��

L
�2E

m
,

scales proportional to �. Thus, these peaks should be aver-
aged over in the semiclassical limit. Besides, the amplitude
of the interference peaks is at most of order one and does not
affect the suppression exponent. Indeed, the exponential in-
crease of the scattering amplitude can arise due to quantum

2The explicit expressions for the waveguide functions w�x ,y� will
be presented in the subsequent sections.

3By this term we want to emphasize that the process is classically
forbidden. Recall, however, that there is no actual potential barrier
across the waveguide in our setup.
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FIG. 1. The equipotential contour U=E for the waveguides with
�a� one and �b� two sharp turns. An example of classical trajectory
is shown in case�b�.

LEVKOV, PANIN, AND SIBIRYAKOV PHYSICAL REVIEW A 76, 032114 �2007�

032114-2



interference only in the presence of a resonant state with
exponentially long lifetime. This state should be supported
somewhere in between the turns and should be classically
stable. In Sec. IV B we show that such states are absent in
our system. One concludes that the peaklike structure of the
probability P�E� of optimal tunneling is caused by com-
pletely different physical reasons as compared to the case of
resonance scattering in quantum theory.

It is worth noting that the phenomenon of optimal tunnel-
ing has an important implementation in field theory. Recently
it was argued �17� �see also Ref. �16�� that the probability of
tunneling induced by particle collisions �18,19� reaches its
maximum at a certain optimal energy and stays constant4 at
higher energies. This result, if generic, provides the answer
to the long-standing question �20� about the high-energy be-
havior of the probability of collision-induced nonperturba-
tive transitions in field theory. The quantum-mechanical
model presented here supports the generic nature of the phe-
nomenon of optimal tunneling; the simplicity of our model
enables one to obtain an intuitive insight into the nature of
this phenomenon.

The paper is organized as follows. In Section II we review
the semiclassical method of complex trajectories, which is
exploited in the rest of the paper. Reflections in the
waveguides with one and two turns are considered in Secs.
III and IV, respectively. We discuss our results in Sec. V. In
the Appendix we analyze the validity of some assumptions
made in the main body of the paper.

II. SEMICLASSICAL METHOD

We start by describing the semiclassical method5 of com-
plex trajectories which will be used in the study of overbar-
rier reflections. We concentrate on the derivation of the for-
mula for the suppression exponent F�E ,N� �see Refs. �2,8,9�
for the details of the method and Ref. �19� for the field theory
formulation�. In what follows we use the system of units

� = m = � = 1,

where the Hamiltonian takes the form

H =
1

2
�px

2 + py
2 + w2�x,y�� . �3�

One starts with the amplitude of reflection into the state
with definite coordinates xf 	0,yf,

A = 
xf,yf�e−iĤ�tf−ti��E,N� . �4�

Here �E ,N� is the initial state of the particle moving in the
asymptotic region xi→−� with fixed translatory momentum
p0=�2�E−N� and the oscillator excitation number N. Semi-
classically,


�xi,yi�E,N� = eip0xi cos�
�2N

yi

py�y��dy� + �/4� , �5�

where xi, yi denote initial coordinates,

py�y�� = �2N − y�2, �6�

and we omitted the preexponential factor which is irrelevant
for our purposes. Using Eq. �5�, one rewrites the amplitude
�4� as a path integral,

�A = dxidyi �dx��dy��
xi,yi

xf,yf

eiS+ip0xi


cos�
�2N

yi

py�y��dy� + �/4� , �7�

where S is the classical action of the model �3�.
In the semiclassical case the integral �7� is dominated by

the �generically complex� saddle point. Note that as we con-
tinue the integrand in Eq. �7� into the plane of complex co-
ordinates, one of the exponents constituting the initial oscil-
lator wave function grows, while the other becomes
negligibly small. Within the validity of our approximation,
we omit the decaying exponent by writing

cos�
�2N

yi

py�y��dy� + �/4� → exp�i
�2N

yi

py�y��dy�� ,

�8�

with the standard choice6 of the branch of the square root in
Eq. �6�.

One proceeds by finding the saddle point for the integral
�7� with the substitution �8�. Extremization with respect to
x�t�, y�t� leads to the classical equations of motion,

ẍ = − wwx, ÿ = − wwy . �9�

Differentiating with respect to xi�x�ti�, yi�y�ti�, one
obtains

ẋi = p0 = �2�E − N�, ẏi = py�yi� = �2N − yi
2.

The latter equations are equivalent to fixing the total energy
E and initial oscillator energy N of the complex trajectory,

E =
1

2
ẋi

2 + N , �10a�

4As opposed to the quantum mechanical case, the tunneling prob-
ability does not decrease at energies higher than the optimal one.
This is due to the possibility, specific to the field theoretical setup,
to emit the excess of energy into a few hard particles, so that tun-
neling effectively occurs at the optimal energy.

5Note that the method has been confirmed by the explicit com-
parison with the exact quantum mechanical results in Refs. �8,9,14�;
specifically, the recent check �14� deals with the case when the
dependence of the suppression exponent on energy is not
monotonic.

6The correct branch is fixed by drawing a cut between the oscil-
lator turning points y= ±�2N and choosing Im py �0 at y�R, y
��2N; see, e.g., Ref. �21�.
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N =
1

2
�ẏi

2 + yi
2� . �10b�

Substituting the saddle-point configuration7 into Eq. �7�, one
obtains the amplitude of the process with exponential accu-
racy,

A � eiS+iB�xi,yi�,

where the term

B�xi,yi� = p0xi + 
�2N

yi

py�y��dy� �11�

is the initial-state contribution. For the inclusive reflection
probability one writes

P = dxfdyf�A�2 � dxfdyfe
iS−iS*+iB−iB*

.

The integral over the final states can also be evaluated by the
saddle-point technique; extremization with respect to xf
�x�tf�, yf �y�tf� fixes the boundary conditions in the
asymptotic future,

Im ẋf = Im xf = 0, Im ẏ f = Im yf = 0. �12�

In this way one obtains the expression �1� for the reflection
probability, where the suppression exponent F is given by
the value of the functional

F�E,N� = 2 Im S + 2 Im B�xi,yi�

evaluated on the saddle-point configuration—a complex tra-
jectory satisfying the boundary value problem �9�, �10�, �12�.

The contribution B�xi ,yi� of the initial state is simplified
after one uses the asymptotic form of the solution at
t→−� �xi→−� �,

x = p0t + x0, y = ae−it + āeit. �13�

Equations �10� guarantee that the quantities p0=�2�E−N�
and 2aā=N are real, since E ,N�R. Therefore, one may in-
troduce two real parameters T, � as follows:

2 Im x0 = − p0T, ā = a*eT+�. �14�

One finds for the initial term �11�,

2 Im B�xi,yi� = Im�2p0xi − 2N arccos�yi/�2N� + yi
�2N − yi

2�
=− p0

2T − N�T + �� + Im�yiẏi� ,

and thus

F = 2 Im S̃ − ET − N� , �15�

where S̃ is the classical action of the system �3� integrated by
parts,

S̃ = −
1

2


ti

tf

dt�xẍ + yÿ + w2�x,y�� . �16�

Let us comment on the physical meaning of the param-
eters T, �. Consider two trajectories which are solutions to
the boundary value problem �9�, �10�, �12� at neighboring

values of E, N. The differential of the quantity 2 Im S̃ as one
deforms one trajectory into the other is

d�2 Im S̃� = d Im�2S + xiẋi + yiyi
˙ �

= Im�xidẋi − ẋidxi + yidẏi − ẏidyi�

= EdT + Nd� ,

where in the last equality we used the asymptotic form �13�,
�14� of the solution. Then, from Eq. �15� one finds

dF�E,N� = − TdE − �dN . �17�

Thus, the parameters T and � are �up to sign� the derivatives
of the suppression exponent with respect to energy E and
initial oscillator excitation number N, respectively.

Our final remark is that the boundary value problem �9�,
�10�, �12� is invariant with respect to the trivial time transla-
tion symmetry,

t → t + �t, �t � R , �18�

which can be fixed in any convenient way.

III. MODEL WITH ONE TURN

To warm up, we consider the simplest model, where the
waveguide has one sharp turn,

w = y��− x + y tan � + cos �x sin  + y cos �


��x − y tan � . �19�

Here ��x� is the step function. It is convenient to use the
rotated coordinate system,

��

�
� = �cos  − sin 

sin  cos 
��x

y
� .

The waveguide function takes the form

w = � cos  − � sin ��− �� . �20�

The equipotential contour w2�� ,��=const is shown in Fig. 2.
One observes that the motion of the particle in two regions,
�	0 and ��0, decomposes into the translatory motion and
oscillations in the coordinates x, y and �, �, respectively �see
Eqs. �19� and �20��; the frequency of � oscillations in the
latter case is cos .

Due to the presence of the step function, the first deriva-
tives of the potential �20� are discontinuous8 at �=0. Strictly
speaking, the semiclassical method is not applicable in this
situation �21�. Thus, the formula �20� should be regarded as
an approximation to some waveguide function with smooth
turn. Generically the width of the smoothened turn is char-
acterized by a parameter b; the sharp-turn approximation
�20� corresponds to b→0. An example of smoothening is
provided by the following substitution in Eq. �20�,7For simplicity we assume that the saddle-point configuration is

unique. Otherwise, one should take the saddle point corresponding
to the weakest exponential suppression. 8Note that the potential itself is continuous.
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���� → �b��� =
1

1 + e−�/b . �21�

The semiclassical description can be used as long as the de
Broglie wavelength of the particle is small compared to the
linear size of the potential9, 1 /�E�b. We conclude that the
sharp-turn and semiclassical approximations are valid simul-
taneously for smooth waveguides with

1 � b � 1/�E . �22�

An important property of the model �20� is invariance of
the classical equations of motion �9� under the rescaling of
the coordinates,

x → �x, y → �y . �23�

Using the transformation �23�, one may express a solution
x�t�, y�t� with energy E in terms of the normalized one,

x = x̃�E, y = ỹ�E ,

where the solution x̃�t�, ỹ�t� has unit energy; its initial oscil-
lator excitation number is

� = N/E .

The suppression exponent �15� takes the form,

F�E,N� = Ef��� , �24�

where f��� is the exponent for the normalized solution. Sub-
stituting the expression �24� into Eq. �17�, one obtains

f��� = − T − �� . �25�

We will exploit Eq. �25� in the end of this section. Now, we
proceed to finding the normalized trajectories.

At certain initial data ���cr the particle can reflect from
the turn classically, so that

f�� � �cr� = 0.

Let us find the value of �cr. In the region �	0 the classical
solution takes the form

x�t� = p0t + x0, �26a�

y�t� = A0 sin�t + �� . �26b�

Having crossed the line �=0 �line AB in Fig. 2�, the classical
particle can never return back into the region �	0. Indeed,
in this case it moves at ��0 with constant momentum p�

�0. Thus, the particle can reflect classically only if its tra-
jectory touches the line �=0. The potential of our model has
ill-defined derivatives at �=0, and the fate of the particle
moving along the line AB depends on the particular choice of
the smoothening of the potential. In the Appendix we con-
sider the motion of the classical particle in the case when
nonzero smoothening of width b is switched on. For a class
of smoothenings we show that in the small vicinity ���
	b� of any trajectory touching the line �=0 there exists
some “smoothened” trajectory, which reflects classically
from the turn. Consequently, below we associate the trajec-
tories touching the line �=0 with the classical reflected so-
lutions.

One notices that the inclination of the trajectory �26� is
bounded from above,

�dy

dx
� �

A0

p0
;

therefore, the classical trajectory of the particle can touch the
line �=0, that is, y /x=cot  only at

A0/p0 � cot  . �27�

From Eqs. �27�, �26�, and �10� one extracts the condition for
the particle to reflect classically from the turn,

� � �cr = cos2  . �28�

The critical classical solution at �=�cr touches the line �=0
at �=0 �point C in Fig. 2�, where its trajectory

xcr�t� = �2t sin  ,

ycr�t� = �2 sin t cos  . �29�

has the largest inclination.
We now turn to the classically forbidden reflections at �

	�cr, which are described by the boundary value problem
�9�, �10�, �12�. One makes the following important observa-
tion. The waveguide function �20� has the form of two ana-
lytic functions glued together at �=0. Hence, the equations
of motion �9� can be continued analytically to the complex
values of coordinates in two different ways, starting from the
regions �	0 and ��0, respectively. In this way one obtains
two complex solutions, �−�t�, �−�t� and �+�t�, �+�t�. These
solutions and their first derivatives should be matched at
some moment of time t1, ��t1�=0. �Note that the matching
time t1 does not need to be real.� Below we conventionally
refer to these solutions as the ones belonging to the regions
�	0 and ��0.

9Another semiclassical condition is that the energy is sufficient to
excite a lot of oscillator levels, E�1. It is satisfied provided Eq.
�22� holds.
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FIG. 2. The equipotential contour w2�x ,y�=2N for the wave-
guide �20� and the trajectory of the critical solution with energy
N / cos2 .
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By the same reasoning as above we find that once the
particle arrives into the region ��0, it never reflects back to
�	0, unless p�=0. So, in the region ��0 one writes

�+�t� = 0, �30a�

�+�t� =
�2

cos 
sin�t cos  + ��� , �30b�

where the normalization condition E=1 has been used ex-
plicitly. Due to the conditions in the asymptotic future, Eqs.
�12�, the parameter �� is real. We use the translational in-
variance �18� to set ��=0. Note that we again associate the
trajectory going along the line �=0 with the reflected one.

The physical picture of overbarrier reflection that comes
to mind matches with the mechanism of multidimensional
tunneling proposed recently in Refs. �9,11�. The process pro-
ceeds in two steps. The first step, which is exponentially
suppressed, is the formation of the periodic classical orbit
�30� oscillating along the line �=0. This orbit is unstable. At
the second step of the process the unstable orbit decays clas-
sically forming a trajectory going back to x→−� at t→
+�. Clearly, the second step does not affect the suppression
exponent of the whole process, and we do not consider it
explicitly. In what follows we concentrate on the determina-
tion of the tunneling trajectory describing the first step of the
process.

One should find the solution at �	0 and impose the
boundary conditions �10�. Note, however, that the energy of
our solution is fixed already. As for the initial oscillator ex-
citation number �, it does not change during the evolution in
the region �	0. Thus, one may fix it at the matching time
t= t1. One writes

� = �1

2
�ẏ2 + y2��

t=t1

= cos2  + sin2  sin2�t1 cos � .

This complex equation allows one to express t1 as

sin�t1 cos � = − i
��cr − �

sin 
, �31�

where the choice of the sign is dictated by the condition in
footnote 6. It is convenient to introduce notation t1= iT1, T1
�R.

In order to find the suppression exponent f���, one needs
to evaluate the parameters T���, ����. At �	0 the solution
has the form

x−�t� = p0�t − iT/2� + x0�, �32a�

y−�t� = ae−it + a*eT+�+it, �32b�

where the definitions �13� and �14� have been taken into
account explicitly, so that p0, x0��R. One evaluates p0, x0�, a,
T, � by matching the coordinates x±, y± and their first deriva-
tives ẋ±, ẏ± at t= iT1; this yields

x0� = 0, p0 = �2�1 − �� ,

a = i��

2
e−�T+��/2,

T1 −
T

2
= −�1 − �/cos2 

1 − �
,

sinh�T1 −
T + �

2
� = −

�cos2  − �

sin ��
.

The last two equations, together with Eq. �25�, define the
function f���,

f��� =
2

cos 
�arcsinh

��cr − �

sin 
− � cos  arcsinh

��cr − �

sin ��

− ���cr − ���1 − ���;

this function is plotted in Fig. 3. One observes that at �
→�cr the quantities T1, T, �, f tend to zero, and the complex
trajectory tends to the classically allowed critical solution, cf.
Eqs. �29�,

p0 → �2 sin , a →
i

�2
cos  .

At �=0 one has

f�0� = − 2 +
2

cos 
arctanh�cos � . �33�

To summarize, we obtained the suppression exponent for the
reflection of a particle in the simplest waveguide with one
sharp turn.

IV. MODEL WITH TWO TURNS

A. Introducing the system

In the model of the previous section the suppression ex-
ponent was proportional to energy because of the coordinate
rescaling symmetry �23�. Now, we are going to demonstrate
that a small violation of this symmetry results in a highly
nontrivial graph for F�E�.

0.2

0.15

0.1

0.05

0
νcr0.20.150.10.050

ν

f β

FIG. 3. The suppression exponent f��� for the waveguide �20�;
=� /3.
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One introduces a second turn into the waveguide, see Fig.
4. We want to consider this turn as a small perturbation, so,
we assume its angle � to be smaller than . It is convenient
to introduce two additional coordinate systems, x�, y� and �,
�, bound to the central and rightmost parts of the waveguide,
respectively. They are related to the original coordinate sys-
tem x, y as follows,

�x�

y�
� = � cos � sin �

− sin � cos �
��x

y
� , �34�

��

�
� = �cos  − sin 

sin  cos 
��x� − L

y�
� .

Note that the origin of the coordinate system �, � is shifted
by the distance L. The waveguide function is

w = ��− x����− ��y + ��− ����x��y� cos �

+ ����� cos � cos ; �35�

it consists of three pieces glued together continuously at x�
=0 and �=0 �lines A�B� and AB in Fig. 4, respectively�. At
t→−� the particle comes flying from the asymptotic region
x�	0, where w=y. In the intermediate region x��0, �	0
the particle moves in the x� direction oscillating along the y�
coordinate with the frequency cos �. Finally, in the region
��0 its motion is free in the coordinates �, �; the frequency
of � oscillations is cos � cos .

The model �35� no longer possesses the symmetry �23�:
rescaling of coordinates changes the length L of the central
part of the waveguide. In what follows it is convenient to
work in terms of the rescaled dynamical variables,

x̃ = x/L, ỹ = y/L .

In these terms the parameter L disappears from the classical
equations of motion, entering the theory through the overall
coefficient L2 in front of the action. The initial-state quantum
numbers are also proportional to L2,

E = L2Ẽ, N = L2Ñ . �36�

Thus, the conditions �22� for the validity of the semiclassical
approximation are satisfied in the limit

L → � , Ẽ,Ñ = fixed.

The suppression exponent takes the form

F�E,N� = L2F̃�Ẽ,Ñ� . �37�

To simplify notations, we omit tildes over the rescaled quan-
tities in the rest of this section. Rescaling back to the physi-
cal units can be easily performed in the final formulas by
implementing Eqs. �36� and �37�.

B. Classical evolution

Let us begin this section by demonstrating that there are
no stable classical solutions localized in the region between
the turns. This is important for the determination of the tun-
neling probability, since such stable solutions could lead to
exponential resonances in the tunneling amplitude. The argu-
ment proceeds as follows. Any trajectory which is localized
in the intermediate region should reflect from the line AB
infinitely many times. Each reflection involves touching the
unstable orbit living at the line AB. This implies that the
trajectory itself is unstable.

We proceed by determining the region of initial data E, N,
which correspond to the classical reflections. �For brevity we
will refer to this region as the “classically allowed region,”
as opposed to the “classically forbidden region” where re-
flections occur only at the quantum mechanical level. We
stress that these are the regions in the plane of quantum
numbers E, N.� Let us search for the critical classical solu-
tions which correspond to the smallest initial oscillator num-
ber N=Ncr�E� at given energy E. As in the previous section,
one finds that the particle must stick at the line10 AB for
some time in order to reflect back. Let us first make an as-
sumption inspired by the study of the one-turn model that the
critical solutions touch the line AB at their maximum incli-
nation point �point C in Fig. 4�. We will see shortly that this
is true only at energies above a certain value EB, see Eq.
�50�. Still, the analysis based on the above assumption en-
ables one to catch the qualitative features of the critical line
N=Ncr�E�. Besides, the analysis is considerably simplified in
this case; we postpone the accurate study until the end of this
section. Keeping in mind the above remarks, one writes for
the solution in the intermediate region,

xcr� �t� = t�2E sin  + 1, �38a�

ycr� �t� = �2E
cos 

cos �
sin�t cos �� . �38b�

Before entering the intermediate region, the particle crosses
the line A�B� �point C� in Fig. 4�. The initial oscillator num-

10We do not consider reflections from the line A�B�. They disap-
pear at larger values of N than reflections from the line AB if � is
small enough.
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ξ
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β
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FIG. 4. The equipotential contour w2�x ,y�=2N� for the wave-
guide �35� and the trajectory of the critical solution with energy
N� / cos2 �EB. The matching points C, C� are shown by the thick
black dots.
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ber N is most conveniently calculated at the moment

t = t0 � −
1

�2E sin 

of crossing. Using the relations �34� one obtains

ẋcr�t0� = �2E�sin  cos � − cos  sin � cos� cos �

�2E sin 
�� ,

�39�

and thus

Ncr�E� = E −
1

2
ẋcr

2 �t0� = E − E�sin  cos �

− cos  sin � cos� cos �

�2E sin 
��2

, E � EB.

�40�

As an example, we show in Fig. 5 the region of the classi-
cally allowed initial data for =� /3, �=� /30. One observes
that the function Ncr�E� oscillates between two linear enve-
lopes, E cos2�+�� and E cos2�−��; the period of oscilla-
tions decreases as E→0. Moreover, the curve Ncr�E� has a
number of minima at the points E=En

cr. This means that the
energies E=En

cr are optimal for reflection: in the vicinity of
any point E=En

cr, N=Ncr�En
cr� reflections become exponen-

tially suppressed independently of whether the energy is in-
creased or decreased. This feature is particularly pronounced
in the case �+=� /2, when the lower envelope coincides
with the line N=0. Then, the classical reflections �i.e., reflec-
tions with the probability of order 1�at N=0 are possible only
in the vicinities of the points

E =
1

8�2�n − 1/2�2 .

This is the case we used in the Introduction to illustrate the
effect.

The minima E=En
cr exist at other values of the parameters

as well. For instance, let us find the positions of these
minima in the case ��1. One differentiates Eq. �40� with
respect to energy and obtains

En
cr = En�1 −

1

��n − 1/2�
arcsin� cot 

2���n − 1/2�� + O��2�� ,

�41�

where

En =
1

8�2�n − 1/2�2 sin2 
�42�

are the points where the curve N=Ncr�E� touches its lower
envelope. The argument of arcsine in Eq. �41� should be
smaller than one, so, the minima En

cr exist only at large
enough n,

n � n0 � � cot 

2��
+

1

2
� + 1, �43�

where �·� stands for the inteter part.
Let us make several comments. First, note that n0

	O�1/��, consequently, all the optimal points En
cr lie in the

region of small energies E	1/n0
2	O��2�. Second, as we

pointed out before, the formula �40� for the function Ncr�E�
holds at E�EB. Comparing the expressions �42�, �43�, and
�50�, one observes that En0

�EB if tan �1. So, there does
exist a range of energies where the nonmonotonic behavior
of the function Ncr�E� can be inferred from the formula �40�.
In fact, the conclusion about the existence of the local
minima of Ncr�E�, as well as the expressions �41�–�43� de-
termining their positions, remain valid also at E	EB. This
follows from the rigorous analysis of the boundary of the
classically allowed region to which we turn now. The reader
who is more interested in the tunneling processes may skip
this part and proceed directly to Sec. IV C.

Now, we do not appeal to the ansatz �38�. Instead, we start
with the general solution in the intermediate region,

x� = p0��t − t0� , �44a�

y� = A0� sin��t − t0�cos � + ��� . �44b�

It is convenient to parametrize it by the total energy E
= p0�

2 /2+cos2 �A0�
2 /2 and the “inclination” � defined by the

relation

p0�/A0� = tan � cos � .

Expressions �44� take the following form:

x� = �2E�t − t0�sin � , �45a�

0
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FIG. 5. The boundary N=Ncr�E� of the classically allowed re-
gion at E�EB for the waveguide model �35�; =� /3, �=� /30.
The region of the classically allowed initial data lies above this
boundary. The empty circles correspond to the energies E=En,
where the curve N=Ncr�E� touches its lower envelope N
=E cos2�+��.
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y� = �2E
cos �

cos �
sin��t − t0�cos � + ��� . �45b�

The constants t0 and �� are fixed by demanding the trajec-
tory �45� to reflect classically from the second turn, i.e.,
touch the line �=0 at t=0,

��x� − 1�cos  − y�sin �t=0 = 0, �dy�

dx�
�

t=0
= cot  .

These conditions imply

t0 = −
1

�2E sin �
+

1

cos �
� tan2 

tan2 �
− 1, �46a�

�� = −
cos �

�2E sin �
+� tan2 

tan2 �
− 1 − arccos

tan �

tan 
.

�46b�

One sees that the classical reflections are possible only at �
� �0;�; the boundary value �= reproduces the solution
�38�.

In order to find Ncr�E�, one should minimize the value of
the incoming oscillator excitation number with respect to �
at fixed E. At t= t0, when the particle crosses the first turn,

p0 � ẋ�t0� = �2E�cos � sin � − sin � cos � cos ��� .

�47�

Since N=E− p0
2 /2, one can maximize the value of the trans-

latory momentum p0 instead of minimizing N���. Formula
�39� represents the value �= lying at the boundary of the
accessible � domain; this value should be compared to p0���
taken at local maxima.

Let us consider the case ��1. At large enough energies,
E	1, Eq. �47� is dominated by the first term, which grows
with �, so that the maximum of p0��� is indeed achieved at
�=. At small energies, however, the second term in Eq.
�47� becomes essential because of the quickly oscillating
cos �� multiplier: the frequency of cos �� oscillations grows
as E→0, and at E	�2, in spite of the small magnitude
proportional to sin �, the second term produces the sequence
of local maxima of the function p0���.

One expects the parameters of the trajectory at small �
not to be very different from the ones at �=0 �the latter case
was considered in Sec. III�. So, we write

� =  − �� ,

where 0	���1. Expanding the expressions �46� and �47�
and taking into account that E	�2, one obtains

�� = −
1

�2E sin 
�1 + �� cot � , �48a�

p0 = �2E�sin  − �� cos  − � cos  cos ��� . �48b�

Now, the local maxima of the initial translatory momentum
can be obtained explicitly by differentiating Eqs. �48� with
respect to ��. One finds the sequence of them,

��n = − tan  + �2E
sin2 

cos 


�2�n − � − arcsin��2E sin2 

� cos 
�� . �49�

Only the maxima with ��n�0 should be taken into account.
The local maxima exist when

E � EB �
�2 cos2 

2 sin4 
. �50�

Substituting Eq. �49� into the expressions �48�, one evaluates
the values of p0 at the local maxima,

p0,n�E� = 2�2E sin  − 2Esin2 


�2�n − � − arcsin��2E sin2 

� cos 
��

+ ��2E cos �1 −
2E sin4 

�2 cos2 
.

The graphs Nn�E�=E− p0,n
2 �E� /2 are shown in Fig. 6 for the

case =� /3, �=� /30. Each graph is plotted for the energy
range E�EAn

restricted by condition ��n�0. They are pre-
sented together with the curve given by the formula �40�. By
definition, the critical solution corresponds to the lowest of
these graphs. Clearly, for each “local” curve representing the
nth local minimum of N��� there is a range of energies EAn
	E	EBn

where it lies lower than the “global” curve �40�.
This means that the parameter � of the critical solution
changes discontinuously across the points E=EBn

. Corre-
spondingly, the curve Ncr�E� has a break at these points. On
the other hand, the function Ncr�E� is smooth at the points An

as the local graphs end up exactly at ��=0, where the pa-
rameters of the nth local solution coincide with the ones of
the global solution.
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FIG. 6. The graphs Nn�E� corresponding to the local minima of
the function N��� �dashed lines� plotted together with the “global”
curve, Eq. �40� �solid line�; =� /3, �=� /30. The critical curve
N=Ncr�E� is obtained by taking the minimum among all the graphs.

OVERBARRIER REFLECTION IN QUANTUM MECHANICS… PHYSICAL REVIEW A 76, 032114 �2007�

032114-9



To summarize, we have observed that the boundary of the
classically allowed region is given by a collection of many
branches of classical solutions, each branch being relevant in
its own energy interval. We will see that a similar branch
structure is present in the complex trajectories describing
overbarrier reflections in the classically forbidden region of
E, N.

C. Classically forbidden reflections

In this section we demonstrate that the suppression expo-
nent F�E ,N� viewed as a function of energy at fixed N ex-
hibits oscillations deep inside the classically forbidden re-
gion of initial data. This result comes without surprise if one
takes into account the nonmonotonic behavior of the bound-
ary Ncr�E� of the classically allowed region. Indeed, the
curve N=Ncr�E� coincides with the line F�E ,N�=0. One has,

�dNcr

dE
= −

�EF

�NF
�

N=Ncr�E�
,

so that

�F

�E
�En

cr,Nn
cr� = 0.

We conclude that the points E=En
cr are the local minima of

the function F�E� at fixed N=Nn
cr. It is natural to expect that

such local minima of F�E� exist at other values of N as well.
To illustrate this fact explicitly, we study the complex trajec-
tories, solutions to Eqs. �9�, �10�, and �12�.

Following the tactics of the previous section, we find so-
lutions in three separate regions: initial region x�	0, final
region ��0, and the intermediate region x��0, �	0. These
solutions, together with their first derivatives, should be
glued at t= t0, when the complex trajectory crosses the line
x�=0, and at t= t1, when �=0. Besides, we are looking for
the tunneling solution which ends up oscillating along the
line AB, see Fig. 4. As discussed in Sec. III this assumes
existence of the second step of the process: classical decay of
the unstable orbit living at �=0; the latter decay is described
by a real trajectory11 going to x→−� at t→ +�.

The solution in the final region ��0 is �cf. Eqs. �30��

�+�t� = 0, �51a�

�+�t� =
�2E

cos � cos 
sin�t cos � cos � , �51b�

where we used the time translation invariance �18� to fix the
final oscillator phase ��=0. In the intermediate region x�
�0, �	0 one writes

x��t� = p0�t + x0�, �52a�

y��t� = a�e−it cos � + ā�eit cos �. �52b�

Note that the final solution �51� does not contain free param-
eters; thus, the matching of x�, ẋ�, y�, ẏ� at t= t1 enables one
to express all the parameters in Eqs. �52� in terms of one
complex variable t1,

p0� = �2E sin  cos �1, �53a�

x0� = 1 + �2E
tan 

cos �
�sin �1 − �1 cos �1� , �53b�

a� =
�E/2

cos �
ei�1/cos �sin �1 + i cos  cos �1� , �53c�

ā� =
�E/2

cos �
e−i�1/cos �sin �1 − i cos  cos �1� , �53d�

where we introduced �1= t1 cos � cos .
As the energy of the solution has been fixed already, the

only remaining initial condition involves initial oscillator ex-
citation number at x�	0, see Eqs. �10�. It is convenient to
impose this condition at the matching point t= t0. One recalls
the definition of the matching time t0,

p0�t0 + x0� = 0,

which, after taking into account the expressions �53a� and
�53b�, leads to the following equation:

cos �

�2E sin 
+

sin �1

cos 
− cos �1�� = 0, �54�

where ��=cos ��t1− t0�. At t= t0 one has

ẋ�t0� = p0� cos � − ẏ��t0�sin � = �2�E − N� ,

and thus

�1 − �

sin �
= cot � sin  cos �1 − sin �1 sin ��

− cos  cos �1 cos �� . �55�

As before, �=N /E.
Two complex equations �54� and �55� determine the

matching times t0, t1, and, consequently, the complex trajec-
tory. Although these equations cannot be solved explicitly,
they can be simplified in the case ��1, which we consider
from now on. For concreteness, we study reflections at N
=0. It is important to keep in mind that in the region of
interest E	En

cr	O��2�; thus, one should regard all the mo-
menta p and oscillator amplitudes a, ā, as the quantities of
order O���. At the same time, for the distances along the
waveguide one has x	O�1�, so that the real parts of time
intervals may be parametrically large, Re t	x / p	O�1/��.

Further on, it will be convenient to work in terms of real
variables, so, we represent �1 and �� as

11One wonders why this trajectory does not reflect from the turn
A�B� on its way back. This concern is removed by the observation
that the trajectory produced in the decay of the unstable orbit is not
unique: in the Appendix we show that the decay can occur at any
point of the segment AC giving rise to a whole bunch of potential
decay trajectories. Most of these trajectories pass through the turn
A�B� without reflection.
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�1 = cos � cos ��1 + iT1�, �� = cos ��� + i�T� .

Note that � and �T are the real and imaginary parts of the
time interval t1− t0 which the particle spends in the interme-
diate region. Now, Eq. �54� enables one to express

� =
1

�2E sin  cosh�T1 cos �
+ O��� , �56�

�1 = −
1

� cos 
� 1

cos 
− �T coth�T1 cos �� + O��3� .

�57�

Note that �1	O���, �	O�1/��. Then, the real part of Eq.
�55� implies that

cosh�T1 cos � =
1

sin 
�1 + � cot  cos �e�T� + O��2� .

�58�

While deriving this formula we imposed T1	0, which fol-
lows from the requirement that in the limit �→0 Eq. �31�
should be recovered; besides, we assumed e�T	O�1�. Sub-
stituting Eq. �58� into Eq. �56� and the imaginary part of Eq.
�55�, we obtain the final set of equations,

1 − ��2E = � cot  cos �e�T + O��2� , �59a�

�1 + �T�e−�T = � cot � sin � + O��� . �59b�

These two nonlinear equations, still, cannot be solved explic-
itly. Nevertheless, one can obtain a pretty accurate idea about
the structure of their solutions.

Before proceeding to the analysis of the above equations,
let us derive a convenient expression for the suppression ex-
ponent F0�E��F�E ,N=0�. Note that on general grounds one
expects to obtain an expression of the form

F0�E� = E�f�0� + O���� ,

where f�0� is given by Eq. �33�. We are interested in the
O��� correction in this expression, so, one must be careful to
keep track of the subleading terms during the derivation.

Making use of the equations of motion, one obtains for
the incomplete action �16� of the system,

2 Im S̃ = Im p0� = �2E sin  Im�cos �1� .

Substitution of Eqs. �56�–�58� into this formula yields

2 Im S̃ = 2E�− 1 − �T − � cot  cos �e�T


�1 +
1

cos2 
+ 2�T� + O��2�� .

For the parameter T one has �see Eqs. �14��

T = −
2 Im x0

p0
= −

2 Im�x�t0� − p0t0�
p0

= 2�T1 − �T� +�2

E
sin � Im y��t0� , �60�

where in the last equality we used Eqs. �34� and x��t0�=0.
The quantity Im y��t0� is evaluated by using Eqs. �52b�, �53�,
and �58�; one finds

Im y��t0� = − �2E�cot  cos �e�T + O���� .

Substituting everything into formula �15�, we obtain

F0�E� = E�f�0� − 4� cot  cos ��Te�T + O��2�� . �61�

This expression implies that determination of the O��� cor-
rection to the suppression exponent involves finding �, �T
with O�1� accuracy. This is precisely the level of accuracy of
Eqs. �59�. Below we will also need the following formulas,
which can be easily obtained by using T=− dF

dE and Eq. �60�,

dF0

dE
= f�0� + 2��T + 1� + O��� , �62�

d

dE
�F0

E
� =

2��T + 1 + O����
E

. �63�

Note that, though the suppression exponent differs from that
in the one–turn case only by O��� correction, its derivative is
modified in the zero order in �.

Now, we are ready to analyze Eqs. �59�. One begins by
solving Eq. �59b� graphically, see Fig. 7. The important
property of this equation is as follows. One notices that the
left-hand side of Eq. �59b� is always smaller than 1, the
maximum being achieved at �T=0. Therefore, the solutions
to this equation are confined to the bands

� sin � 	
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�
.
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FIG. 7. Curves representing solutions to Eq. �59b�; =� /3, �
=� /30.
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� � �0;2��n1 − 1� + ��n1
� �64�

or � � �2�n − � − ��n;2�n + ��n�, n � n1

where

��n = arcsin� tan 

2���n − 1/2�� + O��� ,

n1 = � tan 

2��
+

1

2
� + 1, �65�

with �·� in the last formula standing for the integer part. The
forbidden bands, where � sin �� tan  /�, are marked in Fig.
7 by shading. The property �64� introduces a topological
classification of the solutions �, �T to Eqs. �59�. Namely,
these solutions fall into a set of continuous branches: the
local branches �n�E�, �Tn�E� living inside the strips �
� �2�n−�−��n ;2�n+��n�, n�n1, and the global branch
�g�E�, �Tg�E� inhabiting the very first band �� �0;2��n1

−1�+��n1
�. As follows from the definition of �,the topologi-

cal number n counts the number of y� oscillations during the
evolution in the intermediate region.

Let us consider the global branch. From Eqs. �59� one has

�g → 2��n1 − 1� + O�� ln ��, �Tg → ln�tan /�� ,

as E → 0,

�g → 0, �Tg → − 1, as E → + � .

By inspection of Fig. 7 one can work out the qualitative
behavior of the functions �g�E�, �Tg�E�. Alternatively, these
functions can be found numerically. They are plotted in Fig.
8 for the case =� /3, �=� /30 �the curves marked with “
g”�. One observes that at high enough energies the function
�Tg�E� exhibits oscillations around the line �T=−1. Accord-
ing to formula �63� this means that the function F0�E� /E is
nonmonotonic, it attains local minima at the points

En� =
1

8�2�n − 1/2�2 �1 + 2�e−1 cot  + O��2�� . �66�

Moreover, if

n � n0� � � tan 

4��
f�0�exp�1 +

f�0�
2

� +
1

2
� + 1 �67�

there exist En
o=En��1+O����, such that �T�En

o�=−1
− f�0� /2. Then, according to Eq. �62� the points En

o are the
optimal energies corresponding to the local minima of the
suppression exponent F0�E�.

At low energies the function �Tg�E� ceases to oscillate
and becomes large and positive. According to Eq. �62� this
means that the suppression exponent F0,g�E� of the global
solution becomes negative at low energies,12 see Fig. 9. This
is a clear signal that the global solution becomes unphysical
at these energies and its contribution to the reflection prob-
ability should be discarded: negative suppression exponent
contradicts the unitarity requirement,13 P	1. One is forced
to conclude that at low energies reflection is described by the
local solutions. Let us study them in detail.

For the nth branch one obtains

�n → 2�n + O�� ln ��, �Tn → ln�tan /��, E → 0,

�n → 2�n − �, �Tg → + � , E → + � .

From Fig. 7 one learns that the nth solution passes through
the points

12It is worth mentioning that Eqs. �59� and the expression �61� for
the suppression exponent become inapplicable at large �T: the as-
sumption e�T	O�1� which was used in the derivation of these
equations is violated. Nevertheless, by analyzing the full Eqs. �54�
and �55� one can show that dF0,g /dE=−Tg is large and positive at
E→0. This is sufficient for concluding that F0,g�E� is negative in
the low-energy domain.

13Another indication that the global solution is unphysical at small
E is that the function �g�E� is bounded from above. Indeed, � is the
time interval the particle spends in the intermediate part of the
waveguide, one expects it to tend to infinity as E→0 for a physi-
cally relevant solution.
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�Tn = − 1, � = 2�n or � = 2�n − � . �68�

Thus, each curve �Tn�E� has one sharp dip, its minimum is
smaller than −1, see Fig. 8. As in the case with the global
branch, the points �68� represent the extrema of the functions
F0,n�E� /E; the positions of the local minima are again given
by Eq. �66�.

Making use of Eq. �61�, we find that the suppressions
F0,n�E� of the local branches are large and positive at high
energies. Hence, these solutions give subdominant contribu-
tions to the reflection probability at such E as compared to
the global solution. As energy decreases, F0,n�E� also de-
creases, then makes one oscillation and drops to negative
values at small E. The latter property means that each local
branch becomes unphysical at small enough energies. The
suppression exponent of the first local branch �corresponding
to n=4 in the case =� /3, �=� /30� is presented in Fig. 9.

An alert reader may have already guessed that we have
met here the typical Stokes phenomenon �21�. In fact, the
Stokes phenomenon is specific to the situations where some
integral �e.g., the path integral �7� in our case� is evaluated
by the saddle-point method. Essentially, it means the follow-
ing: as one gradually changes the parameters of the integral
in question, a given saddle point may become noncontribut-
ing after the values of these parameters cross a certain curve
drawn in the parameter space, the Stokes line. Since the re-
sult of the computation should be continuous, this phenom-
enon occurs only for subdominant saddle points �saddle-
point trajectories in our case�. Unfortunately, apart from
several heuristic conjectures �21,12�, sometimes rather sug-
gestive �13�, there is presently no general method of dealing
with the Stokes phenomenon in the semiclassical calcula-
tions. However, in the situation encountered above it suffices

to use the simplest logic lying at the heart of all other
approaches.14

When gathering the final result for the suppression expo-
nent, we follow two guidelines. First, it is clear that, as en-
ergy decreases, each branch becomes unphysical before
F0,n�E� crosses zero. On the other hand, at high energies one
should pick up the branch corresponding to the smallest
value of the suppression exponent. Looking at Fig. 9, one
notes that the curves F0,g�E�, F0,4�E� have two intersections,
A and B. At E�EB one chooses the global branch. In the
region EA	E	EB we switch to the first local branch, be-
cause in this region F0,4�E�	F0,g�E�. Naively, at E=EA one
should jump back to the global branch; however, in order to
preserve unitarity at small energies, we suppose that some-
where in between the points B and A the global branch be-
comes noncontributing, so that one should stay at the local
branch at E	EA. Similarly, the adjacent local branches have
two intersections; as the energy decreases, we switch from
nth branch to n+1 at the first intersection, and stay there
until the intersection with the n+2 branch. Overall, one ob-
tains the graph for the suppression exponent plotted in Fig.
10. The suppression exponent oscillates between two linear
envelopes, F=E�f�0�±4e−1� cot �; oscillations pile up in
the region of low energies. The reflection process is optimal
in the vicinities of the minima of the function F0�E�.

V. DISCUSSION

By considering a class of two-dimensional waveguide
models, we have demonstrated explicitly that the probability
of overbarrier reflection can be a nonmonotonic function of
energy. The origin of the effect lies in the classical dynamics:
the parameters of the complex trajectory describing overbar-
rier reflection change quasiperiodically as the energy is de-
creased. This results in the oscillatory behavior of the sup-
pression exponent. Reflection occurs with exponentially
larger probability in the vicinities of optimal energies �local
minima of the suppression exponent� while being highly sup-
pressed in between.

Our results are obtained for a fairly specific class of
waveguides, namely, the ones with very sharp turns. How-
ever, the qualitative features observed in this paper should be
valid for quite general waveguide models: a classical particle
with high energy feels any large-scale turn of the waveguide
as a sharp one;15 if two turns are separated by a long interval
of free motion, one arrives to the model �35�. We remark that
the phenomenon of optimal tunneling has been observed also
in numerical investigation of a smooth waveguide, see Ref.
�14�.

The branch structure of solutions observed in the region
of small energies is interesting from the mathematical point

14The simplification in the present case is related to the fact that
we concentrate on the dominant semiclassical contribution, leaving
aside the subdominant ones.

15More precisely, one should compare the width b of the turn to

the quantity 2�
�

p0

m , where p0 is the translatory momentum of the
particle and � stands for the frequency of transverse oscillations; if

b� 2�p0

�m , one is in the class of models with sharp turns.
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of view. We have shown that there exists an infinite sequence
of complex trajectories marked by the topological number n.
Each branch produces physically consistent result for the
suppression exponent in some energy interval; outside of this
interval the nth branch would correspond either to highly
suppressed transitions �high energies� or to violation of uni-
tarity �low energies�. We collected the final graph for the
suppression exponent basing on the empirical considerations,
which hardly may be acknowledged as satisfactory. Our
study clearly shows that the method of complex trajectories
should be equipped with a convenient rule to pick up the
physical trajectory among the discrete set of solutions to the
boundary value problem �9�, �10�, �12� �in other words, the
method to deal with the Stokes phenomenon�. Presently, such
a rule is absent.

We note that the described physical phenomenon of opti-
mal tunneling is present independently of the way the
branches of solutions are glued together. The result at rela-
tively high energies is given by the global branch, which
displays a large number of local minima if n0��n1, see Eqs.
�67� and �65�. This is the case for the illustrative example
considered throughout this paper, see Fig. 9.

As a final remark, we point out some open issues. We
have calculated the suppression exponent of reflection using
the sharp-turn approximation. It would be instructive to ex-
tend our analysis by finding corrections due to the finite turn
widths. The motivation is twofold. First, the analysis per-
formed in the Appendix implies the existence of a rich vari-
ety of distinctive semiclassical solutions contributing almost
equally into the reflection probability. This feature might be a
manifestation of chaos �7� which is present in our system but
hidden by the sharp-turn approximation. �Note that chaos is
inherent in a very similar waveguide model with smooth
potential, see Ref. �14�.� Clearly, the structure of solutions in
the vicinities of the turns is worth further investigation.

Second, it was proposed recently in Refs. �9,11� that the
process of dynamical tunneling in quantum systems with
multiple degrees of freedom �including field theoretical mod-
els, see Refs. �19�� can proceed differently from the ordinary

case of one-dimensional tunneling. Namely, classically un-
stable state can be created during the process; this state de-
cays subsequently into the final asymptotic region. The
analysis performed in the present paper naturally conforms
with this tunneling mechanism: all our complex trajectories
are matched with the unstable orbit living at the turn. Still,
the sharp-turn approximation does not allow to distinguish
between the truly unstable trajectories staying at the turn
forever and those which reflect from the turn in a finite time.
To decide whether the tunneling mechanism of Refs. �9,11�
is indeed realized in our model, one needs to go beyond the
sharp-turn approximation. Then, the candidate for the “me-
diator” unstable state is the “excited sphaleron,” the solution
considered in the Appendix. Presumably, in our model one
can answer analytically to the question of whether or not the
excited sphaleron acts as an intermediate state of the tunnel-
ing process. This study is quite beyond the scope of the
present paper and we leave it for future investigations.
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APPENDIX: CLASSICAL MOTION NEAR THE TURN

In this Appendix, we analyze the motion of the particle
near the sharp turn of the waveguide �20� at nonzero smooth-
ening of the turn, see, e.g., Eq. �21�. We suppose that in the
small vicinity of the turn the function w�� ,�� can be repre-
sented in the form

w��,�� = cos �� − bv��/b�� , �A1�

where v��� does not depend explicitly on b. Moreover, we
consider the case when v��� has a maximum,16

v���0� = 0. �A2�

Due to the property �A2� one immediately obtains the
exact periodic solution to the equations of motion �9�, which
we call excited sphaleron �9�,

�sp = b�0, �sp = A� sin�t cos  + ��� + bv��0� . �A3�

We are going to show that this solution is unstable: a small
perturbation above it grows with time and the particle flies
away to either end of the waveguide. In particular, there are

16For the smoothening �21�, the properties �A1� and �A2� hold
with v���= � tan 

1+e� , �0�1.28.
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solutions that describe the decay of the sphaleron to
�→−� both at t→ ±�. Clearly, such solutions correspond to
reflections from the turn.

In the vicinity of the sphaleron the trajectory of the par-
ticle can be represented in the form

� = b��t�, � = �sp�t� + b��t� , �A4�

where � ,�	O�1�. Writing down the classical equations of
motion �9� in the leading order in b, one obtains

d2�

ds2 =
4

b
A� sin�2s�v���� , �A5�

d2�

ds2 + 4� = 4�v��� − v��0�� , �A6�

where s= �t cos +��� /2. It is worth noting that the right-
hand side of Eqs. �A5� and �A6� are of different order in b.
We will see that due to this difference �=0 in the leading
order in b.

Let us first consider the linear perturbations above the
excited sphaleron,

� = �0 + ��, �� � 1.

Equation �A5� can be linearized with respect to �� leading to
the Mathieu equation

d2

ds2�� + 2q sin�2s��� = 0,

with canonical parameter q=−2v0�A� /b�0. As q
	O�1/b��1, one can apply the WKB formula,

�� =
A cos W
�dW/ds

, �A7�

where �A � �1, and

W = �2q
�/4

s

ds��sin�2s�� .

Note that we have chosen the solution symmetric with re-
spect to time reflections,

����/2 − s� = ���s� . �A8�

At s� �0;� /2� the exponent W is real and the particle is
stuck at ���0, oscillating around this point with high fre-
quency dW /ds	O�b−1/2�. At s	0 the solution �A7� grows
exponentially, meaning that the particle flies away from the
excited sphaleron,

���s 	 0� =
A cos�W�0� − �/4�

��dW/ds�
e�W�s�−W�0��.

In what follows, we choose A cos�W�0�−� /4�	0, so that
��	0 at s	0. Let us denote by s1	0 the point where ��
becomes formally equal to −1,

A cos�W�0� − �/4�
��dW/ds�

e�W�s1�−W�0�� = − 1.

In what follows we suppose that s1	O�1�, hence, A is ex-
ponentially small. Then, in the vicinity of this point, �s
−s1 � �1, one has

�� = − exp��− 2q sin�2s1��s1 − s��

= − exp��4v0�A� sin�2s1�
�s1 − s�

�b
� . �A9�

We notice that �� evolves from exponentially small values to
��	O�1� during the characteristic time �s−s1 � 	O��b�.

When ��	O�1� the linear approximation breaks down
and one has to solve the nonlinear equation �A5�. Using s
=s1+O��b� one writes

d2�

ds2 =
4

b
A� sin�2s1�v���� . �A10�

This equation permits us to draw a useful analogy with the
one-dimensional particle moving in the effective potential
Vef f���=−4b−1A� sin�2s1�v��� �see Fig. 11�. This auxiliary
particle starts in the region near the maximum of the poten-
tial at �s−s1� /�b→ +� with energy E�Vmax and rolls down
toward �→−� at �s−s1� /�b→−�. In this limit v���
→� tan  and the solution takes the form

� = C1 + C2�s − s1� + 2b−1A� sin�2s1�tan �s − s1�2.

Note that the coefficients C1, C2 here are not independent:
they are determined by the parameter s1 through matching of
the solution with Eq. �A9� at �s−s1� /�b→ +�. We do not
need their explicit form, however.

Let us argue that the function � remains small during the
whole evolution of the particle in the vicinity of the sphale-
ron. Indeed, in the linear regime one has ���1 and the
right-hand side of Eq. �A6� is small. So, � does not become
excited. On the other hand, the nonlinear evolution of � pro-
ceeds in a short time interval �s=O��b�; so, again, � is
suppressed by some power of b.

The trajectory �A4� found in the vicinity of the sphaleron
should be matched at

ψ0

Vmax

ψ

Veff

FIG. 11. The effective potential for Eq. �A10�.
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1 � �s − s1� � �b

with the free solution in the asymptotic region �	0, see Eqs.
�26�. It is straightforward to check that matching can be per-
formed up to the second order in �t− t1�, which is consistent
with our approximations. In this way one determines the free
asymptotic solution which, up to corrections of order O�b�,
coincides with the sinusoid coming from �→−� at t→−�
and touching the line �=0 at t= t1.

Now we recall that, by construction, the obtained solution
is symmetric with respect to time reflections,

��s� = ���/2 − s�, ��s� = ���/2 − s� .

This means that it satisfies �→−� at t→ ±�. This solution
describes reflection of the particle from the turn.

The reasoning presented in this Appendix puts consider-
ations of the main body of this paper on firm ground: we
have found the “smoothened” solutions which reflect classi-
cally from the turn, and in the limit b→0 coincide with the
free solutions of Sec. III touching the line �=0.

It is worth mentioning that, apart from the reflected solu-
tion we have found, in the vicinity of any trajectory touching
the line �=0 there exists a rich variety of qualitatively dif-

ferent motions. First of all, one may successfully search for
solutions which are odd with respect to time reflections �Eq.
�A8� with minus sign�. Such solutions, though close to the
reflected ones at t	0, describe transmissions of the particle
through the sharp turn into the asymptotic region �→ +�.
Relaxing the time reflection symmetry, one can find solutions
leaving the vicinity of the turn at any point �	0, which is
different, in general, from the starting point �=��s1�. Yet
other types of solutions are obtained in the case when the
amplitude A of �� oscillations at s� �0;� /2� is so small that
�� does not reach the values of order one during the time
period s� �−� /2 ;0�. If the particle is still in the vicinity of
the point �0 at s=−� /2, it remains for sure in this vicinity at
s� �−� ;−� /2�, because the right-hand side of Eq. �A5� is
positive again. In this way one obtains solutions, which
spend two, three, etc. sphaleron periods at ���0 before es-
caping into the asymptotic regions �→ ±�. In the leading
order in b all these solutions correspond to the identical ini-
tial state, and �in the case of classically forbidden transitions�
to the same value of the suppression exponent. However, an
accurate study of the dynamics in the vicinity of the sphale-
ron is generically required to obtain the correct value of the
suppression exponent in the case b	1, cf. Ref. �14�.
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