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Abstract

In the last decade, the topic of automated surveillance has become very important
in the computer vision community. Especially important is the protection of critical
transportation places and infrastructure like airport and railway stations. As a step in
that direction, we consider the problem of detecting abandoned objects in a crowded
scene. Assuming that the scene is being captured through a mid-field static camera,
our approach consists of segmenting the foreground from the background and then
using a change analyzer to detect any objects which meet certain criteria.

In this thesis, we describe a background model and a method of bootstrapping that
model in the presence of foreign objects in the foreground. We then use a Markov
Random Field formulation to segment the foreground in image frames sampled peri-
odically from the video camera. We use a change analyzer to detect foreground blobs
that remain static through the scene and based on certain rules decide if the blob
could be a potentially abandoned object.
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Chapter 1

Introduction

Computer Vision is an active area of research, with the goal of developing techniques

that can enable artificial systems to better understand the world in an automated

way.

To achieve this goal, we need to extract meaningful information and patterns

from the images and video clips given to us. The image data itself can take many

forms, such as views from multiple cameras or multi-dimensional or multi-modal

data. Moreover, we should be able to leverage that information to aid us in creation

of systems that control processes, detect events, organize information, and model

interactions.

Some of the interesting problems in which the computer vision community has

been traditionally interested include object recognition, scene reconstruction, motion

tracking, image restoration, and activity analysis in videos.

Activity analysis is the term given to the broad set of techniques that are used

to analyze the contents of a video clip to recover activities of interest. An activity

consists of an agent performing a series of actions in a specific temporal order.

The area of activity analysis is extremely important in terms of its scope and

potential impact. If we can solve the problem, it would have significant implications

on the way we organize and search for information. It can significantly benefit us

in ways ranging from social science research (like crowd behavior analysis) to auto-

mated monitoring in surveillance videos. We have such large amounts of information



captured in videos that could prove to be extremely helpful to mankind if we can

interpret it and represent it in ways that are useful.

In this chapter we will motivate the problem of activity analysis and define it

more clearly. We will illustrate the challenges that lie along the way and provide

some preliminary examples.

1.1 Activity Analysis

Even though the potential applications of activity analysis are growing very fast, the

concept of activity still remains mostly elusive for artificial systems. There are several

reasons as to why that could be the case.

First is the problem of definition. Many activities are very subjectively defined.

For example, consider a surveillance setting that does theft detection or tries to

classify anti-social activities. There is no clear cut definition of what constitutes a

theft, or an anti-social activity. The classification is difficult even for humans, let

alone artificial systems.

Second is the problem of representation. The concept of an activity comes nat-

urally to humans. But for a computer, it is very hard to represent an activity in

any meaningful format. To be able to abstract an activity, a computer needs to be

fully aware of the agents, the actions they are performing and in some cases, their

intentions as well. It is difficult to represent this information in terms of rules or

observable variables. This is because an occurrence in itself does not mean anything,

it has to be taken into account with all the contextual information. Even then, the

notion of activity is highly subjective and cannot be easily quantified.

Third is the problem of implementation. Even if we define an activity precisely and

devise an appropriate representation, it is still very difficult to detect its occurrence

in every case.

There are several reasons as to why looking for instances of an activities in a

video clip is hard. To understand the actors in a clip, we need to analyze the image

frames at every instant of time and discern all the different objects that are present



in it. Furthermore, we need to recover the actions by analyzing how the objects are

changing over the course of time and how they are interacting with each other.

Extracting the objects present in a scene, technically called object segmentation,

is a computationally hard task and remains an unsolved problem. Although, there

have been many advances in the last few years, a universal solution continues to elude

us. And unless we make significant progress in object segmentation and classification,

developing a generic activity analyzer seems improbable.

Having concluded that a generic activity analyzer is unlikely in the near-future, the

question that faces us is whether we can develop techniques that can let us analyze

specific types of activities in a predefined setting without fully solving the object

segmentation and classification problem.

The prerequisite for such a system would be a technique that does not deal with

objects as the basic building block but rather operates at a much lower pixel level

and considers an entity as a set of pixels. The problem of abandoned object detection

with which we are dealing helps to illustrate this approach to activity analysis.

1.2 Abandoned Object Detection in Crowded Scenes

1.2.1 Motivation

In the last decade the topic of automated surveillance has become very important

in the field of activity analysis. Within the realm of automated surveillance, much

emphasis is being laid on the protection of transportation sites and infrastructure

like airport and railway stations. These places are the lifeline of the economy and

thus particularly prone to attacks. It is difficult to monitor these places manually

because of two main reasons. First, it would be very labor intensive and thus a very

expensive proposition. Second, it is not humanly possible to continuously monitor a

scene for an extended period of time, as it requires a lot of concentration. Therefore,

as a step in that direction, we need an automated system that can assist the security

personnel in their surveillance tasks. Since a common threat to any infrastructure



establishment is through a bomb placed in an abandoned bag, we look at the problem

of detecting potentially abandoned objects in the scene.

1.2.2 Other Applications

Even though the problem at which we are looking is very specific in nature, the

techniques are fairly general and can be reused in completely different domains to

solve other interesting problems.

Examples of areas where these techniques can be employed include retail settings,

social science research and human-computer interaction. In retail, it could be rev-

olutionary if the activity of the consumers could be analyzed to better understand

consumer behavior and improve product placement in the stores. It can also be used to

manage queues more efficiently. Similarly, for social science research, activity analysis

could yield a significant amount of information on how species tend to behave under

different set of circumstances. For example, it can be used to understand such diverse

topics as human behavior in crowds, or the behavior of monkeys or bees under differ-

ent control conditions. Also, activity analysis could be utilized in human-computer

interaction to better understand how humans interact with computer systems and

how they could be improved through the use of gesture-based interfaces that rely on

certain types of hand-gestures for real-time interaction.

1.2.3 Discussion

There are several ways to interpret the problem of abandoned object detection in

crowded scenes. There is still no consensus in the literature on what constitutes an

abandoned object. Every major work on this problem has made a different set of

assumptions and worked from there.

The set of assumptions that we make are as follows:

* We define an abandoned object as a non-living static entity that is part of the

foreground and has been present in the scene for an amount of time greater

than a predetermined threshold.



* A foreground object is defined as an entity that is not a part of the background

model. It could result from a new object entering the scene or a sudden change

in the background.

* There are no vehicles present in the scene. This assumption is realistic for the

environments in which we are interested (like airports, train stations etc.).

* The background changes constantly over time.

* The video will be a mid-field domain. The domain of an imaging system is

classified based on the resolution at which the objects and its sub-parts are

imaged. In a near-field domain, the objects are high resolution and the object

sub-parts are clearly visible. In a far-field domain, the object is not clearly

visible and no sub-parts are visible. Mid-field lies between the two, the objects

as a whole are clearly visible but some of the sub-parts may be just barely

visible.

As a preliminary discussion, an obvious approach to solve this problem would be

to segment the objects present in every frame and track them over the course of the

video clip. Then based on some set of predefined rules, we can classify an object as

abandoned and raise a red flag. There are several flaws with this approach. First

and foremost, object segmentation is still a hard unsolved problem. Especially in

video clips, which tend to have predominantly low resolution images, it is harder still.

Adding to the problem is the fact that we expect the scenes to be densely crowded.

Second, even though tracking in uncluttered scenes is comparatively reliable, it may

simply not be worth the computational effort when we are trying to detect abandoned

objects. Therefore, we need a new perspective on the problem and an entirely different

approach to solve it. Moreover, we would like to steer clear of hard problems like

object segmentation and recognition as far as possible.



1.3 Problem Statement

Given a video sequence captured by a static uncalibrated camera in a mid-field setting,

our objective is:

* To develop a reliable system that detects abandoned objects in a crowded scene.

As discussed earlier, we define an abandoned object as an entity which is ab-

solutely static in the scene for more than a time period T and the perceived

owner of the object is not present within a radius of r.

* To propose a systematic method for segmenting the foreground and background

in the scene based on a comprehensive background model.

* To make the background model adaptive, so the system adapts to changes which

are persistent and does not have to be restarted periodically.

* To create a system which penalizes false negatives more than false positives.

* To use techniques which are robust in the presence of dense crowds, like at

airports, train stations, retail stores etc.

1.4 Outline of our Approach

We use a pixel based approach to solve the problem. Our solution is based on a

foreground segmentation and statistical analysis technique. We use a statistical back-

ground model based on the variation in brightness distortion and chromaticity dis-

tortion of every pixel. We model the foreground segmentation problem as a labeling

problem and then use a Markov Random Field setup to tackle it.

The segmented foreground is fed to a change analyzer that tries to detect sets of

pixel in the image which are consistently being labeled as foreground and to ascertain

if that set has been static for some predetermined amount of time (- T).

As an example, consider the background scene image shown in Fig. 1-1. For a

sample frame shown in Fig. 1-2, we obtain a segmented foreground shown in Fig.



Figure 1-1: Background image for sample dataset S7 from PETS-2007

1-3. Feeding it to the change analyzer we obtain the classification shown in Fig. 1-4

where the red box indicates a potentially abandoned object, a blue box indicates a

person or a group of people standing in the scene, and a green box indicates people

moving through the scene. Fig. 1-5 depicts more such examples for different data

sets.

We update our background model at every time step to constantly adapt it to the

changing background conditions, at the same time making sure that any abandoned

objects are not immediately incorporated into the background.

We try to do this without any priors over the position, orientation, scale or size of

the dropped object, in order to make our approach as generic as possible. To classify

the entities as living and non-living, we use a Support Vector Machine (SVM). We

determine how much an entity has deviated from its position over a certain time period

and use that information for classification. According to our analysis, living entities

tend to deviate slightly over a period of time. This is because it is difficult for them
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Figure 1-2: Frame from sample dataset S7

to stand absolutely still and even while standing at a place, they show some motion

on the fringes of the silhouette. This motion can be captured by cameras in mid-field

views. Therefore, we compute the difference of two frames over a predetermined time

period and its Discrete Cosine Transform (DCT) over the region of interest. DCT for

living entities will have higher coefficients than the non-living ones.

Our approach is based on the principle of minimal evaluation, which says that

we should compute a result only if it is required. We will illustrate the use of this

principle with the help of two examples. First, when we look for static objects in a

scene, we don't track the objects or store their trajectory. This is because all that

information is unnecessary if all we are trying to do is single out static objects.

Second, when we classify entities as living or non-living, we do not attempt to

determine their exact identity. We are interested in whether the object is living, like

a human or a pet, or if the object is non-living like a suitcase or a stroller. We are

not interested in object recognition as long as we can make the distinction between



Figure 1-3: Extracted foreground using our technique

living and non-living entities.

The reason we use the principle of minimal evaluation is to prevent the errors

in these standard algorithms from accumulating. Computer vision is full of hard

problems like segmentation, tracking and object recognition which are not completely

solved yet. If we use the object segmentation, classification and tracking approach to

abandoned object detection, the error rate in each of those stages will accumulate.

Therefore, it is best in general to avoid a technique that involves solving too many

hard problems. It is much more useful to build specific components which are more

reliable to the problem at hand.

Having said that, abandoned object detection is not an easy problem and remains

particularly challenging for crowded scenes. In dense environments, the objects are

usually too close together and there is a lot of occlusion. For that reason, it is difficult

to segment the objects or to be able to classify them. Also, it is difficult to track the

objects reliably as they move through the scene.



Figure 1-4: Abandoned object detection in the sample frame

1.4.1 Our Contributions

We make four main contributions to the problem of abandoned object detection in

crowded scenes.

* A novel approach to initializing and updating the background model in the

presence of foreground objects.

* A modified energy minimization formulation of the problem of foreground seg-

mentation.

* An efficient pixel based approach to identify whether a foreground blob belongs

to an abandoned object.

* A system that maintains minimal state information. We do not need to store

large amounts of data in the form of trajectories. This makes the system more

scalable by reducing the storage requirements significantly.
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Figure 1-5: Results for other sample datasets from PETS-2006



1.5 Organization of the Thesis

The thesis is organized as follows. Chapter 2 gives an overview of the previous work

related to the problem. The scene background model and foreground segmentation

technique which forms the basis of our system is described in Chapter 3. Chapter 4

presents our approach for detecting abandoned objects in the scene. Experimental

results and analysis are presented in Chapter 5. Chapter 6 summarizes the contribu-

tions of our work.



Chapter 2

Abandoned Object Detection: A

Review

This chapter presents an overview of the past work that forms the basis for most of

the research on the topic of abandoned object detection in crowded scenes. It also

presents various approaches that have been adopted by researchers in the past as an

attempt to solve the problem.

Abandoned object detection belongs broadly to the area of activity monitoring

in unconstrained settings. In the recent years, significant amounts of work has been

done in the field of activity monitoring. Some of that work has been more specific in

nature and dealt with a particular subproblem, while others have been more generic.

In this chapter, we will first look at some of the past work in the broad category

of activity monitoring. We will then review the topic of object tracking, which forms

the basis for most research in this area. Finally, we will look at some of the work on

the specific topic of abandoned object detection in crowded scenes.



2.1 Related Work: Activity Monitoring in Uncon-

strained Settings

Most of the work in the field of activity monitoring involves automated flagging of

unusual activity in videos. It either entails flagging of individual scenes in a clip

or flagging of the entire clip as unusual. Most of that work involves learning from

classified examples. Many approaches have been adopted for dealing with the task.

The first category of papers does not involve any tracking of individual objects but

rather deals with the entire clip as one entity, which is marked as usual or unusual in

entirety [34, 33, 32]. They use motion feature vectors to characterize a clip. Some of

these techniques use clustering algorithms to divide the clips into clusters and treat

the outliers as unusual. They form an interesting approach but are quite restrictive

for use in surveillance settings because of their inability to account for individual

actions.

The second and most common category of papers involves tracking of individual

objects in the video and then using statistical analysis to detect anything unusual.

They segment the foreground into distinct objects and track each of those objects

over time to extract their trajectories. Then using a suitable clustering algorithm,

they cluster the trajectories into different clusters. For any new trajectory, they flag

it as unusual if it doesn't belong to any of the clusters. Some of these papers also use

appearance information to classify the objects into classes like humans, vehicles etc.

To cluster the trajectories, a metric is required to determine the inter-trajectory

distance.Various metrics have been proposed in the literature including Euclidean

distance [8], Hausdorff distance [16, 31] and hidden markov model based distances [23].

Various clustering techniques have also been proposed including spectral clustering

[19], clustering using graph cuts [27] and agglomerative and divisive clustering [2, 18].

Although, trajectory clustering is a very common and well studied approach, there

are three main problems that we would like to point out. First, despite all the re-

cent advances in the area of object tracking, it remains unreliable in densely crowded

scenes. Second, the trajectory of an object is an insufficient indicator of what consti-



tutes unusual in a surveillance setting. An activity could be unusual from a security

perspective without having an unusual track and thus, a trajectory does not capture

all information about the underlying object. Third, clustering remains ineffective and

difficult if we do not know the number of clusters a priori. There are some cluster-

ing techniques that do not demand to know the number of clusters; however, these

non-parametric techniques are computationally very expensive.

The third category of papers involve a probabilistic approach to activity moni-

toring. [20] uses Bayesian framework to determine isolated tracks in a video. [21]

uses Coupled Hidden Markov Models to model interactions between two objects.

There has also been a rise of non-parametric Bayesian approaches like Dirichlet pro-

cess models in recent years. They use a framework like time dependent Dirichlet

processes to model the time series data. For example, [7] uses Dirichlet process to

solve the problem of data association for multi-target tracking in the presence of an

unknown number of targets.

2.2 Related Work: Object Tracking

Since object tracking forms the basis of most research in the area of activity moni-

toring, it is useful to understand the evolution of tracking.

In the 1990's, some key advances were made by researchers like Stauffer and

Grimson [28] and Haritoaglu [12] in the area of far-field tracking. Since then, a

fair amount of work has been done to improve reliability of tracking algorithms in

challenging conditions, with lighting changes and dynamic backgrounds

Most tracking methods are based on the technique of background subtraction.

They formulate a background model and then compare it with the current frame to

find regions of dissimilarity. Then based on some criteria they extract foreground

blobs from the scene and then cluster or segment the blobs to form distinct objects

[22, 26, 29, 30].

In sparse settings, these techniques work quite well to detect the objects present

along with their associated tracks, but they are not as useful in densely crowded



scenes. Tracking in the presence of dense crowds still remains unreliable.

2.3 Related Work: Abandoned Object Detection

Abandoned object detection is a fairly recent problem in the domain of activity mon-

itoring. This is because surveillance became an important topic after the increase of

terrorism in different parts of the world and visual surveillance became one of the

most active research topics in computer vision.

Increasing concern about security has caused tremendous growth in the number of

security cameras present at every important location like airport or railway stations.

With so many security cameras doing surveillance at each place, it is extremely labor

intensive to have individuals monitor them, which might be an expensive proposi-

tion. Besides of this, individuals might get tired or distracted easily and might miss

something which is dangerous yet inconspicuous. Hence, it is very useful to have

automated systems that can assist the security personnel in their surveillance tasks.

There are three different ways that we can classify the existing research on this

topic.

* First is the distinction based on how the scene is being monitored using cameras

i.e. single vs. multiple camera setting. In a single camera setting, there is only

one camera that monitors a given location, while in a multiple-camera setting

there could be multiple cameras monitoring the same location. In case there

is more than one camera, the technique can be classified based on whether the

multiple cameras are calibrated or not.

* The second distinction is based on the level of granularity of the basic constituents-

pixel level approach vs. object level approach. A pixel level approach does some

computation for every pixel and then aggregates the results, while the object

level approach detects the objects present in the scene and then does some

computation for them.

* The third distinction is based on the algorithm being used to identify aban-



doned objects. In general, all algorithms for abandoned object detection can

be grouped into three categories. First is the set of algorithms based on motion

detection- this approach consists of estimating motion for all foreground pix-

els/objects present in a scene and then determining the abandoned ones based

on certain rules. Second is the set of algorithms based on object segmentation

and classification- the scene is segmented into objects which are classified into

preexisting classes (like people, luggage) and then they are observed over time

to identify the static ones. The third set of techniques involves tracking based

analytics- the foreground pixels/objects are tracked over time and their tracks

analyzed to detect abandoned objects.

We will now discuss some specific papers that attempt to detect abandoned lug-

gage in a crowded setting. [5] deals with a multi-camera setup which detects moving

objects using background subtraction. All the information is merged in the ground

plane of the public space floor and a heuristic is used to track objects. It detects

static luggage and an alarm is triggered when the associated person moves too far.

[15] again deals with a multi-camera setup which uses a tracking algorithm based on

unscented Kalman filter. It employs a blob object detection system which identifies

static objects. It combines the information using homographic transformations and

uses a height estimator to distinguish between humans and luggage. [17] tracks ob-

jects present in the scene using a trans-dimensional MCMC tracker and analyzes the

output in a detection process to identify the static ones. [6] uses a tracking module

which tracks blobs and humans using speed, direction and distance between objects.

It; uses a Bayesian inference technique to classify abandoned luggage. [11] uses a

background subtraction based tracker. It looks for pixel regions in the scene which

constantly deviate from the background and flags them as potential abandoned ob-

jects. [4] uses a multi-camera object tracking framework. It does object detection

using adaptive foreground segmentation based on Gaussian mixtures tracking. It

performs centrally in the ground plane, by homographic transformation of the single

camera detection results. It does fusion analysis of the object's trajectories, detects

stationary objects and splits and merges in the trajectories. [9] does foreground ex-



traction using Markov random fields. It uses a blob tracker as an attention mechanism

for finding tracks of interest, extends them temporally using the meanshift algorithm.

It; uses weak human and luggage models, based primarily on characteristics like size.

[24] has a pixel-based solution that employs dual foregrounds. It models background

as multi-layer, multi-variate Gaussian distribution which is adapted using bayesian

update mechanism. It fuses multiple cameras on ground plane.

2.4 Where This Thesis Fits In

The approach that we are adopting can broadly be classified as a single camera, pixel

level approach. But the algorithm we use to identify abandoned objects is based on

analyzing how each pixel changes over time.

Like most other approaches, we build a background model and perform foreground

separation for every video frame. But since optical flow computation, object segmen-

tation and tracking are unreliable in densely crowded scenes, we adopt a pixel-based

solution.

We determine a cohesive set of pixels which are consistently being classified as

foreground and analyze how it has been changing over time to determine if the pixels

could belong to a potentially dropped object. The advantage of our approach is that

it works well under fairly crowded scenarios.



Chapter 3

Foreground Extraction Using

Energy Minimization

This chapter presents the processing steps that are required to extract the foreground

from the background in each frame of the video clip. The chapter is divided into two

main parts. The first part describes the different components of the background model

and the algorithm to initialize them, while the second part describes the algorithm to

extract the foreground from the background using an energy minimization technique.

We also describe how the results from the foreground extraction can be used to update

the background model.

3.1 Background Model

There has been a significant amount of work on background models in computer

vision. Most models for background that have been proposed in the literature answer

two broad questions. The first question is whether the background model is considered

static or dynamic, and accordingly, is it allowed to change over time. The second

deals with whether the background is assumed to be a single image which is unknown

and has to be estimated using some technique, or is it assumed to be a statistical

distribution over an image.

In cases where the background is assumed to be a single image, every pixel in the



background is assumed to have a unique correct value which has to estimated using

some technique like maximum likelihood or energy minimization. Whereas in cases

where the background is assumed to have a statistical distribution over an image,

every pixel has its own distribution which has to be estimated using some statistical

measures.

Before we delve into our background model, we would like to outline two charac-

teristics of the scenes with which we are dealing, so as give more insight into how we

answer those questions. First, the image frames that we use to construct our back-

ground model are extracted from videos and as a result, their resolution is not very

high. Second, the application that we are targeting, i.e. abandoned object detection

in crowded scenes, may run for an extended period of time. Over such a long period,

there may be significant changes in the lighting conditions and the spatial arrange-

ment of objects which are present in the scene. Therefore, we must ensure that these

changes are eventually incorporated in the model.

Based on the above characteristics, we have concluded that the background model

in our case should be adaptive. Similarly, a statistical model is more suited to our

application, as it is more robust in the presence of noise and captures more information

about how each pixel might be distributed.

3.2 Model Description

We model our background as a statistical model proposed by Horprasert et al. in [13]

and used by Ahn et al. to extract foreground in [1]. It is based on a color model that

separates the brightness component of a pixel from its chromaticity component.

The reason we chose this model is because it captures the property of human

vision called color constancy, which says that humans tend to assign a constant color

to an object even under changing illumination over time or space [14]. Therefore, a

color model that separates the brightness from chromaticity component is closer to

the model of human vision. Also, to be able to distinguish the foreground from the

background pixels we need to differentiate the color of the pixel in the current image



from its expected color in the background. We do this by measuring the brightness

and chromatisity distortion for all pixels.

According to the model, the ith pixel in the scene image can be modeled as a

4-tuple < E, si, ai, bi >, where Ei is the expected RGB color value, si is the standard

deviation of color value, ai is the variation of the brightness distortion, and bi is

the variation of the chromaticity distortion of the ith pixel. The exact mathematical

formulation will be described later.

Assuming the brightness distortion and the chromaticity distortion to be normally

distributed, we can estimate the likelihood of a pixel belonging to the background

using the standard normal distribution.

3.2.1 Model Parameters

More formally, background model estimation consists of estimating the following pa-

rameters for each pixel.

* Let E = [pR(i), [G(i), PB(i)] be defined as the ith pixel's expected RGB color

value in the background scene image, where pR(i), PG(i) and sB(i) E [0, 255].

* Let ai = [aR(i), UG(i), B(i)] be defined as the ith pixel's standard deviation in

the RGB color, where aR(i), UG(i) and aB(i) are the standard deviation of the

ith pixel's red, green, blue values measured over a series of M observations.

* The brightness distortion (a) is a scalar value that brings the observed color,

Ii, close to the expected chromaticity line, E. In other words, it is the a that

minimizes 0 where

¢(ai) = (Ii - aEi)2  (3.1)

* Let ai represent the variation of the it h pixel's brightness distortion, ai, as

measured in equation 3.1.

* The chromaticity distortion is defined as the orthogonal distance between the

observed color, Ii, and the expected chromaticity line, E. The chromaticity



distortion is given by

CDI = III - aiE | (3.2)

* Let bi represent the variation of the ith pixel's chromaticity distortion, CDi, as

measured in equation 3.2.

3.2.2 Parameter Computation

There are some differences between how the model parameters are computed in our

approach as compared to the approach proposed by Horprasert et al. [13].

The main difference is that they assume the training set to consist of images which

are purely background images and have no foreground objects in them. Thus, they

assign equal weight to all the sample frames when computing the expectation and

standard deviation. On the other hand, we assume that each frame can potentially

have foreground objects and thus assigned weights that are directly related to the

likelihood of a given pixel being a part of the background. Since we do not have

any information about the background to begin with, we use another technique to

bootstrap the system and compute weights, which will be described in section 3.2.3.

For now, let us assume that the weight of the ith pixel in the jth training set image is

We perform all our computations in the RGB color space, as all our data is in

this format. It is possible to devise equivalent models in other color spaces as well.

Let Iji = [IR(j, i), IG(j, i), IB(j, i)] denote the ith pixel's RGB color in the jth training

image. We can calculate the expected RGB color of the ith pixel, Ei, as follows:

Ei = [AR(i), Pi PB(i) = jiji (3.3)
1:Mj=1 Wji

Having computed the expected color, we calculate the standard deviation in the RGB

color of the ith pixel as follows:

z~ Y:M"I W! y ( I i - E) 2  (3.4)
r = [UR(i), GCi),UB@)] = Z1 1 w - (3.4)ZAj= ul



The brightness distortion of the i th pixel in the jth image, aji, is

aRj = argm ((I(j, i) - aPR (iI2 G j i) - G 2 B ( i) - B 2

aj,i) R(i) IGU ,i)a.( i) 2 IB(j,i)+B(i)

= 2(3.5)
_(__ + (i) 2 + [L(i)] (3.5)La (i) aG(i) a (i)

and the chromaticity distortion of the ith pixel in the jth image, CDji, is

CD = (IR( i) - aiR(i) 2 G - ajiG(i) 2 B( i) - jiB(i) 2

(3.6)

The variation of the brightness distortion of the ith pixel, ai is given by

a j= i(a - 1)2 (3.7)
a-=l Wji

The variation of the chromaticity distortion of the i th pixel, bi is given by

M 1 Wji(CDji)2bi = j w(CD) 2  (3.8)

3.2.3 Bootstrapping the Model

Tb be able to estimate the parameters described in the previous section, we need

weights for all pixels in all of the training images. As we mentioned earlier, the reason

we need weights is to give more emphasis to pixels that belong to the background

rather than the foreground. But the question that faces us is how can we decide

which pixels belong to the background unless we have a valid background model. As

is clear, this is a cyclic problem. To counter this problem, we need to bootstrap the

algorithm somehow. We use optical flow and image continuity principles to get our

first estimate of the background, and then improve our estimate iteratively.

Thus, the input for the bootstrapping algorithm consists of a set of training images,

I1 to IM and the output is a set of weights for each pixel in each of the images, i.e.



wj i for 1 l j M.

The procedure we adopt to compute those weights is to first estimate the back-

ground image using an energy minimizing algorithm and then determine the weights

based on how different the pixels in the training image are from pixels in the back-

ground image and what is the optical flow at that location.

Background Image

Given a set of K images for recovering the background, we assume that every pixel

in the resulting composite background image will come from one of these K images

and thus, we can assume that every pixel in the composite image takes a label in the

set {1, 2, ..., K}. In other words, if the ith pixel takes a label j, then the composite

background image will copy ith pixel from the jth image in the training set. This

composite background image is used only for bootstrapping the actual model. Hence,

it suffices to have only one background image instead of a mixture of images. Our

actual model described in Section 3.2.2 uses this composite background image to

compute weights.

We formulate a Markov Random Field (MRF) model for this labeling problem.

This is because under the setting that we have described, neighboring pixels should

have a higher probability of having the same label. This constraint is captured nat-

urally in a MRF formulation.

Our MRF optimizes the following objective function:

EB(1) = E v (li,ly) + E FB(li) + DP(14) (3.9)

(i,j)en iEP iEP

where 1 is the field of source labels for the composite background image, P is the set

of pixel sites, AN is the 4-neighborhood graph, /Bi(1, 1) encourages neighboring pixels

to have the same label, FB(li) encourages the label for the ith pixel to be sourced from

an image which has small optical flow at that spatial location,and Dg(li) encourages

the pixel to be sourced from an image which has less contrast at that spatial location.



These terms are defined as:

V (li, lj) = cn6 (1l, lj) (3.10)

FB(l) = exp (Iij(li) j)/cf (3.11)

DB(l) = E exp(- I,(i) - I,(j) l)/cd (3.12)
j AK(i)

where 6(-, -) is the Kronecker delta function, Oi(k) is the optical flow of the ith pixel

in the kth image, and IlIk(i) - Ik(j) is the normed difference between the ith and jth

pixels in the kth image. cn, cf and Cd are some constants.

We use graph cuts to solve the labeling problem. If the resulting label image after

energy minimization is denoted by L and the resulting composite background image

is denoted by B, then

B(i) = IL,(i) (3.13)

Weights

Given an estimate of the background image B, we compute the weights as a function of

the optical flow and the normed difference of the training image from the background

image:

wji = g(w1 , w2) (3.14)

where wl = gi(| 0i(j)jl) and w2 = 92(11I(i) - B(i) I). First, lets analyze wi. We want

wl to have the following properties:

* w1 should attain its maxima at Iqi$(j)J = 0 and should --- 0 as IIi(j)lI -* 00.

* It should decrease at a rate that increases with the optical flow.

A simple function that satisfies both the criteria is the exponential decay function

given by wl = exp (-IlOi(j) I/cl), where 1/cl is the decay constant. For every increase

of cl in the optical flow, wl will further decrease by a factor of 1/e. In practise, we

take cl to be around 3 pixels.



Using exactly the same logic for w2, we assume the following form for w2: w2 =

exp (-| lj(i) - B(i)l/c 2). We take c2 to be around 15, which means that for every 15

units of difference between the training image and the background image intensity,

u2 will decrease by a factor of 1/e.

We take wji to be the sum of wl and w2 as follows:

ji = wl + W 2 = ki exp (- Ii(j)ll/ci) + k2 exp (-JIIj(i) - B(i)II/c 2) (3.15)

where kl and k2 are constants that determine the relative importance of wl and w2.

The reason that we don't compute wji as (wl * w2 ) is because multiplication is not

robust to errors. In case any of the w's is wrongly computed as 0, the entire term

would be wrongly computed as 0.

3.3 Foreground Extraction with Graph Cuts

Having estimated the background model parameters as described in section 3.2.2, we

move on to foreground extraction based on those parameters. Given an input frame,

we model the foreground extraction as a binary labeling problem that labels each

pixel in the given frame as either foreground or background. We then use Markov

Random Fields (MRF) to solve the binary labeling problem. This is because due to

the continuous nature of real-world objects, neighboring pixels should have the same

label except on object boundaries.

We formulate an energy minimization framework for the MRF which is imple-

mented using graph cuts. Our data penalty and smoothness penalty terms are based

on the brightness and chromaticity distortion distributions estimated earlier. The

approach is similar to that used by [1] except that we do not use trimaps and our

penalty functions are formulated differently.

The objective function to minimize is similar to that used in the GrabCut technique[25]

and makes use of the color likelihood information. Our MRF formulation for fore-



ground extraction attempts to minimize the following function:

EF(f)= ( ff)+ D((f,) (3.16)
(i,j)EV iEP

where P is the set of pixel sites, r is the 4-neighborhood graph, f(1i, lj) encourages

neighboring pixels to have the same label, and DF( li ) encourages the pixel to be la-

beled as a background if it has a high likelihood of being sourced from the background

color model.

In the resulting label image, we encourage neighboring pixels to have the same

label, but at the same time, we want the segmentation boundaries to align with the

contours of high image contrast. Therefore, we define the smoothness penalty as:

Sj(f , f3) = exp (-II(i) - I(j) l 2/)6(fi, fj) (3.17)

where 6(-, -) is the Kronecker delta function, Il(i) - I(j)lI is the normed difference

between the ith and jth pixels in the given image, and the constant 3 is chosen (Boykov

and Jolly 2001 [3]) by the expectation of 211Ip - Iql 2 over all {p, q} E n.

The data term measures how well the pixel i in the given image fits the statistical

distribution of the background model. Therefore, we define the data term as:

Df(fi) = -log P(I(i)lfi) (3.18)

After we have segmented the image into foreground and background regions, we

compute all the connected components in the foreground and remove components

containing less than 100 pixels. This threshold was chosen with empirical observa-

tion and can be improved by scaling it with the square of the estimated distance

to the camera, if the camera is calibrated. Also, we update the background model

parameters using the segmentation results.

Some sample results for foreground extraction are presented in Figures 3-1, 3-2,

3-3 and 3-4. From the figures we can see that the extraction is fairly accurate in
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Figure 3-1: Extracted foregrounds for dataset S1 from PETS-2006
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Figure 3-2: Extracted foregrounds for dataset S2 from PETS-2006
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Figure 3-3: Extracted foregrounds for dataset S5 from PETS-2006
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most cases. For example, in Figure 3-1, a man standing on a floor upstairs has also

been segmented. There are a few cases when the segmentation is problematic. First,

foreground extraction is problematic in regions where the background initialization

was not proper due to presence of a foreground object for the entire duration. For

example, in sequence S2 (Figure 3-2), the garbage bins were part of the background

model, and as they moved away, the actual background was segmented as a fore-

ground. Second, in areas of bright illumination, the shadows are captured to be a

part of the foreground. Third, in case of an object having multiple states, some of the

states are segmented as foreground. For example, in sequence S7 (Figure 3-4), for the

door present on the upper right, the background model captured the door in an open

state. As a result, whenever the door is open, it is segmented as foreground. Fourth,

in regions where the camera view is far-field instead of mid-field, the algorithm does

a more coarse job joining multiple people together as part of foreground, instead of a

finer segmentation.



Chapter 4

Change Analysis and Abandoned

Object Detection

In this chapter, we will describe the techniques we use to detect potentially abandoned

objects in a crowded scene. Even though the techniques used may have several

applications, we are only dealing with this one.

To be able to detect an object in a video clip and mark it as abandoned, we

have to characterize formally as to what we mean by the term "abandoned". If we

consider a video clip of a crowded place, like an airport or a train station, there would

be several parts of the scene that are occupied by people or objects which are not in

motion. But are they abandoned? This is a difficult question to answer and there is

no objective answer to that question. For the purpose of our research, we define an

abandoned object as a non-living entity that is not a part of the background model,

has been present in the scene at the exact same location for quite some time, and

the perceived owner of the object is currently not situated close to it. It is entirely

possible that such an object is not an abandoned object, but even then, all objects

meeting these criteria might be worthy of closer inspection.

For this characterization to be of any practical significance, we would have to

make these criteria more concrete. So, we would define an object as "abandoned" if

it has been static at a particular location for more that T seconds and the perceived

owner is not present in the radius of r pixels. These values are inputs to the system



and can be easily modified as per requirement.

The problem of detecting potentially abandoned objects has been decomposed into

two main steps. First, we determine those regions of the image which are consistently

labeled as foreground for a period of time exceeding T seconds. Second, we classify

the region as either a busy part of the scene, a static living entity or a static non-living

entity.

There are several points we take into account with respect to the design of the

algorithm. First, we have several redundancies in place to minimize the cost of

errors. In a crowded setting like an airport or a train station, errors are very common

and thus, the cost of errors should not be very high and error recovery should be

easy. Second, we would want to err on the side of conservatism. We don't want

any abandoned objects to be missed out and thus, we would prefer false positives

over false negatives. Depending on the context, these design considerations could be

different in other applications and will guide the choice of parameters.

4.1 Potential Static Blob Identification

We keep a moving average statistic for every pixel that keeps track of how often a

pixel is being classified as a foreground. Assuming a label of 1 for foreground and 0

for background, we have:

MAi[t] = ALabeli[t] + (1 - A)MA[t - 1] (4.1)

where MAi[t] is the moving average at time t at pixel location i, Label[t] is the

label assigned to the ith pixel by the foreground extraction algorithm, and A is a

constant E [0, 1] that determines the importance of the current label with respect to

the history. It is easy to see that MA [t] will always lie within [0, 1]. Figure 4-1 shows

the moving average snapshot for datasets at some instant of time.

After updating MA with the latest labeling, we check to see if there is some region

in the image that has high values of MA which are above a certain threshold. But



Figure 4-1: Moving average image, MA, in sample datasets
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before that, we have to answer the question of how high this threshold should be?

To answer this question, consider a pixel that had a MA value of 0 to begin with.

After being labeled as foreground continuously for K image frames, its MA value will

change to A ZK 1 (1 - A)(k-l). If we want to detect an object that has been lying static

in the scene for more that T seconds, and our rate of sampling frames is S frames

per second, then we should choose a threshold such that

ST

threshold - A EZ(1 - A)(k - l)
k=1

1 - (1 - A)ST (4.2)

We choose A as 0.05, T as 15 seconds, and calculate the threshold based on the

value of S accordingly. We mark all the pixels in the image which have a MA value

greater than the threshold. Having marked all the pixels with this property, we use a

connected components approach to divide them into distinct sets and discard the sets

which have less than 100 pixels. This threshold was chosen with empirical observation

and can be improved by scaling it with the square of the estimated distance to the

camera, if the camera is calibrated.

At this stage, we are faced with the question of whether we want to segment/merge

the blobs to identify distinct objects. Based on our analysis, we have realized that

object segmentation is very unreliable in such crowded scenes and thus, it is better

to deal at the pixel level than at the object level.

Therefore, having obtained sets of pixels that could belong to abandoned objects,

we analyze each of these pixel sets in greater detail.

4.2 Region Classification for Abandoned Object

Detection

We classify each pixel set into one of three classes:

* Class I: The first class consists of those regions in the image where the pixels



are consistently being classified as foreground, but the foreground object to

which they belong is not the same across time. This is especially common in

those areas of the scene which see a lot of traffic and a lot of people move

through them, like an escalator or a ticket counter. So, even though the pixels

have their MA value above the threshold, they are not originating from an

abandoned object, but rather a lot of objects moving continuously through the

scene.

* Class II: The second class consists of individuals or groups of individuals (living

entities) standing still at a particular location in the scene. This typically

happens when people are waiting for someone or are chatting in a group.

* Class III: The third class consists of objects (non-living entities) which have

been kept, dropped or abandoned at some location in the scene. This typically

happens when people keep their belongings on the floor and stand beside them,

or if an object belonging to the background is moved through the scene (e.g. a

trolley), or if some piece of luggage has been dropped/abandoned.

We are mainly interested in the objects belonging to class III.

4.2.1 Deciding Whether the Entity is Moving or Static

Given a set of pixel locations that have consistently been marked as foreground, we

have to decide whether the pixel set belongs to class I or not. Roughly speaking, class

I consists of those regions of the scene that are observing a lot of traffic. Thus, if we

maintain an average of the input frames over time, we should see very little similarity

between the average and the current input frame over that region.

Therefore, to distinguish the moving entities from the static ones, we maintain a

exponentially weighted moving average,MF, over the input frames:

MFi[t] = AI [t] + (1 - A) MF[t - 1] (4.3)

where MF[t] is the moving average measure at time t and A is a constant. Figure 4-2



Figure 4-2: Moving average image, MF, in sample datasets
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shows the MF snapshot for datasets at some instant of time.

Now, our claim is that the similarity between MF[t] and I[t] over the given pixel

set (say S) will be low if the set belongs of class I, and high otherwise. This is easy to

verify from the images in Figure 4-2. Foreground objects and people that are static

in the scene can be seen clearly in MF, otherwise we can only see a ghost for people

that are moving through the seen.

We use normalized cross-correlation to measure the degree of similarity. So, if the

normalized cross-correlation, p, of MF[tJ and I[t] over the set S is less than a certain

threshold, we classify the set as belonging to class I:

P = (MF - MFs)(Ii - Is) (4.4)

iES (UMFS)(u13 )

where MFs and Is are the means and aMFs and as are the respective standard

deviations of MF and I over the set S.

4.2.2 Deciding Whether the Entity is Living or Non-Living

Given a pixel set that is consistently being marked as foreground and does not belong

to class I, we have to decide whether the set belongs to class II or III. Roughly

speaking, class II consists of living entities like humans or pets and class III consists

of non-living entities like luggage.

If we observe a living being over the course of time, no matter how stationary it

might be, there will still be some amount of motion or jitter on the fringes of the

silhouette. Therefore, we make the following assumptions to take this decision: if

we take a difference over the pixel set between two successive image frames, we can

distinguish between static objects and humans based on whether the pixel set exhibits

some motion or jitter on the fringes. We classify the entity as belonging to class II if

there is some jitter on the silhouette boundary, and class III otherwise.

To detect this jitter, we compute the normed difference, Diff, over the pixel set



between the two image frames, say I[t] and I[t - 1].

Diffi = IIli[t] - Ii[t - 1]JlVi E S (4.5)

We can easily verify this observation in Figure 4-3 and Figure 4-4. Figure 4-3 consists

of image snippets drawn from the normed difference over regions occupied by humans

while Figure 4-4 consists of image snippets drawn from those occupied by objects.

The motion on the fringes is clearly visible in case of humans.

Figure 4-3: Examples showing observable jitter in living entities

Figure 4-4: Examples showing no observable jitter in non-living entities

We then compute the Discrete Cosine Transform (DCT) of the normed differences,

Diff. After we have computed the DCT of the pixel set, we take the first 5 x 5

coefficients of the DCT Image and use a Support Vector Machine (SVM) to classify

the set. Normed difference for sets belonging to class II have higher intensities on

the fringes and thus their DCT coefficients are larger than those belonging to class

III. We use a set of 50 trained examples to train our SVM. As an example, the first



image in Figure 4-3 has a DCT matrix:
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while the first image in Figure 4-4 has a DCT matrix:
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It is easy to see a marked difference in the magnitude of coefficients for both the

matrices. Our SVM has 8 support vectors. As an example, one of the support

vectors has the following matrix:
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The important thing to note here is that the classification technique has been

devised keeping in mind the design constraint that false positives are better than false

negatives. So, a person standing absolutely still and getting classified as an object is

acceptable, but an object should not be classified as a human. Since there are several

cases in which human motion is not perceptible by the camera, this processing stage

adds the maximum number of false positives to the results.



4.2.3 Deciding Whether the Object could be Abandoned

Having detected a nonliving object which has been static in the scene, the next

step is to determine if the object has been abandoned by its owner. To make this

determination, we check to see if the perceived owner of the object is present in the

immediate vicinity or not.

To determine the owner of the object, we look for the first frame where the object

appears in its current location. We do this by searching for the first input frame

whose normalized cross-correlation with the current input frame over the pixel set S

is greater than a certain threshold.

' I

Figure 4-5: Earliest frame where the object appears compared with the current frame

After locating the frame, we look for foreground blobs in the immediate vicinity

of the dropped object. The blob which is connected to the object in the foreground

image is assumed to be its owner. If there is no such blob or there are multiple such

blobs, we mark the object as abandoned to be on the safer side. But if there is a

unique such blob, to decide whether the object has been abandoned, we look for the

perceived owner within a radius of r pixels in the current frame. We do this by taking

the normalized cross-correlation of the pixel set containing the perceived owner with

the current input frame, over a window of dimension 2r x 2r centered at the object.

If we cannot find the pixel set within this window, we flag the object as potentially

abandoned and respond in an appropriate way.



Figure 4-6 shows an example where we use this technique. The image on the left

shows the frame where the abandoned object appears in its current location for the

first time and the image on the right shows the current frame.

This method of looking for the true owner does not work well in extremely crowded

scenes due to a couple of reasons. First, in extremely crowded scenes, the object blob

is usually connected to more than one foreground blob; hence, it becomes difficult to

decide with any accuracy as to which one of them is the true owner. Second, in case

where the object blob is only connected to a unique blob, that blob typically consists

of more than one person and under such cases, cross-correlation usually fails.

4.2.4 Examples

Figure 4-6 shows several examples of abandoned object detection in sample datasets.

Green boxes indicate entities belonging to class I, blue boxes to class II, and red boxes

to class III. For our purpose, we are only interested in red boxes, which correspond

to objects which have been identified to be potentially abandoned.

From the results, we can see that our system has accurately identified the aban-

doned object in all four cases. It had no false negatives, although it had some false

positives. In the first sequence, a person sitting on a chair in the left, a person stand-

ing in front of the coffee shop and a person standing on the floor upstairs were detected

as abandoned objects due to their imperceptible motion. In the second sequence, the

region that was occupied by the garbage bins was classified as an abandoned object.

This was because the garbage bins were initially stationary and were incorporated as

part of the background model. In the third and fourth sequence, there were no false

positives and the system correctly identified the abandoned object.



Figure 4-6: Abandoned object detection in sample datasets
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Chapter 5

Assessment and Evaluation

In this chapter, we describe the experiments we performed to test our abandoned

object detection algorithm under different surveillance settings. An analysis of the

results is provided along with the results.

5.1 Datasets

To evaluate our system, we used public datasets from PETS 2006 and PETS 2007.

We will present our results on 4 of these sequences, all of which contain an instance

of abandoned luggage.

The PETS-2006 dataset contains sequences which have been taken from a mod-

erately busy railway station. In consists of people walking individually as well as in

larger groups. The videos have a resolution of 720 x 576. The PETS-2007 dataset

contains sequences from an airport that is densely crowded and has a variety of ac-

tivities going on.

As mentioned in Section 1.2.3, our algorithm is designed for mid-field domain. It

works best when objects are clearly visible. Some of the samples in the PETS dataset

consist of regions where the objects are not clearly visible. But, we do not suppress

any part of the scene.

In all of the sample datasets, the item which is being abandoned is different in

shape and size.



* Sequence S1 from PETS-2006: The dataset S1 consists of an "abandoned object

activity" where a person drops off a backpack and walks away. Challenges

include a man sitting on a chair, a man standing still on the left and a person

standing on the floor upstairs.

* Sequence S2 from PETS-2006: The dataset S2 features an "abandoned object

event" where two men meet in front of a fence. They exit from the scene, leaving

the luggage behind. In the meantime, a worker directly behind the men, on the

other side of the tinted wall, moves three garbage bins away with a tractor.

Challenge includes handling the motion of the garbage bins.

* Sequence S5 from PETS-2006: The dataset S5 features an "abandoned object

event" where a person drops off a large piece of luggage in front of a tinted wall.

The shape of the luggage is elliptical, like a human being. Challenge includes

differentiating the luggage from human beings.

* Sequence S7 from PETS-2007: The dataset S7 features an "abandoned object

event" when a lady drops off a red bag in the center of the scene. The scene

is very crowded and sees a lot of foot traffic. Challenge includes handling of

occlusion and dense crowds.

The results that we obtained with the sample datasets were in line with our goals

and design constraints. We designed our system to prefer false positive over false

negative. There were no false negatives in the system and we were able to detect all

instances of abandoned objects. But, there were some instances of false positives.

We will now go over all the subparts of the system and discuss the results indi-

vidually for each of them.

5.2 Background Model

We will first present the background images for all four datasets. To initialize our

background model, we used about 200 uniformly sampled images from the video



Figure 5-1: Background Image for all four datasets
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clip. Fig. 5-1 shows the background images (E) obtained using the weighted average

method in Section 3.2.2.

In all four datasets, we can observe that some individuals have also been included

as a part of the background model. This is mainly because they were present at that

location for the entire duration of background model initialization and hence, they

were inferred to be a part of the background.

Another problem with the background model that can be observed in sequence

S7 is that for image regions containing objects that can be present in more than one

state (like a door), the background model can only capture one state. Sequence S7

contains a door on the upper right that is open in some of the training images and

closed in others. The background model captures it in an open state.

5.3 Foreground Segmentation

Figures 5-2 to 5-17, show some sample results obtained using our foreground seg-

mentation algorithm presented in Section 3.3. In our experiments, we were able to

segment the foreground quite accurately most of the time except for a few notable

exceptions.

First, foreground extraction is problematic in regions where the background initial-

ization was not proper due to presence of a foreground object for the entire duration.

For example, in sequence S2 (Figure 5-6 to 5-9), the garbage bins were part of the

background model, and as they moved away, the actual background was segmented

as a foreground. Second, in areas of bright illumination, the shadows are captured to

be a part of the foreground. Third, in case of an object having multiple states, some

of the states are segmented as foreground. For example, in sequence S7 (Figure 5-14

to 5-17), for the door present on the upper right, the background model captured

the door in an open state. As a result, whenever the door is open, it is segmented

as foreground. Fourth, in regions where the camera view is far-field instead of mid-

field, the algorithm does a more coarse job joining multiple people together as part

of foreground, instead of a finer segmentation.



I

i

Figure 5-2: Foreground results for dataset S1 from PETS-2006: Example 1
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Figure 5-3: Foreground results for dataset SI from PETS-2006: Example 2
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Figure 5-4: Foreground results for dataset S1 from PETS-2006: Example 3
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Figure 5-5: Foreground results for dataset Si from PETS-2006: Example 4



Figure 5-6: Foreground results for dataset S2 from PETS-2006: Example 1



Figure 5-7: Foreground results for dataset S2 from PETS-2006: Example 2



Figure 5-8: Foreground results for dataset S2 from PETS-2006: Example 3
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Figure 5-9: Foreground results for dataset S2 from PETS-2006: Example 4



Figure 5-10: Foreground results for dataset S5 from PETS-2006: Example 1



Figure 5-11: Foreground results for dataset S5 from PETS-2006: Example 2
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Figure 5-12: Foreground results for dataset S5 from PETS-2006: Example 3



Figure 5-13: Foreground results for dataset S5 from PETS-2006: Example 4
Figure 5-13: Foreground results for dataset S5 from PETS-2006: Example 4



Figure 5-14: Foreground results for dataset S7 from PETS-2007: Example 1
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Figure 5-15: Foreground results for dataset S7 from PETS-2007: Example 2
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Figure 5-16: Foreground results for dataset S7 from PETS-2007: Example 3



Figure 5-17: Foreground results for dataset S7 from PETS-2007: Example 4
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5.4 Abandoned Object Detection

Our system accurately detected the abandoned object in all four cases. It had no

false negatives, although it had some false positives.

In sequence S1 (Figure 5-18), a person sitting on a chair in the left, a person

standing in front of the coffee shop and a person standing on the floor upstairs were

detected as abandoned objects due to their imperceptible motion. The reason that

the system was unable to perceive any motion in their case is that all of them fall

under the far-field domain. Our system is designed for mid-field domain and our

algorithm to distinguish between people and objects assumes that we will see motion

on the fringe in case of people. If some region falls under the far-field domain, the

motion on the fringe is imperceptible for the camera and hence, blobs in that region

get classified as objects.

In sequence S2 (Figure 5-19), the region that was occupied by the garbage bins was

classified as an abandoned object. This was because the garbage bins were initially

stationary and were incorporated as part of the background model. When they moved

from their original location, the system classified that region as foreground. Since

there was no motion on the fringe in that region, the system identified it to be an

abandoned object.

In sequence S5 and S7 (Figures 5-21 and ??), there were no false positives and

the system correctly identified the abandoned object.

In summary, our system works very well even in densely crowded scenes. It is able

to detect abandoned objects with high recall, and good precision. It does not make

any assumptions about the abandoned objects and detects them even in cases where

they bear a striking similarity to human beings.

Our system has the following advantages over traditional systems:

* We do not filter the objects based on shape or size. Therefore, we can identify

abandoned objects of any shape or size.

* Computational load of the proposed system is very low. Since we perform

binary labeling for foreground extraction and only pixel level operations for
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Figure 5-18: Sample results for dataset S1 from PETS-2006
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Figure 5-19: Sample results for dataset S2 from PETS-2006
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Figure 5-20: Sample results for dataset S5 from PETS-2006



IL *e Q

Q , +

Figure 5-21: Sample results for dataset S7 from PETS-2007
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change analysis, the system could be used real-time with some optimizations.

* The storage requirements of the system are very low as we do not have to store

huge amounts of tracking data.

Our system also has the following shortcomings:

* In case of occlusion of the abandoned object by a moving entity, the system is

not able to identify the abandoned object.

* In case of imperceptible motion by an individual standing at a location (particu-

larly far-field), the system usually classifies him/her as an object, thus increasing

the number of false positives.



Chapter 6

Conclusion

We have proposed a system for abandoned object detection in crowded scenes that

addresses some of the major challenges in the field. Use of a Markov Random Field

based foreground segmentation algorithm, along with a pixel level approach for de-

tecting static blobs in the scene, allow us to identify potentially abandoned objects

effectively.

We have a background model that can be initialized in the presence of foreground

objects. It computes brightness and chromaticity distortion information and models

foreground segmentation as an energy minimization problem, imposing smoothness

constraints. We use a pixel level approach to determine blobs that have been static in

the scene for a certain amount of time and employ a Support Vector Machine based

classifier to determine whether the blob consists of an object or person. Our approach

is especially effective for mid-field views.

Our system is very time efficient as it performs only pixel level operations. It is

also space efficient as it does not store object trajectories from the past. Moreover,

we do not have to deal with hard problems like object tracking and segmentation

in our system, which are prone to errors in crowded scenes. It does have some false

positives, but hardly any false negatives and thus, can be very effective in guiding

security personnel about any potentially abandoned objects in the scene.



82



Bibliography

[1] Jung H. Ahn and Hyeran Byun. Accurate foreground extraction using graph cut
with trimap estimation. In PSIVT, pages 1185-1194, 2006.

[2] D. Biliotti, G. Antonini, and J.P. Thiran. Multi-layer hierarchical clustering of
pedestrian trajectories for automatic counting of people in video sequences. In
Motion, pages II: 50-57, 2005.

[3] Y.Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal boundary region
segmentation of objects in n-d images. volume 1, pages 105-112 vol.1, 2001.

[4] Bjorn Schuller Dejan Arsic, Martin Hofmann and Gerhard Rigoll. Multi-camera
person tracking and left luggage detection applying homographic transforma-
tion. In Proc. IEEE Workshop on Performance Evaluation in Surveillance and
Tracking, 2007.

[5] C. Rougier M. Dahmane E. Auvinet, E. Grossmann and J. Meunier. Left-luggage
detection using homographies and simple heuristics. In Proc. IEEE Workshop
on Performance Evaluation in Surveillance and Tracking, 2006.

[6] Bo Wu Vivek Kumar Singh Fengjun Lv, Xuefeng Song and Ramakant Nevatia.
Left-luggage detection using bayesian inference. In Proc. IEEE Workshop on
Performance Evaluation in Surveillance and Tracking, 2006.

[7] E.B. Fox, D.S. Choi, and A.S. Willsky. Nonparametric bayesian methods for
large scale multi-target tracking. pages 2009-2013, 29 2006-Nov. 1 2006.

[8] Zhouyu Fu, Weiming Hu, and Tieniu Tan. Similarity based vehicle trajectory
clustering and anomaly detection. In ICIP (2), pages 602-605, 2005.

[9] Xiaogang Wang Gerald Dalley and W.E.L. Grimson. Event detection using an
attention based tracker. In Proc. IEEE Workshop on Performance Evaluation
in Surveillance and Tracking, 2007.

[10] Leo A. Goodman and Harry Markowitz. Social welfare functions based on indi-
vidual rankings. The American Journal of Sociology, 58(3):257-262, November
1952.



[11] Sadiye Guler and Matthew Farrow. Abandoned object detection in crowded
places. In Proc. IEEE Workshop on Performance Evaluation in Surveillance
and Tracking, 2006.

[12] I. Haritaoglu, D. Harwood, and L.S. Davis. W4: Real-time surveillance of people
and their activities. Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, 22(8):809-830, August 2000.

[13] T. Horprasert, D. Harwood, and L. S. Davis. A statistical approach for real-time
robust background subtraction and shadow detection. In Proc. IEEE ICCV,
volume 99, pages 1-19.

[14] Anya C. Hurlbert. The computation of color. Technical report, Cambridge, MA,
USA, 1989.

[15] Jorge Ral Gmez Jess Martnez-del Rincn, J. Elas Herrero-Jaraba and Carlos
Orrite-Uruuela. Automatic left luggage detection and tracking using multi-
camera ukf. In Proc. IEEE Workshop on Performance Evaluation in Surveillance
and Tracking, 2006.

[16] I.N. Junejo, O. Javed, and M. Shah. Multi feature path modeling for video
surveillance. In ICPR, pages II: 716-719, 2004.

[17] Pedro Quelhas Kevin Smith and Daniel Gatica-Perez. Detecting abandoned
luggage items in a public space. In Proc. IEEE Workshop on Performance Eval-
uation in Surveillance and Tracking, 2006.

[18] Xi Li, Weiming Hu, and Wei Hu. A coarse-to-fine strategy for vehicle motion
trajectory clustering. In ICPR '06: Proceedings of the 18th International Con-
ference on Pattern Recognition, pages 591-594, Washington, DC, USA, 2006.
IEEE Computer Society.

[19] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Anal-
ysis and an algorithm. In Advances in Neural Information Processing Systems

14, pages 849-856. MIT Press, 2001.

[20] Peter Nillius, Josephine Sullivan, and Stefan Carlsson. Multi-target tracking -
linking identities using bayesian network inference. In CVPR '06: Proceedings of
the 2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pages 2187-2194, Washington, DC, USA, 2006. IEEE Computer
Society.

[21] Nuria M. Oliver, Barbara Rosario, and Alex P. Pentland. A bayesian computer
vision system for modeling human interactions. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(8):831-843, 2000.

[22] A.E.C. Pece. From cluster tracking to people counting. In International Work-
shop on Performance Evaluation of Tracking and Surveillance, pages 9-17, 2002.



[23] F.M. Porikli and T. Haga. Event detection by eigenvector decomposition using

object and frame features. In Detection and Recognition of Events in Video, page
114, 2004.

[24] F. Porikly and Z. Yin. Temporally static region detection in multi-camera sys-

tems. In Proc. IEEE Workshop on Performance Evaluation in Surveillance and

Tracking, 2007.

[25] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. "grabcut": inter-
active foreground extraction using iterated graph cuts. ACM Trans. Graph.,
23(3):309-314, 2004.

[26] A. Senior. Tracking people with probabilistic appearance models. In Interna-
tional Workshop on Performance Evaluation of Tracking and Surveillance, pages
48-55, 2002.

[27] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(8):888-905, 2000.

[28] C. Stauffer and W.E.L. Grimson. Adaptive background mixture models for real-
time tracking. In CVPR, pages II: 246-252, 1999.

[29] C. Stauffer and W.E.L. Grimson. Learning patterns of activity using real-time
tracking. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
22(8):747-757, August 2000.

[30] Josephine Sullivan and Stefan Carlsson. Tracking and labelling of interacting
multiple targets. In ECCV, pages 619-632, 2006.

[31] X.G. Wang, K. Tieu, and W.E.L. Grimson. Learning semantic scene models by
trajectory analysis. In ECCV, pages III: 110-123, 2006.

[32] T. Xiang and S.G. Gong. Video behaviour profiling and abnormality detection
without manual labelling. In ICCV, pages II: 1238-1245, 2005.

[33] Lihi Zelnik-Manor and Michal Irani. Event-based analysis of video. Computer
Vision and Pattern Recognition, IEEE Computer Society Conference on, 2:123,
2001.

[34] H. Zhong, J.B. Shi, and M. Visontai. Detecting unusual activity in video. In
CVPR, pages II: 819-826, 2004.


