
Fast Approximate Hierarchical Solution of MDPs

by

Jennifer L. Barry

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2009

@ Jennifer L. Barry, MMIX. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part. MASSACHUSETTS INSTTUTE
OF TECHNOLOGY

AUG 0 7 2009

LIBRARIES
Author............

Department of Electrical Engineering and Computer Science
, / ,, . May 22, 2009

Certified by..........
Leslie Pack Kaelbling

Professor
" . Thesis Supervisor

Certified by......./ s

. .ina~sLozano-PePre
Professor

Thesis Supervisor

Accepted by
Terry P. Orlando

Chairman, Department Committee on Graduate Students

ARCHIVES

Fast Approximate Hierarchical Solution of MDPs
by

Jennifer L. Barry

Submitted to the Department of Electrical Engineering and Computer Science
on May 22, 2009, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

In this thesis, we present an efficient algorithm for creating and solving hierarchical
models of large Markov decision processes (MDPs). As the size of the MDP increases,
finding an exact solution becomes intractable, so we expect only to find an approx-
imate solution. We also assume that the hierarchies we create are not necessarily
applicable to more than one problem so that we must be able to construct and solve
the hierarchical model in less time than it would have taken to simply solve the
original, flat model.

Our approach works in two stages. We first create the hierarchical MDP by
forming clusters of states that can transition easily among themselves. We then
solve the hierarchical MDP. We use a quick bottom-up pass based on a deterministic
approximation of expected costs to move from one state to another to derive a policy
from the top down, which avoids solving low-level MDPs for multiple objectives. The
resulting policy may be suboptimal but it is guaranteed to reach a goal state in any
problem in which it is reachable under the optimal policy.

We have two versions of this algorithm, one for enumerated-state MDPs and
one for factored MDPs. We have tested the enumerated-state algorithm on classic
problems and shown that it is better than or comparable to current work in the field.
Factored MDPs are a way of specifying extremely large MDPs without listing all
of the states. Because the problem has a compact representation, we suspect that
the solution should, in many cases, also have a compact representation. We have
an implementation for factored MDPs and have shown that it can find solutions for
large, factored problems.

Thesis Supervisor: Leslie Pack Kaelbling
Title: Professor

Thesis Supervisor: Tomas Lozano-Perez
Title: Professor

Acknowledgments

Thanks first and foremost to my wonderful advisors Leslie Kaelbling and Tomis
Lozano-Perez. Their guidance and support, from helping me to pinpoint my research
interests, to listening to crazy ideas and deciphering half-thought-out explanations, to
giving me new directions to explore when I was completely stuck, has been incredible.

I would also like to thank the members of the LIS group and 32-G585, both
past and present, for listening to and helping me refine my ideas. Special thanks to
Sarah Finney, Meg Aycinena, Nick Matsakis, Kaijen Hsiao, and Luke Zettlemoyer for
answering a number of inane questions about the details of the day-to-day existence
of a graduate student.

Last but certainly not least, I would like to thank my family and friends for their
unflagging support and encouragement. Thanks to Maricella Foster-Molina for many
long, fun email conversations and a few visits, to Lily Cohen for never forgetting
to tell me to have fun and go play Ultimate, and to Michelle Tomasik for getting
me outside and away from the computer, listening to my various complaints, and
even occasionally checking my math! My brother Andy was my own, personal tech
support, fielding panicked questions at all times of day and night. David German
kept me from starving through this process and also spent hours reading drafts of
ideas, more hours listening to them, and a few more reassuring me that it all was
going to be OK. And, of course, my love and thanks to my parents Dan and Sue,
who have done everything from originally sparking and encouraging my interest in
puzzles, programming, and robotics, to proofreading, to sending me crazy robots as
inspiration.

Contents

1 Introduction
1.1 Motivation
1.2 Related Work
1.3 Objectives
1.4 Outline of Approach

2 Markov Decision Processes
2.1 Definitions
2.2 Value Iteration
2.3 Discounted MDPs vs Goal MDPs
2.4 Enumerated-State and Factored MDPs
2.5 Minimized-State MDPs

3 Creating and Solving Hierarchical Markov Decision
3.1 Hierarchical Markov Decision Processes
3.2 Solving HMDPs

3.2.1 Definitions
3.2.2 Upward Pass
3.2.3 Downward Pass

3.3 Creating HMDPs
3.4 Summary

4 Enumerated-State MDPs: Algorithm and Results
4.1 Solver

4.1.1 Upward Pass: Calculating the Cost Matrix . .
4.1.2 Downward Pass: Calculating Distance to Goal

4.2 Interpreting the Hierarchical Policy
4.3 Clustering Algorithm

4.3.1 Definitions
4.3.2 Basic Algorithm
4.3.3 Relaxed Algorithm

4.4 Running Time Analysis
4.5 Example
4.6 Results

4.6.1 Domains

Processes

.. . . ,

29
29
31
31
31
33
34
35

37
37
37
38
39
39
39
39
41
42
43
45
45

I

4.6.2 Comparison Against Other Clustering Techniques
4.6.3 Comparison Against Other Algorithms

4.7 Analysis
4.7.1 Accuracy versus Running Time .
4.7.2 Clustering Time versus Solving Time
4.7.3 Number of Levels in the Hierarchy

5 Factored MDPs: Algorithm and Results
5.1 Input to the Algorithm
5.2 C lustering .

5.2.1 D efinitions
5.2.2 Operations
5.2.3 Time Bounds
5.2.4 Clustering Algorithm
5.2.5 Relaxed Algorithm
5.2.6 Relation to Minimized-State MDPs
5.2.7 Macro-State Structure

5.3 Solver
5.3.1 Upward Pass: Calculating the Cost Matrix . .
5.3.2 Downward Pass: Calculating Distance to Goal
5.3.3 Value Iteration

5.4 Interpreting the Hierarchical Policy
5.5 Preliminary Results

5.5.1 Domains
5.5.2 Results

6 Conclusions
6.1 Future Work

6.1.1 Clustering Improvements .
6.1.2 Theoretical Work
6.1.3 Improvements for Factored
6.1.4 Real-World Problems . . .
6.1.5 Extension to POMDPs . .

6.2 Conclusion

A Domains
A.1 Enumerated State Domains . . .

A.1.1 Factory Domain
A.2 Factored Domains

A.2.1 Coffee
A.2.2 Tireworld

Algorithms

B Theoretical Analysis of the Deterministic Assumption for Enumerated-
State MDPs 85

57
57
59
59
60
61
62
63
64
67
68
68
69
69
70
71
71
71

73
73
73
74
74
74
75
75

77
77
77
79
79
81

. 46

List of Figures

2-1 Converting from an MDP with a discount factor of 0.9 (left) to a goal
MDP (right). 26

3-1 A two-level HMDP 30

3-2 A stranded sub-state in a two-level hierarchy. The hierarchical policy is
shown by the thick blue lines. The sub-state circled in red is "stranded"
because, although it can actually reach the goal state, it cannot do so
following the hierarchical policy. 32

4-1 Map of the grid world. The walls are shown in black and the goals in
red. There are 1040 total primitive states, 800 of which are not walls. 43

4-2 Clustering algorithm run on the grid world. Squares of the same color
are in the same macro-states. Walls are black, goals are red (each wall
is its own "macro-state", all goals are clustered together). The high
level policy is shown under the figure. The equals sign to the right of a
colored square indicates that the macro-state of that color transitions
to the macro-state of the color on the right of the equals sign 44

4-3 The mountain car domain. Figure taken from [RL-Library, 2009]. . 46

4-4 The hand-built 5-level hierarchy for the factory world. A and B refer
to the two objects in the world. At each level, all primitive states
with the same values of the variables considered are grouped together.
For example, at level 4, there are four macro-states: primitive states
with both objects joined, primitive states with just object A joined,
primitive states with just object B joined, and primitive states with
neither object joined. 48

4-5 A grid world with 62500 primitive states. The red state is the goal
state and the black states are wall states. There are 55710 non-wall
states. 49

4-6 Running time as a function of macro-state size in the factory domain. 52

4-7 Average (over the primitive state values) and maximum deviation from
the optimal policy as a function of macro-state size in the factory domain. 53

4-8 Average deviation from the optimal policy as a function of uncertainty
in the grid world domain. Here x% uncertainty refers to the probability
an action transitions to a wrong square. The probability the action will
transition to the correct square is 1 - 3x. For the HDet point at 20%
we used an out-cluster penalty (NCP) of 50 to avoid oscillations. The
number of macro-states used for HDet was 17 with a maximum of 100
primitive states per macro-state. The clustering is shown in Figure 4-2. 54

5-1 An example of an fe-connected macro-state with two f-states. Although
the macro-state is not connected (not every sub-state can reach every
other sub-state), it is fe-connected because all primitive states of the
f-state on the left can reach some primitive state of the f-state on the
right and vice-versa.................. 60

List of Tables

4.1 Comparison of several clustering algorithms in the factory domain. All
were implemented in Matlab and run on a 2.4 GHz Intel Core2 Q6600
Quad-Core. 47

4.2 Results in the grid world with 1040 states. The RPI results are taken
from [Maggioni and Mahadevan, 2006a]. For the number of macro-
states, we report only the number of non-wall macro-states (which is
why we report only 800 macro-states for Det). Each wall state is its
own macro-state 51

4.3 Results for the factory domain. The results for VISA given here were
taken from [Jonsson and Barto, 2006]. 51

4.4 Results for the mountain car domain. 51
4.5 Results for the grid world with 62500 primitive states. Since we do not

have results for the optimal policy, the average deviation and percent
error reported are the average deviation and percent error from the
policy found by HDet. In other words, the value of the policy found
by Det is, on average, 0.2 and 0.14% less than that found by HDet. 51

A.1 The dynamics of the factory domain 78

12

Chapter 1

Introduction

1.1 Motivation

"Space is big. You just won't believe how vastly, hugely mind-bogglingly big it is. I
mean, you may think it's a long way down the road to the drug store, but that's just
peanuts to space." The Hitchhiker's Guide to the Galaxy, Douglas Adams [Adams,
1979]

Space is big. More importantly in this context, it has a huge number of variables
associated with it. There are, at a rough estimate, 10s80 atoms in the universe [Con-
tributors, 2008] and, moreover, a change to any one of these atoms has the potential
to change every other one.

Of course, a robot will not care about the vast majority of those atoms. In fact,
our robots will not be making decisions at the atomic level. The question is, at what
level does the robot make decisions? Somehow, to act intelligently in the world, a
robot must decide which variables currently matter while not losing track of those
variables that may matter in the future. Specifically, we have two key issues: a large
number of variables and an uncertainty about how the variables affect each other.

Markov decision processes (MDPs) have been widely used as models in this sort of
problem, because they are capable of representing uncertainty. An MDP consists of
a set of states, a set of actions that specify non-deterministic transitions between the
states, and a reward function that gives the reward associated with taking an action
in a given state. Consider, for example, a robot in a search-and-rescue job. Its task
is to rescue people trapped in a burning building. We can describe this problem as
an MDP where the "states" describe the current locations of the robot, the people to
rescue, and the fire. The "actions" describe the robot's dynamics and abilities it
can move around the building, pick up people, and attempt to block the propagation
of the fire. However, because the robot's wheels and motors are not perfect, these
actions can only describe non-deterministic transitions; how much the robot moves
when taking the move-forward action, for example, is uncertain. The "rewards" are
high for rescuing people and low for leaving a person trapped.

An optimal solution to this problem exists there is some way of going about
the rescue task that minimizes the time it takes and the risk that anyone will remain

trapped. However, consider trying to solve for this solution. Even if the fire starts in
only one, known room in the middle of the building, if its propagation is uncertain, the
number of possible configurations for it, and hence the number of states, is quickly in
the trillions. By the time the robot decides what action to take in all of these states,
there will be little point.

Therefore, consider dividing the building into 20 smaller regions, solving for the
optimal solution within each region, and then solving for a solution for moving between
the regions. Once we know the value of each region and how difficult it is to transition
between them, we can solve for the order in which to visit the regions. This strategy
considerably reduces the computation time; the number of possible configurations in
20 small, non-interacting regions is much less than the number in one, large area.

However, an even better approach is to somehow first decide the order in which
to visit regions and then solve for what to do within each region. Now the robot can
solve the second region while it is rescuing the people in the first region. In addition,
the robot solves fewer problems involving moving from one region to another. In
our first method, it had to solve for how to move from each region to every adjacent
region. In this method, it only has to solve for how to move from one region to the
next region in the overall plan. A strategy where we first make an upper-level plan
and then solve the lower-level pieces is a "top-down" strategy.

In dividing the world this way, we have, in essence, proposed a 2-level hierarchical,
top-down solution for the problem. Hierarchical decomposition is widely believed to
be the key to solving large planning problems. However, creating and solving these
hierarchies has proved challenging. In the above example, we arbitrarily divided the
building into 20 regions to create our hierarchy. We had no way of knowing in advance
if 20 regions would be too many regions and degrade the quality of the solution or too
few and take too long to solve. In addition, although the computational advantages of
the top-down approach are clear, it is more difficult to get an accurate solution using
this method because there is very little information about the value of the high-level
states and actions.

In this thesis, we discuss how to create and solve hierarchical models of Markov
decision processes. Our goal is an approximate, efficient, top-down algorithm.

1.2 Related Work

In this thesis, we focus on solving MDPs where we are given the entire MDP model in
advance (for a more complete discussion of MDPs see Chapter 2). However, a closely
related problem is the problem of reinforcement learning ([Russell and Norvig, 2003],
chapter 20). A reinforcement learning problem can often be stated as an MDP but,
in this problem, the agent is not given the transition and reward model. Instead, it
acts in the world, receiving rewards, and learns what to do based on what sequences
of actions produce high rewards. Reinforcement learning problems and solving MDPs
are related problems since reinforcement learning can be broken down into creating a
transition and reward model and then solving it. Therefore we discuss work relating
to both here.

Several approaches have shown that an appropriate hierarchical decomposition
can provide considerable speed-up in solving an MDP or doing reinforcement learn-
ing. For example the options framework proposed by [Sutton et al., 1999] allows
a user to define macro-actions called "options" and then solves each option indi-
vidually. Similarly [Dietterich, 1998] presents the MAXQ decomposition, which de-
fines a hierarchy of sub-tasks. In another approach [Parr and Russell, 1997] divide
the MDP state space into loosely coupled groups of states and solve each of these
sub-problems separately. Other, similar approaches to solving MDPs or doing rein-
forcement learning are presented in [Parr and Russell, 1997; Hauskrecht et al., 1998;
Lane and Kaelbling, 2002].

Finding an appropriate hierarchy automatically, however, has proved challenging.
[McGovern and Barto, 2001] present an algorithm that defines options by finding
"bottleneck" regions in a space. The example they give is that of a room with a door;
the door is a bottleneck and a good sub-goal is to reach the door. [Simsek et al., 2005]
define sub-goals similarly but use local cuts rather than diverse density to identify
these goals. [Digney, 1996] takes a slightly different approach and defines sub-goals
as states that are visited frequently or states that have a high reward gradient.

However, all of the above approaches to learning hierarchies operate over a rela-
tively long time-scale, as the agent has to learn the world dynamics in the process,
making this problem substantially more difficult than simply solving an MDP. The
expectation is that the work associated with learning the hierarchy will pay off over
the course of solving several related problems in the same or similar domains. Our
goal, however, is somewhat different. We want to be able to construct and solve the
hierarchical model in less time than it would have taken to simply solve the original
flat model.

[Bakker et al., 2005] presented an approach to this problem, which works well on
two-dimensional navigation problems but does not seem to generalize well to other
types of domains, sometimes failing to find any strategy, even a suboptimal one,
for an achievable goal. The work of [Mahadevan, 2008] finds a multi-scale basis for
representing value functions in MDPs and other problems; this basis can serve as an
effective representation for solving the MDP efficiently, but is not hierarchical in the
same sense as the other methods discussed here.

Other approaches attempt to utilize the structure of a factored MDP. Factored
MDPs are specified using Boolean state variables that can be either true or false. For
example, some of the state variables in the example in Section 1.1 might be at-roomi,
at-room2, personl-rescued, etc. The transition matrix of a factored MDP can be
represented by a dynamic Bayesian network (DBN) [Boutilier et al., 1995] (for a
background on DBNs see [Russell and Norvig, 2003], section 15.5). Specifying MDPs
in this way allows the creation of very large MDPs. By listing only 40 state variables,
we can create an MDP with over one trillion states. These types of MDPs can be
hard to work with because they are so large, but they also have more structure than
an MDP where the transition matrix is explicitly written out.

One approach to creating hierarchical factored MDPs is to try to find a "reduced"
MDP [Dean and Givan, 1997; Givan et al., 2003]. The states of the "reduced" MDP
are clusters of states of the original MDP that have identical dynamics. These clusters

can then themselves be treated as states of an MDP. If the reduced MDP is signifi-
cantly smaller than the factored MDP, it can be solved by general MDP techniques.
We discuss this idea in Section 2.5. [Dean et al., 1998] and [Kim and Dean, 2002]
extended this idea to MDPs with a large action space as well as a large state space.

Often, however, finding the reduced MDP is intractable or the reduced MDP does
not have significantly fewer states than the original MDP. [Dean et al., 1997] relax the
idea of the reduced MDP, allowing clusters of states that have only e-close dynamics.
[Kim and Dean, 2001] take this one step farther, showing how to average the transition
probabilities and rewards in a non-homogeneous cluster to create a hierarchical model.
However, their algorithm is a costly one, requiring the computation of an optimal
solution for the current model at every iteration.

Reduced MDPs are not the only hierarchical models of factored MDPs. Jonsson
and Barto's VISA algorithm [Jonsson and Barto, 2006] extends the option framework
to factored MDPs. They do a causal analysis on the transition DBN of a factored
MDP to to define temporally-extended actions (options) that cause specific state
variables to change in value. This algorithm requires that there be at least one
instance of one-way causality in the state variable influence graph.

The Hi-MAT algorithm proposed by [Mehta et al., 2008] discovers MAXQ hier-
archies for factored MDPs. These hierarchies can be costly to find, however, so the
real usefulness of them is in transfer learning where we hope that a hierarchy for one
problem can help the algorithm learn a hierarchy for a similar problem.

In this thesis, we will present an algorithm, HDet, for both enumerated-state
MDPs where the states are fully listed and for factored MDPs. This algorithm incor-
porates a fast clustering routine that can be repeated for every new problem, as well
as a solver that returns an accurate, although possibly sub-optimal, solution.

1.3 Objectives

Consider again the problem of Section 1.1. In this problem, we faced a trade-off
between computation time and accuracy. An optimal solution to the problem did
exist, but finding it would have taken far too much time. Therefore, we settled for a
less accurate, but more timely solution.

We also touched on the problem of creating a hierarchy. In the example, we
arbitrarily divided the building into 20 sub-regions. Was this a good decision? Was
there a more natural way to divide the building? A way that would work better with
the solution method we used? There probably was. However, finding that better
hierarchy would require computation time that we were previously using to solve the
hierarchy. As discussed in Section 1.2, much work has focused on creating hierarchies
that can be used for multiple problems [McGovern and Barto, 2001; Simsek et al.,
2005; Digney, 1996; Dean and Givan, 1997; Kim and Dean, 2001; Mehta et al., 2008],
but less has focused on clustering algorithms that must be efficient enough to be re-
run for every problem. As well as a balance between computation time and accuracy,
we also need a balance between the time it takes to create the hierarchical model and
the time it takes to solve it.

Lastly, we considered the difference between solving a problem bottom-up and top-
down. A bottom-up solution, the first type of solution we proposed in the example,
computes all of the possible paths at the lower levels and then uses that information
to make plans at the upper levels. This type of solution may be more accurate, but
is also significantly more time-consuming. A top-down solution, however, creates a
top-level plan first and then solves only the lower-level pieces that are necessary to
implement this plan. This type of planning is fast, but can introduce inaccuracy
because the information available while making the high-level plan is limited. The
algorithm proposed by [Bakker et al., 2005] is a top-down algorithm, but there are
many conditions under which it produces a highly inaccurate solution.

To summarize, our goals in this thesis are:

* An approximate algorithm for creating and solving hierarchical MDPs. Finding
an optimal solution for a large MDP can be intractable. In addition, in many
cases an optimal solution is not necessary; we do not always need the absolute
shortest path to a goal, just a path that gets there reasonably quickly.

* An efficient algorithm for creating hierarchical MDPs given a flat MDP. We
want to be able to create and solve the hierarchical MDP in significantly less
time than it would take to find an optimal solution for the flat MDP. This
requires an efficient algorithm for creating the hierarchical MDP, as well as one
for solving it.

* A strategy for solving the hierarchical MDPs top-down without too much reduc-
tion in accuracy. Having a top-level plan saves significant computation at the
lower levels because only the transitions necessary to the top-level plan need be
considered.

1.4 Outline of Approach

In this thesis, we present the algorithm HDet for creating and solving hierarchical
MDPs. We will be discussing this algorithm in detail, but here we give an overview
of the basic ideas.

We begin by designing our solver algorithm. The key to the algorithm is that
we assume that, at the top levels of the hierarchy, transitions are deterministic. For
example, consider the task of shopping for food. A person may not know how many
tries it will take him to unlock his car, but he can be almost certain that he can
drive from his home to the grocery store. The low-level actions (unlock the car)
are non-deterministic, but the high-level actions (drive to the grocery store) are not.
Therefore, in our solver, we consider non-determinism at only the bottom level.

Once we have designed the solver, we can decide what properties are necessary
for our clustering algorithm. There are two main approaches to clustering MDPs:
clustering states that are "near" to each other or clustering states that are "look"
alike. In the first, states that can transition easily to each other are put together.
For instance, in the shopping example, we could cluster together the state before the

car was unlocked and the state after the car was unlocked, because we know we can
transition easily from a locked car to an unlocked car.

The second method is to cluster states for which actions have similar outcomes.
In this case, we could cluster together the state where the person has bought one
pound of sugar and is leaving the store and the state where the person has bought
one pound of flour. Assuming the task is just to get home with the groceries, whether
the grocery bag contains flour or sugar is immaterial, but it would be very difficult
to transition between the states.

We will use the first method for clustering. We assume that upper-level transitions
are deterministic, which means that we want transitions from one group of states to
another to be highly probable. Therefore, whenever we take an action, it should land
us either in the current cluster or in the cluster for which we are aiming. Thus we
need clusters of states that transition easily among themselves.

Our clustering method is also designed to work with the solver to create an accu-
rate solution. Since the solver works top-down, we need to be sure that it is possible
to follow a top-level plan at the lower levels. Therefore, we create a clustering algo-
rithm that assures that, if a state could reach a goal state under an optimal plan, it
can reach the goal state under the top-down plan produced by the solver.

In Chapter 2, we give an overview of MDPs. We present two types of MDPs:
enumerated-state MDPs and factored MDPs. Enumerated-state MDPs require the
user to list every state of the MDP, while factored MDPs can be specified with an
input logarithmic in the size of the MDP.

In Chapter 3, we discuss the form of a hierarchical MDP and give an overview of
the clustering and solving algorithms. In Chapter 4, we present the complete algo-
rithm for enumerated-state MDPs and results on several well-known problems. We
discuss some of the surprising results and give a run-time analysis of the algorithms.

In Chapter 5, we extend these algorithms to factored MDPs. As we discussed,
these MDPs are usually more difficult to solve because they can be very large. We
explain how we modify our basic clustering and solving algorithms to work with the
factored representation and present some preliminary results of our implementation.
We conclude in Chapter 6 with a discussion of future work.

Chapter 2

Markov Decision Processes

This thesis considers two issues in planning: uncertainty and a large number of vari-
ables. To model uncertainty, we model the world as a discrete Markov decision process
(MDP). In this model, we consider the world to consist of a set of states, among which
we can transition using a set of available actions. However, we assume that the ac-
tions are not necessarily deterministic: in a given state, a given action might produce
a different next state every time.

Modeling the world as an MDP makes two key assumptions:

* Markov Assumption: We assume that the world is Markovian, meaning that
the current state depends only on the previous state and not on all history.

* Fully Observable: We also assume that the world is fully observable, meaning
that at any time we know our state with complete certainty.

In this thesis we will also make two more assumptions:

* Discreteness: We assume the world can be modeled by a discrete set of states
and actions.

* Known Dynamics: We assume that the agent is given the full MDP model
and therefore knows the world dynamics ahead of time.

These assumptions, especially the fully observable and discrete assumptions, may
not apply to all times and places, but there are a number of problems for which they
are reasonable approximations. For example, if we have a robot interacting with a
human, the human may give the robot enough information for the robot to know its
own state completely even though the results of its actions are uncertain.

In this chapter, we give a basic background on MDPs. We formally define MDPs,
explain the value iteration algorithm, and discuss different ways of describing MDPs.

2.1 Definitions

An MDP is formally defined as the tuple M = {S, A, T, R, G} [Russell and Norvig,
2003]. Specifically it consists of

* S: A set of states S = {sl, s2, ..., SN}.

* A: A set of actions A = {al, a2, ..., aM} that determine transition probabilities
among the states.

* T: A transition function T: S x A x S -+ R specifying the probability that a
certain action will transition one state to another.

* R: A reward function R : S x A --+ R giving the reward of taking any action in
any particular state.

* G: A subset of the states G = g1, g2, gP. Goal states are absorbing so that
T(gi, a, s) = 6,,,s where 0 < i < P and 6g,,s is the Kronecker delta.

In this thesis, we concentrate on negative MDPs. They have the property that,
for any goal state g E G, R(g, a) = 0 for all actions a and that for any other state
s ' G, R(s, a) < 0. Since we have a set of goal states, we can therefore solve
the problems under the undiscounted total reward criterion, making it a 'negative'
MDP [Puterman, 1994], also sometimes referred to as a 'stochastic shortest path
problem' [Bertsekas, 1995]. As we will show later, all MDPs can be transformed into
an equivalent negative goal MDP so this is actually a general formulation.

The solution to an MDP is a policy w which specifies an action 7(s) for every state
s. The optimal policy is the policy that specifies the action for each state that will
maximize the future expected reward of that state. Formally, the optimal policy 7*
satisfies [Russell and Norvig, 2003]

7* = arg max E R(st, (st)) t=. (2.1)

Finding an optimal policy is a non-trivial problem. Since the model is non-
deterministic, for each state the policy specifies not just a single state sequence,
but many possible sequences. Specifically we can define a value function VT(s) that
gives the future expected reward for a state s under policy 7:

Vr(s)= E R(st, T(st))T, so s

= R(s, T(s)) + T(s, (s), s')Vr(s'). (2.2)
s'ES

The optimal value function is then the one defined by

V*(s) = max R(s, a) + T(s, a, s')V*(s')] . (2.3)
aeA

Equation 2.3 is known as the Bellman equation. An optimal policy is any policy T*
such that V"* = V*. Note that there are IS equations of the form of equation 2.3,

Algorithm 1 Valuelteration(mdp, e)

1: Vs E S, V(s) <- 0

2: 6 -- 6 + 1

3: while 6 > c do
4: 6 -0

5: for all s in S/G do
6: v -- maxaEA [R(s, a) + sS T(s, a, s')V(s')]
7: if JV(s) - v| > 6 then
8: 6 - |V(s) - v
9: end if

10: V(s) -- v

11: end for
12: end while
13: return V

giving us ISI equations and ISI unknowns (considering V(s) to be an unknown for each
s E S). We would like to be able to solve these equations for V(s), but they contain
the non-linear "max" operator. Therefore, there is no straightforward analytical way
of solving the system of equations. Instead, an optimal solution can be found using
the value iteration algorithm.

2.2 Value Iteration

Value iteration ([Russell and Norvig, 2003], section 17.2) is an iterative method for
finding an optimal value function for an MDP. With some slight book-keeping, this
algorithm also leads to an optimal policy for the MDP.

The algorithm is initialized by setting the value of each state to an arbitrary value
(in practice, usually 0). We then iterate through every non-goal state of the MDP
updating the value function using a Bellman update:

V(s) -- max [R(s, a) + E T(s, a, s') V (s') . (2.4)
aEA L s'eS

We repeat this process until we reach an equilibrium. Pseudo-code for the algorithm
is shown in Algorithm 1.

It can be shown that value iteration converges to the optimal solution for a nega-
tive MDP provided that the action space of the MDP is finite and we begin with V - 0
([Bertsekas, 1995], section 5.4). We give an outline of that proof here, beginning with
some notational definitions.

Let V be a value function for a negative goal MDP M = {S, A, T, R, G}. Then,

for s E S, we define:

U(V)(s) max
aEA

R(s, a) +
s'ES

T(s, a, s')V(s')]

Vo(s) =0
V(s)= lim Uk(Vo)(s).

k--oo

(2.5)

(2.6)

(2.7)

Note that, on ending value iteration, we have something close to V. Therefore, we
must show that for negative goal MDPs

V00 = V* (2.8)

Lemma A: The function U is monotonic so that if J and J' are functions such that
J(s) > J'(s) for all s, U(J)(s) > U(J')(s) for all s.

Proof: Since J(s) > J'(s) for all s, for all actions a we must have that

R(s, a) + T(s, a, s')J(s') > R(s, a) + E T(s, a, s')J'(s')
s'ES s'ES

and therefore that

max R(s, a)

Corollary A:

+ E T(s, a,
s'ES

s') J(s')] > max
aA

R(s, a) + 5 T(s, a, s')J'(s')
s'ES

(2.10)

For a negative MDP M = {S, A, T, R, G}, for all s E S and all k

Uk(Vo)(s) > V*(s).

Proof: We proceed by induction.

Base Case: Since R(s, a) is strictly negative for non-goal states (recall that V*(g) =
Vo(g) = 0 for g E G) then for all s E S

Vo(s) > V*(s). (2.12)

Induction Step: Assume that for some k > 0, Uk-l(Vo)(s) > V*(s). Then, by
Lemma A, U(Uk-I(Vo)(s)) 2 U(V*(s)). Now note that by the definitions of U and
V* given in equations 2.5 and 2.3 respectively, we have that U(V*) = V* ([Bertsekas,
1995] proves this another way in chapter 5, proposition 8). Therefore, Uk(Vo)(s) >
V*(s).

If value iteration converges, it converges to the optimal solution.

(2.9)

(2.11)

Lemma B:

Proof: If value iteration converges, then we must have that

(2.13)

since this is the criteria for convergence. Firstly note that by Lemma A and Corollary
A,

Vo > U(Vo)() > U2(Vo)(s) > ... > Uk(V)(S) > ... V*(s) (2.14)

which, in the limit, gives that

lim Uk(Vo)(s)= V(s) > V*(s). (2.15)
k-- oo

However, since we assume value iteration converges, there is a policy 7r
are using to evaluate V when we run value iteration that yields V,.
by the definition of the optimal value function we must have

Thus

V*(s) = V(s)

and if value iteration converges, it converges to the optimal solution.

the one we
Therefore,

(2.16)

(2.17)

Lemma C: If the action set A is finite for all s E S then value iteration converges.

Proof: We proceed by contradiction. Assume that for some state s*

(2.18)

Let ak be the action that maximizes

R(s *, a) + E T(s*, a, s')Uk(Vo)(s ')

sl E S t

for some k. Then, since A(s*)| is finite, there must exist some a* E A such that
a* = ak for all k in an infinite subset K of the positive integers. Therefore, for all
kEK

Uk+(Vo)(s) = R(s*, a*) + T(s*, a*, s')Uk 0)(s'). (2.20)
s' ES

Since K is infinite, we can take the limit as k - oc giving us

Vo(s*) = R(s*, a*) + 1 T(s*, a*, s')Voo(s').
s'ES'

(2.21)=max (s*,a') + T(s*, a',s')Vo(s)
a' EA

s' ES

Uk+1(Vo)(s *) = max
aEA

(2.19)

Voo(S) = U(VO)(S)

V*(S) > Vo(o).

V(s*) > U(V)(s*).

where equation 2.21 follows by the definition of a*. Therefore, we have that V(s*) =
U(V,)(s*) contradicting Equation 2.18 and, if the action set is finite, value iteration
does converge.

Theorem: If the action set A of a negative goal MDP is finite for all states, then
value iteration converges to the optimal solution.

Proof: This follows directly from Lemmas B and C.

[Bertsekas, 1995], Proposition 6, Chapter 7 also shows that, if every state can reach
a goal state with probability E in m steps, the rate of convergence of value iteration
is linear in (1 - e)1. We can bound m above by S I giving that, if we require that
value iteration algorithm reach an error of no more than 6, it should converge in

Time(iteration) = O(IS| logl_, 6). (2.22)

which is linear in the number of states. For every iteration, we may need to look at
IS12 states so that value iteration scales cubically with the size of the state space

Time(VI) = O(IS 3). (2.23)

2.3 Discounted MDPs vs Goal MDPs

In this thesis we work with negative goal MDPs, meaning that we specify certain
goal states and require that the reward for non-goal states be strictly negative. This
describes a set of problems for which the agent has a specific goal it needs to obtain.
However, there is another type of problem we may want to solve: namely the problem
of "live long and prosper" where there is no set goal state, and we need to find a
good policy for a world that goes on forever. In this world we do not necessarily
restrict the reward function to be negative. For this type of MDP where there are
no longer guaranteed to be absorbing states, however, the value function as defined
in equation 2.2 can become positive or negative infinity for all states. Therefore we
introduce the idea of "discounting", making states further in the future have less
impact on the value of the current state. Specifically we define a discount factor
y < 1 and define the value function to be

V'(s) = R(s, 7r(s)) + y T(s, X(s), s')V(s'). (2.24)
s' ES

The Bellman equations are then

V*(s) = max R(s, a) + -y T(s, a, s')V(s')] (2.25)
asA s/'Es

and we can do value iteration on these equations as before. Note that equations 2.25
and 2.3 are identical if we set y = 1.

However, although discounted MDPs appear to be very different from goal MDPs,
we can show that we can turn any discounted MDP into a negative goal MDP. We
follow the proof outlined in [Bertsekas and Tsitsiklis, 1996], pgs 39-40 although we
take the notion of equivalence from [Bonet and Geffner, 2009].

Let V! be the value function for an MDP M under policy 7. We consider two
MDPs R and M to be equivalent if they have the same set of non-goal states and if
there are two constants, a and 0, such that for every policy 7r, V;(s) = aV (s) + /.
That is, R and M are equivalent if their value functions are related by a linear
transformation. A transformation U is equivalence-preserving if U[M] and M are
equivalent for MDP M.

Notice that, since linear transformations preserve order, if R and M are equivalent
they will have the same optimal policy. Therefore, we just need to show that every
discounted MDP has an equivalent negative goal MDP.

Firstly, note that adding a constant to the reward function is an equivalence-
preserving transformation. Let D be a discounted MDP with reward function R(s, a)
and let D + C be the same MDP except with reward function R(s, a) + C. Then

Vs(s) = R(s, 7r(s)) + -y T(s, r(s), s')VL(s')
s'ES

=Vj(s) + = R(s, ir(s)) + + T(s, 7w(s), s')VL3(s')
s'ES

= R(s, -(s)) + C + y T(s, -r(s), s') (V(s') + 1) (2.26)
s'ES

where the last step is valid because IE,,s T(s, 7(s), s') - 1. Now note that if we
define W"(s) = Vj(s) + then

s'ES

But equation 2.27 is the Bellman equation for VD+c(s) in D + C. Therefore we must
have that V+c(s) = VL(s) + so D and D + C are equivalent.

Now we show that eliminating the discount factor is in fact not only possible but
an equivalence-preserving transformation. Consider a negative MDP M with discount
factor y. We transform it to an MDP M' in the following manner:

* We add to the set of states a single, absorbing goal state g with reward 0. Let
SM be the set of states of M and SM, be the set of states of M'.

* For each state s in SM, we set TM, (s, a, s') = 7TM(s, a, s') if s' E SM and
TM,(s, a, g) = 1 - y. Since g is absorbing TM,(g, a, s) = 6g,s. Note that TM, is
normalized.

Stay 1.0
Move 1.0

Stay 0.1
Move 0.1

Stay 0.1
Move 0.1

Move 0.8 Move 0.72

Stay 1.0 Stay 1.0 Stay 0.9 (Stay 0.9
Move 0.2 Move 0.2 Move 0.18 Move 0.18

Move 0.8 Move 0.72

Figure 2-1: Converting from an MDP with a discount factor of 0.9 (left) to a goal
MDP (right).

This transformation is shown in Figure 2-1.
Now consider the Bellman equation for V, (s):

A,,(s) = R(s, 7r(s)) + 3 Tp, (s, (s),s') 7,,,(s')
s'ESM,

R(s, w(s)) + y 3 TMl(S, w(s), s')1,(s') + Tavr(s, w(s), g)V,(g)
s'ESM

= R(s, (s)) + y TI(s, 7(s), s')V/,(s') (2.28)
s' ESM

where equation 2.28 follows because, since g is a goal state with reward 0, V, (g) = 0.
Therefore, for states s in SAl, V, (s) = VL(s) and M and M' are equivalent.

Thus, we can transform a discounted MDP D into an equivalent negative goal
MDP M by

1. Subtracting a constant C from the reward function where C is a constant large
enough that RD(S, a) - C < 0 for all s E SD and a E AD. Let this MDP be
D - C.

2. Eliminating the discount factor from D - C by adding an absorbing goal state
as discussed above.

Thus the class of MDPs we consider is actually the most general class of discrete
MDPs. Note that there are also a set of MDP problems with continuous state and/or
action spaces. In order for our algorithms to work for those problems, the state
and action spaces would need to be discretized. However, our methods apply to any
discrete MDP.

2.4 Enumerated-State and Factored MDPs

There are many ways of defining MDPs. In this thesis, we focus on two: enumerated-
state MDPs and factored MDPs.

Enumerated-State MDPs are defined by listing the full action and state spaces.
For example, a navigation problem might be described this way by listing all of the
possible locations in the problem. The transition function for such an MDP is usually
specified as a sparse matrix. For this type of definition, algorithms can be polynomial
in the number of states and actions in the MDP.

Factored MDPs are another way of specifying MDPs. A factored MDP consists
of n state variables, each of which can be either true or false. Although there are
solvers that work with both factored state and action spaces [Dean et al., 1998;
Kim and Dean, 2002], in this thesis we still specify the actions by listing them. The
transition function can be specified as a dynamic Bayesian network [Boutilier et al.,
1995], although we never use an explicit representation of it.

Factored MDPs are useful because MDPs with huge state spaces can be repre-
sented very compactly. The hope is that we can take advantage of this compact
representation to solve the MDP efficiently. Since, in this case, the number of states
in the MDP is exponential in the input size, we require algorithms that use time
and space polynomial in the number of state variables (logarithmic in the number of
states).

2.5 Minimized-State MDPs

It is clear from Section 2.2 that it is possible to solve MDPs optimally using value
iteration. However, value iteration is prohibitively slow on large MDPs. Therefore,
we present a method for "shrinking" the state space of MDPs.

Minimized-state MDPs were proposed by [Dean and Givan, 1997]. A minimized-
state MDP has a state space that is a partition of the state space of the original MDP
and basically acts like an MDP itself, but with fewer states. Here we give an overview
of converting an MDP to a minimized-state MDP, beginning with a few definitions.

* Stable: Consider a partition P of the state space S. We call a block C of this
partition P stable with respect to a block B of P and action a if and only if
every state in C has the same probability of being carried into B by action a.
The block C is stable if it is stable with respect to every block in P and every
action.

* Homogeneous: A partition P is homogeneous if every block is stable.

[Dean and Givan, 1997] show that for a given starting partition of the state space,
P, there exists a unique coarsest homogeneous partition, which we will refer to as
MM(P). We refer to the blocks of MM(P) as the "minimized states of P". The

starting partition of interest is the partition PR, which partitions states on their
reward values. Specifically, in any block of PR, for any action a, all states in that
block have the same reward value. Since MM(PR) is a refinement of PR, we know
that this property will hold in MM(PR). Therefore, MM(PR) is a partition of the
state space such that we can define reward and transition functions for the partition,
considering each block of the partition to be a "state". Thus MM(PR) acts itself as
an MDP and, moreover, the optimal solution to MM(PR) is the optimal solution to
the original MDP. We refer to MM(PR) as a "reduced MDP".

Starting with any partition P, we can find MM(P) by iteratively identifying any
block B E P that is not stable with respect to some block C E P and action a and
splitting it into sub-blocks that are stable with respect to C and action a. We refer
to the action of splitting block B in partition P to make it stable with respect to
C and a by the operator SPLIT(B, C, a, P). When no unstable blocks are left, the
algorithm terminates. Moreover MM(P) is unique with respect to P; the order in
which the splits are done has no effect. The number of splits is upper bounded by
twice the number of blocks in MM(P).

The hope is that the number of blocks in MM(PR) is significantly less than
the number of states in the original MDP, allowing us to run value iteration in a
reasonable amount of time. However, there is no guarantee that the number of blocks
in MM(PR) is less than the number of blocks in the original MDP (consider, for
example, an MDP where every state has a different reward value). In addition, the
SPLIT operation is non-trivial and may result in representations of the partition
that expand exponentially in size. Therefore, although reduced MDPs can be used
to solve large MDPs optimally in some cases, they are not a general solution.

Having defined MDPs and discussed basic methods for solving them, we will define
hierarchical MDPs and present an overview of our algorithm HDet in the next chapter.

Chapter 3

Creating and Solving Hierarchical
Markov Decision Processes

In this chapter we discuss various methods for creating and solving hierarchical

Markov decision processes (HMDPs). We begin by defining our hierarchical model,
then describe our process for solving it and, lastly, discuss how to create it.

3.1 Hierarchical Markov Decision Processes

Although MDPs can be solved optimally, for large problems value iteration takes an
impractical amount of time. However, for many problems, the optimal solution is not
necessary. Thus we attempt to find an approximate solution quickly by utilizing a
hierarchy.

We construct a hierarchical MDP (HMDP) from an MDP M = {S, A, T, R, G}
represented in one of the ways described in Section 2.4. We will go into more detail
about this construction later in the thesis (see sections 3.3, 4.3, 5.2), but here we
explain the form our HMDP takes.

An HMDP of depth L is a depth-L tree. The leaves of the tree, at level 0, are the
states of the original MDP. Internal nodes of the tree represent (possibly overlapping)
sets of nodes at the lower levels. A diagram of a two level HMDP is shown in Figure 3-
1.

In talking about an MDP, we will use the following vocabulary:

* Primitive state: A state of the original, flat MDP, the leaves of the depth-L
tree.

* Primitive action: An action of the flat MDP.

* Macro-state: A level 1 macro-state is a cluster of primitive states. A level
1 > 1 macro-state is a cluster of level 1 - 1 macro-states. Each non-leaf node of
our tree is a macro-state.

Figure 3-1: A two-level HMDP.

* Sub-state: A sub-state of a macro-state is any direct descendent of the macro-
state. Sub-states may be either primitive states or macro-states. We use the
notation j' E j to indicate that j' is a sub-state of j.

* Goal macro-state: A goal macro-state is a macro-state that has a primitive
goal state g E G as a descendent.

* Macro-action: Macro-actions represent an attempt to transition between macro-
states. For any non-leaf level of the tree with n nodes, we have n2 macro-actions,
one for each pair of macro-states.

One way we may try to represent an HMDP is to represent each level of the HMDP
as an MDP in its own right. At level 0, the leaf level, this is easy: the leaf level is
the original, flat MDP. Now consider level 1 > 0 and try to construct an MDP M1.
At this level, we can define the "states" of M 1 to be the macro-states at level 1, the
"actions" to be the macro-actions, and the "goal states" to be the goal macro-states.
The transition and reward functions, however, are harder to define. In addition, as we
have discussed, as we move away from dealing with primitive states, the world tends
to become less uncertain. Therefore, in this thesis, we will not attempt to model
non-determinism at the upper levels. Rather we will assume that all macro-actions
are deterministic and assign each a transition cost based on the underlying transition
probabilities.

Therefore, each level 1 > 0 of the HMDP can be represented as M' = { S', Al , C', G1}
where S' is a set of macro-states, A' is a set of macro-actions representing transitions

between the macro-states, C' : S' x S' --+ R is a cost function, and G1 is the set of

goal macro-states. At the primitive level M = M = {S, A, T, R, G} is the original
expression for the flat MDP.

3.2 Solving HMDPs

The solver takes as input a hierarchical MDP and a minimum transition probability
e and computes a hierarchical policy r. The policy ir specifies, for each macro-state

at level 1 > 0, a policy, irl , which prescribes behavior for each level 1- 1 sub-state. At

levels 1 > 1, the policy maps each level 1 - 1 macro-state i to some other level 1 - 1

macro-state j, signifying that when the system is in a primitive state contained in the

macro-state i it should attempt to move to some primitive state in the macro-state j.
At level 1 macro-states, the policy is a standard MDP policy, mapping the primitive
states that are children of that macro-state to primitive actions. The solution to the
original MDP can be found in the union of the policies of the level 1 macro-states by
methods that will be explained more fully in Sections 4.2 and 5.4.

Before beginning our discussion of the solver, we give a few definitions.

3.2.1 Definitions

* Adjacent: A primitive state j is adjacent to primitive state i if there exists an
action a such that T(i, a, j) > e.

* Reachable: A primitive state j is reachable from primitive state i if j is adjacent
to i, or if j is adjacent to some state k that is reachable from state i.

* Stranded: A sub-state j' E j is stranded under policy r if it could get to a
goal state under an optimal policy but cannot get to the goal state under the
hierarchical policy r. An example of a stranded sub-state is shown in Figure
3-2.

The solver works in two passes: an upward pass and a downward pass.

3.2.2 Upward Pass

As we mentioned in Section 3.1, we constrain the upper levels of the hierarchy to have
deterministic transitions. In the upward pass, the solver computes the cost matrix for
these transitions. This matrix is composed of real values and, for each level, I < L,
specifies an estimated cost of moving between macro-states i and j at level 1. The
aim is to get a rough estimate of the expected cost incurred to transition between
every pair of macro-states at each level.

First, we consider costs at level 0. Because our actions are stochastic, we could
compute the optimal cost exactly by constructing n MDPs, one in which each of the

Stranded
sub-state

-- - - 1111m~l1 CCC ~Z

Figure 3-2: A stranded sub-state in a two-level hierarchy. The hierarchical policy
is shown by the thick blue lines. The sub-state circled in red is "stranded" because,
although it can actually reach the goal state, it cannot do so following the hierarchical
policy.

primitive states is a goal, and solving for the optimal value function. The resulting
value functions would encode the expected costs to move between each pair of prim-
itive states. Solving each of these MDPs would take as long as solving the original
problem, so this is clearly not a reasonable approach.

Instead, we make a quick approximation that makes the assumption that any ac-
tion a taken in primitive state i with the goal of landing in primitive state j does
in fact make a transition to j with probability T(i, a, j); but that with the remain-
ing probability mass, it stays in state i. If we imagine executing such an action a
repeatedly, then in expectation the number of steps it will take to move to j is

E[steps] = E(1 - T(i, a, j)) k = (3.1)
k=O j T(i, a,j)"

Each of these steps costs -R(i, a). Note that we are changing from (negative) rewards
to (positive) costs (because later we will be solving for minimum-cost paths), which
accounts for the negation. Finally, we can select whichever action would minimize

this cost, in expectation. So, our quick cost estimate is

-R(i, a)
C°(i j) = min .. (3.2)aEA T(i, a, j)

If there is no action a for which T(i, a, j) > e, then j is not adjacent to i, and

Co(i,j) = oo. Note that this does not mean that j cannot be reached from i; just
that it cannot be reached in one step.

Now, for levels 1 > 0, we compute Cl(i, j) for increasing values of 1, by solving
a deterministic shortest-path problem for each pair of level-1 macro-states i and j.

Exactly how we solve this problem depends on the structure of the MDP and will be

discussed in sections 4.1.1 and 5.3.1.

3.2.3 Downward Pass

In the downward pass, the solver actually creates the policy. The solver starts at the

highest level, L, and works down to level 1. The process is the same for all levels

1 > 1, and different for level 1.
The policy in macro-state i at any level 1 > 1 is a mapping 7rI from each level 1 - 1

macro-state i' E i to an adjacent level 1 - 1 macro-state (which may or may not be

in i).
When macro-state i is a goal at level 1 (that is, i E G), then 7rt+(i) = i; that

is, if we are in a state within macro-state i, we should attempt to stay within i and
act to reach a primitive goal state. The single macro-state at the top level L will be

treated this way, as well. Otherwise, when 7rl'+(i) = j -# i, then from macro-state i

we must attempt to move to adjacent macro-state j.
To derive the policy for macro-state i at level 1, we must specify a special set of

level 1 - 1 goal macro-states, G'. This set is defined differently, depending on whether
7r+ l(i) - i or not. If 7l+1(i) = i, the objective in solving for a policy for macro-state

i is to make transitions within macro-state i to goal states that are contained within
it. So, in this case, the set of goal macro-states Gi , will simply be the level l - 1
macro-states in i that have a primitive goal state as a descendant. When 7r+l(i) - i,
the objective in solving for a policy for macro-state i will be to make transitions into
macro-state j* -= 7+1(i). So, in this case, the set of goal macro-states Gi , will be all
level 1 - 1 macro-states j' E j*.

Now, in either case, we can solve a shortest-paths problem, over the macro-states
in i U Gi . We define D' to be the distance from each of these macro-states to the
closest goal state; so Di(g) = 0 for g E G'. How we compute Di(i') depends on the
representation of the MDP, but, assuming for the moment that we can compute it,
the policy is defined over all i' E i as:

fi? i' if i' E G' (3.3)
) argminj, C-l(i',j') + Di(j ') otherwise;

that is, it is the next macro-state on the shortest path to a local goal (based on
the estimated costs Cl-1). Then, we can recursively solve for policies 7r-1 at each

macro-state i'.

Finally, we reach a macro-state i at level 1. The goal set of primitive states, GZ,
is determined as described above, depending on whether r 2 (i) = i or not. But at
level 1, rather than using the expected costs to solve a shortest-paths problem, we
wish to take the actual transition probabilities over the primitive states into account.
In order to do this, we have to construct an MDP that represents the problem of
moving from macro-state i to macro-state 7r2(i). Most of the transition probabilities
and reward values have already been defined in the primitive MDP. We treat all local
goal states in Gi as zero-reward absorbing states. In addition, we have to model the
case in which the system would make a transition to a state that is neither a state in
Gi nor a state in macro-state i itself. For the purposes of deriving a policy for this
macro-state, we will represent all of these other states with a single special out state.
Its transition probabilities are defined, for each primitive state i' E i, and primitive
action a, as

T(i',a, out) = 1 - T(i', a, j'). (3.4)
j' i UG i

The reward associated with the out state is taken to be the negation of the weighted
average of estimated distances to the goal, at level L-1, of the macro-states associated
with the primitive states that comprise out. An additional "non-compliance" penalty
(NCP) is also charged since our estimates of the distance-to-goal at level L -1 contain
less information than we have about the primitive states in i and Gi . Without this
penalty, an oscillation can occur where a primitive state in i' E i opts for the out
state with an action that lands it with high probability in primitive state j while j
also opts of the out state with an action that lands it, with high probability, back in
i'. Solving this MDP will yield a value function and policy defined on all i' E i.

When the downward traversal over the entire HMDP tree has been completed, we
will have a policy 1' defined on all primitive states s from the original MDP; we can
use that policy to give us an approximate solution to the HMDP.

3.3 Creating HMDPs

The other point we need to address is how we actually create the hierarchical model
of the MDP. Specifically, we discuss how we cluster primitive and macro- states to
create the macro-states of the HMDP.

We use a clustering technique that guarantees that the hierarchical policy will
not "strand" sub-states. Consider, for example, the situation shown in Figure 3-2
where the hierarchical policy requires that all sub-states of macro-state So1 go through
sub-states of S1. One of the sub-states of S1 , however, is disconnected and cannot
reach S1. This sub-state is a "stranded" sub-state one for which the solver would
therefore conclude that there was no possible policy.

In essence, we want a clustering algorithm that guarantees that, if a state can
reach a goal state under the optimal policy, it will also be able to reach a goal state
under the solver's hierarchical policy. We do this by adopting the following principle:

Clustering Principle: There must exist some hierarchical policy on the output of

the clustering that strands no sub-states.

The exact clustering algorithms we use to accomplish this principle depends on the

representation of the MDP and are discussed in Sections 4.3 and 5.2.

3.4 Summary

In the next two chapters, we will expand this algorithm into an algorithm for enumerated-

state MDPs and an algorithm for factored MDPs. For these algorithms to work with

the outline we have given, we need to specify:

1. A method for solving for the cost matrix C' at levels 1 > 0. We do this for

enumerated-state MDPs in Section 4.1.1 and for factored MDPs in Section 5.3.1.

2. A method for solving the shortest path problems to find Di, the distance from
each macro-state to the closest goal macro-state. We do this for enumerated-
state MDPs in Section 4.1.2 and for factored MDPs in Section 5.3.2.

3. A method for turning policy 7r' into a policy for the flat MDP. We do this for
enumerated-state MDPs in Section 4.2 and for factored MDPs in Section 5.4.

4. The clustering algorithm. We do this for enumerated-state MDPs in Section 4.3
and for factored MDPs in Section 5.2.

36

Chapter 4

Enumerated-State MDPs:

Algorithm and Results

In this chapter, we discuss the algorithms and results for enumerated-state MDPs.
In Sections 4.1 and 4.3, we follow the framework outlined in Sections 3.2 and 3.3
respectively, but expand it to explain the algorithms we implemented. We also give
a run-time analysis.

In Section 4.6, we do an empirical evaluation of the performance of our algorithm,
HDet, by comparing it to other algorithms in the field. Because, for the small domains
we are using, it is often possible, if slow, to run value iteration, in many cases we are
able to compare to the optimal results. In addition, we discuss the possibility of using
other, well-known clustering algorithms and show that those algorithms all result in
stranded sub-states.

In Section 4.7 we give an analysis of the results. We focus our discussion on
three issues: the trade-off between computation time and accuracy, the relationship
between clustering time and solving time, and the number of levels in the hierarchy.

4.1 Solver

Recall from Section 3.2 that the solver works in two passes, an upward pass and a
downward pass. In that section, however, we were unable to specify exactly how
we do each of the necessary computations because we had not committed to the
representation of the MDP. Here, we go into detail about the computation of the cost
matrix and the hierarchical policy.

4.1.1 Upward Pass: Calculating the Cost Matrix

In the upward pass, we are attempting to construct a cost matrix giving the approx-
imate cost of transitioning between macro-states. To do this, we use the assumption
discussed in Section 3.2.2, giving the zero level costs shown in equation 3.2:

-R(i, a)CO (i, j) = minR(a)
aEA T(i, a, j)

In Section 3.2.2 we did not specify how we create the cost function Cl for 1 > 0.
For the enumerated-state MDPs, we compute Cl(i,j) for increasing values of 1 by
solving a deterministic shortest-path problem for each pair of level-i macro-states i
and j. For each pair, i and j, we carry out the following procedure:

* For each level 1 - 1 macro-state i' E i, initialize

d(i') = min C'-'(i', j ') (4.1)

This is the one-step distance from each macro-state in i to its closest macro-state
in j.

* Now run Dijkstra's algorithm to compute shortest-path distances for all macro-
states i' E i. This gives us an expected shortest-path distance, d(i'), from each
macro-state i' in i to its closest macro-state in j.

* Return the average of the d(i') over all i' E i, as a measure of average expected
distance from macro-state i to macro-state j.

Remember that equation 3.2 gives us the function Co , allowing us to initialize this
procedure.

At this point, we have pairwise costs between all macro-states at every level.
These costs will be infinite for non-adjacent (ordered) pairs of macro-states. This is
the complete cost matrix.

4.1.2 Downward Pass: Calculating Distance to Goal

In the downward pass we use the cost matrix to give us a hierarchical policy. This
pass has been almost completely laid out in Section 3.2.3.

Recall that at each level 1 > 1, for each macro-state i at that level, we specify
a goal macro-state Gi . At the next level down, we must solve the problem over the
sub-states of i U G'. To do this, we must construct for all i' E i, the distance Di(i')
from i' to the closest sub-state of G'. In this case, constructing Di(i') is simple.
We use the cost matrix found in the upward pass and run Dijkstra's algorithm from
each goal macro-state. The value Di(i') is then the shortest path from i' to any goal
macro-state. Following equation 3.3 gives us the policy for levels 1 > 1.

At level 1, as discussed in Section 3.2.3, we create not another shortest-paths
problem, but a small sub-MDP problem. Because our representation of the MDP
allows us to operate in time polynomial in the number of primitive states, we can use
the original transition and reward matrices to almost completely define this sub-MDP
problem. As explained in 3.2.3, however, the problem is not fully defined because, in
some primitive states, we may have a non-zero probability of transitioning out of the
sub-MDP. In this case, we use the strategy of an out state as discussed in 3.2.3.

4.2 Interpreting the Hierarchical Policy

For enumerated-state MDPs, our clustering algorithm (to be discussed in Section 4.3)
will result in an HMDP with the property that, at each level in the tree, the macro-

states represents non-overlapping sets of nodes at the lower levels. Therefore, each
primitive state of the HMDP belongs to exactly one macro-state at each level and
thus, the policy for the MDP is simply the union of the policies at level 1.

4.3 Clustering Algorithm

In this section we describe the clustering algorithm for the enumerated-state represen-
tation. Although many clustering algorithms exist for enumerated-state MDPs, as we
will show in Section 4.6.2, these algorithms do not guarantee that we will not strand
sub-states. We describe an agglomerative algorithm that adheres to the principle
described in Section 3.3. We begin with a few more definitions.

4.3.1 Definitions

* Adjacent: Recall from Section 3.2.1 that we defined adjacency for primitive
states. Here we extend that definition to macro-states. At level 1, a macro-state
i is adjacent to macro-state j if there exist level 1 - 1 sub-states i' E i and j' E j
such that i' is adjacent to j'.

* Reachable: Note that the definition of reachable given in Section 3.2.1 extends
naturally to macro-states now that we have defined adjacency for them. A
macro-state j is reachable from another macro-state i if j is adjacent to i, or if
j is adjacent to some macro-state k that is reachable from macro-state i.

* Exit State: Sub-state i in macro-state c at level 1 is an exit state of c if there
exists a level 1 - 1 primitive or macro- state j ~' c such that j is adjacent to i.

* E-connected: Macro-state c is e-connected if for all exit states j E c, and
for all sub-states i E c such that i $ j, j is reachable from i. That is, if all
sub-states in the macro-state can possibly transition to any of the exit states.
Note that e-connectedness guarantees that all policies over the macro-states can
be executed successfully; every sub-state in the macro-state can reach all the
adjacent macro-states. Therefore, if our macro-states are e-connected they will
certainly fulfill our clustering principle. A clustering has the property of being
e-connected if all of the macro-states defined by the clustering are e-connected.

4.3.2 Basic Algorithm

Our goal is to create e-connected macro-states. The clustering algorithm is random-
ized, greedy, and heuristic. It takes as input an MDP and Smax, the maximum desired
number of primitive states per macro-state, and Cmin, the minimum number of macro-
states. As we will see in Sections 4.4 and 4.7, both computation time and accuracy

are dependent on S,ax and Cmin. We describe how we create level 1 macro-states
from the primitive states; the extension to creating hierarchies with more levels is
clear.

The clustering algorithm operates by trying to find cycles of nodes within the
transition graph and putting them in the same macro-state. We will show that it
maintains the property of having an e-connected clustering at all times.

The initial clustering, C, puts each primitive state into a separate macro-state.
This clustering is e-connected in a degenerate sense.

We start pre-processing by marking all macro-states containing primitive absorb-
ing states (goal or not) as being finished and we will not try to grow them further.
Until it is no longer possible, we find a primitive state s' and a macro-state c such
that either

1. s' is adjacent to some primitive state s E c and has no non-self transitions to a
primitive state outside c or

2. s' is adjacent to some primitive state s E c and there exists a primitive state
s" E c that is adjacent to s'

and merge s' into c.
Option 1 preserves e-connectedness, because it introduces no new exit states to c,

and we know that s' can reach all exit states because it can reach s and s was already
able to reach all exit states.

Option 2 adds a new exit state to c, s'. It preserves e-connectedness because: (1)
s' can reach all other exit states because it can reach s, which was already able to
reach all other exit states; and (2) all other primitive states can reach s' because they
were already able to reach s" since s" was an exit state.

In some sense, we could see the preprocessing phase as finding cycles of length
2 and putting them into macro-states. Now we will work on finding larger cycles.
Until we do not yet have fewer than Cmin macro-states or we cannot form another
macro-state without creating a macro-state larger than Smax, we:

1. Choose a random starting macro-state.

2. Find a cycle R of adjacent macro-states [Johnson, 1975] starting with that
macro-state.

3. If the sum of all of the sub-states of the macro-states in R is smaller than Sax,
merge all of their sub-states into a single macro-state.

4. Recompute the adjacency relationships.

Merging the macro-states around an entire cycle preserves e-connectedness be-
cause, at the macro level, it is possible to move from any macro-state to any other
macro-state via the cycle, and, because the original macro-states were e-connected,
the entire aggregate macro-state will be e-connected.

4.3.3 Relaxed Algorithm

The above clustering method fulfills our principle, but it is not practical for domains
that have no cycles or only very long cycles. Consider, for example, a domain in
which there is a resource that must be used up to reach the goal: there is no way of
"un-using" the resource so this domain will have very few cycles. E-connectedness is
also stricter than is necessary; we do not need to be able to execute every possible
hierarchical policy, just one that allows all primitive states that can reach a primitive
goal state to do so.

Therefore, in order to handle such domains effectively, we can relax our require-
ment for connectedness. We define a property on a whole clustering (as opposed to
individual macro-states) that will still be sufficient for the correctness of the overall
algorithm.

A clustering C is eg-connected if

* There exists a policy w : C -+ C such that for all c E C where c has as a
descendent at least one primitive state that can reach a primitive goal state,
there exists a goal macro-state g E C such that 7(7(... (T(c)))) = g. That is,
that the policy 7r can reach a goal macro-state from every macro-state containing
a primitive state that could reach a primitive goal state.

* The clustering is 7r-connected. That is, for every c E C that has as a descendent
a primitive state that can reach a primitive goal state, for every i E c, there
exists j E r(c) such that j is reachable from i.

This is a weaker condition than requiring that all macro-states be e-connected, be-
cause it does not require that all policies over the macro-states be executable, but
just that there is some high-level policy that can reach a primitive goal state that can
be executed from every primitive state within the macro-state.

We can extend the clustering algorithm to be more aggressive in its clustering; this
change guarantees that the resulting clustering is eg-connected, but not necessarily
e-connected. To do so, in the beginning we cluster all primitive goal states together
into the same macro-state, which we will refer to as the goal macro-state, and each
non-goal primitive state into its own macro-state. This clustering is eg-connected in
a degenerate sense.

The pre-processing proceeds as in Section 4.3.2, except that we do not allow
any new primitive states to be added to the goal macro-state. Before we begin the
cycle-finding part of the phase, however, we temporarily add connections from the
goal macro-state back to every other primitive state, and recompute the adjacency
relationships among the macro-states from preprocessing. Now, when we find cycles,
we may find one that goes through the goal macro-state, g. This requires us to be
somewhat careful in our aggregation of the macro-states in the cycle, but it also
allows us to be more precise in the size of the macro-states. For the method given
in Section 4.3.2, when we found a cycle of macro-states we had to merge all of the
macro-states in the cycle. By requiring only eg-connectedness however, whenever we
generate a cycle that includes the goal macro-state, we can be more careful about

which macro-states we merge. Specifically consider the "cycle" S1, S2, ..., Sp, g. For
any i < p, we can choose to merge si with as si+l because we know there is a path
from this merged macro-state to the goal macro-state. In doing this, however, we
know only that si can transition to 8 i+1; it is possible that the primitive states of si+l
cannot reach the primitive states of si. Therefore, after aggregating si and si+l to
form macro-state A, we must mark A as adjacent to only those macro-states to which
si+l was adjacent. This allows us to merge together as many or as few macro-states
of the cycle as is need to keep the macro-state size below Smax.

The clustering algorithm with this step added yields an eg-connected clustering.
This clustering guarantees that there exists an upper-level policy on its output with
which every sub-state can comply and still reach the goal macro-state.

We have, in essence, just described the procedure for creating a 2-level hierarchy.
To create a hierarchy with more levels, we simply re-run the algorithm on the macro-
states we have just created. Because clustering takes a binary view of transitions,
either a state can transition to another state or it cannot, we only need to specify
an adjacency matrix for the macro-states. A more refined version of the clustering
that takes into account the magnitude of the transition probabilities is left for future
work.

4.4 Running Time Analysis

The running time of the MDP solver is the sum of the running times of many shortest-
path algorithms plus the value iteration algorithms. Not surprisingly, this is dom-
inated either by the time of the shortest path algorithm and value iteration in the
largest macro-state or by the time of running the shortest path algorithm at level
L - 1. Assuming a single-source shortest path algorithm that runs in O(N 2) time
where N is the number of nodes, therefore, the time bound on the solver for the upper
levels is O(S ax) + O(ISL-112) where Smax is the size of the largest macro-state.

We showed in Section 2.2, equation 2.23 that the run-time of value iteration is
worst-case O(IS13). However, note that in domains with short path lengths to goal
states, value iteration can scale quadratically with the size of the state space (this
will be the case for many of our domains). The time of the solver alone is then

Time(Solve) = O(Sar) + O(|SL-1 2) + O(S ax). (4.2)

It is also necessary to take into account the time bound of the clustering algorithm.
In the preprocessing step, for each macro-state formed, it takes a maximum of SMax
since each time we add a primitive state to the macro-state we may iterate through
each of the primitive states already in the macro-state.

In the second step, cycles in the cluster graph are identified (note that there will
be cycles because in this computation the goal macro-state is attached to every other
macro-state). If most primitive states can reach a primitive goal state, we show
that this can amortize to O(Nc) where Nc is the number of macro-states in the
graph after the preprocessing step. Let a fraction p of the primitive states be able to

U

U

U

U

UI

UI

Figure 4-1: Map of the grid world. The walls are shown in black and the goals in red.

There are 1040 total primitive states, 800 of which are not walls.

reach a primitive goal state. Because we keep track of which macro-states we have

explored, we will explore a maximum of (1 - p)Nc macro-states incorrectly for each

correct macro-state, giving a running time of p(l - p)Ni. Therefore if only a small

fraction of the primitive states cannot reach the goal, this computation is linear in

Nc. Otherwise, the computation is order O(Nc + E), which is upper bounded by

E = O(NJ). Therefore, at worst case (a dense MDP with few two-cycles and many

nodes that cannot reach the goal), this clustering algorithm can be O(ISI2), but in

many problems it should be O(ISI) giving a clustering time of

Time(Cluster) = O(S2,ax) (4.3)

Therefore, the running time of the full algorithm on an MDP with only a few

primitive states that cannot reach the goal is

Time(HDet) = O(S~a) + O(ISL-1|2) ± O(~ax). (4.4)

4.5 Example

Before giving our results, we give an example of how the clustering and solving process

work on a basic, easy-to-visualize domain: a grid world.

A grid world is a two-dimensional, discrete world in the form of a grid. The agent

occupies one square of the grid and it has four actions: up, down, left, and right,

allowing it to move to the adjacent squares. Squares can either be free so that the

agent can move through them or they can be walls. The objective is to get to a goal

square without hitting a wall. Our grid world consists of two rooms connected by a

long hallway and ten goals chosen at random as shown in Figure 4-1. It has 1040

primitive states, 800 of which are non-wall states. For each action, the agent has an

85% chance of successfully reaching its intended square and a 15% chance of failing,
causing movement into one of the three other adjacent squares (each with an equal

probability of 5%). If the agent tries to move into a wall, it has an 85% chance of

remaining where it is and a 5% chance of each of the other adjacent squares. Each

action the agent takes incurs a reward of -1 unless it hits a wall, in which case it

receives a reward of -10. The reward associated with the goal states is 0.

This world is very easy to cluster because all actions are immediately reversible

in one step. Therefore, running only the preprocessing on the domain results in an e-

are in the same macro-states. Walls are black, goals are red (each wall is its ownmacro-state", all goals are clustered together). The high level policy is shown uunder

uuthe figure. The equals sign to the right of a colored square indicates that the macro-state of that color transitions to the macro-state of the color on the right of the equals

sign.

connected clustering with macro-states of size Smax. The clustering with Smax = 100
is shown in Figure 4-2.

Firstly notice that this clustering is certainly eg-connected. Each square of the grid
world is adjacent to its 4-connected neighbors. Therefore the clustering is actually
e-connected except that we put all the goals in the same macro-state.

One interesting point of this clustering is that there are a few very small (even
single primitive state) macro-states. These happen when a primitive state becomes"squished" between two macro-states of maximum size so that neither macro-state can
absorb it. This is an example of where a better stopping criterion for the clustering
would be helpful.

We use this clustering as a two-level hierarchy for the solver. The solver first
creates the determinized model; for primitive states i and j away from the wall, the
cost model is uniformly Ctransit (i, j) the = 1.18. Wof thse this model to construct the
costs at the upper level. For example, the cost of transitioning from the pink area on
the far left to the grey area is the average cost for any pink square to reach any grey
square. Note that this cost is smaller than, for example,cted. Each square of the grpink
and gold regions since the grey region is, on average, closer to the pink. Since the
grey region is also adjacent to a goal while the gold region is not, it's cost-to-goal is
also smaller than that of the gold region. Therefore, the policy of the pink region is
set as "grey". The full upper level policy is shown in Figure 4-2.

Once the upper level policy has been computed, the primitive level policy is solved
for each pair of macro-states. For example, we construct an MDP of just the pink
and grey primitive states, setting every grey state to be a goal state.

Since the clustering is a partition of the primitive state space, it is easy to construct
a flat policy from the hierarchical policy: we just take the union of all the primitive-
level policies.
level policies.

4.6 Results

We implemented the algorithms described in Sections 4.1 and 4.3. In this section we
show some of the results of running this algorithm. We leave discussion of some of
the more surprising results to the analysis section, however.

4.6.1 Domains

We tested HDet on three standard domains:

* Grid World: The dynamics of this domain were described in detail in Sec-
tion 4.5. Recall that there are 4 actions (UP, DOWN, LEFT, RIGHT) with an
85% chance of transitioning to the adjacent square corresponding to the action
and a 5% chance of transitioning to any other adjacent square. We use two grid
world domains: the domain described in Section 4.5 with 1040 primitive states
and a large domain with 62,500 primitive states.

* Factory: The factory domain is a version of the common Builder factored
MDP problem [Dearden and Boutilier, 1997]. Although our algorithm is not
specifically designed to take advantage of a factored structure, we can solve
factored domains by expanding out the primitive states. The factory domain
has only 1024 states so expanding out the primitive states and specifying the flat
transition matrix is possible. We use this domain because it allows us to move
away from a two dimensional world and shows that the algorithm performs well
even in domains that do not have a grid structure.

In this domain, the agent is attempting to put together an object. There are two
objects, each with 5 attributes (CLEANED, SHAPED, DRILLED, PAINTED,
JOINED), for a total of 1024 states and 10 actions. Certain actions can affect
more than one attribute; for example, the CLEAN action can make an object
both CLEANED and --PAINTED. Actions are not necessarily reversible. The
goal state is to have all 5 attributes true for both objects. Again, each step
is -1 and the goal is 0. Note that this is a slightly modified version of the
classic factory domain; we are not using additive rewards. We also modified
the domain structure slightly so that, under an optimal policy, every primitive
state can eventually reach the goal state. This allowed us to use this domain
to compare clustering algorithms easily. A full description of transition matrix
for the domain is given in Appendix A.1.1.

* Mountain Car: Lastly, we used a discretized, randomized version of the Moun-
tain Car domain ([Sutton and Barto, 1998], section 8.4). This domain is not
factorable, but has less structure than the grid world. This domain consists of
a car on a mountain as shown in Figure 4-3. The object is to reach the top
of the hill on the right, but the hill is so steep that the car cannot acceler-
ate up it. Therefore, the correct policy is to back up the hill on the left and
then accelerate down it and up the other hill. There are two variables: xt, the

Figure 4-3: The mountain car domain. Figure taken from [RL-Library, 2009].

current x-axis position of the car and vt, the car's current velocity. There are
3 actions: BACKWARDS, NEUTRAL, and FORWARDS and the transition
matrix is defined by

xt+1 = bound(xt + ±t+1)

JIt+l = bound(it + 0.001at - 0.0025 cos(3xt)) (4.5)

where at = -1 if the chosen action was BACKWARDS, 0 if the action was NEU-
TRAL, and +1 if the action was FORWARDS. The bound function just places
the position and velocity in the closest bucket in our discrete representation.
This is a typical definition of the mountain car domain.

We discretized the domain using 32 buckets on each axis and randomized it by
giving a 5% chance to each of the squares adjacent to the expected square. In
other words, the car might wind up slightly out of position or with a slightly
different velocity than was predicted, but not both. This also had the effect
of making no "dead" squares; because there is a possible drift, every square
can eventually reach the goal. We used an x-axis from -1.2 to 0.6 and capped
the velocity at ±0.7. We again used rewards of -1 for each time step and 0 for
reaching x = 0.6.

4.6.2 Comparison Against Other Clustering Techniques

We will show how HDet compares to other full algorithms in Section 4.6.3, but in
this section we make a case for our clustering algorithm.

A common question about the HDet algorithm is why we chose to create a new
clustering algorithm when there are already so many available. One answer is that
eg-clustering is, in general, much faster than other techniques. Recall that we build
a new hierarchy for every problem so that speed in clustering is important. Many
clustering techniques assume the same hierarchy will be used for multiple problems
so that extra time spent in clustering will be amortized out over many runs.

More importantly, however, many existing techniques do not satisfy our clustering
principle and therefore suffer under a hierarchical policy. We show that in the Factory
domain many common methods create stranded sub-states. Specifically we compare

Clustering Method Hand-Built Wavelets N-Cuts EG-Connected
Number of Stranded Sub-States (of 1024) 463 212 114 0

Clustering Time (s) 0 35 79 2

Table 4.1: Comparison of several clustering algorithms in the factory domain. All
were implemented in Matlab and run on a 2.4 GHz Intel Core2 Q6600 Quad-Core.

against

* Hand-Built Clustering: We created by hand a clustering based on the fac-
tored properties of the domain. The clustering is shown in Figure 4-4. This
clustering was an "intuitive" clustering in the sense that, if we start with two
objects for which nothing is done, the "blank state", we want to traverse the
hierarchy in reverse order. For instance, in the top level of the hierarchy, we dif-
ferentiate primitive states by whether both objects are joined, only one object
is joined, or neither object is joined; under the optimal policy from the blank
state the last step we want to make is to join the objects. In the next level
down, we differentiate on whether the objects are joined and painted under
the optimal policy painting is the second-to-last step. The problem with this
clustering, however, is that we may not start with blank objects. Perhaps, for
example, there has been in defect earlier in the manufacturing and the objects
start as painted, but not cleaned, a state that is not reachable from the blank
state. The clustering forces the hierarchical policy to treat all primitive states
with PAINTA and PAINTB true in the same manner there is no way to
specify that if an object is painted but not cleaned it must be cleaned and then
re-painted. Therefore, although this hierarchy appears to actually be guiding
the solver to the correct answer it will not, in fact, work well for every primitive
state because it is not eg-connected.

* N-cuts Clustering: The N-cuts clustering method is a common clustering
technique pioneered by [Shi and Malik, 2000]. This is a divisive clustering
technique that attempts to make "cuts" where there are only a few connections.
We wrote our own implementation of N-cuts in Matlab, using k-means to cluster
the eigenvectors.

* Wavelets Clustering: The wavelets clustering technique [Maggioni and Ma-
hadevan, 2006b; 2006a; Coifman et al., 2005] attempts to discover the underlying
structure of the domain by finding a wavelet basis for it and using that to clus-
ter. We used a pre-release Matlab implementation of this clustering obtained
from the authors.

In Table 4.1, we show the number of primitive states each of these algorithms
strand in the factory domain and the time each clustering took. Note that these
are the number of primitive states stranded by the HDet solver algorithm. Clearly,
these clustering algorithms might do better with another solver, but our point here is
that, when using our solver, our algorithm is guaranteed not to strand sub-states. In

Level 4
Variables
Considered:

Level 3
Variables

Considered:

Level 2
Variables

Considered:

Level 1
Variables

Considered:

Level 0
Variables

Considered:

JOINA, JOINB

" JOINA, JOINB, PAINTA, PAINTB

JOINA, JOINB, PAINTA, PAINTB,
DRILLA, DRILLB

JOINA, JOINB, PAINTA, PAINTB,
DRILLA, DRILLB, SHAPEA, SHAPEB

JOINA, JOINB, PAINTA, PAINB, DRILLA,
DRILLB, SHAPEA, SHAPEB, CLEANA,

CLEANB

Figure 4-4: The hand-built 5-level hierarchy for the factory world. A and B refer to

the two objects in the world. At each level, all primitive states with the same values
of the variables considered are grouped together. For example, at level 4, there are

four macro-states: primitive states with both objects joined, primitive states with

just object A joined, primitive states with just object B joined, and primitive states

with neither object joined.

addition, eg-clustering is also an order of magnitude faster than the other two meth-

ods because it does not require multiple restarts (N-cuts) nor costly mathematical

operations (wavelets).

4.6.3 Comparison Against Other Algorithms

We compare HDet to other, contemporary MDP solvers on the domains listed in

Section 4.6.1. Unless stated otherwise, we implemented and ran these algorithms on

a 2.4 GHz Intel Core2 Q6600 Quad-Core. The algorithms we compare against are:

* Value Iteration: Most of the domains are small enough that they can be solved
optimally using value iteration. This allows us to report the actual deviation of

Figure 4-5: A grid world with 62500 primitive states. The red state is the goal state
and the black states are wall states. There are 55710 non-wall states.

each algorithm's solution from the optimal solution.

* HDet: The HDet algorithm as described in Sections 4.1 and 4.3, with NCP,
the out-cluster penalty, set to 10.

* Det: Det is a version of HDet, but without running the clustering algorithm
and instead treating each primitive state as its own macro-state in a 2-level
hierarchy. This strategy never solves any MDPs, but works entirely with the
link cost estimates.

* RPI: Representation Policy Iteration (RPI) uses proto-value functions to de-
compose MDPs into hierarchies and solves the hierarchies using LSPI [Maggioni
and Mahadevan, 2006b]. We do not implement this code but rather cite the
results from [Maggioni and Mahadevan, 2006b].

* HVI: Hierarchical Value Iteration (HVI) was proposed by [Bakker et al., 2005]
as an extension of value iteration to hierarchical MDPs. They recommend
using the normalized cuts clustering method (spectral clustering) to create the
macro-states, but we found that using the eg-connected macro-states worked
much better in general. We report results from HVI using spectral clustering
as HVI(S) and results using eg-connected clustering as HVI(E).

* VISA: Variable Influence Structure Analysis (VISA) is an algorithm for solving
factored MDP domains that takes advantage of the factored structure. We did
not implement this code but cite the results from [Jonsson and Barto, 2006].

Of these algorithms, only value iteration actually gives a value for each primitive
state. For the other algorithms, therefore, we compute the value function by running
simulations. We run 1000 simulations of each policy starting from each primitive state
in the domain and averaging together the total reward from the simulations to find a
policy value for every primitive state in the domain. We report the average deviation

I _

-U

of these policy values from the optimal values. Since, for every domain, each action
has a reward of -1, average deviation is a measure of, on average, how many more
actions the hierarchical policy requires than the optimal policy. However, since there
may be additional penalties, for example, for hitting a wall, this interpretation is only
heuristic. We also report the "percent error", which is the average deviation divided
by the average number of steps in the policy. The results are shown in Tables 4.2,
4.3, and 4.4.

We also ran one very large domain, a grid world of 62500 primitive states, of
which 55710 states were not walls, shown in Figure 4-5, to show that the algorithm
can handle large domains. We just ran Det and HDet in this world. We also attempted
to run value iteration but the world is large enough that it did not converge in any
reasonable time frame. In evaluating the policy, we ran 100 simulations from 343
randomly chosen starting primitive states. HDet found a policy that was on average
0.2 higher than the policy found by Det. Full results are given in Table 4.5.

We discuss these results in Section 4.7

4.7 Analysis

In this section, we analyze the results presented in Section 4.6.

4.7.1 Accuracy versus Running Time

Our runtime analysis indicates that clustering and solving time should both scale
with the size of the clusters. Figure 4-6 shows this empirically in the factory domain.
The solver time can be fit almost perfectly with a quadratic expression.

However, although small macro-states provide for a fast running time, they also
cause a decrease in accuracy. This is shown empirically in Figure 4-7, but we also
discuss a theoretical reason for it here.

A "cliff" is an area in which primitive states that can reach a primitive goal
state in a small number of transitions are adjacent to primitive states that take many
transitions to reach a primitive goal state or primitive states that incur a large negative
reward. Consider for example, the mountain car domain. This domain has a number
of metaphorical cliffs. For example, the situation in which the car has just enough
velocity to reach the top provided the FORWARD action is chosen represents a cliff.
If, in doing one of these FORWARD actions, the car is left with less velocity than
anticipated, it will have to go back down the right hill and up the left hill before being
able to reach the goal. Therefore, an optimal policy will try to avoid being left with
just enough velocity. However, when we cluster primitive states together, we reduce
the size of the MDPs we are solving. This increases the efficiency of the algorithm,
but it decreases its accuracy because it decreases the ability to avoid primitive states
on the edge of a cliff. Consider the extreme case of running Det on the Mountain
Car domain. Det runs purely a shortest path algorithm and never solves an MDP.
Therefore, because it never takes into account the uncertainty of the actions, it will
never go further up the left hill than is far enough to acquire exactly the velocity

Algorithm Number of Max States per Clustering Solver Total Average Percent
Macro-states Macro-State Time (s) Time (s) Time (s) Deviation Error

HDet 17 100 0.72 0.69 1.41 0.48 5.80
Det 800 1 0 0.19 0.19 0.18 2.22

HVI (E) 17 100 0.72 9.94 10.66 0.84 10.16

HVI (S) 10 119 21.48 2.92 24.40 0.66 8.02
RPI - - -27 ~ 3 - 30 0 0

Value Iteration 1 1040 0 20.46 20.46 0 0

Table 4.2: Results in the grid world with 1040 states. The RPI results are taken from
[Maggioni and Mahadevan, 2006a]. For the number of macro-states, we report only
the number of non-wall macro-states (which is why we report only 800 macro-states
for Det). Each wall state is its own macro-state.

Algorithm Number of Max States per Clustering Solver Total Average Percent
Macro-states Macro-state Time (s) Time (s) Time (s) Deviation Error

HDet 168 67 2.17 0.41 2.58 0.49 5.51
Det 1024 1 0 0.25 0.25 0.35 3.93

HVI (E) 168 67 2.17 38.02 40.09 0.62 6.97
2.36

HVI (S) 20 193 79.41 1.91 81.32 (114 states fail 27.39
to reach goal)

VISA - - ~5 ~20 -25 0 0
Value Iteration 1 1024 0 25.22 25.22 0 0

Table 4.3: Results for the factory domain. The results for VISA given here were taken
from [Jonsson and Barto, 2006].

Algorithm Number of Max States per Clustering Solver Total Average Percent
Macro-states Macro-state Time (s) Time (s) Time (s) Deviation Error

HDet 12 349 20.59 5.02 25.79 4.14 8.77
Det 1024 1 0 0.51 0.51 15.55 32.94

HVI (E) 12 349 20.59 58.35 78.94 12.94 27.41
HVI (S) 15 389 36.21 87.87 124.08 236.58 501.17

Value Iteration 1 1032 0 83.00 83.00 0 0

Table 4.4: Results for the mountain car domain.

Number of Max States per Clustering Solver Total Average Percent
Algorithm Macro-states Macro-state Time (s) Time (s) Time (s) Deviation Error

(from HDet) (from HDet)
HDet 767 123 16.65 57.56 74.21 0 0
Det 55710 1 0 94.72 94.72 0.2 0.14

Table 4.5: Results for the grid world with 62500 primitive states. Since we do not
have results for the optimal policy, the average deviation and percent error reported
are the average deviation and percent error from the policy found by HDet. In other
words, the value of the policy found by Det is, on average, 0.2 and 0.14% less than
that found by HDet.

/ -- -- Luustering

S5 Solver
ES- /- Total

4 -

3

I \

11 67 155 312 570 707 1024
Maximum Cluster size

Figure 4-6: Running time as a function of macro-state size in the factory domain.

needed to crest the right hill. It is clear from Table 4.4 that Det performs much worse
on the mountain car domain than HDet.

The grid world also has "cliffs" although these are less obvious. The cliffs in this
domain correspond to the walls. An optimal policy will try to avoid squares near the
walls since it is possible to accidentally crash into a wall. As the uncertainty in the
actions increases, the optimal policy will go farther and farther out of the way to avoid
the walls. Therefore, as non-determinism increases, clusterings with smaller macro-
states will do increasingly worse. This is shown in Figure 4-8. As the non-determinism
increases, Det, which has macro-states consisting of just a single primitive state does
worse than HDet, which has macro-states of up to 100 primitive states, and the
accuracy of both relative to the optimal policy decrease with increasing uncertainty.
We will discuss later why Det does better than HDet with lower uncertainty.

Therefore, unsurprisingly, small macro-states usually lead to a more efficient al-
gorithm, but less accuracy.

4.7.2 Clustering Time versus Solving Time

The relationship between clustering time and solving time is subtler than that between
computation time and accuracy. For many domains, these in fact scale together
because equation 4.2 is dominated by the S,max term.

12 I

- Average
10 --- Maximum

o0 I
0 '

ItE l

4-
o---
0 I

0 --~------ __

11 67 155 312 570 707 1024
Maximum Cluster size

Figure 4-7: Average (over the primitive state values) and maximum deviation from
the optimal policy as a function of macro-state size in the factory domain.

However, in some situations, equation 4.2 may be dominated by the ISL-11 term.
In these situations, clustering time and solving time scale inversely, because the solver
time is dominated by ISL-1 while the clustering is dominated by Smax (which is
inversely related to ISL- 11).

We can give an extreme example of this in the large grid world domain. In this
problem, unlike in any of the others, Det was slower than HDet, although it takes no
clustering time. This arises from that fact that Det solves the shortest path problem
over the entire primitive state space, which does, in fact, scale as O(S 2). Therefore,
in this case, spending time in clustering actually reduced the time spent in solving
and, in fact, the overall runtime.

Thus, as the size of the primitive state space increases, a clustering can yield both
higher accuracy and lower runtime. Balancing the time gained from fewer number of
macro-states at level L - 1 with the time lost in clustering and solving these macro-
states is a tricky optimization problem that we leave to future work.

4.7.3 Number of Levels in the Hierarchy

In the results we have given here, all of our hierarchies contained only 2 levels, because
this was the appropriate number of levels for problems of the size we presented. In

-- HDet Average Error /

4 - * - Del Average Error /

3.5

3 /-/

2.5w
2

1.5

1

0.5
- -4

0 5 10 15 20
Uncertainly

Figure 4-8: Average deviation from the optimal policy as a function of uncertainty
in the grid world domain. Here x% uncertainty refers to the probability an action
transitions to a wrong square. The probability the action will transition to the correct
square is 1 - lx. For the HDet point at 20% we used an out-cluster penalty (NCP)
of 50 to avoid oscillations. The number of macro-states used for HDet was 17 with
a maximum of 100 primitive states per macro-state. The clustering is shown in
Figure 4-2.

this section, we discuss reasons why we might or might not want more levels in the
hierarchy.

We firstly again consider runtime. Equation 4.4 scales with the size of the largest
macro-state but it also scales with the number of macro-states at level L - 1. There-
fore, in a very large domain, we may want a large number of macro-states at level 1 in
order to have relatively small macro-states. However, as we discussed in Section 4.7.2
solving a shortest path over all of the level 1 macro-states may be too expensive; in
this case, we want a 3-level hierarchy. For small domains, though, the extra time
taken to create a 3-level hierarchy is not enough to offset the possible advantage in
solving time. In all of the domains presented here, even the large grid world, a 2-level
hierarchy was the correct choice.

From the discussion in Section 4.7.1, it may appear that if we created a 3-level
hierarchy and a 2-level hierarchy with the same clustering at level 1, the accuracy
of the two solutions would be identical because they have the same ability to avoid
"cliffs". In actuality, however, there is another factor in determining accuracy.

Because our solver operates in a top-down fashion, an upper level policy is imposed
at the lower levels. Consider again the clustering of the grid world shown in Figure 4-
2 and note the state, s, pointed to by an arrow in the gold macro-state. Clearly
the closest goal state to s is the state 2 squares above it. However, to reach this
goal state, s must pass through the grey macro-state and the top level policy of the

31 1 ,

gold macro-state requires that its sub-states go through the turquoise macro-state.
Therefore, the policy given by HDet for s requires two more steps than the optimal
policy.

The penalty for following the upper level policy is most apparent in a comparison
of Det and HDet. Because Det has "macro-states" of size 1, it does not suffer from
the imposition of an upper-level policy. Therefore, in highly-deterministic domains
with few cliffs, Det will actually perform better than HDet. This is apparent both in
Tables 4.2 and 4.3 and in Figure 4-8.

We can also see the penalty for following the upper level policy if we compare
HVI(E) with HDet. Although these have the same clustering, HVI(E) generally does
worse than HDet. This is because with HDet, we are able to "guess" the value of
deviating, at the lower level, from the upper level policy to some accuracy using our
out state. With HVI we cannot do this because we have no meaningful value for
the upper level macro-states. Therefore, HVI enforces the upper level policy strictly
while HDet occasionally allows deviations from it and, as a result, HVI returns less
accurate solutions.

Thus, although for large domains a multi-level hierarchy may be necessary for a
reasonable runtime, adding levels to the hierarchy is likely to reduce the accuracy.

In this section, we have presented our algorithms and results for enumerated-state
MDPs, including a clustering algorithm that does not strand sub-states. We have
shown that HDet performs as well or better than current work in the field and dis-
cussed the trade-offs that must be made in creating and solving a hierarchical MDP.

In the next chapter, we will discuss how these algorithms can be modified to work
with factored MDPs.

56

Chapter 5

Factored MDPs: Algorithm and
Results

In this chapter, we discuss the algorithms for factored MDPs. Working with the
factored representation of an MDP tends to be more difficult than working with the
enumerated-state representation because the primitive state space is exponential in
the input size. Therefore, our algorithms must be polynomial in the number of state
variables and logarithmic in the state space size. We follow the general outline of
chapter 3, but expand and modify it for this representation.

5.1 Input to the Algorithm

We begin with a description of the input we expect for our algorithm. We work
with domains that can be specified using the Probabilistic Planning Domain Descrip-
tion Language (P-PDDL), which is the standard for the ICAPS Planning Compe-
titions [ICAPS, 2009]. We chose to use this input specification because there are a
large number of domains and problems available in it.

P-PDDL is fully documented in [Younes and Littman, 2004], but for completeness
we give a description here. For example domains and problems see Appendix A.2.

P-PDDL has two types of input files: domains and problems. Domains specify
the world dynamics while problems specify the exact properties of the world, a goal
condition and a probability distribution over initial conditions. For example, in a
grid world, the domain would describe the dynamics of moving from square to square
while the problem would specify the size of the grid, a probability distribution over
starting squares, and the goal squares. Many problem instances may correspond to
one domain.

A domain consists of:

* Types: The types of variables. Actions can use types in the preconditions since
the domain file does not necessarily list all of the state variables.

* Predicates: A predicate is a function. The predicate and a specific parameter
list together make an atom or state variable that can be either true or false.

The possible parameters to the predicates are specified in the problem file. For
example, in the grid world, we may specify the type grid-square and the
predicate (at ?s - grid-square) where the notation of the predicate indi-
cates that ?s is a variable of type grid-square. The problem file might then
list 9 grid-squares (for a 3x3 grid). The result would be a problem with 9
atoms. However, with the same domain file, we could also create a 4x4 grid
with a problem file that listed 16 grid-squares.

* Actions: An action consists of two parts:

Precondition: A condition that specifies in what states the action is "ac-
tive". An attempt to call an action from a state in which the precondition
is not met results in an error. Currently, we require that preconditions not
be disjunctive or require quantified operators. Both are "requirements"
flags to PDDL and there are many domains that do not require them. We
hope to expand the algorithm to take these requirements in future work.

- Effect: A description of the effect of the action. There are four types of
effects

1. Atomic: An effect that causes a single atom to become true or false.
2. Conjunctive: A conjunction of effects.
3. Probabilistic: An effect that assigns a certain probability to each effect

in a list. Probabilities should sum to one.
4. Conditional: An effect that only takes place when a certain condition

is met. Note that this is different from the precondition to the whole
action an action can be called even if it has conditions on the effects
that are not met. For example, in a grid world if moving left is always
a valid action but only results in a move left if the agent is not already
at the far left edge, the effect of the action is conditional. However,
if move left is only valid when the agent is not already at the far left
edge, then "not-at far left edge" is a precondition to the action. For
the moment, we require that conditions on effects not be disjunctive
or involve quantified operators.

The problem consists of

* Atoms: Boolean variables that can be either true or false. A single "state" of
the MDP is an assignment to all of the atoms. We may also refer to atoms as
state variables.

* Initial State Distribution: A list of the domain atoms along with the probability
of how likely each atom is to be true in the starting state. When a simulation
is run, it picks a starting state according to this probability distribution.

* Goal: A condition specifying the goal states. We require this condition to be
conjunctive.

Currently, our planning algorithm cannot take the requirement flags
:disjunctive-preconditions, :existential-preconditions, :universal-preconditions,
:rewards, :fluents, or any requirements that imply these requirements. At the mo-
ment, we assume that for all MDPs the goal reward is 0 and each step has a reward
of -1.

5.2 Clustering

We begin by describing our clustering algorithm for factored MDPs. For the factored
representation, because we cannot look at every primitive state, we take the view of
clustering as "divisive" rather than agglomerative as we did in the enumerated-state
representation, meaning that we start with all primitive states in one macro-state and
"divide" this macro-state to create more. The resulting clustering will exhaustively
cover the state space, but it may not be a partition some macro-states may overlap.

In essence, in a factored domain we now work with sets of primitive states instead
of individual primitive states. Rather than try to keep the clustering principle true
for every primitive state in the domain, we keep it true across sets of states. We begin
with some definitions. For completeness, we repeat some of the definitions given in
Section 3.1.

5.2.1 Definitions

* Primitive state: A full assignment to the domain atoms.

* Goal state: A primitive state that satisfies the goal condition.

* Adjacent: A primitive state j is adjacent to primitive state i if there exists an
action a such that there is more than an e probability that taking action a in
state i will result in a transition to state j.

* Reachable: Primitive state j is reachable from primitive state i if j is adjacent
to i, or if j is adjacent to some primitive state k that is reachable from i.

* f-State: A set of primitive states.

* Goal f-state: A set of primitive goal states.

* Macro-state: A level 1 macro-state is a set of f-states. A level 1 > 1 macro-
state is a set of level 1 - 1 macro-states.

* Sub-state: A sub-state of a macro-state is any direct descendent of the macro-
state. Sub-states may be either f-states or macro-states.

* Goal macro-state: A goal macro-state is a macro-state that has a goal f-state
as a descendent.

Figure 5-1: An example of an fe-connected macro-state with two f-states. Although
the macro-state is not connected (not every sub-state can reach every other sub-state),
it is fe-connected because all primitive states of the f-state on the left can reach some
primitive state of the f-state on the right and vice-versa.

* Macro-action: Macro-actions represent an attempt to transition between macro-
states. For any non-leaf level of the tree with n nodes, we have n 2 macro-actions,
one for each pair of macro-states.

* f-Adjacent: An f-state f2 is f-adjacent to an f-state fi if, for every primitive
state sl in fi there exists some primitive state S2 in f2 such that s2 is adjacent
to si or sl = S2. A macro-state m 2 is f-adjacent to a macro-state m, if there
exists sub-states m'2 E m 2 and m' E ml such that m' is f-adjacent to m'

* f-Reachable: An f-state f2 is f-reachable from an f-state fi if f 2 is f-adjacent
to fi or if f2 is f-adjacent to some f-state f3 that is f-reachable from fl. A
macro-state m 2 is f-reachable from an macro-state m, if m 2 is f-adjacent to m,
or if m 2 is f-adjacent to some macro-state m3 that is f-reachable from mi .

* fe-connected: A macro-state is fe-connected if every f-state in the macro-state
is f-reachable from every other state. An example of an fe-connected macro-state
is shown in Figure 5-1.

Using these definitions for macro-states and macro-actions, we define our HMDP
as discussed in Section 3.1.

5.2.2 Operations

In this section we define a set of operations that we can perform on a macro-state
or a set of macro-states. Recall that our algorithm is a divisive clustering method
so that we begin with only one initial macro-state. The operations we will need to
perform are

* Split: We can split a level 1 macro-state C on a set S where S is an arbitrary
set of level 1 - 1 f- or macro- states. The result of a split is two new macro-states

Cs and C\s:

Cs = Cn S (5.1)

C\ = C\S (5.2)

* Insert: We can insert a level 1 macro-state N into a level 1 macro-state C, to
create a new level 1 macro-state denoted C +- N. For a set S of level 1 states let

Rs be all the level 1 - 1 f- or macro- states that can f-reach some sub-state of
S and R-s be all the level 1 - 1 primitive or macro- states that are f-reachable
from some sub-state of S. Then

C - N = (C n Rn RN) U (N n Rc n Rc). (5.3)

The insertion operation takes all of parts of the sub-states of C that can reach
and be reached by some parts of the sub-states of N and combines those with
all parts of the sub-states of N that can reach or be reached by some parts of
the sub-states of C. Therefore, insertion is a method for combining states of C
and N while preserving connectedness. The macro-state C +- N has ICI + IN|
sub-states, although these sub-states may describe fewer primitive states than
they did originally. Note that insertion is a commutative operation.

* Prune: Given a list of macro-states, pruning is the process of removing any
empty macro-states and any macro-states that are subsets of another cluster in
the list.

5.2.3 Time Bounds

Before describing our clustering algorithm, we discuss the time required to perform
each of the clustering operations in order to give a sense of how we represent and
manipulate macro-states and f-states.

We describe f-states using boolean formulas of the atoms. Therefore, macro-states
are also described by boolean formulas (the disjunction of the formulas describing all
of the sub-states of the macro-state). The time taken by each operation is

* Set Union: The union of two sets S1 and S2 , described by formulas F1 and F2

respectively, can be done in constant time by creating S3 = S1 U S2 described
by FI V F2.

* Set Intersection: The intersection of two sets S1 and S2, described by formulas
F1 and F2 respectively, can be done in constant time by creating S3 = S n S2

described by F1 A F2.

* Set Difference: The difference of two sets S1 and S2 , described by formulas
F1 and F2 respectively, can be done in constant time by creating S3 = S1\S2
described by F1 A -1F2 .

* Creating Rs: For a set S described by the formula F the process of creating
Rs is linear in the number of actions. For each action A, we must test if
the precondition P of A satisfies F. In the general case, this may be NP, but,
because we require conjunctive preconditions, P can actually be treated as a
partial assignment to domain atoms. Therefore, if F has JF| nested conditions
and no more than Fmax terms in a condition, evaluating if P satisfies F, is

O(JFIFmax). If P does satisfy F then generating the possible next states of the
action is linear in the number of effects of the action. Therefore, creating Rs
is O(IA| FIFmaxlEImax) where IEl ax is the largest number of effects any action
has. Note that we are working in domains with small action spaces so that this
is a reasonable runtime.

* Creating C n Rs: Finding all of the states that can transition into a set S
can be difficult. However, we never actually need Rs, only the intersection of
R--s and some other set C. Note that Cn Rs can be represented as R-c n S
(all of the sub-states of C that can reach S). Since intersection is a constant
time operation Cn R-s can also be found in O(1A IFIFmaxJE max) where IFI
and F,ax refer to the condition describing C.

* Split: Split consists of one intersection operation and one difference operation
and can therefore be performed in constant time.

* Insert: Combining the above run times, it is clear that the insert operation
requires time O(AI IFFmax|EImax).

* Prune: The prune operation is clearly in NP since discovering empty macro-
states requires deciding if there is a solution to an arbitrary boolean equation.
However, this is a problem that can generally be solved quickly using a heuristic.
Our heuristic is simply to generate a large number of primitive states and mark
the clusters to which those states belong. If a state falls into multiple clusters, we
mark the one with the largest number of f-states. Any cluster that is unmarked
at the end of this process is pruned. As we will discuss, accuracy is dependent
on the number of f-states in a macro-state. Therefore, if we prune a macro-state
with few f-states that was not, in fact, redundant, little accuracy will be lost.

Therefore, in general, the clustering can be done in time polynomial in the number
of domain atoms and actions. We now describe the actual algorithm.

5.2.4 Clustering Algorithm

The input to this algorithm is a maximum cluster size Smax, where size refers to the
number of f-states, a P-PDDL domain file, and a P-PDDL problem file. We describe
how we create a 2 level hierarchy and then extend that to creating hierarchies with
multiple levels.

To initialize this algorithm, we read in the P-PDDL domain and problem files
and then create a single macro-state. This macro-state consists of a single f-state
described by the formula TRUE.

Now assume that at some point in the algorithm we have a list of p fe-connected
macro-states. The algorithm proceeds as follows.

We first generate an fe-connected macro-state N. We pick a starting f-state, in
a manner we will describe in Section 5.2.6, and, from that f-state create a cycle of
f-states using a simple heuristic search.

Given N, we then run through the list of macro-states and, for each macro-state
Ci, we create a macro-state C = C i - N. If the number of f-states in C0 is smaller
than Smax, we add it to the list of macro-states. For example, let Ci be represented
by the formula A and N be represented by the formula B (in general these formulas
will be much more complicated, but this is just for the purposes of illustration), and
assume we have only two actions: action 1 that takes A A D to B A D and action 2
that takes B to A regardless of the value of the other state variables. Then Ci -- N
consists of two f-states, A A D and B A D. Note that this is more restrictive than
the union of Ci and N because we have no way of transitioning simply from A to B.
Instead, we need to restrict the f-state A to be A A D to be certain that there is a
transition to some primitive state of B. Similarly, we restrict the primitive states of
B to be the ones that we can transition to from A A D. Action 2 allows the transition
from BAD back to AA D.

After we have created all of the C, we also add N to the set of macro-states for
a total of at most 2p + 1 macro-states in our list of macro-states. Note that, by the
properties of insertion, each macro-state in the list is still fe-connected.

Because we never merge macro-states, this has the possibility to grow exponen-
tially. However, in most cases at least some of the 2p + 1 macro-states will be empty
or a subset of another, larger macro-state. Therefore, we finish the algorithm by
pruning the macro-state list.

5.2.5 Relaxed Algorithm

As with the enumerated state clustering, we may have domains for which it is difficult
to generate cycles of f-states. However, again, we do not actually need fe-connected
macro-states. We simply need macro-states that guarantee a connection to the goal.
Therefore we define the property of fg-connectedness:

fg-connected: A macro-state is fg-connected if one of the following holds

* The macro-state has as a one or more sub-states gl, ..., gp each of which contain,
as a descendent, a goal f-state, and each sub-state of the macro-state can f-reach
at least one of gl, ..., gp.

* The macro-state is fe-connected.

We modify our clustering algorithm to create fg-connected macro-states as follows:
When we first begin the clustering, we create two macro-states: goal described by

the goal condition, and -goal, described by the negation of the goal condition.

When creating N, the new macro-state we are going to insert, we find either a
cycle of f-states or a chain of f-states that culminates in a goal f-state. Now N is
fg-connected but may not be fe-connected.

When doing the insert operation C; -- N, if Ci contains a goal f-state, we define
R,-c, = 0. Similarly, if N contains a goal state, we define R-N = 0. This results in
lists of fg-connected macro-states.

As before, we have essentially described an algorithm that results in a 2-level
hierarchy. A hierarchy with more levels can be created by starting with each of the
macro-states of the 2-level hierarchy, rather than the macro-state TRUE, and dividing
it.

5.2.6 Relation to Minimized-State MDPs

Recall from Section 2.5 that we can create a minimized model of the MDP that
acts as an MDP in its own right. Here, we discuss the relationship between our
clustering algorithm and minimized models. We aim to show that we are clustering
the minimized states of the reduced MDP. In other words, we want to show that
our clustering algorithm makes no "unnecessary" distinctions; ie, no distinctions that
would not be made in creating a reduced MDP.

Theorem: If the domain is such that the actions have no disjunctive preconditions
or disjunctive conditions on conditional effects (where a condition is also considered
"disjunctive" if multiple conditions lead to the same effect even if this is expressed
without explicitly using an "or"), then, for any clustering created using the algorithm
described in Sections 5.2.4 and 5.2.5 where all "start" f-states are conjunctive con-
ditions, there exists a partition P of the state space such that every f-state in the
clustering is a set of the minimized states of P. In other words, the clustering makes
no distinctions that would not have to be made in MM(P).

Lemma A: Let P be a partition. Then any homogeneous refinement of P is a
refinement of MM(P).

Proof: This follows directly from Corollary 8.2 of [Givan et al., 2003].

Lemma B: If p is a refinement of P then MM(p) is a refinement of MM(P).

Proof: Since MM(p) is a homogeneous refinement of p, it is also a homogeneous
refinement of P. Therefore, by Lemma A it must be a refinement of MM(P).

Lemma C: Let fo, fl, ... , fm-1 be a set of fg-connected states such that fi is f-
adjacent to fi+l and fi # fi+1 mod , and either f,,_ is a goal f-state or f_-1 is
adjacent to fo. Let fi transition to fi+l mod m with action ai and probability ti. If
we started with fo and, in creating fl, ..., f,_1 made no distinctions that were not

required to enforce f-adjacency, then fo, ... , f_-1 are all sets of the minimized states
of the partition P = { fo, -fo}.

Proof: We proceed by induction.

Base Case: Clearly fo is a set of minimized states of Ps since it is a block of the
original partition. If f_-1 is not a goal f-state then the rest of this proof holds
considering fo to be the base case. If fm-1 is a goal f-state then it describes all goal
states reachable from fo by this chain. Since in creating these states, no distinctions
were made that were not required for f-adjacency, these goal states therefore have
different dynamics than any other states in the domain and thus are themselves a set
of minimized states of P,.

Inductive Step: Assume fm-1, fm-2, ... , fk+l are all sets of the minimized states of P,

and consider fk. Because we make no distinctions not required for f-adjacency, the
f-state fk represents all states that can transition to fk+l with probability tk under
action ak. Let fk+l = m 1 U m 2 U ... U mp where the mi are the minimized states
composing fk+l. Now assume fk is not composed of minimized states of P. Let Q be
the set of states such that fk U Q = 1 U 12 U ... U lq where the li are minimized states
and fk n Q 0= . Then, since fk was not a set of minimized states there must be some
li such that li includes states both from fk and from Q. Let r E li be described by fk
and u E li be described by Q. Then, since r E fk there must exist some j such that
r can transition to mj under action ak with probability tk. However, since u fk, u
cannot transition to mj with probability tk under action ak. Therefore li is not stable
with respect to mj and action ak contradicting that li and mj are minimized states.
Thus, by contradiction, fk must also be composed of minimized states.

Proof of Theorem: We prove our theorem by constructing P and then showing
by induction that any distinctions made by the clustering would also need to be made
in creating MM(P).

To create P, consider that during the clustering process we generate a number of
possibly overlapping but non-identical "start" f-states and that we assume that these
f-states are conjunctive conditions. Since we begin with the partition, {goal, -1goal},
we let so = goal. We can therefore partition the state space into 2

k+ 1 blocks where
the condition sj holds in the ith block if the jth bit of i is 1. It is possible that some
blocks of this partition are empty.

Note that at any point in the clustering such a partition exists. Therefore let P
be the partition at the ith step in clustering. We show by induction that at any step
i in the clustering, all f-states described in the clustering are sets of the minimized
states of Pi.

Base Case: Partition Po is the partition {goal, -goal}, while the clustering at step 0
is also the partition {goal, -goal}. Clearly, therefore, since MM(Po) is a refinement
of Po, this clustering is a set of the minimized state of Po.

Inductive Step: Consider step k of the clustering algorithm with partition Pk. At
step k + 1 we generate f-state Sk+1 as a starting state creating partition Pk+l.

We first create the set of fg-connected f-states fo, fl, ... , fIm-1 where fo = sk+1 such
that for fi is f-adjacent to fi+l and fi J fi+l mod m and either f_-1 is a goal f-state
or f,_1 is adjacent to fo. In creating fi...fm-1 we made no distinctions that were
not required to enforce f-adjacency. Therefore, by Lemma C, the fi are all composed
of minimized states of MM({sk+l, Sk+1}). Note that since Pk+1 is a refinement
of MM({Sk+1, Sk+1}), this implies by Lemma B that the fi are also composed of
minimized states of Pk+1.

Now consider "merging" the new macro-state into the existing macro-states. Firstly,
note that any f-states that remain untouched are sets of the minimized states of Pk+1
since they were sets of the minimized states of Pk and Pk+1 is a refinement of Pk.
Therefore, consider a macro-state created by inserting the new macro-state N into
macro-state Ci. In Ci, we split each f-state into an f-state that can f-reach sk+1
and one that cannot (and keep only the one that can f-reach Sk+l). Clearly, in

MM({Sk+l, 7Sk+1}), those states that can reach some sub-state of Sk+1 must be in
a different block from those that cannot. Therefore, this split is one that would be
made to create MM({Sk+l, _Sk+1}) and the f-states of Ci <- N originally belonging
to Ci are sets of the minimized states of { Sk+1, Sk+l }.

Now consider the f-states of Ci <-- N that are derived from the f-states of N. We
split these f-states into those states that can f-reach the f-states of Ci and those that
cannot. Since the f-states of Ci were originally sets of the minimized states of Pk, any
division between them represents necessary divisions in forming M M(Pk). Therefore
the distinction between being able to f-reach and not f-reach (or be f-reached or not
f-reached by) these states is a distinction that must be made in forming MM(Pk)
and the f-states of Ci <- N that originally belonged to N are sets of the minimized
states of Pk.

Therefore no splits are made that would not be made in creating either MM({Sk+l, -Sk+1})
or MM(Pk). Since, by Lemma B, MM(Pk+1) is a refinement of both of these, no
splits are made that would not be made in creating MM(Pk+l). Thus all f-states in
the clustering at step k + 1 are sets of the minimized states of Pk+1.

Corollary: There exists a method for picking start states such that MM(Pk)
MM({ goal, -7goal}) for any k. Since we consider only MDPs for which the reward is
-1 for non-goal states and 0 for goal states, MM({goal, -7goal}) is the state space of
the reduced MDP.

Proof: Consider the method for choosing start states such that at time step k, we
pick a start state sk such that sk is stable with respect to some si for i < k, goalnsk =
0, and Sk 7 Si for i < k. Then by induction we can show that MM({ goal, -goal}) is
a refinement of Pk. Recall that so = goal.

Base Case: For k = 0, Pk is the partition {goal, -goal}. By definition, therefore
MM({ goal, --goal}) is a refinement of Po.

Inductive Step: Assume at step k - 1 all si have been chosen in the manner described
above and MM({goal, -goal}) is a refinement of Pk-1. Now consider choosing sk such
that S k is stable with respect to si. Let Sk describe all states that transition to si under
action a with probability t. Let B 1, B 2, ...B 2k-1 be the blocks of Pk-1 and order them so
that B 1, B 2, ... , B 2 k-2 contain only states described by si and B 2 k-2+1, ..., B2k-1 contain
no states described by si. Now let By be any block of Pk- 1.In creating Pk we split Bj
into those states that can transition to si with probability t under action a and those
that cannot. Therefore, if, in creating Pk we split By that implies that there is at least
one state p C Bj such that p can transition to some B, where v < 2 k-2 with probability
t under action a and one state q such that q cannot transition to B, with probability
t and action a. Therefore, we only split By in creating Pk if there was some state
B, e Pk-1 such that By was not stable with respect to B, and action a. Therefore,
any split we make in creating Pk is also made in creating MM(Pk-_) and, since the
order of the splits does not matter [Dean and Givan, 1997], MM(Pk) = MM(Pk-1).
By our inductive hypothesis this implies that MM(Pk) = MM({goal, -goal}).

Therefore, if the starting states are picked in the above manner, any f-state in the
clustering is a set of the minimized states of {goal, -goal}.

This also gives us a stopping point for the clustering; the clustering should stop
when we can no longer generate any more unique starting states. Note that this does
not mean that this clustering algorithm will produce the same clustering every time
- the clustering will also depend on the Smax parameter.

5.2.7 Macro-State Structure

How we do bookkeeping within a macro-state is important to the solver algorithm.
Therefore, we briefly discuss it here.

When a new macro-state N is inserted into an existing macro-state C, we modify
each sub-state of N and C as described in Section 5.2.4 so as to create the fg-connected
macro-state C - N. In doing this, we also keep track of the possible transitions
between sub-states. Specifically, each sub-state has a "to-adjacency" list, listing which
sub-states in the macro-state can transition to it and a "from-adjacency" list listing
the sub-states to which it can transition. An entry in an adjacency list for sub-state
f has the following parts:

* sub-state pointer: A pointer to the sub-state to or from which f can transition.

* Condition: A conjunctive condition that must be true of f in order to allow
this transition.

We require a condition in the adjacency lists because sub-states may be disjunctions.
Therefore, although our clustering algorithm guarantees that a sub-state can transi-
tion to some other sub-state in the macro-state, which other sub-state may depend
on the current conditions. We know, however, that the condition will be conjunctive
because we require that preconditions to actions be conjunctive.

We will be associating values with conditions, which means we will often want to
find, for a given state or partial assignment, which values apply. In doing this, we
will use the idea of a "maximally matching" condition:

Maximal match: Given a list of conjunctive conditions c1 , c2 , ... , Ck, and a partial
assignment of the domain atoms p, a condition ci is a maximal match for p if ci
mentions at least as many of the variables assigned by p as any other condition in
the list. A list may contain more than one maximally matching condition.

5.3 Solver

The solver takes as input an fg-connected hierarchy of f-states, the domain and prob-
lem files and outputs a hierarchical policy.

Before beginning the solver algorithm, for each f- and macro- state in the hierarchy
we create a list, the condition list of the state, of all of the unique conditions in its
adjacency lists. We will associate with each condition in this list a cost and next
macro-state (if the state is a macro-state, ie level greater than 0) or a value and
action (if the state is an f-state, ie level 0).

The solver still follows the general framework as described in Section 3.2. Here,
we fill in those parts of the algorithm that depend on representation. We begin by
describing how we compute the cost matrix.

5.3.1 Upward Pass: Calculating the Cost Matrix

Recall that in the upward pass, we require a method for estimating the expected cost
to transition between two macro-states. We proceed as follows.

Because we now cluster sets of states, it is possible that a macro-state is adjacent
to only part of another macro-state. Therefore, when calculating the cost of going
from macro-state C1 to macro-state C2, in reality we only calculate the cost of going
from C1 nR-c 2 to C2. We take this into account in the later part of the algorithm and
represent this by adding C1 to the condition and to-adjacency lists of all sub-states
in C2 f-adjacent to a sub-state in C1 and C2 to the condition and from-adjacency lists
of all f-states in C1 that can transition to a sub-state in C2.

To get an exact estimate of the cost of going from C1 to C2, we would need to treat
each condition in each sub-state's condition list as a different sub-state. However, this
could result in an exponential unfolding of the macro-state so, instead, we consider
the cost of each sub-state to be the weighted average of the cost of each condition
in its condition list. The weighting is done by assuming a uniform distribution over
the states in the sub-state. Specifically, since the conditions are conjunctive, the
weight of any condition is 1 where a is the number of distinct atoms mentioned in
the condition. This is proportional to the probability that a primitive state picked
at random from the primitive states described by the f- or macro-state would fulfill
that condition. If the cost of a condition has yet to be assigned in the algorithm, we
assume it has to go through the whole macro-state and assign it that cost.

To calculate the distance from one macro-state to another, we use Dijkstra's algo-
rithm. When updating the cost of a successor to the current sub-state, we update the
costs of only the conditions that are fulfilled by the current sub-state. The distance
between the two macro-states is the average cost of the sub-states of the macro-state.

5.3.2 Downward Pass: Calculating Distance to Goal

During the downward pass, we must be able to calculate the distance Di of all nodes
from a goal node. As with the enumerated states representation, we use Dijkstra's
algorithm. However, here it is not so straightforward because transitions between
macro-states may be conditional. Therefore, when generating successors of a macro-
state while running Dijkstra's algorithm, we must generate only those parts of macro-
states that can transition to the current macro-state.

In finding successors to a current macro-state currClust, we iterate through each
of the original macro-states Ci, referred to as "parent macro-states", and create a
new macro-state C =- C0 n R-currclust. We then use the cost matrix created as
described in Section 5.3.1 to assign C a distance from currClust. Since currClust
has a distance from the goal assigned, this gives us a distance-to-goal estimate for C.

Now if this were all we did, we could never reach a stopping point because we
cannot identify empty macro-states (in this case, pruning is not accurate enough).
However, we can keep track of whether macro-states are enclosed by other macro-
states by keeping track of the conditions with which we have intersected the macro-
state. Then, given two macro-states C1 and C2, C is a sub-macro-state of C2 if both
of the following are true:

* C1 and C2 have the same parent macro-state

* The conditions with which we have intersected C2 are a subset of the conditions
with which we have intersected C1.

Therefore, when we generate a macro-state C1 that is a sub-macro-state of another
macro-state C2, we only keep it if the distance-to-goal assigned to C1 is smaller than
the distance assigned to C2. Similarly, when we generate a super-macro-state C1 of
a macro-state 02, if the distance assigned to Ci is smaller than that assigned to C2,
we replace C2 with C1. This allows us to terminate the algorithm.

5.3.3 Value Iteration

Recall that at the lowest level of the hierarchy, we run a value iteration algorithm.
However, now we are running value iteration not on primitive states, but on f-states.
Because f-states have conditional transitions, a traditional value iteration algorithm
does not work.

We modify value iteration similarly to how we modified Dijkstra's algorithm. We
associate with every condition in the f-state's condition list a different value, but
consider the "value" of the f-state to be the weighted average value of these conditions.

We then iterate through every f-state in the typical value iteration fashion. How-
ever, for each f-state, we calculate values separately for each condition in the condition
list. Before discussing the full algorithm, we explain how we deal with one potential
complication.

Consider an f-state s and condition c, describing the state set s A c. It is possible
that s A c may define a set for which those states that can transition to some f-state n

are a proper subset. In this case, technically we should split s A c on R,,. However,
this can result in an exponential explosion of the number of conditions. Therefore,
we allow each condition c to be split only once. To do this, we create two copies
of the condition list. One of the copies we mark as "volatile" and one we mark as
"constant". When we calculate the value for the volatile condition, if the best option
is to take an action that is applicable for only a subset of the states, we allow that
addition to the condition. When we calculate the value of a condition in the constant
list, however, we require that actions be applicable to all states.

Now consider calculating the value associated with a transition from f-state s and
condition c to some f-state n. Recall, however, that n also has a list of conditions with
values associated with them. To calculate the value of transitioning to n, therefore,
we take a weighted average of those conditions that maximally match c. Note that
if c is TRUE, this is simply the value of n. As before, for the weighted average, we
assume a uniform distribution over all primitive states.

In addition, when doing value iteration here, it is much harder to know if an f-state
can transition to an f-state in another, non-goal macro-state. Therefore, we assign
the "out state" a uniform reward rather than trying to estimate the distance of this
state from the goal.

Using these procedures to calculate cost, distance to goal and value iteration, the
full solver algorithm then proceeds as outlined in Section 3.2.

5.4 Interpreting the Hierarchical Policy

The clustering for the factored representation is not a partition. Therefore, a state
may have different actions specified in the hierarchical policy. We choose which action
to take for a given state s as follows:

1. Locate the macro-state including the state that has the shortest distance to
goal. Let N be the macro-state that is specified as the next macro-state of this
macro-state.

2. Identify macro-states C1, ... , CM such that s E Ci and the next macro-state of
Ci is N for all i.

3. For each macro-state Ci, find the conditions that maximally match s and choose
the highest value/lowest cost condition. Let c be the condition with highest
value/lowest cost of all of the C1, ..., CN.

4. If the level is greater than one, repeat this process from Step 2 with N set equal
to the next macro-state of c. Else, return the action associated with c.

5.5 Preliminary Results

In studying the solver, one question that arises is why we bother clustering the states
beforehand. After all, given a "clustering" that clusters all states into one macro-state
described by the condition TRUE, the solver will produce a solution. However, simi-
larly to the Det algorithm, this solution ignores the non-determinism of the domain.
In this section we show that, in general, the clustering improves the accuracy of the
solution.

5.5.1 Domains

We use two domains: the coffee domain and the tireworld domain. The P-PDDL
descriptions of these domains are shown in A.2, but we give a brief description of
each domain here:

* Coffee Domain: In the coffee domain, a robot is trying to bring coffee to a hu-
man. This domain has six variables, two of which (has-umbrella and is-wet)
are actually irrelevant to the task.

* Tireworld Domain: In this domain a robotic car is trying to drive from point
A to point B without getting a flat tire. The car has room to carry one spare
tire and some locations have spare tires at them. At these locations, if the car
is not carrying a spare, it can pick up one. The number of variables in this
domain corresponds to the number of possible locations, which is specified in
the problem files.

We use both of these domains because they represent different ways of looking at
a factored MDP. In the coffee domain, the state variables refer to different charac-
teristics of the robot. Any true/false combination of these variables is a valid state.
In the tireworld domain, however, the state variables refer to the placement of a car.
The only valid states are states where only one location is true. However, this is not
explicitly stated anywhere in the domain; instead the solver does actually solve for
cases of multiple vehicles and has to be able to pick out, from that solution, the best
policy for the single vehicle.

Problem files for the coffee domain and tireworld domain are given in A.2. We use
one coffee problem file and two tireworld problem files. The coffee problem file has 6
variables and 4 actions. The small tireworld file has 12 variables and 14 actions. The
big tireworld file has 40 variables and 100 actions.

5.5.2 Results

In the coffee domain, the solver algorithm with no clustering is able to reach the
optimal policy with an average reward of -1.71. However, in this domain clustering
can actually hurts us. We created a clustering of 7 macro-states, but because the
clustering is constrained to follow the upper level policy, from a few starting states,
the agent will unnecessarily get-umbrella giving the clustering a value of -1.85.

In the tireworld domain, however, solving without clustering is generally worse
than solving with the clustering. This is because, if the car does not have a spare
tire, an optimal policy generally involves trying to get a spare tire. However, without
the clustering, the solver never takes into account the probability that the car might
lose a tire. In the small world, with a clustering of 14 macro-states, the solver finds
the optimal policy from the specified start state and the car is able to reach the goal
83.3% of the time while, without, the car is able to reach the goal only 35.8% of the
time.

In the larger problem, the optimal solution from the specified starting state is
found by solving both with a clustering of 3 macro-states and without since the
policy is a trivial one-step policy. However, in looking more carefully at these policies
it is clear that if the car was to start, for example, in location n17, the policy with
clustering specifies the action loadtire while the policy without clustering just has
the car move. Therefore, in this case, clustering would give an advantage.

In this chapter, we have presented our algorithms for creating and solving an HMDP
when the MDP was originally specified in factored form. We gave time bounds on
the clustering algorithm and showed that it forms clusters of the minimized states
of the reduced MDP. We also gave some preliminary results of our implementation,
including a run on a world with over one trillion primitive states (40 state variables).

Chapter 6

Conclusions

6.1 Future Work

There are many directions in which we may take this work. We discuss some of them
here.

6.1.1 Clustering Improvements

Our current clustering algorithms consider "adjacent" to be a binary value: either
two states are connected or they are not. This can result in macro-states where
a "connection" between two sub-states actually depends on an unlikely transition.
Instead, we would like to cluster with a bias towards clustering together states with
higher transition probability.

In the enumerated-state clustering, we may be able to do this in two ways. In the
preprocessing step, we often have more than one primitive state that can be added
to a macro-state at a time. By ordering these primitive states by their transition
probability into the macro-state, we could create more tightly connected macro-states.
Similarly, when calculating cycles of macro-states, any time there are two macro-
states that the algorithm would consider equivalent, we can order them by transition
probability.

In the factored case, we can introduce transition probabilities when picking initial
start f-states by picking a start f-state with high transition probability to whichever
previous start f-state with respect to which it is stable. As with the enumerated-state
clustering, we could also use transition probabilities as a tie-breaker in creating the
initial fg-connected cycles.

In addition, the "stopping point" for the enumerated-state clustering may not be
best described by a number of macro-states or a maximum size of macro-states. For
example, in the grid world clustering shown in Figure 4-2, there are a few squares that
belong to singleton or very small clusters. This occurs because all of the surrounding
clusters have reached maximal size, but, really, we would prefer that they be clustered
with one of the nearby large macro-states. Future work could include research into a
better condition for stopping the clustering algorithm.

6.1.2 Theoretical Work

At the moment, we have no theoretical error bounds on either the factored or the
enumerated-state algorithm, but we believe that it should be possible to attain those
bounds.

In addition, we do not have a good algorithmic method for setting the algorithmic
parameters, namely S,,ma, Cmin, and the NCP. In this work, we have used empirical
methods for setting the parameters, but an explicit equation relating them to time
and accuracy would allow for much better parameter selection.

6.1.3 Improvements for Factored Algorithms

In this thesis, we include no results comparing our factored algorithm to other algo-
rithms. We need to optimize the factored algorithms code so that it can be compared
against current factored algorithms.

We also could improve our factored algorithms to allow more interesting reward
functions than R(s, a) = -1. The theoretical basis for this is present; it is a matter
of implementing the lower-level cost function to deal with non-uniform rewards.

We may also be able to extend the factored solver algorithm to deal with dis-
junctive preconditions. Currently, we use the conjunctive preconditions to avoid
satisfiability issues in deciding if a set of states matches a precondition for an action.
However, it may be possible to overcome this restriction by use of a heuristic.

Lastly, we could improve the factored clustering algorithm using the concept of
"exit f-states" defined similarly to primitive exit states. Then, rather than require all
f-states of a macro-state to be connected, we could just require that all f-states reach
an exit f-state.

6.1.4 Real-World Problems

All of our current results, for both enumerated-state MDPs and factored MDPs,, are
in simulation. While simulation works well for comparing our algorithms to other
current work in the field, it often does not give a good idea of how well the algorithm
will work in the real world. Therefore, in future work, we would like to implement
this algorithm outside of simulation.

In addition, for large problems, the algorithm is still too slow to be real-time
algorithms. However, because we use a hierarchy, we could possibly change this simply
by being clever about the order in which we solve our hierarchy. The clustering and
the top-most level solution would still need to be done first. However, once the top-
most level solution was computed, we could solve all the way down the hierarchy for
the first step and begin carrying out that step while solving the rest of the problem.
This may allow the algorithm to be fast enough that it could be done on-the-fly rather
than having to compute all of the solutions off-line.

6.1.5 Extension to POMDPs

In working with MDPs, we have made the assumption that the world is fully observ-
able. In general, especially in robotics, this is a poor assumption. Usually, there is
uncertainty not only in the actions, but also in the state space. If we incorporate
uncertainty about the state, but keep the Markovian assumption, we can model the
world using a partially observable Markov decision process (POMDP). POMDPs are,
in general, a much better model of the world than MDPs, with a much larger class
of corresponding problems. However they are also much harder to solve than MDPs.

One method for solving a POMDP is to convert it to a "belief-state MDP". A
belief-state MDP is an MDP where the states of the MDP are the belief-states of
the POMDP. A belief state is actually a probability distribution over the states of
the POMDP, representing the current possible states. How a belief state will change
when a certain action is taken is deterministic. Therefore, by converting from POMDP
states to belief states, we can convert from a POMDP to an MDP.

However, belief-state MDPs have, even for small POMDPs, extremely large, con-
tinuous state spaces. Therefore, most classic algorithms for solving MDPs do not
work on belief-state MDPs.

This gives us two possible directions for extending our work to POMDPs: we
could attempt to extend the algorithms to explicitly work with POMDPs or we could
try to work with the belief state MDPs. Either one presents possibilities, as well as
difficulties.

6.2 Conclusion

In this thesis we have presented methods for creating and solving Markov decision
processes. We outlined a method for solving hierarchical MDPs based on a determin-
istic assumption and then introduced a clustering principle that guarantees that if a
state can reach a goal state under an optimal policy, it can reach a goal state under
the hierarchical policy.

We discussed our clustering and solving algorithms for enumerated-state and fac-
tored MDPs. We used the enumerated-state MDPs to compare against other cluster-
ing methods and show that, for our purposes, our clustering method works better than
other common methods. We also showed that our algorithm introduces a significant
speed-up over other algorithms with only a small reduction in optimality.

We have also implemented the algorithms for the factored MDP representation
and we showed that in this case, it is possible to run our algorithm on very large state
spaces.

76

Appendix A

Domains

A.1 Enumerated State Domains

A.1.1 Factory Domain

The factory domain consists of two objects A and B each of which has 5 attributes.
There are also 10 actions corresponding to each of these attributes. The attributes/actions
are CLEANA, CLEANB, SHAPEA, SHAPEB, DRILLA, DRILLB, PAINTA, PAINTB,
JOINA, JOINB. The goal is to have all attributes true.

The dynamics of the actions for this domain are shown in Table A.1.

Action Precondition Effect (Probability)
CleanA CLEANA (0.9) and - PAINTA, -CLEANA and -PAINTA (0.1)
CleanB - CLEANB (0.9) and -PAINTB, -CLEANB and -PAINTB (0.1)
ShapeA -PAINTA SHAPEA (0.8), -SHAPEA (0.2)
ShapeB -PAINTB SHAPEB (0.8), -SHAPEB
DrillA SHAPEA DRILLA (0.8), -iDRILLA and -SHAPEA (0.2)
DrillB SHAPEB DRILLB (0.8), -DRILLB and --SHAPEB(0.2)
PaintA CLEANA PAINTA (0.8), -PAINTA and -CLEANA (0.2)
PaintB CLEANB PAINTB (0.8), -iPAINTB and -CLEANB (0.2)
JoinA SHAPEA and DRILLA and CLEANA JOINA (0.7), -JOINA and -CLEANA (0.3)
JoinB SHAPEB and DRILLB and CLEANB JOINB (0.7), -JOINB and --CLEANB (0.3)

Table A.1: The dynamics of the factory domain

A.2 Factored Domains

P-PDDL descriptions for the factored domains.

A.2.1 Coffee

Coffee domain:

-*-lisp-*-

;; Coffee domain:

Dearden Richard, and Craig Boutilier. 1997. Abstraction and

;; approximate decision-theoretic planning. Artificial

;; Intelligence, 89(1-2):219-283.

Modified by Jennifer Barry to remove additive rewards and

;; disjunctive preconditions.

(define (domain coffee)

(:requirements :negative-preconditions

:conditional-effects :probabilistic-effects :rewards)

(:predicates (in-office) (raining) (has-umbrella) (is-wet)

(has-coffee) (user-has-coffee))
(:action move

:effect (and

(:action buy-coffee

:effect (and

(:action get-umbrella

:effect (and

(when (in-office)

(probabilistic 0.9 (not (in-office))))

(when (not (in-office))

(probabilistic 0.9 (in-office)))

(when (and (raining) (not (has-umbrella)))

(probabilistic 0.9 (is-wet)))

(decrease (reward) 1)))

(when (not (in-office))

(probabilistic 0.8 (has-coffee)))

(decrease (reward) 1)))

(when (in-office)

(probabilistic 0.9 (has-umbrella)))

(decrease (reward) 1)))

(:action deliver-coffee

:effect (and (when (and (in-office) (has-coffee))

(probabilistic 0.8 (and (user-has-coffee)

(not (has-coffee)))

0.2 (and (probabilistic

0.5 (not (has-coffee))))))

(when (and (not (in-office)) (has-coffee))

(and (probabilistic 0.8 (not (has-coffee)))))

(decrease (reward) 1))))

Coffee problem:

(define (problem coffee)
(:domain coffee)

(:init (probabilistic 0.5

(probabilistic 0.5
(probabilistic 0.5
(probabilistic 0.5

(probabilistic 0.5
(probabilistic 0.5

(:goal (user-has-coffee)))

(in-office))

(raining))

(has-umbrella))

(is-wet))

(has-coffee))

(user-has-coffee)))

A.2.2 Tireworld

Tireworld domain:

-*_lisp-*-
;; Authors: Michael Littman and David Weissman
;; Modified: Blai Bonet for IPC 2006 ;;;

(define (domain tire)
(:requirements :typing :strips :equality :probabilistic-effects :fluents :rewards
(:types location)
(:predicates (vehicle-at ?loc - location) (spare-in ?loc - location)

(road ?from - location ?to - location) (not-flattire) (hasspare))
(:action move-car

:parameters (?from - location ?to - location)
:precondition (and (vehicle-at ?from) (road ?from ?to) (not-flattire))
:effect (and (vehicle-at ?to) (not (vehicle-at ?from))

(probabilistic 2/5 (not (not-flattire)))
(decrease (reward) 1))

(:action loadtire
:parameters (?loc - location)
:precondition (and (vehicle-at ?loc) (spare-in ?loc))
:effect (and (hasspare)

(not (spare-in ?loc))
(decrease (reward) 1))

(:action changetire
:precondition (hasspare)
:effect (and (probabilistic 1/2 (and (not (hasspare)) (not-flattire)))

(decrease (reward) 1))

Small problem:

(define (problem tire_small)
(:domain tire)
(:objects nO ni n2 n3 n4 - location)
(:init (vehicle-at nl)

(road nO ni) (road n1 nO)
(road n1 n2) (road n2 nl)
(road n2 n3) (road n3 n2)
(road n3 n4) (road n4 n3)

(spare-in ni)
(not-flattire)

(:goal (vehicle-at n4))

Large problem

(define (problem tire_19_0_28845)

(:domain tire)

(:objects nO n1 n2 n3 n4 n5 n6 n7 n8 n9 n10O nil n12 n13 n14

n15 n16 n17 n18 - location)

(:init (vehicle-at n12)

(road nO n8) (road n8 nO)
(road n1 n2) (road n2 nl)
(road ni n3) (road n3 ni)

(road n1 n6) (road n6 nl)
(road ni n7) (road n7 nl)

(road n1 nil) (road nil nl)
(road n1 n13) (road n13 nl)
(road n2 n18) (road n18 n2)
(road n3 n7) (road n7 n3)
(road n3 n9) (road n9 n3)
(road n3 n12) (road n12 n3)
(road n3 n18) (road n18 n3)
(road n4 n9) (road n9 n4)
(road n5 n7) (road n7 n5)
(road n6 n8) (road n8 n6)
(road n6 n17) (road n17 n6)
(road n7 n13) (road n13 n7)
(road n7 n16) (road n16 n7)
(road n8 n1O) (road n10O n8)
(road n8 n15) (road n15 n8)
(road n8 n17) (road n17 n8)
(road n8 n18) (road n18 n8)
(road n9 n15) (road n15 n9)
(road n9 n16) (road n16 n9)
(road nlO n12) (road n12 n1O)
(road n10 n16) (road n16 n1O)
(road nil n13) (road n13 nil)
(road n12 n15) (road n15 n12)
(road n12 n17) (road n17 n12)
(road n12 n18) (road n18 n12)
(road n13 n14) (road n14 n13)
(road n13 n16) (road n16 n13)
(road n13 n18) (road n18 n13)
(road n14 n15) (road n15 n14)

(road n14 n16)
(road n14 n17)
(road n15 n17)
(road n16 n17)

(road n16 n18)
(road n17 n18)
(spare-in n4)
(spare-in n5)

(spare-in n6)
(spare-in n9)

(spare-in n1O)

(spare-in nil)

(spare-in n12)

(spare-in n13)

(spare-in n17)

(spare-in n18)
(not-flattire)

(road n16 n14)
(road n17 n14)
(road n17 n15)
(road n17 n16)
(road n18 n16)
(road n18 n17)

(:goal (vehicle-at n3))

84

Appendix B

Theoretical Analysis of the
Deterministic Assumption for
Enumerated-State MDPs

We have done a simple analysis of how much our cost estimates we find using our
deterministic assumption differ from the actual cost of moving from one primitive
state to another. We hope this will lead to a bound on the deviation between the
value of the policies found by our algorithm and the optimal policy.

We begin by bounding the difference between our estimated cost Co and the actual
cost of transitioning between two states..

Costs First, let C(i, j) be the expected cost to get from primitive state i to primitive
state j under the optimal policy for going from i to j. To compute this, we let j be
an absorbing goal state and solve for the optimal policy Wj. Then C(i, j) = V j (i).

Now, our approximate costs. This is the expected cost to get from i to j, if (1)
we take the action a that is most likely to get us there, and (2) whenever that action
fails to take us to j, it leaves us at i:

-R(i, a) (B.1)
Co(i,j) = min T i (B.1)a T(i, a, j)

We want to give a bound on C(i, j) - Co(i, j)1. The first thing is that we do not
know whether Co(i, j) is greater or less than C(i,j). So we need both an upper and
lower bound on C(i, j). The lower bound is, in fact, trivial:

C(i, j) > -Rmax. (B.2)

(Recall that for negative MDPs, Rmax will be a small negative number, making -Rmax
a lower bound).

To get an upper bound, let Mj be the MDP considering j to be a goal state and
assume 7r is any policy defined on My. Then, since C(i, j) is defined using the optimal

policy to go from i to j we have that

C ij - V . (B.3)

Now let Q, be the transient transition matrix of My under 7. A transition matrix
for a policy 7 is an IS x IS matrix where the ijth entry corresponds to the probability
of transitioning from primitive state i to primitive state j using action 7r(i). The rows
of a transition matrix sum to 1. A "transient transition matrix" is an IS| - IG| x SI -
IGI matrix formed from the transition matrix by removing the gth row and column
of the transition matrix if g is an absorbing goal state. Note that the rows of the
transient transition matrix may not sum to 1.

If we start at i, the expected number of transitions S"(i) before entering a goal
state is

OO

S"(i) = 7[Q"]iJ" (B.4)
n=O j

Therefore, the expected cost of starting at i must be upper bounded by

00

VT(i) < -RminS"(i) - Rm nZ [Q ij. (B.5)
n=O j

Now let the spectral decomposition of Q, be

Qr = ADA - 1. (B.6)

where D is diagonal and, without loss of generality, arranged in descending order by
absolute value (so that Doo is the eigenvalue of Q, with greatest magnitude). Then

E[Q]ij = E[ADnA-1]
J J

= E Y Aik [D]mA . (B.7)
j k m

Using that fact that D is diagonal, we find

[Q]ij = Aik D n A kjA

j j k

< iDoon" AikA-1
j k

= |D 0o Z[AA-'i

= |D . (B.8)

Therefore, we find an upper bound on C(i, j) of

-Rmin
C(i,j) < -Rmin D00oo = 1- (B.9)

n= o - Doo

Thus we can bound IC(i,j) - Co(i,j)l as

C(ij) - C(ij) max - i C(i j),Co(i, j) - -Rmax) (B.10)
(I - |Doo

where the bound holds if ID00o is the greatest magnitude eigenvalue of the transient
transition matrix of My under some policy.

Distances Once we have these costs, we can define shortest paths from all states
to a goal state. Let D(i) be the shortest distance to a goal state from primitive state
i, using the costs C(i,j), and let D(i) be the shortest distance to a goal state from
primitive state i using the approximate costs Co(i, j). We denote the policy that acts
greedily with respect to -D as i-D and the one that acts greedily with respect to
-D as i_b. We can find a bound on ID(i)- D(i) .

Again, we need to separate out the cases where D(i) > D(i) and D(i) < D(i).
We will first consider bounding D(i) - D(i).

When dealing with these types of hierarchical deterministic policies, we have a
well-defined idea of the next state. Therefore, for a hierarchical policy & we define
a next state function Nf such that N*(i) - j if j is the next specified state of i.
We also let Nk(i) be the state k steps after i. So N°(i) = i, NJ(i) = N*(i) = j,
NJ(i) = N*(N*(i)) = Nk(j), etc. In addition, we let L,(i) be the number of steps to
the goal from state i following policy ft. Then

Lf -D(i)-

D(i) - b(i) C(ND
j=0

-D SCo(N-D (i), (i)) (B.11)
k=0

and we want an upper bound on this difference. Note that, since i-D is a shortest
path

L rD (i)-1 L -D

C(N- C(N (i),NI (i)). (B.12)
j=0 k=O

Therefore

D(i)- b(i) < S C(Nj (i) N (i)) - C(M ') N (i))
k=O

Nk+l C k , k+l(i), N r i)) - _

- min CO(s , s'). (B.13)aS'S
<L_ (i)

- Rmin

1- Dool

Note that our solver solves for L,_ , but it can also be bounded above by the leading
eigenvalue of the transient transition matrix under '-r_.

The case of D(i) - D(i) can be approached similarly:

L _ (i) -1

Co(N_ (),
k=O

Nk+i

L-_D(i)-I

N-DC0 N j l
j=O

L_ D()-1

< E
j=0O j=0

< LD X(i) max C(Nir D(i), N (i)) - C (Nt(i)D (i)D

< s (max Co(s, s') -
S

I
S

-Rmax .

The bound is then

D(i) - D)(i)I < max { L (i) (- Ro min1 - Dool
min Co(s,
ss-
SS

- Umax)

D(i) - D(i)

(B.14)

-DL ('), A_')-+ c(N' D(') j l D

s I max C(s, s')
(S,S/

(B.15)

< L, (i) max [(N_k C(fr

Bibliography

[Adams, 1979] Douglas Adams. The Hitchhiker's Guide to the Galaxy. Pan Books,
London, 1979.

[Bakker et al., 2005] Bram Bakker, Zoran Zivkovic, and Ben Krose. Hierarchical Dy-
namic Programming for Robot Path Planning. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pages 3720 3725, 2005.

[Bertsekas and Tsitsiklis, 1996] Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-
Dynamic Programming. Athena Scientific, Belmont, Massachusetts, 1996.

[Bertsekas, 1995] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control.
Athena Scientific, Belmont, Massachusetts, 1995. Volumes 1 and 2.

[Bonet and Geffner, 2009] Blai Bonet and Hector Geffner. Solving POMDPs: RTDP-
Bel vs. Point-based Algorithms. In 21st Int. Joint. Conf. on Artificial Intelligence
(IJCAI), Pasadena, California, 2009. To appear.

[Boutilier et al., 1995] Craig Boutilier, Richard Dearden, and Moises Goldszmidt. Ex-
ploiting Structure in Policy Construction. In Proc. of the 14th International Joint
Conference on Artificial Intelligence, pages 1104 1113, 1995.

[Coifman et al., 2005] R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler,
F. Warner, and S. W. Zucker. Geometric Diffusions as a Tool for Harmonic Analysis
and Structure Definition of Data: Multiscale Methods. PNAS, 102(21):7432 7437,
MAY 2005.

[Contributors, 2008] Wikipedia Contributors. Observable Universe. Wikipedia,
http://en.wikipedia.org/wiki/Observable_universe, February 2008.

[Dean and Givan, 1997] Thomas Dean and Robert Givan. Model Minimization in
Markov Decision Processes. In AAAI, pages 106 111, Cambridge, MA, 1997.

[Dean et al., 1997] Thomas Dean, Robert Givan, and Sonia Leach. Model Reduction
Techniques for Computing Approximately Optimal Solutions for Markov decision
processes. In Proc. of the 13th Conference on Uncertainty in Artificial Intelligence,
pages 124 131, San Francisco, CA, 1997.

[Dean et al., 1998] Thomas Dean, Thomas Dean, Kee eung Kim, Kee eung Kim,
Robert Givan, and Robert Givan. Solving stochastic planning problems with large
state and action spaces. In In Proc. Fourth International Conference on Artificial
Intelligence Planning Systems, pages 102 110. AAAI Press, 1998.

[Dearden and Boutilier, 1997] Richard Dearden and Craig Boutilier. Abstraction and
Approximate Decision-Theoretic Planning. Artificial Intelligence, 89:219 283, Jan-
uary 1997.

[Dietterich, 1998] Thomas G. Dietterich. The MAXQ Method for Hierarchical Rein-
forcement Learning. In ICML, pages 118 126, San Francisco, 1998.

[Digney, 1996] Bruce L. Digney. Emergent Hierarchical Control Structures: Learning
Reactive / Hierarchical Relationships in Reinforcement Environments. In Proceed-
ings of the Fourth Conference on the Simulation of Adaptive Behavior: SAB 98,
1996.

[Givan et al., 2003] Robert Givan, Thomas Dean, and Matthew Greig. Equivalence
Notions and Model Minimization in Markov Decision Processes. Artificial Intelli-
gence, 142(1-2):163 223, 2003.

[Hauskrecht et al., 1998] Milos Hauskrecht, Nicolas Meuleau, Craig Boutilier,
Leslie Pack Kaelbling, and Thomas Dean. Hierarchical solution of Markov decision
processes using macroactions. In Proceedings of the Fourteenth Annual Conference
on Uncertainty in Artificial Intelligence, Madison, Wisconsin, 1998.

[ICAPS, 2009] ICAPS. International Conference on Automated Planning and
Scheduling. http://www.icaps-conference.org/, 2009.

[Johnson, 1975] Donald B. Johnson. Finding All the Elementary Circuits if a Directed
Graph. SIAM J. Comput., 4(1), MARCH 1975.

[Jonsson and Barto, 2006] Anders Jonsson and Andrew Barto. Causal Graph Based
Decomposition of Factored MDPs. Journal of Machine Learning Research, 7:2259
2301, 2006.

[Kim and Dean, 2001] Kee-Eung Kim and Thomas Dean. Solving Factored MDPs
Using Non-Homogenous Partitions. In Proc. International Joint Conference on
Artificial Intelligence, pages 683 689, San Francisco, CA, 2001. Morgan Kaufmann
Publishers.

[Kim and Dean, 2002] Kee-Eung Kim and Thomas Dean. Solving Factored MDPs
with Large Action Space Using Algebraic Decision Diagrams. In Proc. of the
7th Pacific Rim International Conference on Artificial Intelligence, pages 80 89.
Springer, 2002.

[Lane and Kaelbling, 2002] Terran Lane and Leslie Pack Kaelbling. Nearly Deter-
ministic Abstractions of Markov Decision Processes. In AAAI, Edmonton, 2002.

[Maggioni and Mahadevan, 2006a] Mauro Maggioni and Sridhar Mahadevan. A Mul-
tiscale Framework for Markov Decision Processes using Diffusion Wavelets. Tech-
nical Report 2006-36, University of Massachusetts, July 2006.

[Maggioni and Mahadevan, 2006b] Mauro Maggioni and Sridhar Mahadevan. Fast
Direct Policy Evaluation using Multiscale Analysis of Markov Diffusion Process.
In ICML, Pittsburgh, 2006.

[Mahadevan, 2008] Sridhar Mahadevan. Representation Discovery Using Harmonic
Analysis. Morgan and Claypool Publishers, 2008.

[McGovern and Barto, 2001] A. McGovern and A. Barto. Automatic Discovery of
Subgoals in Reinforcement Learning using Diverse Density. ICML, pages 361 368,
2001.

[Mehta et al., 2008] Neville Mehta, Soumya Ray, Prasad Tadepalli, and Thomas Di-
etterich. Automatic Discovery and Transfer of MAXQ Hierarchies. In Proceedings
of the 25th International Conference on Machine Learning, Helinski, Finland, 2008.

[Parr and Russell, 1997] Ronald Parr and Stuart Russell. Reinforcement learning
with hierarchies of machines. In Neural Information Processing Systems, 1997.

[Puterman, 1994] Martin L. Puterman. Markov Decision Processes. John Wiley &
Sons, New York, 1994.

[Russell and Norvig, 2003] Stuart J. Russell and Peter Norvig. Artificial Intelligence:
A Modern Approach. Pearson Education, New Jersey, second edition, 2003.

[Shi and Malik, 2000] Jianbo Shi and Jitendra Malik. Normalized Cuts and Image
Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2000.

[Simsek et al., 2005] Ozgur Simsek, Alicia P. Wolfe, and Andrew G. Barto. Identify-
ing Useful Subgoals in Reinforcement Learning by Graph Partitioning. In Proceed-
ings of the 22nd International Conference on Machine Learning, Bonn, Germany,
2005.

[Sutton and Barto, 1998] Richard S. Sutton and Andrew G. Barto. Reinforcement
Learning: An Introduction. MIT Press, Cambridge, MA, 1998.

[Sutton et al., 1999] Richard S. Sutton, Doina Precup, and Satinder P. Singh. Be-
tween MDPs and semi-MDPs: A framework for temporal abstraction in reinforce-
ment learning. Artif. Intell., 112(1-2):181-211, 1999.

[Younes and Littman, 2004] Hakan L. S. Younes and Michael L. Littman. PPDDL
1.0: An extension to PDDL for expressing planning domains with probabilistic
effects. Technical Report CMU-CS-04-167, School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA, 2004.

