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Abstract

The accurate prediction of physical properties in the vast spaces of nanoscale struc-
tures and chemical compounds is made increasingly possible through the use of atom-
istic and ab initio computation. In this thesis we investigate lattice thermal conduc-
tivities KL and electronic band gaps E,, which are relevant to thermoelectric and
photovoltaic applications, respectively, and develop or modify computational tools
for predicting and optimizing these properties.

For lattice thermal conductivity, we study SiGe nanostructures, which are tech-
nologically important for thermoelectric applications. From computing aL for vari-
ous SiGe nanostructures, we establish that the Kubo-Green approach using classical
molecular dynamics (MD) gives additional quantitative predictions not available from
phenomenological models, such as the existences of a minimum value of a'L as the
nanostructure size is varied and of configurational dependence of rL. We carry out
the minimizatin of aL in the space of atomic configurations in SiGe alloy nanowires
and demonstrate the feasibility of using the cluster expansion technique to param-
eterize sL. We find that the use of coarse graining and a meta cluster expansion
approach is effective, in conjunction with a genetic algorithm, to find configurations
which drastically lower 1 L. The low values of mrL obtained, close to the bulk amor-
phous limit, are due to the absence of long-range order, and such absence allows a
local cluster expansion approach to optimize rL.

We examine ab initio bandgap prediction for semiconductor compounds, and ad-
dress the large errors of Kohn-Sham band gaps in density functional theory (DFT).
We apply corrections using the self-energy approach in the GW approximation, which
includes non-local screened exchange and correlation, and find that the GoWo approx-
imation significantly reduces prediction errors compared to Kohn-Sham band gaps,
though at much higher computational cost. We propose a new method involving to-
tal energies in DFT to predict the fundamental gap, by use of the properties of the
screening or exchange-correlation hole in an electron gas. With this method, we are



able to efficiently predict band gaps that are in agreement with experimental values.
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Chapter 1

Introduction

1.1 A lot more is a lot different

Since the famous exclamation that "More is Different" by Anderson [9] some forty

years ago, the study of condensed matter has expanded considerably both in scale

and in complexity. Some of the most scientifically and technologically significant

discoveries, e.g. Giant Magnetoresistance for which the 2007 Nobel prize in physics

was awarded, have been made in the phenomenologically rich space between the bulk

thermodynamic limit and individual particles - the nanoscale. Just as the breaking

of continuous translational symmetry leads to the wealth of crystal structures and ac-

companying properties, the breaking of discrete translational symmetry in nanoscale

systems gives rise to additional complexity and new phenomena. Another dimen-

sion of complexity comes from the vast combinatorial expanse of the hundred or so

elements, from which thousands of new compounds are discovered each year in the

inorganic subspace alone [10].

In a twist of fate, however, increasingly such complexity is dealt with by construc-

tionist means through the use of computation. In atomistic and ab initio computing,

phenomena and properties emerge from mere inputs of initial conditions and funda-

mental laws, be they classical or quantum in nature. The broad (though far from

universal) applicability of such powerful computational tools as molecular dynam-

ics (MD) and density functional theory (DFT) has allowed us on many occasions



to answer precisely how "more" is "different". The ability to make quantitative or

semi-quantitative predictions lends enormous scientific and societal relevance to these

computational methods as well as their underlying theories.

The overarching theme of this thesis is the intersection between the understanding

and prediction of physical properties (in the complex spaces of nanosystems and

chemical compounds), and the development of computational tools to facilitate this

understanding. We focus on phenomena with practical applications of broad societal

impact, namely thermoelectric and photovoltaic effects. For each, we identify key

properties, the space of possibilities, and existing computational tools. For each, we

develop new or improved computational tools for more efficient exploration of the

complexities or more accurate predictions of the properties.

1.2 Thermoelectric and photovoltaic effects

Thermoelectrics and photovoltaics hold significant potentials as alternative energy

resources. Of the 100 quadrillion BTU (30 trillion kWh) of energy consumed in the

US in 2006, 93% of which from non-renewable sources, over 60% is lost as waste

heat [11]. Recovering even a small fraction of this heat as electricity with thermo-

electrics could significantly reduce the dependence on fossil fuels. The amount of solar

energy incident on the Earth is so vast that the coverage of 0.2% of the land surface

on Earth with 15% efficient solar cells could provide all human energy needs. In both

thermoelectric and photovoltaic applications, there are key physical properties of the

materials in use that critically affect their efficiencies. The scientific problem, then, is

to understand and develop the ability to predict and optimize these properties. Eco-

nomical considerations, which favor the use of compounds containing earth-abundant

elements, serve as constraints in the property optimization problems.

Thermoelectric phenomena involve the transport of thermal and/or electric cur-

rents under the driving forces of electric fields and/or temperature gradients. The

Seebeck effect occurs when a voltage (AV) is generated from a temperature difference

(AT), and is the principle behind thermoelectric power generation. The Seebeck coef-



ficient S is defined as the ratio between voltage generated and temperature difference,

i.e.
AV

S = (1.1)
AT

The Peltier effect stems from the differences in ratios of heat to electrical currents

in different materials, and is the basis of thermoelectric cooling (refrigeration), the

effectiveness of which also depends on the Seebeck coefficient. To obtain a high

efficiency for power generation or a high coefficient of performance for refrigeration,

it is desirable to have a high thermoelectric figure of merit ZT, which is given by

S2a
ZT = S2 T (1.2)

where a is the electrical conductivity, r the thermal conductivity, and T the temper-

ature. Currently the highest ZT achieved for bulk materials is roughly 1.5 [12], which

gives an efficiency 30% that of the Carnot efficiency operating between reservoirs of

300K and 900K.

The photovoltaic effect describes the generation of electrical current from charge

carriers created through the absorption of photons. The effect occurs in a material,

typically a semiconductor or organic compound, with an energy gap between occupied

and unoccupied electronic states. The fundamental limitation on efficiency is imposed

by this energy gap, although electronic transport and defect properties are also im-

portant. Currently the highest efficiencies of -40% are obtained with multi-junction

semiconductor photovoltaic cells [13].

1.3 Overview of this thesis

In chapter 2, background information involving computational tools used and key

thermoelectric and photovoltaic properties considered are given. We motivate the

specific study of lattice thermal conductivities rL and electronic band gaps Eg, using

a combination of molecular dynamics (MD), density functional theory (DFT), and

cluster expansion techniques.



Chapter 3 is divided into two parts, namely the study of lattice thermal conduc-

tivities in various SiGe nanostructures, and the prediction and optimization of KL

in SiGe nanowires. In the former we seek to establish the validity of classical MD

simulations as a predictive tool for KL, study the factors that affect KL in these nanos-

tructures, and identify the configurational degrees of freedom for which optimization

is possible. In the latter we use the predictive tool of MD and the cluster expansion

technique to carry out this optimization to devise nanowire configurations with low

lattice thermal conductivities.

Chapter 4 tackles the issue of ab initio band gap prediction. We discuss and

demonstrate the large errrors involved with band gap predictions in DFT and other

first principles methods. Corrections to these errors are attempted in two approaches,

the first being the many body perturbation theory self-energy correction, in the GW

approximation. An alternative approach to predict the band gap, making use of the

fundamental properties of screening or exchange correlation in an electron gas, is also

suggested and tested.



Chapter 2

Background

2.1 Tools for materials properties prediction

Properties of matter are largely governed by electrons, ions1 , and their collective

excitations. Due to the large mass difference between electrons and ions, in most

cases it is possible to separately treat the electronic and ionic degrees of freedom

using the Born-Oppenheimer approximation. In this section we give a birds-eye view

of some of the computational tools used for the respective study of ions and electrons,

focusing especially on the physical principles behind these methods, and the ways in

which we will use, extend, or augment them for the purpose of this thesis.

2.1.1 Classical molecular dynamics (MD)

With the exception of a few light elements or at very low temperatures, the thermal

deBroglie wavelengths of ions are much smaller than their spatial separations in nor-

mal matter, meaning that they can be described adequately using classical dynamics.

In classical molecular dynamics (MD) simulations, Newton's equations of motion are

integrated numerically to produce classical trajectories of ions. The forces governing

the motion are typically obtained from a system-specific potential model. The simu-

lations can be performed adiabatically, in which the system energy E is conserved, or

'We will use the word "ions" to denote atoms, molecules and charged ions.



at constant temperature T through the use of a thermostat. Analogously, either the

volume V can be kept constant or the pressure P maintained using a barostat. Typ-

ically the particle number N is conserved. The common types of MD simulations are

called NVE, NVT, and NPT where the symbols denote the quantities kept constant.

Classical MD is arguably the most widely-used computational tool for the study

of condensed matter. The advantages of classical MD include its versatility, simplic-

ity, computationally expediency, and physical transparency. From ionic trajectories,

quantities such as diffusion rates and lattice thermal conductivities can be derived

from pair correlation functions. In addition, mechanical, chemical or physical phe-

nomena such as cracking, docking, and melting can also be studied. One disadvantage

of classical MD, however, is the fact that a potential model needs to be developed for

each type of system. There are usually parameters in each model that have to be fit-

ted either to experimental or accurately-calculated quantities. Sometimes the models

are not transferrable to different environments of the same species (e.g. amorphous

vs. crystalline). Therefore, MD is most suited for the repetitive study of different

behaviors and/or configurations of the same chemical species in similar environments.

We employ classical MD in the study of the lattice thermal conductivity of a variety of

different SiGe nanostructures (Chapter 3), a chemical system with well-characterized

potential models.

2.1.2 Cluster expansion

Configurational freedom refers to the possibility of different spatial arrangements of

species of ions, the simplest case being two species of atoms on a crystal lattice (e.g.

a binary alloy) which we use as an example. In this case the number of configura-

tions is 2 N, N being the number of lattice sites, so that explicit accounting quickly

becomes intractable. The cluster expansion technique [14] is used to overcome this

difficulty. The set of all 2 " configurations is recast into EM NCM terms, each rep-

resenting a connected cluster of M sites (hence the name). A quantity that depends

on configurations, e.g. the total energy, can be expressed as a sum of contributions

from each of these clusters. If the dependence on configuration falls off sufficiently



rapidly with distance, then a small number of clusters would be sufficient to describe

the configurational dependence.

In a typical application of the cluster expansion technique, a configurational-

dependent quantity Q is initially calculated for a sample set of configurations by

other means, and the contribution of each cluster to Q is then determined by fitting

to the set of calculated values of Q. The fitting coefficients, called effective cluster

interactions (ECIs), characterize the configurational dependence of Q. The value of

Q for any other configurations can be determined from the ECIs. We stress that in

order to use the cluster expansion method, it is necessary to have an initial method

for computing Q. In the case of Q being the total energy E, the initial method is

typically density functional theory (DFT). The advantage of the cluster expansion is

that Q can be evaluated much more rapidly as a sum of cluster contributions using

the ECIs than with the initial method, so that a sampling of configurational space is

possible. In the case of Q being the total energy, sampling can be used to identify

ground state configurations. In other words, cluster expansion enables a practical

optimization to be made over the enormous space of 2N configurations.

We extend the cluster expansion technique (Chapter 3) to study the configura-

tional dependence of thermal conductivities in SiGe nanowires, using MD as the initial

method of computation. We introduce new coarse-graining techniques to the clus-

ter expansion method in order to account for the stochastic nature of heat transfer.

Using the sampling capability of the cluster expansion, we carry out optimization in

order to find low thermal conductivity configurations, which would be desirable for

thermoelectric applications.

2.1.3 Density functional theory (DFT)

Density functional theory (DFT), based on universal quantum mechanical principles,

reduces the intractable Schr6dinger equation governing 1023 electrons in a typical

physical system to a single-particle effective theory amenable to computational solu-

tions. DFT has allowed an unprecedented breadth and depth of understanding of a

wide range of materials properties structural, mechanical, electronic, spectroscopic,



and magnetic, among others. The ab initio nature and hence broad applicability of

DFT, together with its accuracy and computational efficiency, all contribute towards

its popularity as of this writing, there are over 47,000 published scientific articles

containing the term "density functional theory" in the Web of Science.

The foundation of DFT lies in the Hohenberg-Kohn theorem [15], which states

that the ground state charge density of a system of interacting electrons uniquely de-

termines the total Hamiltonian, including the external potential due to ions V(r), and

hence the total ground state energy. As a consequence, the total kinetic and Coulomb

energy of a system of electrons is a universal functional E[n(r)] of the charge density

n(r). Although this universal functional is not known, in the Kohn-Sham scheme [16],

DFT can be recast into a familiar Schr6dinger-like Kohn-Sham equation. The effects

of electrons being identical fermions (exchange) and their interactions being many-

body in nature (correlation) are encapsulated in an exchange-correlation potential.

While the exact exchange-correlation potential is also not known, approximations

such as the Local Density Approximation (LDA) and Generalized Gradient Approx-

imation (GGA) are highly successful in producing quantitatively-accurate ground

state energies and related properties such as lattice parameters.

The solutions to the Kohn-Sham equation are single-particle wavefunctions that

formally only serve to reproduce the ground state density. In practice, however, the

corresponding eigenvalues for solids are often compared with the band structures mea-

sured by photospectroscopy because there are often qualitative agreements. A major

challenge facing DFT today, however, is the fact that for non-metals the energy gaps

between the filled and occupied bands predicted using the Kohn-Sham eigenvalues

are significantly below that of experimental values. This has been referred to as the

"band gap problem" of DFT, and an oft-used comment is that DFT is a ground state

theory and thus cannot be used to treat excited state properties. We will investigate,

and propose a solution for, the band gap problem in DFT in Chapter 4.



2.2 Key thermoelectric and photovoltaic proper-

ties

2.2.1 Lattice thermal conductivity KL

Definition

The conduction of thermal energy in a system is governed by the Fourier Law, which

states that the heat flux, i.e. thermal energy transferred per unit time per unit area,

is proportional to the temperature gradient. The direction of the heat flux is towards

lower temperature, so we have

J = -KVT (2.1)

where the (positive) constant of proportionality is called the thermal conductivity 'i.

Importance of r1L for thermoelectric efficiency

Recall that the thermoelectric figure of merit ZT which governs the thermoelectric

power generation efficiency is given by:

ZT = S 2 T (2.2)

To increase ZT, it is desirable to decrease the thermal conductivity. The thermal

conductivity /,' has contributions from ionic and electronic degrees of freedom. From

the Wiedemann-Franz law, which is applicable in most normal matter, the electronic

thermal conductivity "e is proportional to the electrical conductivity a. Since a and

the Seebeck coefficient S both need to be maximized in order to increase the figure of

merit ZT, the lattice contribution to the thermal conductivity, which we will refer to

as KL, becomes the only property tunable independently of the electronic transport

properties. The focus on reducing the thermal conductivity in order to increase ZT

is exemplified in the development of "phonon-glass-electron-crystal" [17] materials, in

which the scattering of phonons is increased and the thermal conductivity decreased

due to special characteristics of the crystal structure such as rattling atoms in cage-



like voids.

Reduction of L in nanostructures

Since its proposal by Hicks and Dresselhaus in the 1990's [18, 19], the improvement of

ZT by the use of nanostructures has been a subject of intense research. This improve-

ment is accomplished in large part through the reduction of KL. In phenomenological

models of the lattice thermal conductivity [20], this reduction can be explained by the

fact that increasing the presence of boundaries reduces phonon lifetimes and hence

deceases KL. For structures that are at true nanoscale, however, there are funda-

mental changes to heat transport due to phonon confinement, such as a reduction

in phonon density of states and group velocities. Additional complexity of configu-

rational dependence may appear in systems with very low values of KL and reduced

long-range order. In order to ultimately devise nanostructures which minimize KL, it

is important to understand these effects of quantum confinement and to investigate

any configurational dependence. Since in nanostructures it is often necessary to go

beyond bulk models and parameters, the use and further development of atomistic

computational tools is an integral part of this investigation.

2.2.2 Electronic band gaps

Definition

Electronic structures govern vital properties of a photovoltaic material: optical ab-

sorption, radiative and non-radiative recombination rates, charge transport, and ulti-

mately, efficiency. Arguably the most important electronic property of a photovoltaic

material is the energy gap E,, which determines the maximum conversion efficiency.

The optical energy gap is defined as the lowest energy of a photon that can be ab-

sorbed to produce an electron and hole excitation, from which current and hence

energy can be extracted. In a bulk semiconductor, the optical gap is approximately

equal to the energy gap between the occupied and unoccupied states in the band

structure, i.e. the band gap, since typical electron-hole (exciton) binding energies are



small (of order 0.05 eV).

Importance of band gaps for photovoltaic efficiency

Intuitive arguments can be used to predict the existence of an optimal band gap E,

for photovoltaic conversion efficiency. First of all, solar energy can only be transferred

to the electrons and used to do work when the photon energy exceeds Eg. Because

electrons thermalize to the band edges within femto-seconds, the energy derived per

absorbed photon is no more than Eg. Intuitively, if E, is too small, then the per-

centage of incident photons absorbed is large, but the energy extracted from each is

small; conversely, if E, is large, then the energy from each absorbed photon is large,

but the number absorbed is small. Therefore, the maximum efficiency occurs at an

intermediate range for E, relative to the solar spectrum. A formal version of this

intuitive argument is given below.

From purely thermodynamic arguments, originally by Shockley and Queisser [21],

it can be shown that given a particular irradiation spectrum, there exists an optimal

band gap that gives maximum ideal efficiency of a single-junction photovoltaic device2 .

The limitation is fundamentally due to detailed balance, i.e. the equivalence between

matrix elements in the processes of absorption and spontaneous emission of photons

through radiative recombination. A manifestation of detailed balance is that at any

energy E, the absorptivity a(E) (probability of photon absorption) is equal to the

emissivity E(E) (probability of photon emission). We assume the following for an

ideal photovoltaic device:

* every photon with energy above the band gap E, is absorbed a(E) = E(E)

6 (E - E,);

* absorption of one photon produces one electron-hole pair;

* there is no non-radiative recombination;

* current is transmitted without loss (i.e. the resistance in the circuit is zero);

* the device is at thermal equilibrium at ambient temperature Ta; and

2The derivation here closely follows that in [22].



* the difference between quasi-Fermi levels of electrons and holes Ap, also known

as the chemical potential of light, is uniform throughout the device and equal

to qV, where V is the bias potential and q the electron charge.

Let Ts denote the temperature of the sun and fs = sin2 Os a 2.16x 10- 5 denote the

solid angle subtended by the sun, and A be the surface area of the device. Assuming

blackbody radiation for the sun, the ambient atmosphere and the device, the total

current through the device is given by

27r fs (1 - fs) 1
2 /kTS - 1 eE/kbT - 1 e(E-qV)/kbTa -1 dE (2.3)

where the three terms inside the square brackets represent absorption from the sun,

absorption from the ambient atmosphere, and emission of the device, respectively.

The output power density as a function of bias voltage V is given by

V.I
P(V) =

2qV 2 fs (1 - fs) 1 d2.4)
h3C2 E0 eE/bTs 1 E/kbT _ 1 - (E-qV)/kbT - 1

For any given Eg and Ta, P(V) has a maximum for some value of the bias voltage

0 < Vm(Eg, Ta) < Eg (where Vm is measured in volts and Eg in eV). The maximum

efficiency is given by

m(Eg, Ta L) - P(Vm(Eg, Ta))
fsL

where fsL is the total solar energy density received by the device. For a blackbody

sun (AMO) L is given by

2w I E 3

L- h3c2  E/Ts dE (2.6)
h3C2 o CE/kkTs - 1

although a more realistic spectra which accounts for typical atmospheric absorption

(called AM1.5) is usually used. If the solar radiation is concentrated, the factor fs

is multiplied by a constant C throughout. For a given irradiation spectrum L and

operation temperature Ta, the efficiency 77m(Eg, Ta, L) has a maximum value at a
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Figure 2-1: Theoretical maximum efficiency vs band gap for solar irradiation in space

(AMO) and typical conditions on surface of the Earth (AM1.5). C represents con-

centration. The most commonly-used photovoltaic materials are also shown. Figure

from [1].

certain E. The resultant maximum efficiencies rim as a function of E, for fixed L

(AMO and AM1.5) and Ta (300K) are shown in figure 2-1. The maximum efficiency of

31% without solar concentration is obtained for a band gap of about 1.3 eV. Similar

arguments can be made for a multi-junction solar cell, in which light passes through

layers of materials with successively lower band gaps such that the full energy from

higher energy photons can be utilized in upper layers and yet lower energy photons

can still be absorbed in lower layers. For two junctions, the maximum efficiency with

full concentration is 55%, with optimal upper and lower gaps of 1.65 and 0.75 eV,

respectively. Under the limit of an infinite number of layers, and full concentration,

the thermodynamic limit of the efficiency is 86% [22].

Search for novel photovoltaic materials

There are at least tens of thousands of known stable inorganic compounds [10], and

perhaps hundreds of thousands more that have yet to be discovered. It is quite

possible that an excellent photovoltaic material lurks amongst them. If one has the

computational ability to efficiently determine some of the pertinent properties, such



as band gaps, of these compounds, the search for a novel material may be carried

out virtually. Thus the above-mentioned "band gap problem" in DFT is more than

a mere academic curiosity. We find, again, a confluence of the needs for physical

understanding and improvement of computational tools in our pursuit of a novel

photovoltaic material.



Chapter 3

Thermal Transport in SiGe

Nanostructures

3.1 Introduction

3.1.1 SiGe nanostructures for thermoelectric applications

Minimizing the thermal conductivity in silicon-germanium nanostructures is of spe-

cial interest for thermoelectric applications. Bulk SiGe alloys have been used for

thermoelectric power generation for several decades, most notably in NASA space

missions since the 1970's. The mass disorder in Si-Ge causes enhanced phonon

scattering, thereby reducing the thermal conductivity without significant modifica-

tion of the electronic properties. Since proposed by Hicks and Dresselhaus in the

1990's [18, 19], lower dimensional systems such as quantum wells [23], thin films [24],

superlattices [25], nanocomposites [26, 27] and nanowires [28] have been actively in-

vestigated for improved thermoelectric properties. Thermoelectric performance is

measured by the figure of merit ZT = S 2 T/ (r, + "L), where S is the Seebeck co-

efficient, a is the electrical conductivity, T is the temperature, and Ke and KL are

the electronic and lattice contributions to thermal conductivity, respectively. A key

attribute of nanostructuring is the ability to achieve high ZT by reducing KL through

the confinement and enhanced scattering of phonons, without a concomitant reduc-



Figure 3-1: Types of nanostructures considered. Clockwise from top left: superlat-

tices, superlattice nanowires, nanoparticle inclusions, and core-shell nanowires.

tion in a or S. This is possible because of the disparate wavelengths and scattering

lengths of electrons vs. phonons [29].

3.1.2 Measurements of KL in SiGe nanostructures

Experimental results show nanostructuring to be effective at reducing KL. For exam-

ple, silicon nanowires with diameters from 20 to 100 nm show a thermal conductivity

of 10 to 40 W/m-K at 300K [30], compared to 124 W/m-K for bulk Si [31]. Si/SiGe

superlattice nanowires show a further 5-fold reduction compared to pure Si nanowires

of similar diameters [32]. In SiGe nanocomposites consisting of 10 nm Si nanoparticles

in a Ge host, KL has been measured to be less than 2 W/m-K [33]. Pure Si nanowires

with roughened surfaces have been measured to have mL as low as 1.2 W/m-K [34].

The various experimental results show that IL depends sensitively on the type and

size of nanostructures (see figure 3-1 for illustration), alloy compositions, and surface

characteristics.



3.1.3 Computational prediction of KL in SiGe nanostructures

Computational studies using various approaches have been used to predict the de-

pendence of the lattice thermal conductivity in SiGe nanostructures on types, size,

shapes, nature of transport, and the characteristics of interfaces. Here we briefly de-

scribe representative studies and key findings from each approach. We shall focus our

attention on diffusive transport, as it is the predominant mode of thermal transport

within the ranges of interest of KL and of the temperature.

In the direct approach, the values of rL of Si nanowires in non-equilibrium molec-

ular dynamics (MD) have been obtained [35] from the Fourier law, i.e. J = -rLVxT

where T is the temperature, x is the direction of heat flow, and J is the heat flux.

The resultant values of rCL at 300K for 4-nm-diameter Si nanowires are 20-30 W/m-K

for tetrahedrally-coordinated nanowires and 5-10 W/m-K for clathrate nanowires. In

reference [35], an unexplained anomalous increase in KL as the diameter is decreased

from 3 nm to 1 nm is found at 100K. Note that the temperature gradients in the

simulations are of order 10" K/m.

In the continuum approach, the Boltzmann transport equation has been used to-

gether with bulk parameters in a heat-transfer model to describe the thermal trans-

port in SiGe superlattices [36], nanocomposites [37], superlattice nanowires [38] and

core-shell nanowires [37]. The values of nL were found, as expected, to decrease as the

size of the nanostructure decreases, although the amounts depend on model parame-

ters and assumptions. In particular, both the applicability of the model assumptions

and predicted values become uncertain when the structures approach true nano-scale

values. The specularity of the interfaces, for example, was found to influence KL by a

factor of 2-4 for core-shell nanowires 10-500 nm in diameter and superlattices 10-200

nm in periodicity, but by two orders of magnitude under some model assumptions for

superlattices with a period of 1-5 nm.

In the phenomenological approach [20], the thermal conductivity is decomposed

into contributions by phonons with different group velocities (vi) and lifetimes (Ti), i.e.

L = s cVToi, where c is the heat capacity; T is further decomposed into contributions



from different scattering processes via Matthiessen's rule:

-1 -1 -1 -1 (3.1)7 Timpurity boundary + Tumklapp

With group velocities v, = Ow/c&k obtained from bulk dispersion or continuum elastic

wave theory, the predicted values of KL are in rough agreement with experimental

measurements for Si nanowires larger than 40 nm in diameter [39]. Alternatively,

one could derive vg from dispersion curves calculated atomistically using potential

models, and using bulk parameters for umklapp and impurity scattering. Doing so

allows experimental values of KL and their temperature dependence to be reproduced

for 37 - 115 nm Si nanowires [40]. The phenomenological approach breaks down for

nanowires with diameters less than 20 nm, when scattering rates become significantly

altered from bulk behavior by inter-subband scattering [40].

In the linear response (Kubo-Green) approach, KL is obtained from equilibrium

MD simulations via the fluctuation-dissipation theorem. Using the Stillinger-Weber

potential, the values nL of 2-5 nm-wide Si nanowires were found to be in the 1-5

W/m-K range from 200 to 500 K, and to decrease with cross-sectional area as a

power law [41]. For a Si/Ge superlattice with 2-3 nm periodicity, KL was found to

range from 2 to 10 W/m-K at 200-300K.

3.1.4 Goals of this work

As evident from the previous section (3.1.3), many of the computational approaches

used thus far are unable to tackle SiGe nanostructures approaching the 1-10 nm length

scale (continuum and phenomenological approaches), require extreme conditions in

the simulations (temperature gradient of 10' K/m in the direct approach) and/or suf-

fer from diminished predictive abilities due to multiple fitting parameters and model

assumptions (continuum approaches). The Kubo-Green approach using equilibrium

molecular dynamics is a predictive method that does not require phenomenological



parameters such as phonon scattering rates, specularity factors, or group velocities .

Its atomistic nature allows the incorporation of nanoscale effects on phonon spec-

trum, dispersion, and interactions, as well as interfacial and alloying effects. The

Kubo-Green approach has not been used previously to predict 1 L for many types of

SiGe nanostructures such as core-shell nanowires and nanoparticle inclusions. Using

the predictive power and parameter/model-free characteristics of the Kubo-Green ap-

proach, our first objective is to investigate size and interfacial effects on V'L in the 1-10

nm scale for various nanostructure types, and to minimize KL accordingly. Corrob-

orations with known experimental results or experimentally-verified computational

predictions where applicable will be made to ascertain the accuracy of the approach.

In addition, the configurational dependence of IL has not been previously studied,

and with MD as a predictive tool we will be able to develop a new methodology to

carry out configurational optimization of KL.

3.2 Prediction of rL in SiGe nanostructures - size

and interfacial effects

3.2.1 KL of SiGe nanostructures from molecular dynamics

We compute the thermal conductivity for various SiGe nanostructure types in sec-

tion 3-1, using the Kubo-Green approach with classical molecular dynamics (MD).

The SiGe nanostructures used in the simulations are chosen to reflect varieties in

size (at least two sizes are chosen for each type), dimensionality (e.g. superlattice

and superlattice-wire), types of interfaces (e.g., coherent and incoherent nanoparticle

inclusions), direction of the interface relative to that of the heat flow (e.g., core-shell

nanowire, spherical inclusion and cubical superlattice), the interfacial-area-to-volume

ratio (as suggested in [43] as a key quantity), and the proportion of Si to Ge. For

each component of a nanostructure, e.g. a segment of a superlattice wire, pure Si or

IA more detailed review and evaluation of the Kubo-Green approach to arL prediction in bulk
systems is given in [42].



Ge is used in order to avoid confusing these effects with those of alloying, which will

be addressed separately in section 3.3.3.

The MD simulations are performed using the DLPOLY [44] code, modified to

output the heat flux as described in [45]. Interactions are described by a bond order

Tersoff potential [46] designed for C-Si-Ge systems that varies chemical bond strength

according to the local coordination environment, given by

Vij = fc (rij) [fr (rij) + bijfa(rij)] . (3.2)

Here fr and fa are repulsive and attractive pair potential terms, and the bond order

term bij is a function of the number of neighboring atoms as well as the bond angles

and lengths. The thermal conductivity for each wire was calculated using the Kubo-

Green formula

K = kT 2 lim (J (t') J (O))dt' (3.3)

where J is the heat current. The surfaces of nanowires are free, with surface re-

construction done either by hand (superlattice nanowires) or by annealing at 1000K

(core-shell nanowires).

As a test of the suitability and accuracy of the Tersoff potential and of the Kubo-

Green approach, we calculate the KL of bulk isotopically-pure silicon from a cubic

simulation cell containing 1728 atoms. The simulation cell is 3.28 nm on each side,

and periodic boundary conditions are applied in all directions. The MD simulations

are carried out at 300K and 1000K, with time steps of 0.8 fs, for 16 ns. At 300K, the

value of r1L for naturally-occurring Si (92% 28Si, 5% 29 Si, and 3% 30Si) is reported

to be 148 [31] to 156 [47] W/m-K. A range of values of KL has been measured for

isotopically-enriched silicon at 300K: from 10 ± 2% above naturally-occurring Si

(99.983% 28Si) [48] to 237(8) W/m-K (99.8588% 28Si) [49] and 250 W/m-K (99.7%

28Si) [50]. From our MD simulations we obtain KL,300K = 230 ± 50 W/m-K at 300K,

which is within the range of measured values for isotopically-pure Si. Because of the

uncertainty in the measurements at 300K, and also in order to avoid any possible

issues with classical statistics , we use instead the values at 1000K for comparison.



At 1000K, umklapp scattering is the dominant contribution to KL and the difference

between isotopically-pure and naturally-occurring silicon is expected to be of order

1% [47, 40]. We compute the value of r1L to be 35+4 W/m-K at 1000K, in reasonable

agreement with the measured value of 31 W/m-K for natural silicon [31]. In addition,

we note that the absolute and relative uncertainties are smaller for the calculated

value of KL,100K than that for KL,300K. This is because a larger value of 1'L implies

lower degrees of anharmonicity and phonon-phonon scattering rates, as well as longer

relaxation times, so that the values of sL calculated from MD are more dependent on

the initial conditions. Far longer simulation times than computationally feasible are

required to significantly reduce the uncertainties in iL,300K-

Having established the validity of the Kubo-Green approach and Tersoff poten-

tial, we construct three types of SiGe nanostructures for the rL computation: cubic

superlattices, nanoparticle inclusions, and nanowires. The cubic superlattices are

formed with tiling cubes of Si and Ge alternately, with each cube consisting of 33,

63 , or 123 atoms, giving simulation cells of 1728 to 13824 atoms. The nanoparti-

cle inclusions are constructed out of pure-Si supercells with 1728 or 13824 atoms,

with spherical inclusions of radius 5 to 20 A as Si embedded in a Ge matrix or vice

versa. The nanoparticles are either coherently embedded, i.e. maintaining the same

crystal orientation as the matrix, or rotated with respect to the matrix, in which

case the boundary is amorphized as described below. There are two main types of

nanowires: core-shell nanowires are formed by cutting out concentric cylinders from

a bulk 1728-atom Si cell and assigning atoms in the inner/outer cylinders as Ge/Si;

superlattice nanowires are constructed using Si nanowire structures found by ab initio

calculations [51] to be stable, and assigning alternative segments of 2-4 nm long as

Si/Ge.

Prior to obtaining KL of the constructed nanostructures from MD, it is necessary

to perform equilibration in order to relax the strain due to the difference in lattice con-

stants of Si and Ge, and to reconstruct surfaces or interfaces. For cubic superlattices

and coherent nanoparticle inclusions, equilibration is carried out by NPT (constant

pressure and temperature) at 1000K for 400 ps in order to obtain the appropriate cell



size. For rotated nanoparticle inclusion, formed by rotating a spherical nanoinclusion

of Si within a Si/Ge matrix, the system is annealed with NPT runs in steps between

1600K and 1000K to ensure strain relaxation as well as amorphization of the inter-

face between the nanoinclusion and the matrix. For the smaller rotated nanoparticle

inclusions (< 15 A radius), the atoms in the inclusion are held fixed during the an-

nealing process to prevent realignment with the matrix. Finally, for core-shell and

superlattice nanowires, the lengths of the simulation cells are changed manually to

several values prior to NVT (constant volume and temperature) equilibration runs.

The length of the cell that gives rise to the lowest average pressure is chosen to min-

imize the residual strain during the subsequent NVE simulation. This procedure is

necessary because the barostat in DLPOLY has not been implemented to be applied

along one direction only. The surface of core-shell nanowires are reconstructed using

annealing at 1000K.

With equilibrated nanostructures we perform NVE (constant volume and energy)

simulations to obtain the heatflux and hence KL according to equation (3.3). The

NVE runs are carried out at 300K (nanowires) or 800-1000K (nanoparticle inclu-

sions), in time steps of 0.8 fs, for a total of 8-16 ns. For each structure, two to five

NVE simulations are done; within each run, the heat flux autocorrelation function

is integrated for 40-120 ps. Different runs and, in some cases, different integration

times give varying values of KL which are then averaged and the standard deviation

reported as b rL. The results are shown in table 3.1.

3.2.2 Nanostructure size effects on KL

From a phenomenological point of view, nanostructuring decreases the thermal con-

ductivity by increasing the interfacial area and hence boundary scattering rate of

phonons. In the bulk, the boundary scattering relaxation time Tboundary '- /v, where

f is the system size and v is the phonon velocity. For nanostructures, we can identify

f with the boundary or interfacial separation. Following [33], we use the ratio of

volume to interfacial area, which has a unit of length, as our boundary length scale f.

Since KL = E cv 2 T, if boundary scattering is the dominant scattering mechanism one



Volume Interfacial Kappa (Wim- I UncertaintyLabel Type pera- tional area Cell Length Areaolume % Ge Kappa m- Uncertaintyture (K) ((nm 3) area (nm) K) im-K)
(m (nm) (1/nm)

la 1000 44.9 6.70 300.8 269.3 0.90 50 2.6 0.4

lb Cubic superlattice 1000 11.2 3.35 37.6 67.3 1.79 50 1.4 0.1

Ic 1000 11.2 3.35 37.6 134.7 3.58 50 1.8 0.1

2a 1000 10.8 3.28 35.3 2.1 0.06 1 26.4 1.5

2b 1000 10.8 3.28 35.3 3.3 0.09 2 23.1 2.2

2c 1000 10.8 3.28 35.4 4.8 0.14 3 15.2 1.4

2d anoparticle inclusion (Ge 1000 10.8 3.29 35.6 8.2 0.23 6 10.2 0.5
in Si, coherent interface) _,__...

2e 1000 10.9 3.30 35.9 13.1 0.36 11 7.0 0.3

2f 1000 10.9 3.31 36.2 19.4 0.54 21 4.5 0.3

2g 1000 11.2 3.34 37.3 29.9 0.80 40 2.7 0.2

3a 1000 11.7 3.42 40.0 3.3 0.08 98 12.2 0.5

3b 1000 11.7 3.42 40.0 4.8 0.12 97 10.6 0.9

3c Nanoparticle inclusion (Si 1000 11.6 3.41 39.7 8.5 0.21 94 7.8 0.9
iNanoparticle inclusion (Si i

3d in Ge, coherent interface) 1000 11.6 3.41 39.7 13.3 0.34 89 6.0 0.7

3e 1000 11.5 3.39 39.1 18.6 0.48 79 4.3 0.3

3f 1000 11.3 3.36 37.9 29.0 0.76 60 3.1 0.2

4a Rotated nanoparticle inclu-. 1000 11.5 3.40 39.1 18.6 0.48 79 1.4 0.2
sion (Si in Ge, amorphous -

4b interface) 1000 11.6 3.40 39.4 18.6 0.47 79 1.9 0.2

5a Rotated nanoparticle inclu- 300 43.0 6.56 282.3 50.3 0.18 0 18.2 0.7
sion (Si in Si, amorphous

5b interface) 300 43.0 6.56 282.3 50.3 0.18 0 20.0 0.9

6a 300 12.57 6.56 82.4 12.4 0.15 25 13.0 1.0
Core-shell nanowire -

6b 300 7.07 6.55 46.3 10.3 0.22 44 7.8 0.6

7a 300 2.01 3.90 7.8 6.0 0.76 50 1.1 0.2
Superlattice nanowire

7b 300 2.01 7.80 15.7 7.9 0.51 50 1.9 0.2

Table 3.1: Results of MD calculations on various SiGe nanostructures.
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Figure 3-2: Dependence of KL on volume-interfacial area ratio for Ge/Si nanoparticle
inclusions in a Si/Ge matrix.



would expect KL to scale linearly with £. Figure 3-2 shows the computed values of rL

for coherent nanoparticle inclusions as a function of volume-to-interfacial area ratio

f. The (blue) crosses denote Ge nanoparticles of 4 to 15 A radii embedded in a Si

matrix, and the (red) circles denote Si nanoparticles of 5 to 15 A radii in a Ge matrix.

We can see that at small values of f, up to - 3 nm, this linear dependence of /'L on

e is indeed observed. At larger values of f, deviation from linear behavior indicates

significant contributions from umklapp scattering. As expected, NL approaches bulk

Si/Ge values in the limit of infinite e.

The linear relation between the thermal conductivity and £ cannot be justified,

however, when £ reaches the scale of interatomic distances. In fact, from the direct

method using non-equilibrium MD [35] on perfect Si nanowires, and from the Kubo-

Green method on Si nanowires with roughened surface [52], the value of rL has been

found to increase with decreasing radius once the radius decreases below 2-3 nm.

From the cubic superlattices (rows la-c of table 3.1), we see that kL increases from

1.4 ± 0.1 to 1.8 ± 0.1 W/m-K when the periodicity is decreased from 1.7 to 0.8 nm.

This means that there is a size for each nanostructure for which KL is a minimum.

3.2.3 Interfacial and configurational effects on rL

In addition to the interfacial area to volume ratio, the characteristics of the inter-

face also affects the thermal conductivity of the nanostructures. In particular, an

amorphous, disordered interface is expected to be able to reduce rL more effec-

tively than a coherent, epitaxial one. This difference is usually characterized by

an a priori unknown specularity parameter in phenomenological models. From MD

calculations, however, it is possible to predictively quantify the effect of such interfa-

cial characteristics by performing the simulation including a realistically-amorphized

interface. In table 3.1, rows 3e, 4a and 4b show the results at 1000K for 2.4-nm-

diameter Si nanoparticle inclusions in a Ge matrix with both types of interfaces, with

rL = 4.3 0.3, 1.4 0.2, and 1.9 0.2 W/m-K respectively. The sample 3e includes a

coherent interface, whereas in 4a and 4b the inclusions are rotated by different angles

with respect to the crystalline matrix, and the systems annealed in steps from 1600K



to 1000K to amorphize the interfaces. The Ge concentration is 79% in all three cases.

We see that, all else being equal, an amorphous interface lowers KL by a factor of

2-3 compared to a coherent one. Calculations are also performed at 300K on Si-in-Si

rotated inclusions with amorphous interfaces (rows 5a and 5b in table 3.1), where we

found cL reduced by an order of magnitude compared to bulk values. Both results

validate the importance of interfacial roughness as a mechanism to lower KL.

To investigate the effects of the shape of the interface, we compare the values

of KL of cubic superlattices to those of spherical nanoparticle inclusions. Rows la,

2g and 3f in table 3.1 show cubic superlattice, Ge-in-Si and Si-in-Ge nanoparticles

respectively, with similar values of f (1.12, 1.25 and 1.31 nm), and similar Ge con-

centrations (50%, 40%, 60%). The values of KL are 2.6 ± 0.4, 2.7 ± 0.2, and 3.1 + 0.2

W/m-K respectively. Using linear scaling with £, there is no significant difference

between cubic and spherical interfaces. This is consistent with previous reports [33]

based on Monte Carlo simulations using bulk parameters which found no shape- and

orientation-dependence for nanoparticle inclusions.

Having established the effects of volume-to-interfacial-area ratio and roughness of

the interface on KL, we investiage the possibility of additional degrees of freedom with

which to further lower KL. We find that with rotated nanoparticle inclusions (rows

4a,b and 5a,b in table 3.1), the values of KL are dependent on the angle of rotation, i.e.

relative crystal orientation of the nanoparticle and the matrix. For 4-nm-diameter

Si-in-Si nanoparticles, the relative difference between KL of two arbitrarily chosen

orientations (18.2 ± 0.7 vs 20.0 ± 0.9 W/m-K) is roughly 10%; for 2.4-nm-diameter

Si-in-Ge nanoparticles, the relative difference (1.4 ±0.2 vs 1.9 0.2 W/m-K) between

the same two orientations is about 30%. In both cases the absolute differences are

significant. This means that even for nanostructures with large roughened interfaces,

for which a1 L is already greatly reduced from the bulk values, there are still config-

urational degrees of freedom involved, e.g., in the orientation of the nanoparticles,

that can be optimized to further lower KL. In the next section we investigate an

ultimate form of this configurational optimization by treating the Si and Ge atomic

configurations in alloy nanowires.



3.3 Optimization of iL in SiGe nanowires - local

ordering effects

In bulk materials it is well-known that the minimum thermal conductivity is achieved

by complete disordering, i.e. in an amorphous environment [53]. Whether the same

is true in nanostructures has not been established. In this section we investigate

the effects of local ordering, or the lack thereof, on " L. We ask whether there are

arrangements of Si and Ge atoms in otherwise-identical SiGe nanowires that give the

lowest possible KL, and if so, we seek to find such arrangements, i.e. an ultimate form

of nanostructuring. Since phenomenological parameters, such as umklapp scattering

times or the specularity of nanowire surface, do not contain configurational depen-

dence. Therefore, it is essential to model the dynamics at the atomistic level, via MD

simulations.

3.3.1 Extending the cluster expansion technique to KL

Cluster expansion [14], whereby properties are expanded in terms of the distribution

of atoms on a topology of sites, is a powerful technique for the optimizing or ensemble

averaging of properties. Its most common use is in the parameterization of the total

energy and derivatives thereof, although there have been extensions to other proper-

ties, such as band gaps [54] and, more recently, tensorial quantities [55]. The cluster

expansion of the total energy has been used extensively, often with ab initio calcula-

tions, to build effective Hamiltonians for the prediction of thermodynamic [56] and

kinetic properties [57]. Unlike atomic potential models, which are rapidly evaluated

but require extensive chemistry-dependent parameterization and are not universally

available, or ab initio calculations, which are (almost) universally available but are

computationally-intensive, the cluster expansion approach is a widely-applicable pa-

rameterization method which allows rapid evaluations for a large number of different

atomic configurations. In addition, the fitting parameters of the expansion, called

effective cluster interactions (ECIs), often give important physical insights into the



system.

It is desirable to investigate the applicability of the cluster expansion approach

to properties of crystalline materials not based on total energy, such as thermal con-

ductivity. Since the evaluation of thermal conductivity by even classical molecular

dynamics is computationally intensive, the ability to parameterize the results for sub-

sequent rapid evaluations would enable the otherwise-prohibitive sampling of atomic

configurations for optimization purposes. While the cluster expansion is formally

exact with the inclusion of all possible clusters, for practicality the expansion is nec-

essarily truncated to a finite number of clusters. Since the inclusion of each cluster

requires the inclusion of all subclusters for completeness [58, 59], such truncation

generally leads to an inclusion of only short-ranged effects. Unlike atomic potentials,

which are largely local, it is not a priori clear whether the thermal conductivity can

be parameterized by local configurational variables alone.

The purpose of this part of our work is hence two fold: to optimize atomic configu-

rations in SiGe nanowires for low lattice thermal conductivity KL, and to evaluate the

applicability of the cluster expansion technique to the treatment of L. Our strategy

is to determine the values of rL for a test set of atomic configurations using equilib-

rium molecular dynamics (MD) simulations, use the cluster expansion technique to

allow rapid evaluation of KL for any configuration, and predict structures with the

lowest KL through genetic algorithm optimization. The validity of the technique is

finally checked with the direct evaluation of $L for the predicted optimal structures

using MD.

3.3.2 KL of SiGe nanowires from molecular dynamics

Computational procedures

As in section 3.2, we obtain from equilibrium classical MD and the Kubo-Green for-

malism the thermal conductivity of Sil-xGex nanowires. The nanowires in our study

have circular cross sections, [111] orientation and a diameter of 1.6 nm, but varying

Ge concentrations (0.03 < x < 0.2) and Si/Ge configurations. The simulation cells



Figure 3-3: An example SiGe nanowire simulation cell (side view). Red, larger spheres

denote Ge while blue, smaller spheres denote Si.

are 2 nm long along the axial direction with periodic boundary conditions applied.

Simulations are carried out at 300K. An example of a simulation cell is shown in

Figure 3-3.

For this part of our work, the XMD Molecular Dynamics Program developed by

Jon Rifkin [60], modified to output the heat flux for systems incorporating C, Si,

Ge and H, is used to perform the MD simulations. Upon initial NVT (constant-

temperature) equilibration, NVE (constant-energy) simulations are performed with a

time step of 0.8 fs, for a total simulation time of 1-10 ns. The thermal conductivity

for each wire is calculated from the heatflux using the Kubo-Green formula (3.3).

The surfaces of the nanowires are free. Previously reported [61] errors arising from

unpassivated surfaces are corrected in the manner described in [62]. More details on

the MD simulation procedures are available from Reference [62].

Summary of MD results

The calculated thermal conductivities of the 104 SiGe nanowires in the training set

are shown in Figure 3-4. The training set configurations are selected to cover a range
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of compositions up to 22% Ge and provide a large variety in the distribution of Si

and Ge atoms. The calculated values of NL range from 0.55 to 3.0 W/m-K, with a

mean and standard deviation of 1.1 and 0.5 W/m-K respectively. For comparison,

the measured values of rL at 300K are 9 to 25 W/m-K for bulk Sil-.Gex alloys

(0.05 < x < 0.22) [63], 15 to 40 W/m-K for 37-115 nm diameter Si nanowire with

smooth surfaces [30], and 1-8 W/m-K for 50-150 nm diameter Si nanowires with

roughened surfaces [34]. Figure 3-5 shows the mean and standard deviation of KL

in each Ge compositional range, and shows that for a given Ge concentration, the

arrangements of Si and Ge atoms (configurations) affect the values of KL significantly.

The dependence of rL on the concentration of Ge is smaller than the configurational

dependent.

3.3.3 Cluster expansion of KL

Traditional cluster expansion

A traditional cluster expansion [14, 55] for a binary alloy is an Ising-like model in

which each site i in a lattice is assigned a value ai = +1 depending on the occupying

species. Polynomials of ai of all orders form a complete orthonormal basis set in

which to expand any configurational-dependent physical quantity Q, i.e.

Q -EVc( Ha11)a (3.4)

where the sum is over all possible distinct clusters of sites a and the coefficients of the

expansion Va are fitting parameters known as effective cluster interactions (ECIs). In

practice, the ECIs are obtained by fitting Equation 3.4 to the calculated (e.g. by

MD simulations in the case of KL) values of Q for a number of sample configurations.

The expansion can then be used to predict values of Q for any configuration. As

mentioned, a cluster expansion is necessarily truncated to clusters of reasonably small

order. Symmetry is used to reduce the number of ECIs.



Coarse-grained cluster expansion

For both physical and practical reasons, we perform a coarse-graining of the cluster

expansion. Physically, it is expected that clusters similar in location, size and ori-

entation would give a similar contribution to the thermal conductivity. Practically,

we are limited by the number of relevant parameters that can be extracted. The

low symmetry in a nanowire with surface reconstruction leads to a large number of

symmetrically-inequivalent clusters and therefore many ECIs (V,'s). Together with

the inherent noise in the values of KL due to the stochastic nature of MD simulations,

such a large number of parameters leads to over-fitting and diminished predictive

power of the cluster expansion. Recently, approaches have been developed to deal

with such low symmetry situations by imposing non-uniform prior probability den-

sities on the ECIs [64]. We will, however, use a simpler coarse-graining approach as

described below.

Coarse-graining procedures are performed to group physically-similar, but symmetrically-

inequivalent, clusters (points, pairs, and triplets) in the nanowire. All clusters in a

group are considered equivalent in the coarse-grained cluster expansion and their ECIs

have the same value. Equivalent clusters have (a) similar distance from the axis of

the nanowire and, for pairs and triplets only, (b) similar extents along the length of

the nanowire. For classification (a), clusters entirely within the inner 10% of the cross

sectional area of the nanowire are considered core, those entirely outside the inner

90% are considered surface, and the rest are considered intermediate. For (b), clusters

contained in planes parallel/nearly-parallel to nanowire cross-sections are considered

across, while those in planes parallel/nearly-parallel to the nanowire axis are consid-

ered along, and all others are oblique. The coarse-graining procedure gives, for the

simulation nanowires described in Section 3.3.2, 40 coarse-grained point-, pair- and

triplet- clusters, with a maximum spatial extent of 4.5A. Figure 3-6 shows examples

of clusters that are considered equivalent in the coarse graining procedure.

The expansion coefficients (ECIs) in the coarse-grained cluster expansion are ob-

tained by the following procedures. We expand the values of 1 L for the N wires in



Figure 3-6: Examples of clusters considered equivalent in the coarse-grained cluster
expansion: (left, side view) two pair clusters that are both surface and along, (right,
end view) two triplet clusters that are both intermediate and across.

the training set as

where n = 1,..., N, 0 labels a coarse-grained cluster, and (.)o refers to average over

all clusters a coarse-grained into 0. The 4IpO's are then orthonormalized, i.e. (3.5) is

transformed into

KLn = 5V' 4/n)n (3.6)

where E0, (,lp,'m /n = 6mn. Note that each /' now represents a linear combination

of coarse-grained clusters. The values of the trasnformed ECIs Vl, are obtained from

least square fitting of (3.6). Unlike the ECIs in the cluster expansion of the total

energy, which are expected to fall off as a function of distance, there is no a priori

known behavior for the values of 1p,. In order to screen out irrelevant parameters,

the least-square fit is repeated leaving one configuration out each time. For each /',

the value of V,/ varies with each leave-one-out fit, with a mean V0, and a standard

deviation ap,. A linear combination of clusters /' is considered irrelevant and removed

if IV ,1 < up,. Roughly a quarter of the 40 ECIs (corresponding to the 40 coarse-

grained clusters described above) are thus removed. The fit is then redone with the



remaining set of O's and the resultant Vas are transformed to obtain the original ECIs

Vs.

Because of the noise inherent in the MD values of KL, the magnitude of which is

unknown, it is difficult to ascertain the accuracy of any set of ECIs from a single fit.

Figure 3-7 shows an example of the values of kL predicted from the coarse-grained

cluster expansion (3.6) vs those calculated from MD. There is considerable scatter as

expected. In light of such uncertainties, we record multiple sets of ECIs obtained from

different leave-one-out fits and different fitting procedures (e.g., different thresholds

for choosing relevant linear combinations of clusters 0', different subset of data by

range of calculated KL values or Ge concentration). Instead of a single cluster expan-

sion we obtained a group of expansions a meta cluster expansion with different

sets of ECIs {Vp}, all of which are consistent with the given MD results. For any

configuration, there is a range of predicted values of 1CL from the different sets of ECIs

in the meta cluster expansion, which are used together in the optimization procedure

described below.

Optimization by genetic algorithm

We use the thermal conductivity meta cluster expansion together with a genetic algo-

rithm to evolve a trial population into configurations with optimal (lowest) KL. As in

standard genetic algorithm implementations, pairs of nanowires with different Si/Ge

configurations are mated by joining lateral or cross-sectional halves of each parent,

and mutations are stochastically introduced to the resultant offspring. The fitness of

each configuration, i.e. KL where a lower value is considered more fit, is evaluated

by the meta cluster expansion obtained above. We require that the predicted values

are robust, i.e. the different sets of ECIs in the meta cluster expansion predict values

of KL within a certain range threshold, or else we consider the prediction unreliable

and the configuration is discarded. At each generation, the fittest configurations are

kept, and a random sample of the remainder added to ensure genetic diversity. Any

exact duplicates are removed, and the genetic algorithm optimization is carried out

until convergence of the mean value of KL among the wires in the population, which
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generally occurs within 100 generations. An example of the evolution of the mean

value of "L with generation number is shown in Figure 3-8.

It is important to note that while the meta cluster expansion approach is able to

predict loW-KL structures, the predicted values of KL for these structures are often

unphysical, i.e. very close to zero or negative. The error in the predicted values

of KL can be traced back to errors in the ECIs, which in turn originate from the

noise inherent in values of KL calculated from MD. Nonetheless, we use the meta

cluster expansion and genetic algorithm optimization as a tool in finding the optimal

configurations rather than to predict precise values of KL. To check the effectiveness

of this approach, we use MD to obtain values of KL for a selected sample of predicted

low-KL configurations.



Figure 3-9: Example of configuration with low predicted KL.

Predicted loW-aL configurations

Figure 3-9 shows an example of a configuration predicted to have low KL at the end

of a genetic algorithm run. While one might expect disordered configurations to have

lower rKL, the meta cluster expansion and optimization algorithm predicts otherwise.

Many predicted low-KL configurations consist predominantly of Ge clusters of the

across type, i.e. have almost-complete planes of Ge perpendicular to the direction of

the wire, instead of a randomized distribution. Such configurations are reminiscent

of the Si/SiGe superlattice structures proposed in Reference [25], albeit one with

single-atomic layers of Ge rather than segments.

To check the validity of the cluster expansion, the predicted low IL configurations,

as well as those with perfect planes of Ge, are investigated using MD simulations. Fig-

ure 3-10 shows the aL values of these configurations obtained from MD as compared

to those of the training set. Out of 28 configurations predicted to have low aL by the

meta cluster expansion and genetic algorithm optimization, one has KL lower than all

configurations in the training set, 16 (57%) have KL at or below the 10th percentile

among the training set, and 24 (86%) are at or below the 50th percentile. Therefore,

we can see that although the meta cluster expansion did not yield a particular config-

uration with drastically lower KL, it is effective in constructing a population of low-KL
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Figure 3-10: Histogram of 1L (in W/m-K) calculated with MD for (a) predicted

lOW-KL configurations from cluster expansion and genetic algorithm optimization (or-

ange/grey), (b) configurations with perfect planes of Ge (white), and (c) the training

data (black).

configurations, meaning that the expansion captures some physical factors governing

configurational dependence of the thermal conductivity. More remarkably, one of the

superlattice-like configurations with complete planes of Ge (see Figure 3-11), derived

from idealizing the predicted configuration shown in Figure 3-9, is found to have rL

= 0.23 - 0.05 W/m-K, compared to a minimum of 0.55 W/m-K and a mean of 1.1

W/m-K for the training set. That this specific superlattice-like configuration with

very low KL is not obtained from the genetic algorithm optimization may be due to

noise in the ECIs or limitations of the optimization procedures; that it is so similar to

a configuration predicted to have low KL confirms that cluster expansion is a viable

approach to thermal conductivity optimization.

3.3.4 The role of short-range ordering in reducing KL

In this section we offer physical arguments for the mechanisms by which I'L is re-

duced, and by which the coarse-grained cluster expansion is able to predict low-L

configurations. We note the similarity of the values of KL that we compute with



Figure 3-11: Superlattice-like configuration with the lowest value of IL as computed
by MD (side view).

MD (mean = 1.1 W/m-K) with those measured in 52-nm-diameter Si nanowires with

surface roughness on the scale of several nanometers (1.2 ±0.1 W/m-K) [34]. In

both cases (our calculations and rough wire measurements), the cL values are near or

below the bulk amorphous minimum thermal conductivity limits [65], despite unam-

biguous crystallinity. In both cases, the values of rL are an order of magnitude lower

than in similar wires with longer-range order, i.e. nanowires with smooth surface and

hence longer periodicity in measurements [34], or nanowires with longer simulation

cells and hence longer periodicity in MD calculations [45, 52]. In the case of our MD

simulations, using 2-nm-long simulation cells excludes thermal transport by longer

wavelength phonons which have longer relaxation times; introducing these longer-

wavelength phonons by increasing the simulation cell lengths to 12 nm increases KL

by an order of magnitude, without any difference in surface features. Therefore we

postulate that in [34], phonons with wavelengths longer than the length scale of sur-

face roughness features do not exist due to the lack of long-range order (or are strongly

scattered by the features) and their contribution to IL is greatly reduced, thus dra-

matically lowering the thermal conductivity. Given that extremely-low KL's near the

amorphous limits are likely achieved with the exclusion of long-wavelength phonons,



it is reasonable that a coarse-grained cluster expansion approach which includes only

local ordering would be able to treat the effects of further variations in KL arising from

atomic configurations. We substantiate this argument by investigating the detailed

properties of the phonon modes and heat flux.

To investigate the origin of the very low values of the thermal conductivity ob-

tained, we compute explicitly the OK phonon modes of the nanowires used in our MD

calculations. The phonon densities of states (DOS) for the pure-Si, pure-Ge, SiGe

with predicted-low- L from the cluster expansion, and lowest-known-kL nanowires

are shown in Figure 3-12. We can see that there is a suppression of the phonon

DOS at very low-frequency, due to quantum confinement effects. In fact, the lowest

non-zero phonon mode at F is at roughly 40 cm - 1 (1.2 THz). Since low-frequency

phonons are typically responsible for thermal transport owing to their low umklapp

scattering rates, such suppression of the phonon DOS is partially responsible for the

lowering of KL. The phonon dispersion curves for the pure-Si and lowest-KL nanowires

are shown in Figure 3-13. The quadratic dispersion of the lowest two branches is a

result of quantum confinement, i.e the acquiring of a mass of the acoustic phonons

corresponding to the two finite dimensions perpendicular to the wire axis. The group

velocities of the massless modes at F are found to be 2083 and 3960 m/s - 1, compared

to 5100 and 9360 m/s - 1 in bulk Si [66]. This is another factor that contributes to the

lowering of hL compared to bulk SiGe alloys.

Within the population of SiGe nanowires, we can establish that there exist local

ordering effects not yet accounted for by noting in Figures 3-12 and 3-13 that the

phonon densities of states and dispersion curves are very similar for configurations

that yield very different r1 L. The group velocities of the lowest massless branches

differ by only 11% between pure-Si nanowire (KL = 3.9 ± 0.3) and the lowest-L

(L = 0.23 ± 0.05) configuration. Thus the difference must lie within the relaxation

times of individual phonon modes. Fourier analysis of the heat flux reveals persistent

non-dispersive (zero-velocity) torsional and shear modes at 1-4 THz. Local ordering

affects the frequencies and characters of these modes, as well as their coupling to the

heat-carrying dilatation modes. Differences in coupling constants affect the relaxation
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times of the heat-carrying modes and ultimately r~L. The precise configurational

dependence of the coupling constants is a subject of further research.

3.4 Conclusion

From considering the thermal conductivity of a wide range of SiGe nanostructures, we

established that the Kubo-Green approach using molecular dynamics reproduces the

expected dependence of the lattice thermal conductivity on typical interfacial/boundary

length scales f and interface disorder, but also gives additional quantitative predic-

tions not available from phenomenological models. We found that in the limit of high

interfacial area per unit volume, KL is proportional to e as expected for boundary scat-

tering being the dominant relaxation mechanism. However, the trend reverses and KL

increases with smaller e when e approaches a few times the interatomic distance. The

presence of an amorphized, roughened interface decreases the thermal conductivity

by a factor of 2-3 compared to a coherent, epitaxial interface. By considering the

relative crystal orientation of nanoparticle inclusions and the matrix, we saw that

additional configurational degrees of freedom can be used to further optimize E~L.

We carry out the optimization of the thermal conductivity in the space of atomic

configurations in SiGe alloy nanowires and demonstrate the feasibility of using the

cluster expansion technique to parameterize "L. Compared to the total energy E, the

computation of the lattice thermal conductivity EL is much more expensive, which

means an efficient parameterization is highly desirable; yet the computation of KL is

also fraught with more uncertainties than that of E, which makes such a parame-

terization difficult. We found that instead of using a traditional cluster expansion,

in which each symmetrically inequivalent cluster enters, a coarse-grained approach is

effective; instead of using a single set of cluster expansion parameters, a meta cluster

expansion approach can be used to take into account variations due to noise in the

data as well as the choice of fitting parameters. Using these approaches, we are able

to discover populations with generally lower KL as well as configurations similar to

those which drastically lower thermal conductivity. We find that configurations with



complete planes of Ge atoms have the lowest NL compared to other configurations.

We postulate that the low KL values obtained, close to the bulk amorphous limit, are

due to the absence of long-range ordering in the simulation, and that such an absence

allows a local cluster expansion approach to be successful in optimizing KL.



Chapter 4

Electronic Band Gap Prediction

4.1 Introduction

4.1.1 Band gap prediction for photovoltaic materials design

Photovoltaics form a vital renewable energy source. For the past several decades, de-

velopment and applications in bulk and thin film inorganic photovoltaics have focused

on a few well-known materials such as Si, CdTe, GaAs, and CuIn(Ga)Se 2, with crys-

talline silicon being the predominant material to this date. As with thermoelectric

materials, a myriad of properties opto-electronic, transport, structural and defect-

related, to name a few need to be optimized for a photovoltaic material. Of those

properties, the band gap is a key characteristic because it determines the maximum

efficiency, as explained in Section 2.2.2. If we are able to make quantitative predic-

tions of the band gap and other pertinent properties, it may be possible to discover

or design an optimal photovoltaic material. Fortunately, nature provides us with a

wide search space, as there are over 40,000 inorganic compounds in the Inorganic

Crystal Structure Database (ICSD) [10] alone. With the multitude of chemistries

and structures available, computational tools that accurately account for atomistic

and electronic details are necessary; with the vast number of compounds, efficiency is

paramount. The abundance and costs of elements also serve as important constraints

determining feasibility of wide-spread application of any compound.



Since computational efforts often scale exponentially with the precision level, it is

important to define the desired level of accuracy. We argue that in order to identify

promising materials with band gaps in the range of interest for both single-junction

and tandem photovoltaic cells, i.e. 1.0-2.5 eV, an accuracy of 0.2-0.3 eV is sufficient.

The reasons are as follow:

* The experimental measurements of optical band gaps consist of extrapolation

of intensities from photoluminescence or transmission measurements. The un-

certainty in measured values of band gaps originating from such extrapolation

is typically in the range 0.05 - 0.2 eV.

* For typical semiconductors, the difference between band gaps measured at 300K

and -0K is of order 0.1 eV [2].

* Variations in carrier concentrations can change the band gap by an amount of

order 0.1 eV via the Moss-Burstein effect [67, 68].

* Exciton binding energies in typical semiconductors are of order 0.1 eV.

* The change in maximum photovoltaic efficiency near the optimal band gap value

is about one percentage point per 0.1 eV [22].

The importance of computational efficiency cannot be overstated. Apart from the

tens of thousands of candidate compounds for which properties need to be evaluated,

additional degrees of freedom in the optimization of photovoltaic performance may

come in the form of surface- and nano-structuring. For example, TiO 2 and other ox-

ide nanoparticles have been used in dye-sensitized solar cells [69], and semiconductor

nanowires have been investigated for photovoltaic applications [70, 71]. Typical com-

putations involving surface and nanostructures are several orders of magnitude more

intensive than bulk properties, and ground state ab initio calculations on nanostruc-

tures have become widely-feasible only within the past several years.



4.1.2 Band gap errors in Hartree-Fock and density functional

theory

The band gap is also a basic property of a solid whose efficient and (even semi-

quantitatively) accurate ab initio prediction has proven elusive. In this section we

aim to develop a physical understanding of the reasons for such difficulties. The

fundamental gap, the energy required to create a non-interacting electron-hole pair,

is defined by

Egap,fundamental = E(N + 1) + E(N - 1) - 2E(N) (4.1)

where E(m) represents the total energy of a system of m electrons. The physical in-

terpretation of equation (4.1) is apparent: the fundamental gap is the energy required

to excite an electron, E(N + 1) - E(N), plus that to excite a hole E(N - 1) - E(N),

from the ground state with energy E(N). The band gap measured from optical ab-

sorption is usually equal to the fundamental gap minus the electron-hole (exciton)

binding energy. Exceptions occur when the optical transitions between states with

the closest energies in the valence and conduction bands are forbidden.

In Hartree-Fock (HF) and density functional theory (DFT) in the Kohn-Sham

implementation, the fundamental gap is associated with the difference in eigenvalues.

Using Koopman's theorem, Egap -- EN+1(N) - EN(N), where ci(M) is the ith lowest

eigenvalue of eigenfunctions evaluated in a system of M electrons. In DFT, the differ-

ence in energy between the lowest unoccupied and the highest occupied Kohn-Sham

eigenstates is called the Kohn-Sham gap. In molecular systems, the term HOMO-

LUMO gap (Highest-Occupied and Lowest-Unoccupied Molecular Orbitals) is also

used. The identification of Kohn-Sham and HOMO-LUMO gaps with fundamen-

tal gaps is justified only in the limit of non-interacting electrons. This is because

Koopman's theorem is derived assuming that the orbitals of all other electrons do

not change upon the introduction or removal of one electron. As will be seen in

section 4.2.2, DFT Kohn-Sham gaps are typically far below experimental band gaps,

with errors of 30%-100% for semiconductors and insulators alike. On the other hand,

Hartree-Fock typically overestimates semiconductor band gaps by a factor of 2-5 [72].



One of the most egregious examples of the failure of both DFT and HF is germanium,

with DFT and HF gaps of 0.0 and 4.2 eV, respectively, compared to an experimental

gap of 0.7 eV.

Direct computation of the electron/hole excitation energies and hence energy gaps

from differences in total energy, i.e. the evaluation of equation (4.1), is possible. This

method is sometimes called the "ASelf Consistent Field" (ASCF) or "AHartree-Fock"

method. The ASCF/HF method consists of doing multiple self-consistent DFT/HF

calculations with different number of electrons, and has been applied to atoms and

molecules to successfully reproduce experimentally-measured ionization energies [73].

In a macroscopic solid, however, it is widely-believed that there is no suitable way to

evaluate the fundamental gap and equation (4.1) reduces to the Kohn-Sham gap in

the limit N - oc. We will revisit this claim in section 4.5.

The band gap errors in DFT and HF have their origins in the treatment of elec-

tronic interactions. Both HF and DFT treat electrons in a one-particle picture using

single-particle wavefunctions /i(r). In both cases the average Coulomb interaction is

accounted for by the mean-field Hartree term:

EH drdr' Pi () (4.2)
2 |r - r/1

where pi = e E1 0i12 is the charge density, and spin indices have been suppressed. The

remaining interaction among electrons is treated by taking into account the exchange

exactly in HF, and by the exchange-correlation potential in DFT. The exact treatment

of exchange in HF

Ex = drdr - r(4.3)

is nonlocal and in fact, long-ranged and infrared divergent. In DFT, commonly-

used exchange-correlation functionals are the local and semi-local LDA and GGA

(Local Density Approximation and the Generalized Gradient Approximation). This

distinction has been used to explain the band gap errors in HF and DFT [74]. In



HF, the addition and removal of electrons carry a high energy penalty because the

exchange repulsion of each pair of electrons is considered separately and long-ranged.

In DFT, in contrast, the penalty is low because the exchange-correlation is semilocal.

The band gap errors in HF and DFT can alternatively be understood in terms

of the dielectric response of a system of electrons. Consider again the addition of an

extra electron to the system. Nearby interacting electrons rearrange their charges to

screen the addition, thus lowering the energy penalty as compared to when charges are

absent, rigid (non-polarizable), or non-interacting. The degree of screening is charac-

terized by the dielectric function, which is in general space- and time-dependent. The

HF treatment is analogous to atoms in free space, with a dielectric function of -1. In

DFT, which can be viewed as a perturbative treatment of the homogeneous electron

gas, the screening is biased towards the metallic limit. The DFT dielectric function is

hence overestimated. The energy penalty and hence the band gap is therefore overes-

timated in HF and underestimated in DFT. Within these extremes lie the realities of

solids and molecules. The key to reducing the band gap errors, therefore, is in finding

a more realistic description of the dielectric response than in the overly-rigid HF and

overly-soft DFT.

4.1.3 Hybrid approaches

Given that DFT overscreens and underestimates gaps, and HF does the reverse, it is

plausible that a combination of the two treatment gives a more accurate answer than

either extremes. This is the rationale behind the so-called hybrid functionals, in which

non-local HF exchange is added to the DFT exchange-correlation functional. Justified

by using the adiabatic connection formalism, which makes formal the interpolation

between the extremes of HF and DFT by an integration in the coupling constant e,

the following PBEO hybrid functional was proposed [75]

Ehybrid = E D FT+ (EH - EFT) (4.4)



which replaces 1/4 of the semilocal exchange in DFT with HF exact exchange. Be-

cause hybrid functionals interpolate between HF and DFT, the band gaps obtained

are in better agreement with experiment, particularly for molecules [3]. However,

the band gaps in semiconductors are directly proportional to the amount of exact

exchange added [76], and are overestimated by 80% in silicon and 33% in GaAs [5].

Moreover, because of the extended range, hybrid functionals are computationally

much more expensive compared to LDA/GGA. 1 An alternative to the mixing of long-

ranged exact exchange with semi-/local functionals is screened hybrid exchange [76],

which reduces the computational cost by exponentially damping the exact exchange

term, such that it is only significant within a distance of - 6 - 20 times the Bohr

radius. The resulting band gaps for semiconductors are in better agreement with

experiment, given an underestimate of 0.23 eV (15%) and 0.1 eV (10%) in GaAs and

Si respectively [5].

The seemingly ad hoc 1/4 factor of optimal exact exchange in PBEO may have

some deeper underpinnings. Although the exact form of the exchange-correlation

energy functional Exc[n] is not known, Lieb and Oxford [77] established an upper

bound for the magnitude of Exc[n] as a multiple of the Local Density Approximation

(LDA) exchange energy ELDA:

0 > Exc[n] > LoEDA [n] -CLO d3rn4/ 3  (4.5)

where ALO = 2.27 and CLO = 1.68. This bound applies for all non-relativistic fermion

systems governed by the Coulomb interaction in three dimensions, and has been incor-

porated into the construction of approximate exchange-correlation functionals such

as GGA-PBE [78]. Recently, systematic studies of the Lieb-Oxford bound were per-

formed [79] using exact results computed from configuration interaction and quantum

Monte Carlo. It was found that for realistic systems including atoms, molecules and

a wide range of solids ranging from simple metals and semiconductors to strongly cor-

related systems, the exact values of A - Exc[n]/EXDA[n] range between - 1.10 - 1.33.

1An exception is DFT+U, a particularly expedient type of hybrid that operates only in the
vicinity of individual atomic sites, which is described in section 4.2.2.



The authors of [79] argue that the small range of A may explain the success of hybrid

functionals which incorporate a fraction of the exact exchange.

4.1.4 Goals of this work

We have seen that Hartree-Fock and density functional theories grossly overestimate

and underestimate, respectively, the band gaps of solids in the spectrum of their

energy eigenvalues. The reason for these errors can be thought of in terms of the

range of the interaction, or equivalently, an inadequate accounting of the dielectric

response. Hybrid functionals can be used to improve on the band gap predictions

by interpolating between HF and DFT, and may well be justified on a theoretical

basis, but their use on solids have some limitations. We are interested, therefore,

in methods that also makes use of physical insights involving dielectric screening to

make better band gap predictions, keeping in mind the need to balance accuracy with

efficiency. To this end, we investigate the use of the many-body self-energy approach,

specifically in the GW approximation, where the dielectric response function and

its contribution to the band gap is explicitly calculated. In addition, we revisit the

issue of fundamental gap calculations using the ASCF method, taking into account

in an approximate way the effective dielectric screening of the system. Before we

embark on these investigations, we construct a test set of compounds with known

experimental gaps and perform calculations of the DFT Kohn-Sham gaps to form a

baseline for our studies. The physical basis and current status of different existing ab

initio approaches to band gap predictions are summarized in table 4.1.

4.2 Band gaps from density functional theory

4.2.1 Compounds with known experimental band gaps

In order to evaluate various ab initio band gap prediction methods, we need a set of

reliable experimentally-measured band gaps on compounds with known crystal struc-

tures. We obtained such information for a test set of 131 binary compounds and 3



Method

Hartree-Fock

DFT with Local
Density or Generalized
Gradient
Approximations (LDA/
GGA)

DFT with hybrid
functionals

DFT with screened
hybrid functionals

GoW o

Self-consistent GW

Principle

Exact exchange, no correlation
-i ±

Local or semilocal exchange-
correlation

Combine a fraction of exact
exchange with LDA/GGA
exchange-correlation

As above,
instead of

but with screened
bare exchange

Evaluate self-energy as a
convolution of Green function
constructed from DFT
wavefunctions and eigenvalues
(G) with frequency-dependent
screened Coulomb interaction
(W)

As above, but also with self-
consistent cycle to update
wavefunctions and/or
eigenvalues.

Accuracy
(relative to experiment)
1.5-7 times overestimation

30-100% underestimation

10-80% overestimation for
semiconductors; accurate to 20%
underestimation for insulators (a)

-10-25% and ,20%
underestimation for
semiconductors and insulators
respectively (a,b)

Accurate to about 10-25% in
semiconductors (b) and about 0.5
eV in mid-gap compounds (c);
fails to correct 0 LDA gap in InN
(c); 20% underestimation (c) or
overestimation (d) in insulators

In dispute

Table 4.1: An overview of different methods for ab initio band gap predictions. Ref-
erences: (a) [5] (b) [6] (c) [7] (d) [8]. The theoretical basis and implementation details
of the GW approximation are given in section 4.3 below.
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elements (C, Si and Ge) from Semiconductors: Data Handbook [2]. The test set con-

tains a wide variety of chemistries, including typical semiconductors, such as GaAs

and CdTe, as well as main group and transition metal oxides, other chalcogenides,

and halides. The experimental band gaps range from 0.2 to 10.6 eV. Information

on the symmetry (space group) is corroborated with that from the Inorganic Crystal

Structure Database (ICSD) [10], via the Materials Genome database developed by

Anubhav Jain in the Ceder group [80]. For ease of computational testing, we select

only compounds with unit cells containing less than 200 valence electrons. Com-

pounds where there exist significant (> 0.3 eV) discrepancies in different experimental

measurements are omitted. We take low-temperature values of the experimental gap

whenever possible, and make extrapolations using experimentally-measured temper-

ature coefficients to OK. When temperature coefficients are not available, the 300K

band gaps are used. The uncertainty in the experimental values are typically in the

0.05 - 0.3 eV range. Since compounds with band gaps in the range of 1 - 4 eV

are most relevant for photovoltaic and related applications, specific analysis will be

made for this group (henceforth called "medium-gap compounds") as well as for all

compounds in the test set.

4.2.2 Computed DFT Kohn-Sham band gaps

We calculate the Kohn-Sham band gaps for compounds in the test set described

above using ground state density functional theory (DFT). The DFT calculations are

done using the Vienna Abinitio Simulation Package (VASP) [81], version 4.6, with

accompanying Projector Augmented Wave (PAW) [82] atom data. The Generalized

Gradient Approximation, as parametrized by Perdew, Burke and Ernzerhof (GGA-

PBE) [78], is used as the exchange-correlation functional. The two spin densities are

treated separately. Kinetic energy cut-offs for the plane wave basis sets are in the

range 200-400 eV. Ionic positions and cell parameters are optimized using conjugate

gradient relaxation. Brillouin zone sampling is carried out using 63 - 243 gamma-

centered k-point grids with an average of 80 k-points in the irreducible Brillouin zone

(IBZ). The tetrahedron method with B16chl corrections [83] is used for Brillouin zone



integration.

The Kohn-Sham band gaps thus obtained are plotted against the corresponding

experimental values in figure 4-1. As expected, the Kohn-Sham band gaps severely

underestimate the experimental values. The mean absolute error is 1.1 eV, with a

standard deviation of 0.8 eV. The mean relative error is 56%, with a standard devia-

tion of 30%. Among the 94 compounds with band gaps within the range of 1-4 eV, the

mean absolute error is 1.1 eV, and the standard deviation is 0.6 eV. The mean relative

error is 51%, with a standard deviation of 26%. Although some trends are noticeable,

e.g. that the largest underestimations occur for wide-gap oxides (BeO, MgO, CaO,

SrO), the errors are not in general systematic. This is shown by the large standard

deviation for both the absolute and relative errors, both for all compounds and for

medium-gap compounds. Given only the Kohn-Sham band gap, an inverse map to

the experimental band gap is ill-defined. Out of the 134 test elements/compounds,

six (Bi 3 , Bi 2Se 3 , Bi 2Te 3, PbS, PbSe and PbTe) have Kohn-Sham gaps that exceed

the experimental gaps. The LDA/GGA overestimation of band gaps has been pre-

viously reported for lead [84] and bismuth [85] chalcogenides, and was attributed to

the neglect of spin-orbit coupling. This is a reasonable explanation due to the large

mass of Pb and Bi.

The Hubbard U correction to DFT, DFT+U, was introduced [86] to account for

strong static correlations in systems with partially-filled d- and f-shells, i.e. transition

metals. In addition to the usual Kohn-Sham Hamiltonian, an energy penalty is ap-

plied on partial projected occupancies of atomic d- or f-orbitals. The energy penalty

is determined by the parameter U, which is typically in the range 1-5 eV. DFT+U

can be thought of as a semi-local hybrid scheme, in which the non-locality is only

applied on atomic sites, for which the Coulomb integrals are already pre-evaluated.

Since DFT+U has been found to accurately predict total energies and remove qual-

itative errors in the electronic structures (for a review, see [86]), at little additional

computational cost, we apply the DFT+U method for all transition metal oxides and

halides. For transition-metal oxides, the values of the U parameter are taken from

ab initio linear response calculations, as described in [87]. For halides, a standard
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value of 3 eV is used. It should be noted, however, that the addition of U does not

generally remove band gap errors. For AgF for example, which has an experimental

gap of 2.8 eV, the Kohn-Sham gap with 1.5 > U > 0 eV is zero, and increases to 1.3

eV with U = 7 eV.

4.3 Self-energy approaches and the GW approxi-

mation

4.3.1 Theory

We begin by considering the Kohn-Sham equation of density functional theory (DFT),

which is

HKS nk(r) - 2 V + Vion + VHiartree Vxc(r)] )nk(r) - nknk(r) (4.6)

where n and k are the band and k-point indices. The exchange-correlation poten-

tial V,, is local, real and time-independent, reflecting the non-interacting nature of

the Kohn-Sham theory. A similar equation can be written for Hartree-Fock or hy-

brid theories, in which the only difference is that V is non-local, but still real and

time-independent. Eigenstates of HKS or HHF have real energies and are infinitely

long-lived. 2 Hamiltonians of many systems of interacting electrons are, however,

perturbatively connected to the non-interacting ones, such that one-particle wave-

functions are still approximately good degrees of freedom. In that case we call the

interacting electrons quasiparticles, and rewrite equation (4.6) as

HKS"nk(r) + [(r',, k/) - Vxc(r) r r')dr' = Efk0fk(r) (4.7)

where E(r, r', w) is in general a non-local, complex, and time-dependent function

called the self-energy. Since E is not Hermitian, the eigenvalues ek are in general

2 Fortunately these Hamiltonians do not fully describe electrons in nature, or else chemistry or
life would not be possible.



complex and the quasiparticles have finite lifetimes. The quasiparticle wavefunctions

snk are not the same as 4 nk, but will be similar in the limit that IE - Vxcl is small

compared to HKS.

The electron Green function G(r, r', t, t'), also called the propagator, gives the

probability amplitude for propagation of an excitation from (r', t') to (r, t). The

Dyson equation relates the full Green function G of an interacting system to that of

a non-interacting system Go and the self-energy:

G(r, r', w) = Go(r, r', w) + ff Go(r, r", w)E(r", r"', w)G(r"', r', w)d 3r"d3 r'"  (4.8)

where a Fourier transform in time has been made to express G and Go in the Lehmann

representation, i.e. in terms of (r, r', w) instead of (r, r', t, t'). If E is known, then so is

G and any physically measureable quantites from the many-body system. In general,

however, E cannot be solved explicitly, and perturbative iterations have to be used.

The Dyson equation can be written in a perturbative series as, symbollically:

G = Go + GoE G o + GoEGoEGo + GoEGoEGoEGo + ... (4.9)

The non-interacting Green function (bare propagator) Go is constructed from solu-

tions of the non-interacting Hamiltonian. In the Lehmann representation, we have

Go(r, r', w) =- i il(4.10)

where the sum is over all occupied and unoccupied states i, and Vi and Ei represent

the eigenstates and eigenvalues of the non-interacting Hamiltonian.

In the GW approximation, first proposed by Hedin [88], the self-energy E is ap-

proximated by

E(r, r', w) ih dw e w'G (r, r', w - ') W(r, r', w) (4.11)

where W is the Coulomb interaction v = e2/ r - r'| screened by the dielectric function



Figure 4-2: Diagrammatic representation of the approximation E = iGW. In the
limit of bare electron and Coulomb propagators, this diagram reduces to Hartree-
Fock exchange. Instead, W is a screened Coulomb interaction with a polarization
evaluated in RPA.

e(r,r', w), i.e.

W(r, r', w) = dr"E-1 (r, r",)v(r",r', w) (4.12)

The GW approximation is equivalent to factoring out the Coulomb and electron

propagators, as shown in diagrammatic representation in figure 4-2, and specifically

neglecting vertex corrections such as shown in figure 4-3. Consistent with the neglect

of the vertex in E, the Coulomb propagator is treated at the random phase approx-

imation (RPA) level, corresponding to the summation of an infinite series of i-loop

polarization bubbles, as shown in figure 4-4. This gives

:(r, r', w) = 6(r - r') - J v(r, r")P(r", r', w)d 3r" (4.13)

where P is the polarization given by

P(r, r', w) = E (f - fy) r i (4.14)

with fi being the Fermi occupation number of state i.

In self-consistent GW approximation, the self-energy obtained from Go is put into

the Dyson equation (4.9) and iterated to obtain the full Green function G, as shown by

double straight lines in figure 4-2. The validity of the self-consistent GW approach is

under some dispute, particularly when the vertex corrections continue to be omitted.

When IE - Vxcl is small, however, the first-order GoWo approximation can be used

instead. In the GoWo approximation, the bare propagator Go, constructed from



Figure 4-3: A contribution to the vertex correction F not included in the GW ap-
proximation.

Figure 4-4: The Coulomb propagator evaluated in the random phase approximation
(RPA), corresponding to the summation of an infinite series of one-loop one-particle-
irreducible (1PI) diagrams. Physically this means that individual particle-hole pairs
are independent, or that electron-hole or exciton interactions are negligible.

Kohn-Sham eigenvalues and eigenfunctions by equation (4.10), is used to calculate

Zo = iGoW. The self-energy Eo (henceforth referred to simply as E) is used to

evaluate corrections to non-interacting eigenvalues using

Enk - Enk nk El fk/f/) - Vxc nk) (4.15)

where the evaluation of E is made at the corrected quasiparticle energy 6'. If C' - C is

small, we can again linearize to obtain

/ nk - Enk &Z(r, r', Enk/h)(r, r', /h) (r, r', +/h) + h (4.16)

which gives

Enk - 6Ek ' Znk(1yk -nkc ) (4.17)

in which the quasiparticle weight Znk is given by

Znk = ( ( IoKf((nk/h) ) k)-1 (4.18)

The quasiparticle weight describes the similarity of a quasiparticle to a free particle,



which has Z = 1. When Z differs signficantly from unity, it may no longer be

justifiable to use the first order GoWo.

Finally, the band gap correction due to the GW approximation is given by

AEg - ( - ) - ( - )

- Eg,KS + Zc(Oc(Ec/) - VcI Vc) - Z,(,E(I( /h) - V~,c4,) (4.19)

where c and v stand for states at the conduction band minimum and valence band

maximum, respectively.

4.3.2 Computational details

We calculate the Kohn-Sham eigenvalues and eigenvectors and GoWo corrections to

the band edge eneriges using the plane wave pseudopotential code ABINIT [89], ver-

sion 5.6. Due to the strenuous computational requirements, as explained below, a sub-

set of the test compounds with small unit cells are selected for the GoW0 computation.

We use GGA-PBE as the exchange-correlation functional, and Fritz-Haber-Institute

(FHI) pseudopotentials generated in the Troullier-Martins scheme as obtained from

the ABINIT website [90]. The optimized ground state ionic positions and cell pa-

rameters for each compound are used in subsequent Go Wo calculations. The kinetic

energy cutoffs for the plane wave basis sets of the ground state calculations range

from 15 to 45 Hartree, and are chosen for each compound such that the total ground

state energy is converged to within 5 meV per atom. The DFT+U approximation

has not been applied for these calculations.

The frequency integration in equation (4.11) can be performed numerically, but

it is much more computationally efficient to use a plasmon pole model, in which the

frequency dependence of e is given by:

E-1() = 2 Q 2  (4.20)

The dielectric function is calculated by evaluating the RPA dielectric function (4.13)



from the polarization (4.14) at two frequencies, from which the matrix elements of

Q and o are obtained. The plasmon pole model physically corresponds to the as-

sumption that the loss spectrum (imaginary part of E- 1) is dominated by excitations

that have well-defined frequencies. The plasmon pole model is expected to describe

typical semiconductors well but not strongly-correlated systems [91].

With the use of the plasmon pole model, the most computationally demanding

step in the GoWo calculation is the evaluation of the polarization (4.14) and the

construction of the dielectric matrix. The computational time and memory require-

ments for this step scale roughly as the square of the number of k-points in the irre-

ducible Brillouin zone, since the dielectric matrix is evaluated for each symmetrically-

inequivalent q = ki - kj. Since E also carries the double indices G and G', the kinetic

energy cutoff - ht2G'ax/2m of the plane wave basis for the dielectric matrix is typi-

cally set lower than that for the wavefunctions. The typical computational time for

this step is a hundred to several thousand times that of a ground state calculation.

The entire dielectric matrix written to (binary) file is of order tens to hundreds times

the size of a wavefunction file for the same compound, which means that the memory

and I/O requirements are strenuous. For example, for BeTe, a 2-atom cell with 8

valence electrons, the binary wavefunction file for a ground-state calculation with 16

k-points in the IBZ and kinetic energy cutoff of 20 Hartree is 1.7MB. With a kinetic

energy cutoff of 15 Hartree, the dielectric matrix file is 370MB.

Convergence testing with respect to the kinetic energy cutoff used for the dielectric

matrix is performed for MgO. The results are shown in figure 4-5. For the ground

state calculations, an energy cutoff of 40 Hartree is required to obtain the total

energy to within 5 meV per atom. Such a large energy cutoff is not realistic for the

dielectric matrix calculations, as explained above. From the convegence testing, we

note that if the cutoff for the dielectric function is set at 15 Hartree, the GoWo band

gap obtained is 0.26 eV below the final converged value of 6.69 eV at 30 Hartree.

The experimental gap of MgO is 7.8 eV. The computational time required for the

dielectric function calculation is 1.5 hours and 15.6 hours for energy cutoffs of 15 and

30 Hartree, respectively. Therefore, achieving final convergence to within 0.1 - 0.2
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Figure 4-5: The convergence of GoWo corrections to the valence band maximum
energy, conduction band minimum energy, and the band gap, as a function of the
kinetic energy cutoff for the plane wave basis set used to represent E. Note that
the main contribution to the error when using a smaller energy cutoff in this case
comes from the valence band. The final value for the GoWo band gap correction
(2.2 eV) to the Kohn-Sham gap comes in equal parts from the downward adjustment
of the valence band maximum and the upward adjustment of the conduction band
minimum.

eV comes at rather large computational cost. Because it is not feasible to perform

such convergence testing for each compound, we use 15 Hartree as the kinetic energy

cutoff of the plane-wave basis set for all compounds where feasible, and reduce it to

10 or 6 Hartree if the larger calculation fails to finish (typically because of insufficient

memory).

Apart from the convergence with respect to basis set size (kinetic energy cutoff),

we should also note that there may also be convergence issues with respect to the

number of empty bands included in the calculation. Both in the expressions for the



polarization matrix in equation (4.14) and the bare Green function in equation (4.10),

there is a sum over all the occupied and unoccupied states. Because the output of

the Kohn-Sham states into a file used for subsequent polarization and self-energy

calculations has not been implemented in parallel, we find it difficult to include more

than about 100-200 empty bands. This is found to be sufficient for compounds with

smaller than 10 occupied bands, but the effects on compounds with more occupied

bands is unknown.

4.3.3 Results of GoWo computations

The band gaps of 36 compounds computed using the GoWo approximation using the

plasmon pole model are shown in figures 4-6 and 4-7. The mean absolute errors for

all 36 compounds and the 21 medium-gap compounds within this set compared to

the experimental values are 0.57 and 0.39 eV, respectively, with standard deviations

of 0.61 and 0.38 eV, respectively. This is in comparison to the errors for the Kohn-

Sham gap of 1.2 and 1.0 eV (with standard deviations of 0.96 and 0.55 eV) for

the same compounds. The Kohn-Sham band gap errors are reduced by 50-60% on

average by using the GoWo approximation within the parameters of our calculations.

For the medium-gap compounds, 50% have GoWo gaps that are within 10% of the

experimental value, and 70% are within 25% of experimental value. For an addditional

21 compounds for which the calculations are completed, the GW band gaps are at or

below the Kohn-Sham gaps and not plotted. Results for subgroups of compounds

transition metal compounds, medium-gap compounds, and insulators are discussed

separately below.

We note that the values of the quasiparticle weight Z for all compounds calculated

fall in the range 0.69-0.84, similar to the RPA values for the homogeneous electron

gas [88] with the same range of rs (-1-3). This is because of the use of the plasmon

pole model for the frequency-dependence, as Z is derived from the frequency depen-

dence of E and the plasmon pole model omits satellites due to strong correlations.

Since we start from the non-interacting Hamiltonian and unit "quasiparticle" weights,

the validity of the GoWo approximation would be suspect if the values of Z obtained
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were very different from 1.

We would also like to remark upon the validity of the so-called "scissors opera-

tor", in which the valence and conduction bands are manually shifted apart by the

same amount regardless of k. Because we calculate the self-energy corrections to the

eigenvalues at two k-points for indirect gap compounds, we can compare the shifts

at the valence band maximum and conduction band minimum at those two k-points.

The results for 23 compounds are shown in figure 4-8. We find that RbAu and CsAu

are outliers, in having a difference of 1.2 and 0.90 eV, respectively, between the GoWo

correction of the gap at two k-points. For the remaining compounds, the differences

are generally in the 0.05-0.2 eV range. The results imply that simply shifting the

bands by the same amount at all k-points may be approximately accurate for most

compounds, though may not be a robust procedure.

Transition metal compounds

For many transition-metal compounds, the GoW corrections to the gap are essentially

zero (less than 0.05 eV) or negative. These include all the chalcogenides and halides of

Cu (Cu 20, Cu 2S, Cu 2 Se, CuBr, CuC1, CuI) and Ag (AgF, AgC1, AgBr, AgI, Ag 20).

The origin of this negative correction is the shifting of the valence band maximum

upwards by 2-3 eV (for Cu) and 1-2 eV (for Ag). For both Yb compounds considered

(YbS and YbSe), the upward shift of the valence band maximum is about 5 eV. All

these compounds have strong d- or f-characters in the valence bands maxima. For

these localized states, contributions to the screened Coulomb interaction in the GW

correction are mostly diagonal, and in applying equation (4.15) to compute the GW

correction to the valence band energy, we are simply evaluating the on-site Coulomb

interaction, or the U parameter that is used in DFT+U calculations. Indeed, the 2-3

eV for Cu, 1-2 eV for Ag and 5 eV for Yb are typical values for the U parameter used in

DFT+U calculations. The values obtained are listed in Table 4.2. The failure of GoWo

in these instances to correct the band gap reflects the fact that the quasiparticles are

not close to the Kohn-Sham eigenstates. However, if one updates the eigenvalues

and performs the iteration again, i.e. in the next step towards self-consistency, these
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Table 4.2: The self-energy correction to the valence band maximum calculated from
GoWo, for Cu, Ag and Yb compounds, which can be identified as the value of the U
parameter in DFT+U calculations.

Compound U from GoWo (eV)
CuC1 3.3
CuBr 3.2
Cul 2.7
Cu20 3.8
Cu 2S 3.3
Cu 2Se 2.8
AgO 1.8
AgF 1.7
AgCl 1.0
AgBr 1.0
AgI 0.9
YbS 5.2
YbSe 4.8

d- and f-like states with high positive eigenvalue corrections 6' - E will no longer be

at the band edge. This has the same effect as the DFT+U correction in pushing

the Hubbard bands away from the Fermi level, except that the GW iteration does

not require an a priori knowledge of the parameter U. Of course, there is enormous

computational expense that comes with performing multiple iterations of the GW

calculation.

Medium-gap compounds (1 < Eg < 4 eV)

The results for medium-gap compounds are shown in Table 4.3. The GoW-corrected

gaps for III-V and III-VI compounds are in general in good agreement with exper-

imental values, with a mean absolute error of 0.26 eV. The largest errors in these

groups came from the arsenides, without which the mean errors are only 0.16 eV.

The largest absolute error in the GoWo values of the band gap for medium-gap

compounds is found in RbAu (1.1 vs 2.6 eV), which is metallic in LDA/GGA. The

series of alkali-metal gold compounds undergo a metal-semiconductor transition be-

tween RbAu and KAu [92, 93]. The band gap of CsAu, which has been more ex-



Table 4.3: Experimental and computed GoWo band gaps of compounds with exper-
imental band gaps between 1 and 4 eV. The second decimal digit is generally not
significant.

Compound Experimental Gap (eV) Kohn-Sham Gap (eV) GoWo Gap (eV)
AlAs 2.30 1.48 1.94
A1P 2.50 1.63 2.37
A1Sb 1.69 1.19 1.61
BAs 1.46 1.31 1.87
BP 2.20 1.37 2.03
GaAs 1.53 0.24 0.74
GaP 2.40 1.62 2.34
InP 1.41 0.33 0.91
GaS 3.05 1.77 3.20
GaSe 2.13 1.06 2.08
GeS 1.85 1.24 1.68
BeTe 2.80 1.91 2.57
K3Sb 1.40 1.01 1.67
CsAu 2.60 0.91 2.35
RbAu 2.60 0.00 1.06
HgI 2.40 1.04 2.04
HgS 2.10 1.25 2.20
ZrS2 1.83 1.42 2.74
T1Br 2.65 1.42 2.24
T1C1 3.23 1.46 2.26
TI1 2.10 1.22 1.91

tensively studied, was measured to be 2.6 eV in thin film form [94], and in Semi-

conductors: Data Handbook [2], RbAu was also listed as having a gap of 2.6 eV.

However, we were unable to find experimental reports of this value for the measure-

ment. Moreover, because the metal-semiconductor transition is accompanied by large

volume changes which affects the band gap [95], it is quite possible that the exper-

imental value for RbAu is indeed different from 2.6 eV. We find in general that the

experimental values of the band gap for some compounds are either not well-known

or in dispute, for reasons ranging from difficulties in sample preparation to effects of

surface adsorbants.



Table 4.4: Experimental and computed GoWo band gaps of compounds with experi-
mental band gaps greater than 4 eV.

Compound Experimental Gap (eV) GoW o Gap (eV)
GeO 2  5.4 2.3
PbF 2  5.7 5.8
BN (cubic) 6.2 5.8
BaO 4.4 3.2
SrO 6.1 4.9
CaO 7.0 5.3
MgO 7.8 6.7

Insulators

The absolute Kohn-Sham band gap errors are largest for insulators. Since the elec-

tronic screening is weak, the screened interaction W is expected to be similar to the

bare interaction v, in which case the GW correction should be large and the linear

treatment GoWo may not be an appropriate treatment. From Table 4.4, we see that

for all the alkali-earth oxides, GoWo underestimates the gap by 1.2-1.7 eV. The un-

derestimation is larger than previously-reported values of about 0.5-1 eV [7]. The

trend, however, is consistent, as the whole series is shifted by the same amount and

the previously-reported underestimation is also largest for CaO. For cubic BN and

PbF 2, however, the GoWo band gap values are in good agreement with experiment.

The severe underestimation in GeO 2 (2.3 eV vs 5.4 eV) is possibly due to a lack

of convergence with respect to the size of the plane wave basis set for E, as in MgO,

but computation with a kinetic energy cutoff larger than 15 Hartree fails to complete

due to memory problems. It should be noted that the kinetic energy cutoff for e

required to produce accurate results is affected by the "hardness", or the minimum

required energy cutoff, of the pseudopotential used. This is because the polarization

P and Green function Go are both constructed from the wavefunctions, so that if

wavefunctions require a large number of planewaves to construct accurately, so do P

and Go. Therefore, it is desirable to optimize the pseudopotentials for use in GW

calculations such that the kinetic energy cutoff requirements are less stringent.



4.4 Interlogue

We saw that with the explicit inclusion of the non-local and frequency-dependent

interactions, and explicit construction of the dielectric response function of a system

from the polarization, we are able to correct a large portion of the DFT band gap

error using the GW approximation. GoWo also gives the Hubbard U parameter that

can serve as a useful input for DFT+U calculations. Our errors are larger than in

typical work involving GW computations, which usually state an accuracy of 0.1-0.2

eV, for two reasons. The first is that in the interest of general applicability, it is

desirable to avoid the need for the construction of pseudopotentials and fine-tuning

of parameters for each calculation. The issue of pseudopotentials may be avoided all-

together by performing all-electron calculations, though at an added computational

cost. Secondly, again in the interest of being able to perform calculations for a

large number of systems, we attempted to keep the computational requirements to

a minimum. In principle, the full frequency-dependent dielectric matrix and Green

function contains all the information available, but in practice the results are quite

sensitive to the resolution at which we carry out our computations. This is because,

as in DFT, the numerical result comes from the addition of several terms of similar

size: (IJEZL 4), (|Ec,4J) and -( Vxckb).

At this juncture, we would like to ask whether simplifications can be made that

capture the physical insights in the GW approach that are relevant to the prediction of

the band gap, and yet render the problem less computationally exacting. A large body

of work exists on the building of model dielectric functions and other simplifications

to the GW approach, and reviews can be found in [?]. For us, the most important

realization is that the band gap is essentially a static property. This is because

the dielectric response, which is plasmon-pole-like, is relatively featureless below the

plasma frequency up = V~ where N, e and m are the number, charge and mass

of electrons, respectively, and V is the volume. Typical plasma frequencies correspond

to an energy of 15 eV, which is far above the energy scale of the separation between

the conduction and valence bands in our systems of interest. Therefore, it is only
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Figure 4-9: A plot of gaps calculated from DFT (LDA) vs. experimental values for

atoms and molecules, using data from [3] and reference 14 therein. The calculations

done with the ASCF method, i.e. direct evaluation of Egap,fundamental = E(N + 1) +

E(N - 1) - 2E(N), show reasonable agreement with experiment, in stark contrast

to the extreme underestimation of the Kohn-Sham gaps, which are differences in

eigenvalues of the highest-occupied and lowest-unoccupied states.

necessary to consider the static dielectric response.

4.5 Fundamental gaps from effective screening

4.5.1 ASCF revisited

As described in the introduction to this chapter, the direct evaluation of the funda-

mental gap from differences in energy Egap,fundamental = E(N + 1)+ E(N - 1) - 2E(N),

i.e. the ASCF method, has been applied to atoms and molecules with good results.
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For example, figure 4-9 shows the energy gaps for a series of atoms and molecules

computed from ASCF using DFT-LDA (plotted with data from [3] and reference 14

therein). Unlike the Kohn-Sham gaps which are gross underestimations, the funda-

mental gaps are in reasonable agreement with experiments. The problem that arises,

in doing the same for a solid, is in determining the meaning of N. In a standard

electronic structure textbook [74], Martin claims that "it is not obvious how to carry

out such a calculation... [and] there is no effect if the state is delocalized in an infinite

system". In a recent paper on the issue of band gap corrections in the context of de-

fect calculations [96], Lany and Zunger carried out the fundamental gap calculation

in ZnO as a function of the number of electrons N per added/removed electron and

concluded that the results so obtained "converge [to the Kohn-Sham band gap] in the

limit of a dilute gas of free electrons and holes". A claim that the bulk band gap of

silicon can be deduced from ASCF calculations of clusters of increasing size [97] was

met with intense debate [54, 98].

In all these discussions, it is assumed that the added and removed electrons oc-

cupy and vacate Bloch states with definite crystal momentum k and infinite spatial

extent, and hence the limit N -+ oc must be made in order to recover the bulk value

of the fundamental gap. However, we can equivalently transform to the Wannier basis

and view the added and removed electrons as having a finite extent. It is typically

possible to localize Wannier functions to atomic scale. Since the Bloch and Wannier

states are related by a unitary transformation, physical observables are unaffected.

Then we can recast the problem of finding the fundamental gap from DFT as that of

the energy related to the addition/removal of a localized charge distribution to/from

the existing charge density in DFT. We recall that DFT can be thought of as pertur-

bations of a homogeneous electron gas, and that the inclusion of screening is crucial

to the accurate description of the band gap. Our strategy, then, is to investigate the

screening behavior of a homogeneous electron gas and to attempt to find transferrable

quantities that would help in the determination of the fundamental gap. Although

one might argue that semiconductors do not have metallic screening, one must re-

member that what is important is the screening behavior in the DFT calculations.
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Figure 4-10: The integrated screening charge N,(r) within a radius r of a point
perturbation in a homogeneous electron gas, plotted against the dimensionless dis-
tance rkf, where kf = (3r 2 V/N) 1/3 is the Fermi wavevector. The functional form is
given by (4.22), as derived from the static RPA dielectric function in [4]. Different
curves correspond to different values of the density parameter r,, which ranges from
1.5 to 3.5. This range of r, is representative of that of the compounds in our test
set. Note that a smaller r, implies a larger distance, in units of k 1, before Ns(r)
first approaches unity, and that the differences between different values of r, become
negligible beyond a distance of 5-8 k/'.

In general, once charges are added/removed from the computational cell, the system

is metallic.

4.5.2 Effective screening radius

We consider the distribution of screening charges which gives a physical picture of

the dielectric response. In the presence of a point charge Q, electrons rearrange to



shield, or screen, the charge. Beyond a certain distance, by the rearrangement of a

total charge -Q, the screening is complete and the effects of Q are not felt. Beyond

that distance, the integrated energy due to the distribution of screening charge does

not increase appreciably. For a given wave-vector-dependent dielectric function e(q),

the screening charge density per unit volume at a displacement r from Q is given by

ps(r) Q d3 q eiqr 1 - (4.21)
(27)3 E(q)

Here, we have taken the static (zero frequency) limit. Instead of calculating the

dielectric function explicitly, which would bring us back to a static GW-like approach,

we consider the RPA static dielectric function evaluated by Langer and Vosko [4].

Recall that the RPA corresponds to the neglect of vertex corrections and is used in

the GW approximation. Using the RPA dielectric function in equation (4.21) and

using spherical symmetry, the integrated screening charge as a function of distance

from the perturbation r, which we will call N,(r), is given by

2 ) 1(1 - )ln q+2
Ns(r) = RdR qsin(qR) 1 + 1 4 q-2 J dk (4.22)

o 4 1

where r = 0.3317r. The radius parameter is defined as rs = V with N, V and ao

the number of electrons, the volume, and the Bohr radius, respectively. Plots of Ns(r)

for rs = 1.5- 3.5 obtained by numerical integration of (4.22) are shown in figure 4-10.

It is clear that beyond a distance of about 5-8 k -1, where kf = (3r 2N/V) 1/3 is the

Fermi wavevector, the integrated screening charge is very close to unity. There is

some ambiguity as to precisely what "close" means, of course, and different dielectric

functions give slightly different details of the Friedel oscillations, first unity crossing,

etc. There is also some dependence of the details on r,, as shown in figure 4-11.

Suppose we determine that the screening is complete at a distance of r*kf 1, where r*

may depend on rs, then the corresponding volume is given by

V
V*(rs) = ar*(rs)3 (4.23)
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Figure 4-11: A close up of figure 4-10 in the region near complete screening, i.e. where
N,(r) - 1. Note the fine vertical scale. The screening charge is plotted against the
dimensionless volume (2rkf), which corresponds to the number of electrons within
the screening volume.

where a is a geometrical factor (equal to 47/3 for a sphere). Within V*, the total

number of electrons is

N*(rs)= * )3 .  (4.24)

This means that for any given r, there is a fixed number of electrons N*(rs) that

completely screen the charge Q.

The preceding argument is derived in terms of a fixed point charge screened by

electrons, but the screening charge distribution of electrons due to each other, i.e.

the exchange-correlation hole, has a similar description [99]. Given an electron at the

origin, the pair distribution function g(r) describes the probability of finding another

electron at a distance r, and is found from the wave-vector integral of the inverse



dielectric function in a way similar to equation (4.21). At small r, g(r) <K 1 due

to the Pauli exclusion principle (exchange) and at large r, g -+ 1. This is referred

to as the "exchange hole" because the depression of likelihood of finding another

electron around one is as if an electron carries around with it a hole. Correlation

refers to the remaining electronic interaction after subtracting the mean-field Hartree

and exchange effects, and reduces the depth of the exchange hole without affecting its

range. The exact pair distribution functions in a homogeneous electron gas calculated

by quantum Monte Carlo (QMC) [100] have much the same form as figure 4-10 (except

that the oscillations are very much damped) and saturate at about 5-7 k -1 regardless

of rs.

The precise form of the sreening charge density or the pair distribution function

(exchange-correlation hole) is not expected to agree between DFT and exact results.

However, as has often been remarked upon, the Local Density Approximation (LDA)

owes its success largely to the fact that the spherical average, the extent, and the

integral of the exchange-correlation hole reproduces reality well [99]. To obtain the

fundamental gap, we are similarly interested in an integral quantity, namely the

total energy due to the added/removed electron and its screening charge distribution.

We do, however, know that DFT has a tendency to delocalize charges. Therefore we

suspect that as long as we confine the added charge to a volume that is commensurate

with the range of the screening effects, the integrated energies thus obtained will be

reasonably correct. In other words, we propose a solution to finding the appropriate

N for which to evaluate Egap,fundamental = E(N + 1) + E(N - 1) - 2E(N) in a solid,

namely, N* in equation (4.24), or, equivalently, the number of electrons contained in

the exchange-correlation hole.

There are two quantities to determine, the geometric factor a and the radius

where the charge is confined r*. Real materials do not have spherical symmetry, of

course, so there are some ambiguities in the choice of a, two reasonable choices being

spherical (a = 47/3) and cubic (a = 8). For r*, in comparing the pair correlation

functions from QMC with the integrated screening charge in figure 4-10, we find that

the range 5 - 7 is reasonable. Alternatively, since r* appears to depend weakly and



inversely on rs, we can choose r* to scale, e.g. by the distance at the first unity

crossing of N,. In figure 4-11 we have plotted Ns against the number of electrons

using cubic geometry. Taken together, we find that N* is roughly between 20 and 90.

Because we do not know the precise value of r*, we proceed with three possibilities:

to use a fixed value for all compounds (which we will call the "IN*" model), to

use a rs-dependent range based on first unit crossing of Ns (the "N*(rs)" model),

and to use two values depending on a cutoff in r, (the "2N*" model). In reality, of

course N* will be somewhat different for each compound, possibly depending on the

geometry, details of screening, and, especially, how far the charge density deviates

from the homogeneous electron gas. The test of our hypothesis, then, is in whether

the experimental band gaps are adequately predicted for a large number of compounds

with a wide variety of chemistries from the use of one or two parameters which are

present in the N* models.

The above argument can be re-stated in terms of the derivative discontinuity of the

exchange-correlation functional in DFT. The difference between the Kohn-Sham gap

and the fundamental gap has been shown to be equal to the derivative discontinuity

of the exchange correlation energy at integer particle number [101], i.e.

Egap,fundamental Egap,Kohn-Sham + lim 
O E x c

6N-O N+ 6N N -6N

-Egap,Kohn-Sham + Ac (4.25)

where No is the number of electrons in the original system. The fact that gaps are

severely underestimated in DFT with LDA/GGA is attributable to two possibilities:

that the Egap,Kohn-Sham from semilocal functionals are not the true Kohn-Sham gap,

or that An is a significant portion of the fundamental gap. Recent work in "exact

Kohn-Sham" calculations favors the latter explanation [102]. For a local or semilocal

functional like LDA/GGA, A c is zero, thus if Axc of the exact exchange-correlation

functional is large compared to the fundamental gap, then so is the error in LDA/GGA

Kohn-Sham gap. We have seen in figure 4-9, however, that the total energies of atoms



and molecules are accurate at integer electron numbers, implying that

AXC OExc,LDA xc,LDA (4.26)
Axc = ' - (4.26)

No ON No ON

While the exact exchange-correlation functional has constant slope between, and

derivative discontinuity at, integer particle numbers, LDA has a continuously-varying

slope whose integral matches that of the exact exchange-correlation functional at in-

teger numbers. Once again, we have an integral quantity that is physically accurate

despite errors in the details of the integrand. Because the value of Ax is obtained by

the integral of the exchange-correlation potential, in a homogeneous electron gas the

only plausible integration limits are placed by the extent of the exchange-correlation

hole, which we have seen is 5-7 kf 1, and contains roughly 20-90 electrons. We arrive

again at the previous conclusion, that in order to calculate the fundamental gap in a

solid using the ASCF method, we should consider the addition and removal of one

in N* electron, where N* is in the range stated above.

4.5.3 Computational details

From the above discussion, the relevant quantities to consider in order to calculate

the fundamental gap in solids are the energy differences due to the addition and

removal of one per N* electron, where N* is largely material-independent but may

depend on the exchange-correlation functional. We do not, however, have the precise

value of N*, or know its dependence on r,, if any. Our strategy is therefore to find

this information based on the measured gaps of compounds in our test set. The

fundamental gap is evaluated using

Ef(6) - [E(No + 6) + E(No - 6) - 2E(No)] (4.27)



where No is the number of valence electrons in a unit cell, in which 6 electrons are

added or removed. In the range of 6 considered, this is essentially equal to

Ef(/) ? E(PNo + 1) + E(PNo - 1) - 2E(/No) (4.28)

where / = 1/6. In the end we would like to have /No = N*, the number of electrons

within a screening volume as described above. In an effort to see if one- or two-

parameter N*-models are adequate, we calculate, for all 134 compounds in our test

set, Ef(6) for a set of 8 values of 6 ranging from 1/27 to 1. Interpolations are made

to determine the energies for intermediate values of 6. The energies are computed

using ground state DFT in the plane wave pseudopotential code VASP as described

in section 4.2.2. The contribution of each ion to the numbers of valence electrons No

for main group elements are assigned according to the usual octet rule. For transition

metals, all outermost d- and f-shell electrons are counted as valence electrons. There

will be some scatter of errors due to the choice, but it is important to be consistent

in order to maintain predictive power. The number of valence electrons used in the

DFT calculations may not agree with this assignment, due to the necessity of including

semicore electrons for some elements, e.g. the alkali and alkaline-earth metals.

The 1N* model

We begin with the simplest model 1N*, in which a universal N* is used to describe

all compounds. This is a one-parameter model, with the ab initio energies and ex-

perimental band gaps as inputs. For each possible value of ONo, we look up the

fundamental gap values calculated using equation (4.27) from DFT and compare to

the experimental values, and the error is minimized to find the optimal N*. The mean

absolute error is used to determine the goodness-of-fit, in lieu of the r.m.s. error. This

is because we have a one-parameter model, so the risk of overfitting is minimal; fur-

ther, we do not want to allow the value of N* to be determined by a few outliers. The

fitting is performed for all 134 compounds, 121 compounds with E, > 0.5 eV, and 94

medium-gap (1 < E, < 4) compounds. The results are shown in figure 4-12. In the
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Figure 4-12: The mean absolute errors used to determine the value of N* in the 1N*

model. The three curves do not differ appreciably in the location of the minimum.

three subsets we find the best N* to be 57, 54 and 57 respectively, corresponding to

r* -- 6k7' for a cubic configuration, which is reasonable. The mean absolute errors

also do not change appreciably within a ±10 range of N*. In subsequent analysis we

drop the middle group (Eg > 0.5 eV).

Cross validation

We perform leave-one-out and leave-N-out cross validation procedures in order to

identify outliers and to verify that the parameter N* is stable. In performing cross-

validation, we leave one or N of the compounds out of the fit for N*. If the values of N*

obtained are not strongly dependent on which compounds are left out, then the model

parameter is stable. Figure 4-13 shows the results for the leave-one-out validation. A

magnified view of the leave-one-out errors for the medium-gap group (bottom panel)

shows that there is one compound whose omission significantly reduces the error

(compared to the rest in the group). We find that it is again RbAu, the compound



that was the most severe outlier in the GoW calculations, that is near a metal-

semiconductor transition, and for which experimental data were scarce. Therefore,

we omit RbAu from subsequent cross-validation analyses, but include it in the fitting

for N*, the fundamental gap prediction and accuracy statistics. The spread in errors is

larger for the all-compound group compared to the medium-gap group simply because

the former contains the outliers in E,. Indeed, the outliers similarly identified in the

all-compound group were CaO, SrO, BaO and BeO (not shown).

We perform a leave-30%-out cross validation procedure on all compounds and

medium gap compounds, and the results are shown in figure 4-14. In 100 iterations,

the change in N* upon the removal of a full 30% of the compounds was always less

than 9, and the standard deviation was 2.8 and 2.6 for all compounds and medium-

gap compounds, respectively. Again, the stability is due to the fact that there is only

one parameter. There are no apparent clusters with different N* values that we can

discern from such random sampling.

The N*(rs) model

We remarked upon the fact that the form of the integrated screening charge depends

somewhat on the density parameter r,. In a somewhat ad hoc way, we attempt to

model the variation with the radius at which the screening density first reaches within

a threshold of unity which we identify as r*. There is a choice of the threshold, and

also the geometric factor a. It was found, however, that such a variation of r* with r,

does not improve on the one-parameter 1N* model in terms of mean absolute errors,

mostly because of a large increase in the errors of the outliers (see figure 4-22 for

more details). Therefore, we do not find that the strongly r,-dependent features in

the RPA screening charge to be significant for our purpose.

The 2N* model

Since we are unable to detect any disjoint subgroups in the dataset through a random

leave-N-out cross validation, we attempt to divide the compounds into various cate-

gories by unit cell volume V, number of electrons in the unit cell No, r, in different
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Figure 4-13: The leave-one-out cross validation curves, showing the change in the

mean absolute error of the predicted gap as a function of the number of electrons

per added/removed electron fN o. The variation in the minimum error and best N*

is small when individual compounds are taken out of the fit. This is expected since

there is only one parameter. The bottom panel shows a much expanded portion for

the medium-gap compounds, showing that RbAu is a clear outlier, since when it is

left out of the fit the mean errors are clearly much lower for most values of fNo.

However, leaving RbAu out does not seem to change the value of N* appreciably.
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Figure 4-14: The leave-30%-out validation curves. The best value of N* is stable.

ranges of values, and whether the compound contains a transition metal. The param-

eters V0 and No do not seem to be significant in separating compounds into disjoint

groups. As shown in the top panel of figure 4-15, however, the set of compounds with

a transition metal element is biased towards larger values of N*. This is understand-

able since we have made the choice of including all the outermost d- and f-electrons

instead of deciding on a case-by-case basis the effective number of valence electrons,

and d- and f-electrons are clearly less homogeneous-electron-gas like. However, the

alternative of including none of the d- or f-electrons would leave Cu, for example, with

only one electron, which is clearly too few. We found, however, that the separation of

transition metal vs non-transition metals is not as significant as that between rs > 2

and rs < 2, as can be seen from the bottom panel of figure 4-15. This leads us to

choose the two ranges of values for r, and we find the best value of N* to be 38 for

rs > 2 and 60 for rs < 2. The result gives a slight improvement over the 1N* model in

mean error, but reduces the maximum error significantly. We must caution, however,

that this may be only true due to some bias in the test set of compounds.
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Figure 4-15:
tion metals,

Leave-30%-out cross validation for compounds with and without transi-
and for compounds with rs greater than or smaller than 2.
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4.5.4 Computed fundamental gaps

The fundamental gaps obtained from the above procedures are shown in figures 4-16

to 4-24. The main results are that any of the three different N* models reduces the

band gap prediction errors by 60-75% on average compared to the Kohn-Sham gaps,

and also reduces the spread of the prediction errors by 40-65%. The improvement

is especially marked in medium-gap compounds, where now 50% of the band gap

values are predicted to within 10% of the experimental ones, and 90% are predicted

to within 30%. There are no marked differences between the three different models,

and the mean difference between the largest and smallest predicted values for each

compound is 0.1 eV, which means that the uncertainty due to the use of different

models is about the size of the symbols in the scatter plots. The predicted values

of the band gaps in the 1 - 4 eV range are consistent with experimental values if

one assumes standard deviations in experimental values of 0.2 - 0.3 eV, which is a

reasonable assumption.

Effects of U

As mentioned in section 4.2.2 the ground state DFT calculations are performed with

the DFT+U correction for transition metal oxides and halides. The fundamental

gap values obtained vary linearly with the value of U, as we can see for the example

of AgF from Table 4.5, which has an experimental gap of 2.8 eV. It is important

to note, however, that even without applying the DFT+U correction, for AgF the

fundamental gap is significantly different from zero (1.8 eV) unlike the Kohn-Sham

gap.

Insulators

The band gaps for alkali-earth metal oxides (BeO, CaO, MgO, SrO and BaO), shown

in Table 4.6, are again underestimated by 1.6 - 2.2 eV, with the underestimation

being largest for CaO as in the GoWo results discussed above. These compounds are

far removed from the homogeneous electron gas limit and closer to the atomic limit,
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Figure 4-16: Calculated fundamental gaps for all compounds, plotted against the
experimental gaps. Also plotted are the corresponding Kohn-Sham gaps. Straight
lines are 1-to-1, and ± 0.5 eV deviations. The results shown are from the 2N* model.

Table 4.5: The dependence of the Kohn-Sham and fundamental gaps on the U pa-
rameter in DFT+U calculations for AgF, which has an experimental gap of 2.8 eV.
As is apparent, the value of the fundamental gap obtained, as with the Kohn-Sham
gap, depends linearly on the U parameter. The fundamental gap does not suffer from
the qualitative failure of the Kohn-Sham gap.

U (eV) Kohn-Sham gap (eV) Fundamental Gap (eV)
0.0 0.0 1.8
1.0 0.0 2.0
2.0 0.2 2.2
3.0 0.4 2.4
5.0 0.9 2.9
7.0 1.3 3.3
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Figure 4-17: Previous figure annotated with compound names, for all compounds
(top) and medium-gap compounds (bottom).
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Figure 4-18: A close up of the small gap (0 - 2 eV) compounds. There is large overes-

timation for Bi and Pb compounds, for which the Kohn-Sham gaps are overestimated

owing to the neglect of spin-orbit coupling, as explained in section 4.2.2. The mean

absolute error of compounds with an experimental gap of 0.5-1 eV is similar to the

medium gap compounds (0.29 eV), although the percentage error is of course higher

for these small gap compounds.
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Figure 4-19: Histograms, for all 134 compounds, for the prediction error, i.e. calcu-
lated minus experimental values, for Kohn-Sham gaps (top) and fundamental gaps
(bottom). The compounds that remain underestimated are wide-gap oxides. The
horizontal and vertical scales are the same for both panels.
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Figure 4-20: As in previous figure, for the 94 medium gap compounds. The center
around 0 for fundamental gaps is a result of the fitting of N*, but the much reduced
width of the distribution (a is reduced from 0.62 eV to 0.22 eV; see figure 4-23 for
percentiles) indicates that significant information has been captured in our model.

109

40

35

- 30

0
o.25
E
0
o 20
o

QD15
E
:=10z

Prediction Errors

1 <E <4eV
g,exp

N=94
Kohn-Sham

_:

40

35 F

C,n
- 30

0
C.25
E0
o 20

015-o
E

0'
-3

I



Ratio (predicted/experimental)

1 <E <4eV
g,exp

N=94

Kohn-Sham

0 0.5 1 1.5 2
Computed Gap / Experimental Gap

"- - , ,- - -4r

Ratio (predicted/experimental)

1 < E <4 eV
g,exp IN=94

Fundamental

0 0.5

1 1.5 2
Computed Gap / Experimental Gap

Figure 4-21: Histograms of the ratios of predicted to experimental values, for medium-
gap compounds only. The mean relative prediction error is 50% for Kohn-Sham gaps
and 13% for fundamental gaps.

110

40-

35h

-0 30

. 25
E
O 20
O

5

35

30

25

20

15

I ~)

"



+ Fundamental--1 N
+ Fundamental-- 2 N

- Fundamental -- N(rs)
a(D
Z 0.8
o 0.

0

0
L.0.4

0 10 20 30 40 50 60 70 80 90 100
Percentage of compounds (1 E xp 4 eV)

Figure 4-22: The prediction errors by percentiles using various effective screening

models. A total of 94 compounds with experimental band gaps between 1 and 4

eV are included. The straight lines are guides to show that the prediction error is

less than -0.2 eV for 50% of compounds and less than -0.65 eV for 90% of the

compounds. The three models differ in the determination of optimal screening radius

and hence number of electrons within, denoted by N*. The notations 1N*, 2N*, and

N*(r,) correspond to using a constant number for all compounds, using 2 numbers

for r, > 2 and r, < 2, and using the volume corresponding to the first unity crossing

of the integrated screening charge in figure 4-11, respectively. The three models have

one to two adjustable parameters, which are determined by fitting. The different

models have very similar prediction errors.
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Figure 4-23: As in figure 4-22, but with the error by percentiles for the Kohn-Sham
gaps included. Note the change in scale - the maximum error now exceeds 3 eV.
Compared to the errors in the Kohn-Sham gap the different models give virtually
identical results.
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Figure 4-24: As in figures 4-22 and 4-23, but with relative instead of absolute errors.

Note the two different vertical scales. Regardless of the model used, 50% of com-

pounds have gaps predicted to better than 10% of their experimental values using

the effective screening radius. The 90th percentile is a 30% error.
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Table 4.6: Various gap values for alkali-earth oxides. All numbers are in eV. Note that
the fundamental gaps are about 1 eV below the GoWo gaps, which are themselves
about 1 eV below the experimental gaps. In both cases the CaO gap is the most
underestimated.

Compound Experimental GoWo Fundamental Kohn-Sham
BeO 10.6 NA 8.7 7.4
MgO 7.8 6.7 6.3 4.6
CaO 7.0 5.3 4.3 3.6
SrO 6.1 4.9 3.8 3.3
BaO 4.2 3.2 2.5 2.1

and therefore our reasoning in determining N* is not well-justified.

For many other wide gap compounds, the errors are rather systematic. The lead

halides PbF 2, PbC12 , and PbF 2 are underestimated by 1.0, 0.8 and 0.6 eV, respec-

tively, which is commensurate with the degree of ionicity and hence the expected

dielectric contribution of the lattice. Note that for graphite-like hexagonal BN, the

gap is underestimated by 1.4 eV, while for cubic BN the prediction is accurate. This

is possibly due to the fact that screening is two-dimensional in hexagonal BN and is

ill-described by the three-dimensional homogeneous electron gas.

Comparison of fundamental and GoWo gaps

Figure 4-25 shows the comparison between band gaps calculated from Go Wo and

the fundamental gaps calculated (with the 2N* model, but the results are indistin-

guishable), both plotted against the experimental value. The performance of the two

methods are comparable in the medium gap range in terms of reproducing experi-

mental results, but the GoWo gaps have a larger range of errors. It is certainly the

case that the Go Wo results are more improvable, as it is a physically more accurate

model compared to our procedure for obtaining the fundamental gap. However, as

mentioned above, the computational cost of doing so is large.
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Figure 4-25: A comparison of the GoWo and fundamental gaps, for compounds with
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that are further away from experimental values between the two methods.
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4.5.5 Physical interpretations

The fact that we are able to make semi-quantitative predictions of the band gaps of

a wide variety of compounds using such a simple argument as the screening radius or

the extent of the exchange-correlation hole, with one or two parameters, is perhaps

surprising and we would like to have a more physical understanding of the mechanism

by which this method is able to do so. We return to the Kohn-Sham and quasiparticle

equations:

HKs'Onk(r) 2 + on + VHartree + Vxc(r) V)k(r) CnkVnk(r) (4.29)

and

HKSk(r)+ r (4.30)HSnk (r, r', Enlk/h) - VKS(r)] cnk(r')dr' Enk Onk(r) (4.30)

In general the quasiparticles corresponding to an electron/hole excitation, c and

O,, will not have the form of the Kohn-Sham eigenstate of the conduction band

minimum (CBM) 0c or valence band maximum (VBM) V,. Because the Kohn-Sham

eigenstates are complete, however, we can expand the quasiparticle wavefunctions in

terms of the Kohn-Sham wavefunctions, for example,

Zc = c Cii (4.31)

Wavefunction updates are sometimes performed in self-consistent GW approaches,

but it is not involved in the GoWo approximation. Assume that the self-energy

operator does not mix states with very different energies, which is a valid assumption

if we consider states at the band edges and if there is no significant transfer of spectral

weight, i.e. no strong correlation effects. Then the sum in equation (4.31) is over a

small set of Kohn-Sham states near the CBM and VBM. In other words, we expect

the quantities icil to decrease as Ici- ,I increases. When we add or remove a

finite number 6 of electrons from the system, the Kohn-Sham states are not changed
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Figure 4-26: The charge density from a unit occupation of the Kohn-Sham state

at the valence band maximum at F for Mg2Ge (top), compared with the charge

density difference between the neutral cell and the cell with one per N* fewer electrons

(bottom). These are taken in the same spatial plane. Both charge densities are

normalized to unity in the cell, though not necessarily in the plane shown.
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drastically, but the occupations in a range of energies near the band edges do. The

change in occupation from the original calculation also decreases with increasing

6i - 6,,l. What this means is that in occupying the Kohn-Sham eigenstates not just

at the CBM/VBM but also in a range of nearby energies, which is what happens

when we do not take the limit N - oc, we are making a crude approximation for

the density that would have been produced by the quasiparticle wavefunctions qc,v.

Figure 4-26 shows the densities due to the Kohn-Sham state at the VBM and the

density attributed to the hole, at the value of 6 that corresponds to N* = 60. We see

that the charge is more "smeared out" for the added hole than the VBM state, which

is reasonable if we consider that the quasiparticle is dressed by a screening cloud.

We do not claim, of course, that the procedure of occupying a number of states

near the band edges reproduces the quasiparticle wavefunctions or even their exact

densities. What we are missing are the effects of quantum mechanical interference,

and exactly how the states are mixed due to exchange and correlation, i.e. the values

of ci and vi. Nor can we predict a priori the quasiparticle weights renormalization

away from unity, although we can account for the average effect by the scaling of

N*, which we do in fitting the results to experimental values. The fact that the

quasiparticle weight renormalization is not strong and fairly uniform, as we have seen

from our GW results, may have contributed to the success of our crude approximation.

4.6 Conclusion

In this chapter we have examined the issue of ab initio band gap prediction. It is well

known that density functional theory and Hartree-Fock both have large errors in the

prediction of band gaps, if one identifies differences in eigenvalues with the measured

gap. The origin of these errors lies in the inadequate treatment of screening and non-

local interactions. We investigate the GW approximation in the self-energy approach,

which accounts for non-local screened exchange and correlations, and find that the

GoWo approximation significantly improves upon predicting experimental band gaps

compared to the Kohn-Sham band gaps of DFT, though at a significant computation
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cost.

We proposed a new method to use total energies in DFT to predict the funda-

mental gap. We calculate the total energy upon the addition and removal of a finite

instead of infinitesimal amount of charge, with the amount determined by the screen-

ing charge or exchange-correlation hole extent, which are fundamental properties of

the electron gas. We found that with this method, we are able to predict band gaps

to within 10 and 30% for 50 and 90% of the medium gap (1 < Eg < 4) compounds

in a test set that consists of a wide range of chemistries. The predicted values are

consistent with experimental values if we assume a reasonable 0.2 - 0.3 eV standard

deviation in the experimental measurements. The advantage of this method is that it

is extremely efficient. Finally, we make connections between our new method of fun-

damental gap determination and the concept of quasiparticle excitations and found

that there may be some physical correspondence.

Finally, we claim that density functional theory thus contains the essential infor-

mation required for the calculation of band gaps, if one looks towards total energies

instead of differences in the eigenvalues.
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Chapter 5

Concluding Remarks

There are several general themes that run through the two seemingly-disparate sub-

jects of thermal conductivities and electronic band gaps. We have already remarked

upon the similarity in levels of complexity brought about by the enormous number

of combinations of configurations or chemical species, and the fact that molecular

dynamics and density functional theory are effectively constructionist approaches. In

both cases general physical principles, not precise equations, guide our approach. In

the case of lattice thermal conductivity, the general principle is that systems with

low thermal conductivity brought about by the removal of long-range order should be

amenable to a local cluster expansion model. In the case of fundamental gap predic-

tion, the principle is that the integrated energy associated with a screened Coulomb

interaction should converge within the screening radius, or equivalently, that effects

due to exchange and correlation are confined to the extent of the exchange-correlation

hole. In both cases, the general principles do not give us numerical factors, which

have to be determined by fitting. The approaches we take differs from traditional

empirical approaches in that we strive to maintain general applicability. If one is

interested in the configurational dependence of thermal conductivity in a different

system, for example, the effective cluster interactions would be different, but the prin-

ciple of constructing the cluster expansion remains. Similarly, if a different functional

is used for band gap prediction, the optimal value of N*, the number of electrons

within a screening radius, may be slightly different, but would be independent of the
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compound.

There are, of course, many other properties which have to be considered before

a nanostructure or a compound can be established as an effective thermoelectric or

photovoltaic material. Beyond that, there are other properties that are of scientific

and technological importance for which our fundamental theories are not yet adequate

for a similar program of prediction and optimization to be carried out, high temper-

ature superconductivity being an obvious example. Our work can only be considered

a miniscule step in the immense task of understanding and predicting the properties

of all condensed matter.
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