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Abstract

We consider the design of communications systems when the principal cost is observ-
ing the channel, as opposed to transmit energy per bit or spectral efficiency. This is
motivated by energy constrained communications devices where sampling the signal,
rather than transmitting or processing it, dominates energy consumption. We show
that sequentially observing samples with the maximum a posteriori entropy can re-
duce observation costs by close to an order of magnitude using a (24,12) Golay code.
This is the highest performance reported over the binary input AWGN channel, with
or without feedback, for this blocklength.

Sampling signal energy, rather than amplitude, lowers circuit complexity and
power dissipation significantly, but makes synchronization harder. We show that
while the distance function of this non-linear coding problem is intractable in gen-
eral, it is Euclidean at vanishing SNRs, and root Euclidean at large SNRs. We present
sequences that maximize the error exponent at low SNRs under the peak power con-
straint, and under all SNRs under an average power constraint. Some of our new
sequences are an order of magnitude shorter than those used by the 802.15.4a stan-
dard.

In joint work with P. Mercier and D. Daly, we demonstrate the first energy sam-
pling wireless modem capable of synchronizing to within a ns, while sampling energy
at only 32 Msamples per second, and using no high speed clocks. We show that tradi-
tional, minimum distance classifiers may be highly sensitive to parameter estimation
errors, and propose robust, computationally efficient alternatives. We challenge the
prevailing notion that energy samplers must accurately shift phase to synchronize
with high precision.

Thesis Supervisor: Anantha Chandrakasan
Title: Joseph F. and Nancy P. Keithley Professor of Electrical Engineering
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Chapter 1

Introduction

From an information theorist's perspective, communications design is the quest to

equal Shannon's ultimate bound on the rate of reliable communication. From a prac-

titioner's perspective, it is building systems that meet specific cost and performance

criteria. Sometimes these goals are perfectly aligned, as in deep-space communica-

tions. Bandwidth and receiver processing power are virtually unlimited, and the

designer's main concern is the severely power limited transmitter on the spacecraft.

Massey reckons that every dB in coding gain saved expeditions in the 1960s an esti-

mated $1 million [38]!

The huge explosion in wireless terminals has made battery lifetime a critical mea-

sure of communications systems performance [11]. Systems designers have a finite

bucket of energy, and care about the total electronics energy consumed in the com-

munications chain for every bit that is reliably conveyed. When distances or spectral

efficiencies are large, the radiated power dominates signal processing power (the lat-

ter usually dominated by radio-frequency circuits). In such cases, capacity achieving

schemes also maximize battery lifetime [57]. However, such prescriptions fail for a

rapidly growing class of short-range, low-spectral-efficiency wireless links, such as re-

cently standardized by 802.15.4a[29]. In such systems, the radiated power may be

less than 0.1 mW whereas analog and radio-frequency front-ends dissipate 10s of mW.

Hence, the traditional theoretical focus on the transmitted power does not yield the

most battery efficient solution. Both the circuits and information theory communi-



ties have recognized this mismatch, and issued the same prescription. On the circuits

front, it has been recognized that analog signal processing consists of an irreducible

component, independent of data rate. Hence, prior work has prescribed increasing

data rates to amortize this fixed cost [56, 16]. This is done by increasing the spectral

efficiency via higher order modulation, and discarding available degrees of freedom,

which is contrary to classical information theory. As constellation sizes grow, the

rate dependent component of signal processing power overcomes the irreducible bias,

and further increases are not beneficial. Discarding available channel uses makes the

transmit signal peakier. Massaad et al. have proved that when the capacity problem

is reformulated to account for a power dissipation component that is independent of

radiated power, bursty transmission that does not use all available degrees of freedom

is indeed capacity achieving [37].

While useful, these prescriptions may have limited mileage in practice. Peaky

transmissions are problematic from both a circuit and regulatory viewpoint. For

instance, pulsed 15.4a UWB transmitters already operate at the peak power limit

imposed by semiconductor technology [58]. Also, supporting multiple amplitude levels

may significantly increase the cost of the transmitter and receiver, negating the very

premise of these solutions. What options are available to a practitioner when further

increases in peak power or higher modulation orders are not possible, but plenty of

spare degrees of freedom are available? Are there other approaches that allow trading

degrees of freedom or transmit power for better battery efficiency?

We will argue that fundamentally different insights and tradeoffs are enabled by

considering a channel that looks like deep-space, but with the role of the transmitter

and receiver interchanged. Consider the communications system in figure 1-1.

101... f ± v1 } 1 101...

W[n] = i.i.d. V (0, O2 = 1)

Figure 1-1: Setup of the coding under observation cost problem.

Information is conveyed over a discrete-time, binary-input AWGN channel. The



system uses a code C and BPSK modulation. A procedure P observes noisy channel

outputs and infers the information bits. The observation cost is equal to the expected

number of samples observed by P to decode an information bit.

Problem 1.1 (Coding under receive cost constraints). What choice of C and P

minimizes the expected cost per information bit under a specified SNR and BER

constraint?

Note that the transmitter can send as many coded bits as it desires. What mat-

ters is that the receiver judiciously pick the samples it observes. The next chapter

deals with this problem in detail. We will see that "receiver" oriented capacity is un-

changed, and a conventional capacity achieving code can realize the minimum receive

cost. But, the performance versus complexity landscape is dramatically altered, and

simple codes with adaptive channel sampling outperform traditional ones. The tech-

niques developed here draw from the theory of experiment design, where the number

of observations are minimized under a specified reliability constraint by carefully pick-

ing from a set of available experiments. These techniques can be applied to different

modulation and coding schemes. In comparison, the second part of this thesis consid-

ers a particular technique to reduce observation cost - sampling energy rather than

amplitude. The key problem turns out to be synchronizing such an energy sampling

receiver, and we device new sequences to address this. The last part of our thesis is

joint work with P. Mercier and D. Daly, where we demonstrate a single chip, energy

sampling wireless modem that incorporates our new synchronization techniques.

In the remainder of this chapter, we discuss sources of energy dissipation in wireless

transceivers in detail to see when the formulation above applies. We end the chapter

with a preview of our contributions. Three chapters then follow, dealing with coding

under observation costs, synchronization of energy sampling receivers, and the energy

sampling wireless modem. We end with conclusions and the outlook for this work.



1.1 Modeling Energy Consumption

The problem of minimizing electronics energy consumption reduces to that of mini-

mizing observation if two conditions are satisfied. First, sampling the received signal

should be the dominant source of energy consumption in the communications link.

Second, sampling energy must be proportional to the number of samples taken. We

now study when these assumptions are valid. Figure 1-2 shows the makeup of an

example wireless transmitter and receiver.

bits Encoder Modulator
II III
II I

iGeneration "Ame '
Tx

S .Decode bits

L Sampling' ComputationiL------------------ --- L------Cptaon
Rx

Figure 1-2: Structure of a wireless transmitter and a non-coherent
receiver.

We divide transmit electronics into signal generation and amplification. The re-

ceiver is divided into signal sampling and the subsequent computation. We use SA to

denote the electronics energy consumed by component A per information bit. Hence,

stx = Egen + Samp and Erx = samp + Lcomp.

1.1.1 Transmit versus Receive Energy

Of the many factors that determine how Stx and Srx compare, the regulatory limit

on output power is usually the governing one. When a high output (radiated) power

is permitted, as in wireless LANs, the transmitter is likely to dominate due to Samp.

When regulatory limits are tight, as in UWB systems, the receiver, with its signifi-

cantly more challenging signal conditioning and processing, dominates consumption.

As an example, Lee, Wentzloff, and Chandrakasan have demonstrated a UWB



system with Stx= 4 3 pJ/bit and Erx=2.5 nJ/bit, i.e. the receiver dominates energy

consumption by 60x [33, 58].

1.1.2 Sampling versus Processing Energy

If Srx > Stx, the next question is whether ,samp comp. This comparison is dif-

ficult because notions of complexity, and sources of energy consumption are often

markedly different in analog and digital circuits. One prevailing view is that the en-

ergy efficiency of digital circuits scales more aggressively than that of analog circuits

as technology progresses. Thus the samp/1comp ratio can be expected to grow with

time.

The receiver of Lee et al. quoted above is among the most energy efficient at

the data rates of interest to us [33]. Also, virtually all its energy is consumed in

sampling. Hence, 2.5nJ/bit is indicative of the limits of energy efficient sampling

in current technology. This may be compared with the 0.18 nJ/bit consumed by a

recently reported 64-to-256 state, reconfigurable Viterbi decoder [2]. This illustrates

that £samp > comp is a tenable assumption, provided the receiver bears a 'reasonable'

computational burden.

1.1.3 Circuit Startup Time

Whether 8 samp is proportional to the duration of sampling depends on certain im-

portant non-idealities. There are physical and architectural constraints on how fast

a sampler can turn on and off. These fixed costs are unrelated to the duration of

observation. Cho and Chandrakasan have studied the impact of large startup times

on the energy efficiency of sensor nodes, and proposed a new carrier synthesis scheme

to reduce it by 6x [15].

Lee et al. have demonstrated a turn-on time of 3 ns in a system with a minimum

observation duration of 30 ns. Hence, a proportional model would be appropriate for

this receiver. Note that such rapid turn-on is possible due to the carrierless nature of

their receiver.



In summary, we detailed a model for energy consumption in wireless devices and

the conditions under which sampling cost is a good proxy for the electronics energy

consumed per bit.

1.2 Thesis Contributions

Here is a preview of our contributions.

* We have proposed a new class of communications systems where the receiver

adaptively samples the channel to minimize observation costs. While motivated

by short-range, low-data-rate, pulsed UWB systems, this is, we hope, a useful

addition to a modem designer's toolbox, since it allows trading degrees of free-

dom for reduced system complexity in a manner that is fundamentally different

compared with previous approaches. We hope that future wireless standards

will incorporate a "battery emergency" mode that allows the basestation to

sacrifice bandwidth to enable a terminal to conserve energy.

* A byproduct of this work is a practical illustration of the power of channel

feedback. If the choice made by our adaptive sampling receiver is conveyed to

the transmitter via a noiseless feedback link it is possible to breach the cutoff

rate over the AWGN channel using the (24,12,8) Golay code. This is the shortest

code by an order of magnitude compared with all previously reported schemes,

with or without feedback. It is also 7x shorter than Shannon's sphere-packing

bound on information blocksize, and illustrates the gains possible when atypical

channel behavior is exploited via a maximum entropy sampling scheme.

* We have formally analyzed the problem of synchronization over the energy

sampling channel. We have shown that while the distance function of this

non-linear coding problem is intractable in general, it is Euclidean at vanishing

SNRs, and root Euclidean at large SNRs. We have designed sequences that

maximize the error exponent at low SNRs under the peak power constraint,

and under all SNRs under an average power constraint. These sequences are



often an order of magnitude shorter than the best previous ones. We believe

our work merits another look at the sequences currently used by the 802.15.4a

standard.

* In joint work with P. Mercier and D. Daly, we have demonstrated the first en-

ergy sampling wireless modem capable of synchronizing to within a ns while

sampling energy at only 32 Msamples per second, and using no high speed

clocks. In addition to the new synchronization sequences, this required devel-

oping computationally efficient VLSI classifiers that are robust to parameter

estimation errors. We have demonstrated the inadequacy of traditional, mini-

mum distance classifiers for this purpose. It is our hope that this modem will

challenge the prevailing notion that energy samplers must accurately shift phase

to synchronize with high precision.
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Chapter 2

Coding Under Observation

Constraints

We will now study the coding problem introduced in the last chapter. We discuss

the connection between this problem and coding for channels with feedback. This is

followed by a discussion of the sequential probability ratio test (SPRT) as a simple

example of the significant gains possible via intelligent sampling techniques. The

more general problem of optimally sampling linear block codes is then discussed. We

present simulation results that demonstrate the effectiveness of proposed sampling

techniques in reducing observation cost. This is followed by an evaluation of the

energy, hardware, and bandwidth costs of the proposed schemes. We end with a

comparison of our proposed receivers with those that achieve similar receive cost

gains using conventional coding techniques.

2.1 Preliminaries

The adjective 'conventional' refers to a fixed length code that is decoded using a ML

criterion. In other words, a codeword is transmitted exactly once, the receiver looks

at the entire codeword and uses a ML decoder. Our setup is the binary input, discrete

time AWGN channel introduced previously (figure 1-1). Given a (n, k) block code, C,

we define the code rate, rc = k/n, and 'SNR per bit', Eb/No = SNR/(2rc). The code



rate must be distinguished from the transmit rate, rtx = k/n', where n' is the total

number of bits transmitted for k information bits. In conventional systems, rtx = rc.

The r.v. N denotes the number of samples observed prior to stopping. The receive

rate, rrx, is defined analogously to the transmit rate thus, rrx = k/E[N]. Note that,

rrx > rtx. The receive cost per bit is defined analogously to its transmit counterpart

Eb/No, thus, cbit = SNR/(2rrx). For conventional systems, cbit - Eb/No, allowing

easy comparison of receive costs. Note that while stating problem 1.1, we equated

cost with the number of samples observed. Our definition here is broader because it

allows comparing solutions at different SNRs. The observation cost problem is thus

one of minimizing cbit under some combination of pb, rrx, and SNR constraints.

2.2 Fundamental Limits, Relation to Feedback

Shannon's capacity theorem states that for reliable communication,

Eb 22r - 1

No - 2r

where r is the information rate in bits/channel use or bits/dimension. This limit also

applies to receive costs as defined above,

2 2rrx _
Cbit 2

rrx

To see why this is so, note that for every system with a certain receive cost, Cbit, there

exists a system with feedback that can achieve the same transmit cost, Eb/No = Cbit.

We just convey the bit that the receiver would like to sample next to the transmitter

via the noiseless feedback link. Since feedback does not increase the capacity of

discrete memoryless channels [46], the limit on receive cost follows.

A feedback link allows exploiting atypical channel behavior - the receiver can

stop early under a favorable draw of the noise process. Receive cost schemes share

this trait. They sample just enough to reach the desired reliability. That said, the

two problems are not identical. As we just demonstrated, every receive cost strategy



corresponds naturally to a feedback coding strategy. But, a feedback coding strategy

does not necessarily translate to a receive cost strategy. Feedback schemes that

have full knowledge of channel outputs can "look over the decoder's shoulder" and

instruct the receiver to stop sampling once the right result is inferred [45]. This is not

possible in our setting, where the transmitter has no knowledge of channel outputs.

An example of a feedback scheme that does have a receive cost analogue is decision

feedback [21], and we will see that this turns out to be asymptotically optimum under

certain conditions.

2.3 Traditional Coding

When an uncoded system operating at a specified SNR cannot achieve a desired error-

rate, the simplest option is to use a repetition code, i.e., repeat symbols and then

average them at the receiver. A more efficient technique is to use a code. Consider for

instance, the setup in figure 1-1 operating at a SNR of 10.5 dB. To achieve a BER of

10-6, we must repeat every symbol twice, i.e., use a (2,1) repetition code. We could

also use a simple (4, 3) parity-check code which also achieves a BER of around 10-6

at this SNR. Hence, we use 4 symbols for every 3 bits instead of 6 - a savings, or

coding gain, yc(10-6), of 1.5x (1.7 dB).

A valid question at this juncture is - why not use a capacity achieving scheme

like Turbo or LDPC codes with a suitable iterative decoder to achieve the lowest

possible receive cost? The reason, elaborated in the following sections, is that the

receive problem is governed by a performance versus complexity landscape that is

often dramatically different and more favorable when compared with conventional

coding.

2.4 The SPRT with Uncoded Data

Fixed length repetition codes offer no gain. However, substantial reduction in obser-

vation is possible if we use a decoder with variable stopping times. Consider then a



transmitter that repeats its information bit indefinitely. As Wald demonstrated in

the broader context of sequential binary hypothesis testing, the SPRT is the optimum

sampling strategy [53, 54].

Definition (SPRT). Consider that m > 1 observations, Yo, Yl,... , Ym-1, have been

made thus far. The SPRT is defined by the following rule,

> A > 0 Accept 01
m-1 m-1 01)

If (Yi)= In B < 0 Accept 02i= i= p(y 1 )
E [B, A] Continue sampling

where A, B are thresholds, and 01, 02 are the binary hypotheses.

The SPRT is thus a simple extension of the well-known likelihood ratio test.

Instead of observing a fixed number of samples, we stop when the magnitude of

log-likelihood exceeds a threshold that reflects the desired confidence. The SPRT is

optimum in the strongest possible sense.

Theorem 2.1 (The SPRT is optimum (Wald [55])). Assume that a SPRT yields error

probabilities e1, E2 and expected sample sizes Eo, [N], EB2 [N] under the two hypotheses,

respectively. Then, any sequential procedure P' that realizes ('1 < E, E' < E2) obeys

E,1 [N'] > E 1o [N] and E02 [N'] > EB2 [N].

Since computing log-likelihoods reduces to summation for the case of i.i.d. Gaus-

sian observations, implementing the SPRT is trivial for the AWGN channel (figure 2-

1). The SPRT requires about a third of the observations used by a fixed length

repetition code. This is a significant saving with virtually zero baseband costs. As

one might expect, we do not need to repeat the bit indefinitely. There is virtu-

ally no performance loss by limiting observations to slightly more than that required

by a fixed-length receiver using repetition codes (more on this in a later section).

So, how does the SPRT compare with conventional coding techniques? Figure 2-

2 plots the receive costs of the 'rate (rrx) 1/2 SPRT' and the popular fixed-length



rate (rrx = rtx = re) 1/2, constraint length, K = 7, convolutional code with octal

generators [133 171].

InputA '1'Input-
Figure 2-1: The SPRT as decoder for uncoded transmission over the

binary AWGN channel.
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Figure 2-2: Receive costs of the rate 1/2
tional code.

8 10

SPRT and K = 7 convolu-

The (2,1,K = 7) code yields a gain of 5.7 dB. The SPRT achieves a gain of about

4.4 dB. Stated in receive cost terms, the (2,1,7) code reduces observation to roughly a

quarter, and the SPRT to roughly a third of that needed by a conventional repetition

code operating at the same SNR. However, the SPRT has a hardware complexity that

is several orders of magnitude lower than the Viterbi decoder for the (2,1,7) code -

10s of gates compared to 10s of thousands [34]. This example illustrates the dramatic

10
- 1



difference in performance versus complexity when coding under receive, rather than

transmit cost constraints.

What is the maximum gain possible via the SPRT? The asymptotic expansion of

the expected number of samples yields [14],

- In E0
Eo [N] D as rrx -+ 0 (2.1)

where f(x) - g(x) as x -+ a implies limx-a f(x)/g(x) = 1, Pi are the likelihood

functions of channel symbols, and Eo is the probability of error under hypothesis 0.

We can now compute the asymptotic sequential gain, ys, by comparing the SPRT's

error exponent with that of a fixed-length repetition code. For the binary AWGN

channel, we have,

D (N (-a, 0,2) 2 (a, U2))
D(f (-a, 2 ) (a, 2 )) =4 = 6 dB (2.2)

YS D(N(0,O)! .f(a, 2))

Note that the gain is independent of the underlying SNR. Simulations show that

ys (10-6) for a receive rate of 1/10 is 5.1 dB, about 0.7 dB better than that for rate

1/2, and 0.9 dB short of the asymptotic limit.

A similar analysis can be applied to the binary symmetric channel with probability

of error p,

D(B(p) B(1 - p)) 2 for p -* 0
s D(B() B(1 - p)) 4 forp-

2 4 for p -+

Here, 13(p) is the (p, 1 - p) Bernoulli distribution. The gain varies from 3 dB for

almost noiseless channels to 6 dB for very noisy ones.

2.5 Sampling Block Codes When rrx - 0

The natural way to improve the SPRT's receive cost is to encode the transmitted

data.

Problem 2.1 (Sampling Block Codes). Consider a transmitter than sends infinite



copies of a codeword drawn from C, a (n, k) code. What sampling procedure minimizes

Cbit under a rrx and Pb constraint?

The problem of choosing from several available coded bits to infer the transmitted

codeword is one of optimum experiment design, i.e., classification under a maximum

sample size constraint when several types of observations (experiments) are available

(see Chernoff's monograph for an accessible treatment [14]). To get some perspective

on the intractability of such problems, consider that the optimum solution is not

known even for the simpler problem of generalizing the SPRT to more than two

hypotheses, with no choice of experiments [20]! We will devote this section to a

procedure that is asymptotically optimum (i.e., as rrx -- 0), and the one that follows

to schemes that work well with a moderate sample size.

2.5.1 Chernoff's Procedure A

Chernoff initiated the study of asymptotically optimum design and we now state his

central result [13, 14]. In what follows, the set of experiments is denoted by g = {e}.

These are 'pure' experiments that form the basis for randomized experiments, whose

set we denote by &* . Each element in g* corresponds to a convex composition of the

underlying experiments. Likelihoods must be conditioned on not only the underlying

hypothesis, but also the experiment. We will use PO;e A p(y 1 ; e). We will also use

a more compact notation for K-L divergence, De(Oi, Oj) ' D(Po,;e II Pj;e).

Definition (Procedure A). Suppose, without any loss of generality, that the ML

estimate, = 0o, after m observations, y = {yo, , ... , Ym-1}, have been made.

Then,

I. Pick e(m + 1) = arg sup inf De(00, 0)
eE&* 0 #o

II. Terminate when min 0o(Y) - £fj(Y) > a.
j¢O

Here, £i(y) is the log-likelihood of of hypothesis 0i, and a is some suitably chosen

positive threshold. Thus, roughly speaking, Procedure A picks the experiment that



maximizes the minimum K-L distance between the most likely hypothesis and the

remaining ones. Procedure A yields an expected sample size that generalizes (2.1),

- In go
Eo [N] I Do (max co --+ 0) (2.3)

where Do A sup inf De(0, 0') (2.4)
eEg* 0' 0

Theorem 2.2 (Procedure A is Asymptotically Optimum [13, 20]). Every sequential

procedure satisfies,

Eo [N] > -n (l+o(1)) (max co -- 0)'Do

Note that, unlike the SPRT, Procedure A is guaranteed to be optimum only in

an order-of-magnitude sense.

2.5.2 Application to Sampling Codes

We denote the codewords of a block code C by {ci, i = 1, 2,..., M}, and the bits

of ci by cj, j = 1, 2,..., n. The hypothesis 0i corresponds to ci being transmitted,

and the experiment ej, j = 1, 2, ... , n, is defined as observing the channel output

corresponding to jth bit.

Suppose next that m observations have been made and 6 = 01, i.e., codeword 1

is the most likely. Then, we define a K-L distance matrix induced by codeword 1,

Do = Dej(01, 0i)= O D (P o 1 P) if clj cij
Dj

0 otherwise

It follows that if C is linear, then (Do } are isomorphic under row permutations

(and equal to a weighted version of the codebook minus the all zero codeword).

Hence, for linear codes, the sampling strategy is independent of the currently most

likely codeword.

Lemma 2.1. Uniformly sampling all coordinates is strictly sub-optimum if deleting



or replicating certain coordinates increases the coding gain of the resulting codebook.

The proof is straightforward and omitted. We believe the converse to be true1 .

Conjecture 2.1. Uniform sampling is the optimum asymptotic strategy for 'good',

linear block codes, i.e., codes for which no set of coordinate deletions or replications

can increase the coding gain.

Uniform sampling achieves,

E [N] - d I

-D(PojI P1 )

Normalizing this to the expected observations per information bit gives,

E [N] . -n
k y7cD(Po 1I Pl)

Hence, the overall asymptotic reduction in sampling costs compared with a fixed

length repetition code is ycsy, i.e., a product of the coding and sequential gain. Note

that the feedback analogue of uniform sampling would be bitwise decision feedback.

2.6 Sampling Block Codes When rrx - 0

In this section, we discuss procedures better suited to moderate sample sizes, and

derive a new scheme to sample codes.

2.6.1 Alternatives to Procedure A

Procedure A suffers from two key drawbacks when the expected number of obser-

vations is small. First, it relies on a ML estimate to pick an experiment, and this

estimate can be very unreliable in the initial phases of observation. This leads to

a poor choice of experiments and wasted samples. Second, in picking an experi-

ment that maximizes the minimum distance between the ML and other hypotheses,

1We are tightening a proof by contradiction.



it completely ignores the a-posteriori probability of those hypotheses. Thus, a highly

unlikely hypothesis might dictate the choice of experiment.

In what follows, we denote the a-posteriori probability of a hypothesis by H0, i.e.,

ri0  Pr [E = 0 1 {y}], where E is the true state of nature. Note that we use {y} to

denote a set of observations from possibly different experiments. This is to distinguish

it from y which refers to samples from the same experiment.

Blot and Meeter proposed Procedure B which incorporates reliability information

in distance calculations [7, 39]. Assuming m observations have been made, the next

experiment is picked thus,

e(m + 1) = arg max i HioDe(6, 6) [Procedure B]
eag

0

where 0 is the ML hypothesis. Box and Hill proposed a metric that factors in

posteriors instead of relying solely on the ML estimate [8],

e(m + 1) = arg max rio 0, [De(', 0) + De(0, 0')] [Box-Hill]
0' 0

Note that in cases where K-L distances commute, the Box-Hill procedure can be

written as,

e(m + 1) = arg max E L, 1IoDe(6(' 0)
0' 0

and hence is a straightforward generalization of Procedure B. Chernoff proposed

Procedure M that weighs posteriors more carefully [13],

arg max E rio' [E , 1De(O, 0)/ o, r] [Procedure M]

It is interesting to note that while these procedures yield better results than Pro-

cedure A for practical sample sizes, they are either known to be asymptotically sub-

optimum, or optimum only under certain constraints [14].



2.6.2 Application to Sampling Codes

The transmitted codeword and its bits are denoted by the r.v.s c and cj, j =

1, 2,..., n, respectively. Similarly, (c)j denotes a bit of the ML codeword, which

must be distinguished from cj which denotes the ML estimate of a bit. We denote

codeword and bit posteriors by Hi and 7rj respectively, i.e.,

Hi Pr[c = ci {y}] i= 1,2,...,M

7 = Pr[c = 1 {y}= i() Hi j= 1,2,...,n

where Uj(x) is the set of indices of all codewords whose jth bit is equal to x.

A sampling procedure assigns a distance metric, puj, to every coordinate j, and

picks the one with the largest metric. We have seen that Procedure A for linear codes

leads to uniform sampling, i.e., puA) are identical. Procedure B yields,

(B) = Pr [c (j I 7Tj if (c)j = 0

1 - 7r otherwise

Note that if the a-posteriori probability of the ML codeword exceeds 1/2,

p B) = min , 1-

which implies that Procedure B picks the bit with the maximum a-posteriori entropy.

This matches our intuition that the most uncertain bit yields the most information.

The more symmetric distance metric of the Box-Hill procedure yields an explicit

maximum entropy prescription,

(BH)

Chernoff's Procedure M yields a cumbersome metric,

i(M) = 1i +i(l) 1
Z icuj(o) 1 - H 1iE(1) 1- H



which reduces to the Box-Hill metric as the ML estimate becomes more reliable,

(M) (BH)
1P -+ p as max IIi - 1

In summary, all three procedures (eventually) prescribe observing the bit with the

largest a-posteriori entropy. We call this maximum entropy (ME) sampling.

There is some precedence of using bit reliabilities in the context of hybrid ARQ

schemes for iterative decoders. Shea proposed retransmitting the most unreliable

information bits in order to help the decoder to converge [48]. In our context, this

scheme would essentially reduce to the SPRT. Mielczarek and Krzymien have recently

proposed a more elaborate metric to label specific bits "non-convergent" based on

forward and backward parameters in the BCJR algorithm [41]. Their scheme does

not reduce blocklengths or receiver complexity compared to previous ones, but does

reduce the amount of feedback required.

2.7 Examples of Sampling to Reduce Receive Cost

In this section, we report the simulated performance when the uniform and ME

strategies are used to sample block codes. In order to quantify the gain due to

exploiting atypical channel behavior, we will compare the blocklengths required by

our schemes with the lower bound imposed by Shannon's sphere packing bound. We

use the numerical techniques in the paper by Dolinar, Divsalar and Pollara [19],

which follow Shannon's original derivation [47]. Shannon's derivation permits perfect

spherical codes with no constraint on the alphabet. Hence, the bounds are slightly

optimistic for our binary input channel.

We begin with a simple (7,3,4) dual Hamming code. Figure 2-3 plots the receive

costs of this and other rrx= 1/2 codes.

The key observation is that sampling a trivial (7,3) code with rrx = 1/2 using the

ME criterion achieves the same receive cost as the much stronger, rate 1/2, K = 7

convolutional code. Figure 2-4 plots the performance for a 1/10 rate. ME sampling
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Figure 2-3: Performance of the rrx = 1/2, (7,3) code using ME and
uniform sampling (U).

has a gain of close to 7 dB, and outperforms uniform sampling by about 0.9 dB. A

gain of 7 dB is about the limit of what is possible with convolutional codes using

ML (Viterbi) decoding. For instance, increasing the constraint length of a rate 1/2

code from 7 to 9 improves the gain from 5.7 to 6.5 dB. A rate 1/4 constraint length

K = 9 with octal generators [463 535 733 745] has a gain of roughly 7 dB. Further

rate reductions are unlikely to buy much. Higher gains would require sequential

decoding of large constraint length codes [24]. In summary, our receiver achieves,

with practically zero baseband processing, the same receive cost as the strongest

Viterbi decoded convolutional code.

For our next example, we consider the (24,12,8) Golay code, chosen for its remark-

able gain at a small blocklength, and its efficient trellis representations. Figure 2-5

plots the receive cost performance of the Golay code at rrx = 1/2. When decoded

using the ME criterion, the Golay code achieves a gain of 7.7 dB. This is 0.3 dB

from the cutoff limit, which is unprecedented, with or without feedback, for k = 12.
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Figure 2-4: Performance of the rrx = 1/10, (7,3) code using ME and
uniform sampling.

(Note that a fixed-length Golay code has a gain of about 4.5 dB.) The ME criterion

outperforms uniform sampling by 0.8 dB, which is significant in this regime. The

sphere packing limit on block size at this Eb/No and performance is k > 56. For

comparison, a 3GPP2, rate - 1/2, (768,378) Turbo code achieves a gain of 8.5 dB at

a frame error rate (FER) of 10-3 [26]. Crozier et al. have reported a (264,132) Turbo

code with a gain of about 7.3 dB at a FER of 10-4.

Other examples include:

* Convolutional: A sequentially decoded convolutional code with K = 41 with a

gain of 7.5 dB [42]. Assuming that 5 constraint lengths are sufficient to realize

most of this gain, this would be a block size of k - 200.

* Concatenated: A concatenated code with an outer RS(255,223) code, and an

inner rate 1/2, K = 7 code. An interleaving depth of just 2 achieves a gain

of roughly 7.5 dB. The effective rate is 0.43, and the block size is 3568 bits.

(Forney's doctoral thesis is the original reference for concatenated codes [23].

10
- 1
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Figure 2-5: Performance of the Golay code at rrx = 1/2.

The example used here is drawn from [19]).

* LDPC: Tong et al. report a (160,80) LDPC code with a gain of roughly 7.3

dB [51]. They also report a (160,80) random binary code with a gain of roughly

7.8 dB. The authors comment that traditional belief propagation incurs a large

performance loss (2 dB), and use ML decoding instead, which is computationally

prohibitive, limiting the practical utility of these codes.

* Hybrid-ARQ: Rowitch et al. use a high rate, (256,231) BCH, outer code and a

Turbo code based on a (3,1,5) recursive systematic convolutional (RSC) code (a

rate compatible punctured Turbo (RCPT) code). They are about 0.2 dB better

than the cutoff limit for rrx = 1/2 and k = 231 [44]. They also report that an

ARQ scheme based on Hagenauer's rate compatible punctured convolutional

(RCPC) codes, which uses a (3,1,7) mother code and k = 256, is right at the

cutoff limit for a receive rate of 1/2.

Clearly, ME sampling allows significant reductions in blocklength over conven-



tional codes, including those that use feedback (hybrid ARQ). If we are prepared to

lower the receive rate, the advantage is even more pronounced. Figure 2-6 shows the

performance when Golay codes are sampled with a receive rate of 1/6.

10
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Figure 2-6: Sampling the Golay code with receive rate 1/6.

The gain using ME is 9.2 dB, 1.8 dB higher than uniform sampling, and 0.4 dB

better than the rate 1/6 cutoff limit. The sphere packing lower bound for this rate

and performance is k > 81. Hence, we are close to a seventh of the bound, as opposed

to a fifth for rate 1/2. Increasing the expected number of observations expands the

class of atypical channel behavior that sequential schemes exploit, resulting in higher

gains.

For comparison, Xilinx Inc. reports a 3GPP2, rate 1/5 Turbo code with block-

length k = 506 that achieves a gain of around 9 dB [30]. Gracie et al. calculate the

gain of a rate 1/3, k = 378 code from the same family to be 9.1 dB at a FER of

10-3 [26]. RCPC and RCPT ARQ schemes are ill-equipped to exploit low rates and

perform poorly at rate 1/6 [44]. Our scheme outperforms these by about 2 dB.



2.8 Practical Considerations

In this section we determine the energy, hardware, and bandwidth costs of our sam-

pling strategies.

2.8.1 VLSI Costs

We would like the digital baseband implementation of our sampling strategies to

consume a small fraction of the energy required to sample the channel. To see if this

is the case, we compute the number of arithmetic operations required, and estimate

the energy consumed to execute these in current semiconductor technology. This

approach has the obvious shortcoming that arithmetic is not the only source of energy

consumption. For instance, conveying data, especially over long interconnect, can

incur substantial energy costs. However, such estimates are useful in eliminating

clearly infeasible approaches, and in declaring others provisionally feasible. It helps

that our proposed solutions do not require large memories, interleavers, or switches,

as is the case for iterative decoders. This makes our designs more local, and helps

reduce interconnect costs.

We assume that the front-end consumes 1 nJ of energy per channel sample [33, 17],

and samples are quantized to 3 bits. For a receive rate 1/6 Golay system, we make 72

observations on average, which requires 7 additional bits on top of the 3 bit channel

sample, for a total of 10 bits. Hence, we expect codeword log-likelihoods (LLs) to

be no wider than this. Simulations by J. Kwong in a 65 nm semiconductor process

suggest that 1 nJ allows about 40,000 additions of 10 bit operands (at 0.5 Volt).

Measured silicon results by Mercier et al. for a modem in a 90 nm process confirm

that these are the right order of magnitude [40]. Ideally, we would like the digital

baseband energy dissipation to be limited to 0.1 nJ. This permits at most 4000 10b

adds per channel sample. We now discuss the cost of several systems in increasing

order of baseband complexity.

We begin with systems that can implement brute-force versions of uniform and

ME sampling at negligible cost. Recall that uniform sampling terminates when the



difference between the two largest codeword LLs exceeds a threshold. Hence, for

a (n, k = log2 (M)) block code, the brute-force strategy requires M additions per

sample to update the codeword LLs, and another M - 1 adds to find the difference

between the winner and runner up, for a total of 2M - 1. As an example, for the

(7,3) Hamming code, this is 15 adds per sample, which is clearly insignificant. The

(24,12) Golay code on the other hand would require 8191 adds, which exceeds our

energy budget by 2x.

Consider next a brute-force implementation of ME sampling. Table 2.1 shows the

computation required to compute bit a posteriori probability (APP).

Operations per sample MUL I ADD
Multiply HI with e±yt* M -

Normalize H - M - 1
If max ]I > a terminate - M - 1
Calculate 7ri = -j vu(1) -j - nM/2
Pick i* = arg maxi 7ri - 1/21 - 2n - 1

Table 2.1: Computation required per sample for a brute-force imple-
mentation of the ME algorithm. We use II to denote the
vector of the M = 2 k codeword posteriors, and i* for the
index of the observed bit.

The table does not include the cost of implementing the exponentiation via an

8-entry lookup table. The (7,3) code sampled using brute-force ME would need about

8 multiplies and 110 adds per sample - again, insignificant compared with the cost

of sampling.

Consider next a system that uniformly samples the Golay code. As we've seen,

the brute-force approach requires 8191 adds per sample. An alternative is to consider

trellis representations of codes (see [24, Chap. 10] for a thorough, tutorial introduction

to the general topic.) We use Lafourcade and Vardy's scheme for Viterbi decoding of

the Golay code [32], which has essentially the same complexity as Forney's original

scheme [22]. The main modification we need is to produce both the winner and the

runner up to determine if termination is warranted. We call this the "2-Viterbi"

algorithm.

Lafourcade et al. consider the Golay trellis with three 8-bit sections with state



complexity profile {1, 64,64, 1} and branch complexity profile {128, 1024, 128}. Ig-

noring branch metric computation, a conventional Viterbi algorithm would require

2 IE| - V I +1 operations (additions and comparisons) to produce the ML path. This

would be 2431 for the trellis above. This may be trimmed to 1087 by making the

following observation. Roughly put, when a pair of states share two branches that are

complements (i.e. c and -), we can halve the adds and the comparisons used in the

ACS operation. Finally, the branch metrics may be computed via a slight refinement

of a standard Gray code technique, and this requires 84 adds per section. Hence, the

standard Viterbi algorithm may be executed using 1087+3x84 or 1339 adds. We have

computed that the 2-Viterbi variation requires 2685+3x84 or 2937 adds.

A more careful analysis reveals that average case costs are lower. We run the 2-

Viterbi after every channel observation. If the bit corresponding to this symbol lies,

say, in the third trellis section, we do not have to perform computations for the first

two sections. Since we sample bits uniformly, the average number of observations

turns out to be about 1852, as opposed to 2937. Next, we always observe the k

systematic bits of a block code. Hence, when running a rrx = 1/2 uniform sampling

scheme, we incur the 2-Viterbi cost for only half the samples. Hence, the cost per

sample is 926 adds. This suggests that we must approach the full cost as rrx -+ 0.

But another saving is possible at low rates. When running at say, rrx = 1/6, we

make 6k observations on average. Suppose we observe three channel samples at a

time. This incurs a receive cost loss of only 6k/(6k + 3), which is less than 0.2 dB

for k = 12, but cuts arithmetic costs to a third, i.e., 2937/3 or 979 adds per sample

(not 1852/3, since partial updates are not possible when the sampled bits span more

than one section). Note that 1000 adds is a quarter of our energy budget, and this

suggests that uniformly sampling the Golay code is energy feasible.

The hardware cost of this scheme would depend on the throughput and latency

constraints. A fully parallel implementation would require 2937 sets of 10 bit adders,

which, assuming 5 logic gates per single bit adder is not trivial - about 146K gates

for adders alone. However, such an implementation could run at an extremely high

clock rate, essentially the inverse of the delay of a 30b adder. In current technology,



this can easily approach a GHz or more (depending on the voltage used). Since this is

higher than what many systems require, it allows us to reduce the area proportionally.

Also, note that observing sets of m bits at a time, reduces throughput requirements

by the same factor.

Finally, consider a system that use ME sampling. One way to implement such

sampling is to run the BCJR algorithm on the code's trellis [4]. The coordinate

ordering for the Golay code that matches the Muder bound is well known, and yields

a 24 section trellis with IVI = 2686 states, and IE| = 3580 branches [24]. The max-log-

MAP approximation allows replacing the multiply-accumulate (MAC) operations in

BCJR with add-compare-select (ACS) operations. Hence, the forward and backward

passes have the same computational complexity as a Viterbi pass, which requires

2 JE| - IVI + 1, or 4475 operations. Since these passes are run after making a single

channel observation, we need only partial updates, and the total cost for two passes

is only 4475, rather than 2x4475, adds. Unfortunately, the cost of computing the log

bit APPs after completing the forward-backward pass is rather high. For a section

with e edges, we need e adds each for the branches labeled '0' and '1' respectively (for

a binary trellis), and a further e/2 - 1 comparisons per group to find the maximum in

each. This is followed by one final subtraction. Hence, we need about 3 IE , or about

10,740 adds. This brings the total to 15,215 adds, which is 4x our energy budget.

This computation may be substantially reduced by running a max-log-MAP al-

gorithm on the tail-biting trellis of a Golay code, which has IVI = 192 states and

IE| = 384 edges [10]. While the trellis is an order-of-magnitude more compact, the

MAP algorithm needs to be modified to avoid limit cycles or pseudocodewords [3].

Madhu and Shankar have proposed an efficient MAP decoder that avoids these prob-

lems by tracking sub-trellises of the tail-biting Golay trellis [36]. Under a plausible

assumption about convergence, we have estimated that it takes about five trellis

passes, and 2124 adds to compute all the bit APPs. Again, for a rate 1/2 code,

this reduces to 1062. We can reduce these further by running the MAP algorithm

after groups of observations, though the performance loss in this case is not as easily

determined as for uniform sampling. From a hardware perspective, the simplest im-



plementation of this scheme would require about 12 kBits of storage and 6300 gates

for the adders. Such an implementation could be run at a frequency limited only by

the delay of 32 full adders, again allowing GHz clock rates.

2.8.2 Impact of Non-Zero Transmit Rates

Practical systems cannot afford zero transmit rates. We now determine the maximum

transmit rate which preserves most of the gain of our sampling schemes.

The issue of limiting sequential tests to a maximum number of observations was

considered by Wald, and his observation essentially answers the question above. Wald

considered a sequential test to determine if the unknown mean of a Gaussian r.v.

with known variance exceeded a specified threshold. It was shown that limiting the

SPRT's observation to that of a fixed length test, resulted in double the error rate of

the latter [54]. A doubling of error is insignificant in the Gaussian context. A mere

fraction of a dB can compensate for this increase when error rates are low.

Proposition 2.1 (Transmit Rate Design Guide). Sequential strategies over the AWGN

channel require (1 + e) more samples than a fixed-length strategy with identical per-

formance.

For a SPRT based receiver, this means the transmit rate is marginally lower than

that of a repetition coded receiver. Consider next a coded system with uniform

sampling. E.g., a (24,12), rrx = 1/6 receiver. A fixed length Golay code provides

4.5 dB of gain. Our scheme provides about 7.4 dB of gain, or 3 dB (2x) more than

fixed length Golay. Hence, we require a transmit rate slightly lower than (1/2)(1/6).

Simulations show that a rate of 1/14 is indistinguishable from a zero transmit rate.

The idea carries over to ME sampling with the caveat that sampling is intermit-

tent. Having sampled a bit, the receiver might have to wait for the next codeword to

observe the next desired bit. If a ME scheme selected bit indices independently, we

would observe 2 bits per codeword on average. Hence, the transmit rate is reduced by

a factor of 2/n compared with uniform sampling schemes. The bit indices are not i.i.d.

in practice, and simulations for the Golay code show that only 1.6 bits are observed on



average for rrx = 1/6. This ME scheme is about 4.8 dB better than Golay (about 3x).

Hence, the transmit rate required is slightly lower than (1.6/24)(1/3)(1/6) or about

1/270. A repetition coded system would have a rate of (1/9)(1/6) or 1/54. Hence,

we expand bandwidth by 5x over a repetition coded system to deliver a receive cost

that is 9x lower.

The discussion above assumes a lossless sampling strategy. We can trade off

transmit rate for some degradation in receive cost. As an example, we can force the

ME algorithm to make some minimum number of observations for each codeword (pick

not just the bit with the highest entropy, but also the runner-up, etc.) The algorithm

could also factor in the "finite" horizon to improve error rates. For instance, we can

ensure that there are no "unspent" observations when the transmission is about to

end, and so on.

2.9 Comparisons with Current Receivers

What are the best options available to a system designer faced with the receive

cost problem? Are the proposed receivers more suitable than existing, fixed-length

ones? The designer must consider several factors, among them, baseband energy

and hardware costs, whether samplers can turn on/off rapidly enough to support

ME schemes, permissible bandwidth sacrifice, receive rate constraints, and typical

message sizes, etc. We have demonstrated that the new class of receivers appear

feasible from an energy and silicon real estate perspective. We expect that both these

measures will be substantially improved by tuning the algorithms. We now discuss

the tradeoffs at three gain settings.

The new approach seems advantageous if a gain of 6-7 dB is required. Provided the

sampler can turn on and off sufficiently fast, a (7,3) ME rrx = 1/10 system provides

7 dB of gain at virtually zero hardware cost, and a bandwidth sacrifice of roughly 2x

compared with a repetition coded system. If on-off time is an issue, a gain of 6 dB

is possible by uniformly sampling a (7,3) code with rrx = 1/10, with a transmit rate

that is 1.6x greater than a repetition code.



The prescription is less clear cut in the 7-8 dB gain regime, where the choice

is between uniformly sampling a Golay code, or using the strongest convolutional

code that may be Viterbi decoded with reasonable effort. For instance, uniformly

sampling Golay at rrx = 1/6 has a gain of about 7.5 dB. As discussed earlier, a

rate 1/4 constraint length K = 9 code has a gain of roughly 7 dB. Assuming 5

constraint lengths suffice to preserve most of this gain, we may use a terminated

convolutional code with k _ 45. Both solutions can meet the strict digital baseband

energy dissipation limits. Both can achieve throughput in the GHz range, though the

(2,1,9) code can run at roughly three times the Golay's speed (it has only one ACS

in the critical path, while we run 2-Viterbi on the Golay, which increases delay). The

Golay design is extremely compact. The trellis has only three sections, with a state

complexity limited to 64. The only really compute intensive section is the middle one,

and even there, the raw branch complexity of 1024 is reduced to 512 by exploiting

complementary codewords. Its memory requirements are also substantially lower

(about an order of magnitude) than the terminated convolutional code's. A control

oriented application where very short commands are used (8-10 bits) may incur a high

energy cost if forced to use larger payloads, and might prefer the Golay solution. An

application where the sampler runs in the GHz range might have difficulty meeting

latency constraints using 2-Viterbi on Golay (i.e. the decision to terminate sampling

might come too late), and might be better served by the (2,1,9) solution. Note that

the transmit rate required for the uniform sampling solution is about 2-2.5x higher

than a repetition code, but half that of the (2,1,9) solution.

The final design point is the ME sampled Golay code at receive rate 1/6, with a

gain of 9.2 dB. Benkeser et al. have recently reported a VLSI efficient Turbo decoder

for 3G wireless that can realize similar gains [5, 6]. (The authors do not report the

block size, but we estimate that k _ 400-500 should suffice.) Benkeser's solution

achieves 10.8 Mbps with 6 iterations, using 44K gates and 122 kbits of memory. ME

sampling implemented on the tail-biting Golay trellis would require 5 passes of the

trellis. We postulate that running the ME on the compact tail-biting trellis would

result in a significantly more local VLSI solution, and translate to lower energy and



hardware. The chief barrier to adoption of our proposed receiver would be the ability

of the sampler to shut on/off quickly. Another factor to consider would be the 5x

bandwidth sacrifice compared with a repetition coded solution.

2.10 Summary

We turn the information theoretic problem on its head and ask what coding techniques

work best when cost is dominated by sampling the received signal. This formulation

is of interest in short-range, low-data-rate communications devices that must be ex-

tremely energy efficient. We propose a sequential scheme that samples the bit with

the maximum a posteriori entropy at every step, and show that it allows reduction

of blocklengths by an order-of-magnitude over traditional coding schemes, including

those with feedback.



Chapter 3

Synchronization by Sampling

Energy

In this chapter our focus is receivers that sample signal energy rather than ampli-

tude. It is well known that non-coherent systems, i.e., those agnostic to signal phase,

simplify sampling. The phase noise, and frequency offset specifications of the carrier

are relaxed. Hence, carrier generation requires simpler hardware and lower energy. In

fact, Lee et al. report a pulsed ultra-wideband (UWB) implementation that mixes the

signal with itself, eliminating the carrier entirely [33]. Energy sampling systems re-

duce sampling costs further by essentially decimating the non-coherent output. This

allows the analog-to-digital converters to run at a lower rate, simplifying hardware

and reducing electronics power.

While these sampling techniques reduce the electronics energy required per sam-

ple, say, 8 samp, they increase the number of samples required to maintain performance.

In systems that use binary signaling, like pulsed-UWB, the loss of phase necessitates

orthogonal signaling, with the accompanying SNR degradation. Filtering a signal de-

void of its phase introduces an additional degradation that increases with the length

of the filter. Hence, such schemes are only viable when the reduction in 8 samp is

greater than the increase in the samples required. UWB energy sampling receivers,

as reported by Lee et al., and Daly et al. suggest that the tradeoff is beneficial [17].

The packet length in UWB energy sampling systems today is often dominated by



the preamble required to synchronize the receiver. This is partly because such systems

are often used in telemetry-type applications with very short payloads [17]. Also,

accurate synchronization may be required to allow triangulating receiver location.

Hence, scenarios where the preamble is an order of magnitude longer than the payload

are not implausible.

While the significant synchronization overhead in UWB energy sampling receivers

is well understood [43, 49], no work we know of has addressed the fundamental ques-

tion: what are the limits of synchronization over the energy sampling (ES) channel,

and what sequences might achieve those limits? Current thinking, as reflected by the

recent IEEE 802.15.4a standardization process, appears to be that sequences that

work well over coherent channels (maximum length sequences and variants) must

also be optimum for the ES channel [29].

We pose the problem of synchronization over the ES channel formally, and show

how error exponents may be calculated when the SNR -- 0 or oc. It becomes clear

that, unlike the coherent case, there is no single optimum synchronization sequence

for a given length. Rather, the optimum sequence is a function of SNR. We construct

sequences for the low and high SNR regimes that significantly outperform existing

ones.

After outlining our model in the next section, we will briefly study classical se-

quences (i.e. optimum when sampling amplitude). This will be followed by an anal-

ysis of two existing families for energy sampling. The first is the family of periodic

sequences. We will derive the error exponent for this family, and comment on the

currently used classifier. The second is the family of oversampled Hadamard (O-H)

sequences. This will be followed by developing three new families, the first two of

which have large Euclidean distances, and are suitable for low SNR operation. The

first is the interpolated Hadamard (I-H) sequence family. The second is the family

that maximizes Euclidean distance - maximum squared distance (MSD) sequences.

The final new family is that of walking sequences, which significantly improve the root

Euclidean distance, and are suitable for high SNR operation. This will be followed

by simulations comparing the performance of these families.



We denote vectors in boldface, e.g., x, yi, etc. The jth element of a vector is

denoted via (.)j, e.g., (x)j or (yi)j which we usually write as xj or Yi,j. Random

variables are sans-serif. Hence x is a deterministic scalar, and yi a random vector.

3.1 Preliminaries

We introduce the energy sampling channel, synchronization as a coding problem,

and distance properties of synchronization codebooks. Note that synchronization

is a continuous time (CT), estimation problem. In what follows, we treat it as a

discrete-time (DT), classification problem. We do this for several reasons. Although

the DT version resolves delays only up to half a symbol period, this is sufficient

for many pulsed UWB applications, where this corresponds to an error of at most

1 ns. This allows tagging a location to within a foot. Next, our approach holds,

at least theoretically, even if sub-symbol resolution is desired. All that is necessary

is changing the codebook. In fact, we have used a DT setup to synchronize using

Gaussian pulses. The codebook is more sophisticated, but the framework holds. This

is possible because the CT case may be transformed to a DT one by the appropriate

change of basis. This is well understood to be the sinc function basis for the coherent

case. The transformation is not exact for squared Gaussian processes, but Urkowitz

has shown that a DT treatment is valid for unaliased signals [52].

3.1.1 Energy Sampling Channel, Integrated Codebooks

The real, discrete-time, energy sampling (ES) channel is described by (figure 3-1),

kP+(P-1)

Yk= (Xj +Wj)2 k= 0, 1,2,..
j=kP

where P is the period of integration, xj are the transmitted symbols, Yk are the

received samples, and wj are i.i.d. Gaussian r.v.s distributed as A/ (0, a 2 = 1).

We restrict the input to on-off signaling; i.e., xi = aci, where ci E {0, 1}, and a

is the peak signal amplitude. We may refer to a 2 as the "peak SNR per symbol."



wj ~ f (0 O2 = 1)

Figure 3-1: The discrete-time, energy sampling channel

In most of the chapter, we will assume that the signal is peak-constrained; in a final

section we will investigate an average power constraint. Note that the most realistic

formulation of the problem would consider both constraints simultaneously, but this

work starts off with a separate analysis.

The received samples are chi-square r.v.s with P degrees of freedom1 ,

Yk Xp (S)

and centrality parameter,
kP+(P-1)

S 2 (3.1)

j=kP

Thus, only the number of ones in a codeword c during the integration period,
kP+(P-1)

tk (c) = cj, affects the statistics of the channel output.
kP

Consider a binary codebook C, with M codewords, ci, i E [0, M - 1], of length

n. If n is a multiple of the integration period P, then each codeword, c, yields an

integrated counterpart, t(c), with n, = n/P elements, tk(c), k E [0, nr - 1]. We say

that c has a symbol length of n, and a sample length of nr. The integrated codebook

T(C) has M codewords tj - t(ci) of length nr. It follows from (3.1) that sample

likelihoods when ci is transmitted are given by,

Yk " X(ti,k SNR)

Hence, receiver statistics are completely determined by the integrated codebook T(C)

1Appendix 3.9.1 reviews the notation and properties of chi-square r.v.s.



and the SNR.

3.1.2 Synchronization Codes

In our work, synchronization refers to the problem of inferring an unknown channel

delay. Communications systems infer this delay by transmitting a known preamble

to the random, message bearing payload. The preamble is partitioned into shorter

sequences that are repeated. This is done for several reasons. First, this reduces

hardware costs. For instance, as we shall see later, operation at a low SNR with

P = 16 might require nr 7000. This is an order larger than what is considered

feasible, cost-wise, from a VLSI point of view. For instance, the 802.15.4a standard

mandates nr = 31, with an optional mode with nr = 127. Thus, smaller sequences

are repeated with a start-frame-delimiter (SFD) at the end for disambiguation. The

resulting sequences are longer than the optimum, unconstrained sequence, but the

approach keeps hardware costs manageable. Another reason for repetition is that

synchronization is preceded by an automatic gain control (AGC) operation. The

initial part of the sequence is lost as the system finds the optimum gain. Also, the

loss is variable in length, depending on the SNR. Hence, the synchronizer starts in

the "middle" of a sequence. Finally, repeating sequences is useful for estimating

certain other channel impairments like frequency offsets, etc. As a result of sequence

repetition, the synchronization problem is best modeled as inferring the unknown

cyclic shift of a sequence, say c, transmitted over a channel. Thus, synchronization

is a coding problem where the codebook is the circulant matrix of c, i.e., it consists

of the n cyclic shifts of c,

C(c) A {i = c(i) , i E [0, n - 1]}

where the (.)(r) operator denotes a right shift by r places, i.e.,

(c(r))j = C(j-r)modn



It is often useful to express the index of a codeword ci thus,

i jP + (0 < <P)

We call £ = i mod P, the phase, and j = [i/P], the sample shift (as opposed to

ordinary, or symbol shift). We define the subsampled-sequence or simply subsequence,

qk(c), as the sequence obtained by downsampling c by a factor P, starting at symbol

Ck,

(qk(c))j = CjP+k j E [0, n, - 1], k E [0, P - 1] (3.2)

Hence, there are P subsequences, not necessarily unique. We express a sequence in

terms of its subsequences thus,

c = q0 (c) -ql1 (c) -q 2() ... qp-1(c) (3.3)

We sometimes abbreviate qk(c) to qk. The reader may verify that (3.3) yields the

following elementary relationships (0 < £ < P),

c(1) = q(1) qo 1 " " qP-2

c) = qP- qp- qo " qP--i

c(P) = q(1) ) q2 l)..q 1  (3.4)

c go 1 ' 2 GP-1

(jP+) = q(j+i~i) (j+ ) (j) (j)
(J - qJ- qp -1 qo QP--1

It follows from definitions that,

P-1

t (c)= 1qk(c) (3.5)
k=O

Synchronization performance is determined by the SNR and the integrated code-

book T(C(c)), which we sometimes abbreviate to T(c), or T(c). Note that integrating



a codeword shifted by r = jP is the same as shifting the integrated result by j, i.e.,

tjp+e = t (C( P+e)) t j ) (3.6)

Hence, T(c) is completely characterized by its first P codewords, and the other

codewords are shifts of these.

We now illustrate these definitions via a toy sequence,

c=[1

of length 6. Then,

C(c)

10 0 0 0]

110000

011000

001100

000110

000011

100001

Assume further that P = 2, which gives nr = n/P = 3. Then,

T2(C) T2 (C(C))

00

1 1 0

020

011

002

101

Also, qo (cl) = [0 10], and q, (cl) = [1 0 0].



3.1.3 Elementary Distance Properties

We denote Hamming distances by dH. We also define,

dsq (t, t) = lt -t'1 2

drt(,t') I/- Vt -i - (J- Vj)

J

We call these metrics the squared distance, and root distance (squared). As we shall

see in the next section, the squared distance is significant at low SNRs, while the root

distance is the appropriate function at high SNRs. The codebook minimum distance

is defined as usual,

d(V) = min d(v, v')
vZv'EV

where V may be a binary or integrated codebook, and d is the relevant distance.

We will find the following definitions useful. When two codewords differ at a

coordinate, the ordered pair of differing symbols is called a difference pair, and the

set of all difference pairs is called a difference set. For instance, for the codewords,

to 0 0 2 0 21
t[ I 1 01 1 12

the difference set is {(1, 0), (0, 1), (2, 1), (0, 1)}. A difference pair is said to be of the

type (x, y) if it is either (x, y) or (y, x).

We now derive some elementary bounds on these distances.

Lemma 3.1. For any two adjacent integrated codewords, t, t' E T(c),

drt (t, t') < dsq (t, t') = dH (t, t') = dH (q, q(1)) (3.7)

for some subsequence q of c.

Proof of lemma 3.1. The result is a corollary of the property that all difference pairs

of adjacent codewords are of the type (k, k - 1), k E N, and hence the Hamming



distance is equal to the squared distance. Also, / - < x - Y| which proves

the root and squared distance inequality.

Recall (3.4),

(jP+) . .+) q(j+1) . qj) (j) (j)
c( - p- "'P-1 '0 "qP-£-2qP-£-1

(jP+e+1) _ (j+1) (j+1) (j+1) (.j) (j)
c Q qp-1 "qpP- 1 0"o "P-P- 2

It follows from (3.5) that,

(j+1) (j)
tjp+i+l - tjP+= q+P--) 1 - -1-- =_ -(3.8)

= s(1) - s

where
A (j)s = --1

Hence, distances between adjacent integrated codewords depend only on one subse-

quence, which we call the active subsequence. We also call dH (s, s(1)) the adjacent

distance of s. Since s is binary, it follows from (3.8) that all difference pairs are of

the type (k, k - 1). For a difference set of this form, clearly,

dsq (t, t') = dH (t, t') = dH (S, S(1)) = dH (qP--1, q() -1

where the last equality holds since shifting a sequence does not alter its adjacent

distance. Also,

drt (t, t') dsq (t, t')

is always true, regardless of adjacency constraints. The lemma follows. O

Note also that all three distance measures of integrated codebooks are bounded

thus,

d(T(c)) < min nr - 1, ~ (nr odd) (3.9)

where w(c) denotes the weight of sequence c.



3.1.4 Performance Analysis

Consider the binary hypothesis testing problem E = 0i=o,1, where E denotes the true

state of nature, and the 0i are the equiprobable hypotheses. The observed r.v. has

likelihoods,

Y - pj(y) A. py oj(y I Oj) = 0 or 1

Then, the maximum-likelihood (ML) classifier, E, that observes m i.i.d. r.v.s

Yo, Y, ... , Ym-1 distributed as above, yields a probability of error that is bounded

thus,

Perr A Pr (O(y) OE) < e- m  (3.10)

where py is the Chernoff exponent given by the Chernoff bound,

y= - In min Eo eAe (y)
A<O

where, e(y) is the log-likelihood ratio,

Pl(Y)f(y) = In

and Ei denotes the expectation under Oi. Equation (3.10) is useful for bounding

system performance. Moreover, it is exponentially tight, i.e., the vanishing error rate

is guaranteed to decrease exponentially with m with a rate identical to the exponent.

Hence, an experiment that yields twice the exponent requires half as many samples to

achieve identical asymptotic performance. Since our concern is minimizing sampling,

the exponent is of fundamental importance.

Consider next the classification problem when one of two codewords, c or c', of

length n may be transmitted over the ES channel. The ML classifier observes the

received vector y of length nr = n/P. We denote the exponent for this test by

p(c, c'; P, SNR) A py. Then, the codebook exponent is defined thus,

p(C; P, SNR) = min p(c, c'; P, SNR)
c 4 c'EC



We can now bound the probability of codeword error when a ML scheme infers which

of the M codewords of C was transmitted,

Perr (M - l)e - p(c;P, SNR)

The problem of finding the codebook exponent for general SNR appears to be in-

tractable because of the chi-square distribution. However, we have derived an expo-

nentially accurate approximation.

Theorem 3.1. The exponent of discriminating codewords, c and c' transmitted over

the ES channel is2,

SNR 2

p(c, c'; P, SNR) - dsq (t(), t()) 16P

SNR
p(c, c'; P, SNR) - drt (t(c), t(c')) 88

(SNR -- 0)

(SNR - oo)

(3.11)

(3.12)

The proof is included in appendix 3.9.1.

Corollary 3.1. The codebook exponent is given by,

SNR 2

p(C; P, SNR) - dsq (T(c)) 16P

SNR
p(C; P, SNR) " drt (T(c)) 88

(SNR -+ 0)

(SNR - oc)

Note that the exponent in the limit of infinite SNR is independent of the integra-

tion period. However, we will see that the exponent in both regimes varies as nr/P

because of combinatorial constraints. In light of corollary 3.1, we will seek sequences

2f(x) = o(g(x)) (x -- a) implies limx,a f(x)/g(x) = 0, while f(x) - g(x) (x -- a) implies

limx-a f(x)/g(x) = 1.

and,

and,



that maximize the squared or root distance for a given n and P, rather than trying

directly to optimize the codeword exponent as a function of SNR.

3.2 Prior Work

For the case P = 1, the integrated codebook T is identical to the binary codebook

C. Hence, the synchronization problem is to maximize the minimum distance of a

binary circulant matrix. This is a well studied problem, and we summarize the key

results. For a sequence of length n,

dH (C(c)) < (3.13)

The result follows from elementary properties of difference sets [28]. Furthermore,

odd lengths that achieve (3.13) are necessarily of the form n - -1 mod 4. An

odd length sequence that meets the bound (3.13) corresponds to a cyclic Hadamard

difference set, and is termed a Hadamard sequence. Such a sequence is equidistant

from all its cyclic shifts, and has weight (n + 1)/2 depending on whether a majority

of ones or zeros is chosen. The existence of such sets for arbitrary n remains open,

though computer searches support a conjecture due to Golomb.

Conjecture 3.1 (Golomb [25]). Hadamard sequences exist for lengths, n = -1

mod 4, if and only if,

2 k - 1 k E N, or

n = p p a prime, or

p(p + 2) p, p + 2 are both primes

There is a constructive proof of the if part. For instance, sequences corresponding

to n = 2k- 1 are the well known maximum length or m-sequences, and the construction

relies on primitive polynomials in GF(2). Construction for the other cases relies on

properties of quadratic residues. As of September 2006, the conjectured only if part



had been verified for all but seven open cases for n < 10000 [25].

The focus of our work is to generalize the notion of good sequences for P >

1. While prior work is replete with receivers and synchronization techniques over

the ES channel, it generally assumes that Hadamard sequences (and their ternary

extensions) are optimum. The two approaches popular today use periodic pulse trains,

or upsampled Hadamard sequences. We briefly discuss these now.

3.2.1 Periodic Sequences

A popular synchronization scheme for the ES channel uses alternating bursts of ls

and Os followed by an aperiodic suffix,

c [-ZI v]
M.P repetitions

where,

S= [ ... ... ] (3.14)
P symbols each

and v is the suffix required to ensure non-zero integrated distance. The receiver

processes the periodic pattern independently of the suffix. Hence, it can only resolve

the cyclic shift modulo the period (2P). Once this shift is inferred, the receiver

realigns its sampling phase with the sequence u and begins a search for the suffix.

The suffix thus resembles a SFD.

The receiver processes the periodic pattern by partitioning it into P sections, each

with M repetitions of u. Each section is sampled with a different initial sampling

phase, i.e., samples for section m are obtained thus,

P.k+(P-1)-m

Yk = t((( +w)2)(m) E (xj + WJ)2 k = 0, 1, 2,...
j=P.k-m

(Non-causality is managed by inserting delays and extra samples.) Every section

produces two metrics by adding the odd and even samples, respectively. The receiver

picks the highest of the 2P metrics to infer the shift (Test A). It may be seen that the



metrics are chi-square r.v.s with MP degrees of freedom, and a centrality parameter

of the form s2 = jMSNR, where j E [0, P]. An error occurs if the largest sample does

not correspond to the r.v. with the largest centrality parameter (s2 = MPSNR).

Prior work has relied on numerical techniques to compute the performance of this

test [43]. We now bound the error exponents for vanishing and infinite SNR.

Consider the binary hypothesis test where two independent chi-square r.v.s

X2Mp (M(P - 1)SNR) and X2p (MPSNR) are presented in one of the two possible

orders with equal probability. A ML classifier is used to infer the order (Test B). It

may be shown that the probability of error of this test is strictly smaller than that of

Test A3 . The exponent of test B is readily calculated via theorem 3.1,

(MPSNR - M(P - 1)SNR) 2  2M d
p 2 SNR2  sq SNR 2  (SNR -+ 0)16MP 16P 16P

(3.15)

in the low SNR regime, where the factor of 2 reflects that we have access to two

observations with identical information. Hence,

dsq = 2M = r

since the number of samples in the periodic portion is 2MP. In the high SNR regime,

the exponent for test B is,

y 2 (v'MPSNR - vM(P - 1)SNR) 2 _ drt
py 8- 2 SNR (SNR -* oo)8 8

which gives,

drt = 2 - P 12 M < (P > 1) (3.16)- 2.9P 2.9P 2

We will see that this is a factor of about 6P worse than sequences we will introduce
3Consider the alternate test A.1 where only these two r.v.s are compared and an error is declared

if the maximum does not correspond to the larger centrality parameter. Clearly, A.1's probability of
error is lower than that of test A. Also, Test B is no worse than than A.1 since it uses a ML scheme
to tag the observations, rather than just picking the maximum.



later.

Note that test A has access to 2P r.v.s, but by using the max criterion, it essen-

tially behaves as if it looks at only 2 (test B). Hence, its exponent is degraded by a

factor proportional to P. Using a better test which incorporates phase information

can rectify this, but a key problem remains. This synchronization strategy does not

tell us how to pick the aperiodic suffix v. This would be okay if v were short compared

to the sequence, and ad-hoc choices would work, but neither is true.

One variation on periodic sequences is a paper by Park et al., who modulate the

amplitude of the pulse train to improve performance [31]. Aside from the practical

difficulty of doing so, it is hard to gauge precisely what gains such modulation offers.

3.2.2 Oversampled Sequences

The recent IEEE 802.15.4a standard uses sequences with the structure [29],

c=s- 00...0

where 0 is the all-zero subsequence. In other words, E is obtained by oversampling

s by a factor of P. We denote the sample length of E by nir. Clearly, T(E) has zero

distance due to its all-zero subsequences. We will see how this is managed shortly.

From (3.4), we have,

jp+t= P+e0 = 0. ... . s(j) .0. . .. _

£ P-E-1

and thus,

tjp+ = s( ) (3.17)

Hence, all integrated codewords with the same sample shift are identical. 15.4a

compliant receivers discriminate between shifts of E by sweeping over all sampling



phases. In other words, the transmitted sequence is,

C= [ ... i]
P repetitions

and the corresponding integrated codeword is,

t = [t (a) t ((1)) t ((2) ... t ((P-1))]

= [io i1 2  ... P-1]

which is different from the usual, fixed-sampling-phase codeword, t(c). Note that

while t above may also be generated by shifting the phase in the transmitter, the

resulting sequence c would not be periodic. Also, nr = Pr samples. Similarly, the

integrated codeword corresponding to codeword ci is,

ti =ti [i i+ ti+2  ... i+P-1] , i E [0, r - 1]

The integrated codebook is a Toeplitz-like matrix (with constant entries along the

positive, rather than negative slope diagonals),

to

tl

t 2

ti

tnr-1

... tP-

... tP+1

ti ti+l

tnr--1 tO

ti+P-1

tP- 2



Note that t = timodri, since t has length hr. This explains the indices of the last row.

We may now use (3.17) to further clarify the structure of our codebook,

to s s ... S S

tls s ... s s (1)

t2 S ... 8 (1)  8 (1)

T = tp S( 1)  s (1 )  ... (1) s(1)

tp+l s(1) s ( 1 ) ... 
) s (2)

tnr- 2  S
( r - ) S

( r - 1 )  S 8

tnr 1  
( r - 1 )  s ... s s

Note that the integrated codebook is binary valued. Hence, both the squared and

root distance are equal to the Hamming distance. If s is a Hadamard sequence then,

dH (S(r),r)) (r2r)

and inspection of T shows that,

hr+1 n, +P
dsq drt = dH - 2 2P

Hence, if we were to use asymptotic measures as a guide, oversampled Hadamard,

or O-H sequences, appear preferable to periodic sequences in the low SNR regime.

They have a marginal squared distance advantage, while doing away with the suf-

fix. They have a significant root distance advantage - at least a factor of 3P/2 -

compared with periodic sequences (3.16), which again indicates their superiority in

the high SNR regime. For this reason, we use the performance of O-H sequences as

our baseline. In the next two sections, we will introduce new sequences suitable for

operation at low SNRs.



3.3 Interpolated Sequences

We call a sequence interpolated if it can be shifted to the canonical form,

C = s - ... (3.18)

where all its subsequences, qk(c), are equal to a generator sequence s. In other words,

c is obtained by repeating every bit in s, P times (hence the nomenclature). A natural

question is whether good generators produce good sequences. We now summarize our

findings.

Definition. Given a binary sequence, say u, its shift-and-sum sequence is,

Note that u+ is, in general, ternary.

Definition. We say that the generator, s, of an interpolated sequence, c, preserves

distance if

dH (T(C)) = dH (C(S))

Lemma 3.2. For an interpolated sequence c with generator s,

dH (T()) < dH (CS())

Theorem 3.2. A generator always preserves distance when P is odd.

Theorem 3.3. A generator preserves distance for even P if and only if it has the

same distance as its shift-and-sum sequence, i.e.,

dH (T(c)) = dH (C(s)) = dH (C(s+)) = dH (C(s)) (P even)



Theorem 3.4. m-sequences preserve distance for all P.

Conjecture 3.2. Hadamard sequences preserve distance for all P.

We now prove these results. For the interpolated sequence c in (3.18),

to = qk(c)= Ps

and (3.6) gives,

trp = t(r) = Ps(r)

Hence,

dH (T(c)) min dH (trP, tr'P) = min dH ((r), (r ' )  dH (C(s))
r,r' r,r / \

and lemma 3.2 follows. Also,

dH (tr, trp) = d (s(r), s(r)) dH (C())

Thus, codewords with zero phase achieve a distance > dH (C(s)). As we now show,

this is true even if only one of the codewords has zero phase. Recall (3.4),

(rP+) _ (r+1) .(r+1) (r) (r)
-C P- "'' P- 1  .' P-t-1

where the phase £ < P, as usual. Hence, a codeword, say u, of an interpolated

sequence has the form,

U = (r+1) S(r+1) ... (r+1)(r) (r) .( r ) (r)

e subsequences P-t subsequences

for some r. Assume that u has non-zero phase, i.e., £ -# 0. The integrated codeword

t corresponding to u is,

t = s (r + 1) + (P - f)S(r)



Then,

tkP - t - Ps(k) - (& S(r+l) + (P ) (r )

At each coordinate, say j, where s(r) and s(r+l) are unequal, i.e. one of them is zero,

f( r+l)+ (P- )s) < P. k j i<

since 0 < £ < P. Hence, tkP - t must be non-zero at j. But there are at least

dH (C(s)) such coordinates, and hence,

dH (tkP, t) > dH (C(S))

when t has non-zero phase. We now consider the final case where both phases are

non-zero. Define,

u u' = S(r'+ 1) . s(r'+1) .. S( ' +I )  . s( ' )  ... ( ' )

t' subsequences P-i' subsequences

with £' # 0 and its corresponding integrated codeword t'. Then,

t - t'- = (ri-+ l ) + (P -.£)(r) (er'+1 ) + (P - )s(r')) (3.19)

Assume for now that all the sample shifts r, r + 1, r', and r' + 1 are distinct, and

rewrite the expression above as,

t - t'= f w + (P - £)x - ('y + (P- ')z)

Consider the coordinates where w and y differ (at least dH (C(s))). We say that a

coordinate j is lost between w and y if wj  yj but tj = t'. We now show that

coordinates can only be lost if P = + 1'. Consider the case when wj = 1 and yj = 0.

If xj is also 1, we cannot lose the coordinate since P - ' < P. If xj is zero, then

f = P - f'. A similar argument applies with wj = 0 and yj = 1. We can similarly

prove that coordinates can be lost between x and y only if 1 = 1'. Hence, if the



Hamming distance dH (t, t') is smaller than both dH (w, y) and dH (x, y), the two

conditions must hold simultaneously, i.e., P = 2f = 2f', which is impossible since P

is odd. The cases where sample shifts overlap may be proved similarly, and theorem

3.2 follows.

We now consider even P. An interpolated sequence may have lower distance than

its generator only if P = 2f = 2Y'. (This also holds when sample shifts overlap.) In

this case (3.19) may be simplified to,

t - t' P s(r+) +(r) r+ (3.20)

P 8 (r)  s W)
=-2 -( + )

Note that r and r' must be distinct when f = f' else t and t' refer to the same

codeword. It follows that,

dH (t, t')= dH ((r) 8 Wir))

Since r and r' may be chosen arbitrarily, theorem 3.3 follows.

We now prove that m-sequence generators preserve distance. First, note that, for

xi E {0, 1},

IXo ± xl ± x 2 ± X 3 _ 0 X X1 E X 2 & X 3

where ® is the binary exclusive-or operation. This inequality holds since the RHS is

1 only if an odd number of xis are 1, in which case the LHS can never be zero for any

assignment of signs. From (3.20) we have,

t t I (r+l) (r) (r/+1) (r')

(r) (r+) (r') (r'+1)

Hence,

dH (t, t) _ W(8(r) ® 8(r+l) ® S(r ') E 8(r ' + )) = W(S ( g))



for some shift g, which follows from the linearity of m-sequences. The weight of an

m-sequence with more is than Os is equal to its Hamming distance (both (nr + 1)/2),

and the result follows.

Hadamard sequences are not linear in general. However, we have verified that

their sum-and-shift sequences have the same distance as the sequences themselves

for sample lengths up to 1023. This led us to conjecture (3.2). Note that several

(non-trivially) distinct Hadamard sequences may exist for certain lengths. We have

verified the conjecture only for one sequence at each length.

We now illustrate these ideas with an example. The length 15 sequence,

s= [101100010010011]

achieves dH (C(s)) = 6, the best possible for a non-Hadamard sequence of this length.

The interpolated sequence for P = 3,

c= [111 000 111000 111 000 000 111 000000 111000000 111111]

achieves a Hamming distance of 6, as theorem 3.2 guarantees for odd P. To see if s

is distance preserving for even P, we construct its shift-and-sum sequence.

+ = s + s )  [2 1 11 10 11 0 1101 12]

The pair,

s+ 211111011011012

s(3)  012211111011011

proves that dH (C(s+)) < 5. Hence, s does not preserve Hamming distance for even

P. To see this, construct the interpolated sequence for P = 4. Then, the pair,

t2 422222022022024

t14 024422222022022

has a Hamming distance of 5.



We call a sequence with a Hadamard sequence generator, an interpolated Hadamard

sequence, or I-H sequence. If conjecture 3.2 is true then,

n, +1
dH (T(c)) - dsq (T()) 2

for a length nr Hadamard generator. To see why the squared distance is equal to the

Hamming distance, note that the squared distance of a codebook cannot be smaller

than its Hamming distance. Also, the adjacent squared distance of a codebook is

equal to the adjacent distance of its subsequences (3.7). The adjacent distance of a

Hadamard sequence is the same as its Hamming distance, and the property follows.

For comparison, a O-H sequence has,

nr+ P
dH = dsq = 2P

Hence, I-H sequences offer a squared distance gain approaching P for nr > P. Also,

since squared distance cannot exceed nr - 1 for odd nr, I-H sequences are within 3

dB of the best possible squared distance sequences.

Lemma 3.3. Define the minimum different sample between codewords t, t' thus,

tmin(t, t') A min max(tj, t')
j tj t

If, for adjacent codewords t, t' E T(c),

tmin (t, t') > 1

then,
dH(t, t')

drt (t, t') < (3.21)
- 2.9tmin(t t')

Proof of lemma 3.3. The function f(x) = x( - )2, x > 1, decreases mono-

tonically in x. Also, it may be shown that,

1 1
- < f(x) < - x>2 (3.22)

4x-- 2.9x



When t, t' e T(c) are adjacent, all difference pairs are of the type (x, x - 1). Hence,

1

2.9 max(tj, t')

dH (t, t')

if min max(tj, t') > 1
J

2.9 (min max(tj, t tj))

Theorem 3.5. If c is an interpolated Hadamard sequence, then,

nr + 1
drt (T(c)) < 2.9P2.9P

Proof. If c is an interpolated sequence with generator s, then,

( ) =s( 1) .( 1) ... s 1).

£ subsequences P-£ subsequences

(e < P)

and hence,

t = .s) + (P - f)s

If P is even, set £ = P/2. Then,

tP/ 2 = - (1))

tP/2+1 = tP/2 + (8(1) - 8)

(3.24)

(3.25)

Note that (3.24) implies that if s and s(1) differ at a coordinate, then tP/2 = P/2 at

that coordinate. Hence, it follows from (3.25) that all difference pairs between tp/2

and tP/2+1 are of the type,

P2'
P
2

The result follows from lemma 3.3. The case for odd P may be similarly proved.

drt (t, t') = S
I

(3.23)



A corollary is that the root distance of a O-H sequence is at least 1.5x greater

than that of an I-H sequence of the same length (the bound (3.23) is fairly tight for

small P). The advantage grows close to 2x for large P since lim-.oo f(x) = (4x) - 1 ,

and it can be shown that,

drt (T(c)) (P > 5)
4P

3.4 Maximum Squared Distance Sequences

In this section, we will construct sequences with good squared distance. In discussing

such sequences, we will find the following characterization of sequence complexity use-

ful. The minimum number of distinct subsequences of a sequence, with the minimum

being taken over all shifts of the sequence, is called its dimension. We exclude all-zero

subsequences from the count. Thus, both O-H and I-H sequences are one-dimensional.

A sequence is a MSD if it maximizes the squared distance for given nr and P.

Hence, any sequence that achieves a squared distance of nr - 1 (n, is assumed odd

unless specified otherwise) is a MSD (3.9). We call such sequences strong MSDs, or

just strong.

3.4.1 Simple, Strong Sequences

Recall that the Hamming and squared distance between adjacent integrated code-

words is equal to the adjacent distance of the active subsequence (3.7). Hence, all

subsequences of a strong sequence have an adjacent distance of nr - 1. This is only

possible if they have alternating ones and zeros with exactly one repeated bit, i.e.,

they belong to the set,

Salt { , ~ r C [0, n- 1] (3.26)

where,

Salt = [1010 ... 100]



is a sequence of length nr, and - denotes binary inversion. Since Salt has 2 nr ele-

ments, a brute-force approach must examine (2nr) P sequences to establish if a strong

sequence exists. This is polynomial in nr, as opposed to the set of all possible se-

quences, which is exponential4 .

Lemma 3.4. An interpolated sequence cannot be strong.

Proof. Let c be an interpolated sequence with sample length nr, and generator, s.

Consider the following codewords,

Scl = s ) 8S " .s s

Cnr- 1  S S " '8 . S
(n r - 1 )

Then,

tl - tnr-1 - S ( 1) - ( n r - 1)

Since s is binary, it follows that,

dsq (tl, tnr-1) = dH (8( 1 ), S(n r- 1)) - dH (S, S(2))

since the distance depends only on the relative shift. If c is strong, s must be drawn

from Salt. It may be shown that all sequences in Salt have an alternate adjacent

distance of 2. The lemma follows. O

Hence, strong sequences are necessarily two dimensional. We now consider the

simplest 2-D sequences.

Definition. We call a 2-D sequence simple, if a suitable shift may be expressed in

the form,

C=S-S-'S. S

Searching for a strong sequence that is simple requires testing only 4n 2 candidates.

We now present our findings about the existence and construction of such sequences.
4 The complexity of calculating the distance of a sequence is polynomial in nr, P. Hence, we focus

on the number of sequences to be tested.



Theorem 3.6. A strong, simple sequence can exist for nr, P only if,

P > [2(n r - 7)], n r  11

The complete proof is in appendix 3.9.2. Since sequences in Salt have very poor

alternate adjacent distance, there are codeword pairs in T(c) with very poor Hamming

distance. Such pairs rely on a few difference pairs of the type (0, P/2) to achieve

dsq = nr - 1. Hence, P must be on the order of Vnr.

Conjecture 3.3. For all odd nr > 7, and P > Pim(nr), there exists a simple, strong

sequence of the form,
(r(nr)) (3.27)C =- Salt' Salt ... Salt * Salt

where Plim and r are functions of nr.

Note that r is independent of P. Hence, the same structure may be used for all

P > Plim. Theorem 3.6 implies that Plim(nr) _ [N/2(nr - 7)]. We have verified this

conjecture for all nr - -1 mod 4, nr < 275 and P < 16. For nr of this form, we

found that,

r(nr) = 2 nr +18 (3.28)

works without exception. (Several values of r work, so r(nr) may be one of several

functions.)

Lemma 3.5. A suitable shift of the sequence c in (5.1) can always be expressed as a

periodic sequence,

c (g) = [ u ... u v]
M repetitions

with u as defined in (3.14),

P symbols each

and,

M nr - 1 r(nr)
2 2



The result follows from the definition of Salt and is omitted. Hence, good sequences

do have periodic prefixes, at least when P is large enough - on the order of Vir -

and we are operating in the low SNR regime (where squared distance is meaningful).

Current systems that use periodic sequences have poor performance because of their

decoding scheme, and ad-hoc selection of v. As noted earlier, using the maximum

energy criterion to discriminate between possible phases completely disregards the

structure of the integrated codebook. This leads to a performance loss proportional

to P. The current practice of picking v to be a Barker or other pseudo-random

sequence can also significantly diminish the squared distance.

As an example, we now construct a simple, strong sequence for nr = 11. For this

length, theorem 3.6 limits P > 3. Computer searches prove that Plim(11) = 5. For

P = 5, the sequence,
(2)

C Salt ' Salt - Salt Salt alt

is strong. We can shift c to demonstrate its periodic prefix,

c(- 10) = [u u u u v]

where,

u= [1111100000]

and,

v = [000011111000000]

While c has dsq = 10, its Hamming distance is only 4. This should be compared

with an I-H sequence of the same length, for which both distances are 6.

3.4.2 Non-Simple MSDs

When no simple sequences are strong, we may test some, or all the (2nr) P candidate

sequences to establish if any strong sequence exists. For instance, no simple sequence

is strong for n, = 15, P = 5. However, a computer search produced the following, 75



bit long, strong, 3-D sequence,

-(9) -(13) -(13)
C = Salt ' S alt ' Salt * Salt *Salt

This sequence can also be expressed as a periodic sequence, with a SFD that is close

to half the length. As another example, there is no simple, strong sequence for nr = 19

and P = 6. However, the following 114 bit long, 2-D sequence is strong,

- (12) -(12) -(12)

C - Salt - Sal t - Sal t - Salt ' alt * Salt

Expressed as a periodic sequence, the SFD is again about half the length.

Search complexity increases drastically if the MSD for a nr, P tuple is not strong.

We can generalize the set Salt in (3.26) thus,

Sd = {s I dH (8, S(1)) - d}

i.e. the set of all sequences with adjacent distance d. Note that Sd is empty for odd

values of d. Else,

ISd = 2(dr)

since a sequence in Sd must have bit transitions at exactly d out of nr positions. The

doubling is because inversion does not affect membership. If our squared distance

target is dsq, then all subsequences must belong to the set,

S>dsq = U Sd

dsq _ dl nr-1

and the number of candidate sequences to test is,

IS>d-q I
P

It is desirable to set our distance target as a fixed fraction of nr. For instance, I-H

sequences achieve a squared distance of roughly nr/2. But, it may be shown that any



fixed fraction (excluding trivial ones) leads to an exponential number of sequences (in

nr) in S>d,,. Hence, for large nr, such a search is as infeasible as an exhaustive one.

The problem of constructing a sequence with squared distance that is guaranteed to

exceed a specified fraction of nr remains unsolved.

Table 3.1 summarizes the results of our computer searches over a range of pa-

rameters. It is interesting to note that we could always find sequences such that

dsq(nr) > [3nr/4j. The longest sequence in the table is the 1008 bit long simple,

strong sequence for nr = 63, P = 16. The searches were not exhaustive. So it is

possible that these distances will be improved, and simpler sequences found. The

sequences corresponding to entries in the table are described in appendix A.

P\nr I 11 15 19 23 27 31 63

2 8 12 14 18 20 24
3 8 12 163 18 22 243
4 8 12 16 20 243 26
5 10 143 16 20 24 28
6 10 14 182 223 24 28
7 10 14 18 222 262 303
8 10 14 18 22 26 302 60
16 10 14 18 22 26 30 62
16 10 14 18 22 26 30 62

Table 3.1: Best known squared-distances for given nr, P. Sequences
in bold are strong. Subscripts indicate sequence dimen-
sion. All sequences without a subscript are simple. (tNo
new sequences are listed for nr= 6 3 and P < 8. The dis-
tance achieved by I-H sequences is quoted instead.)

3.4.3 Distance Comparison

Recall that O-H sequences yield,

n, + P n rdsq 2P 2P (nr > P)2P 2P

and, I-H sequences have,

n r +1 nr
dsq 2 2 (nr > 1)



Hence, for a given P, strong MSDs achieve a squared distance gain of 2P and 2 over

O-H and I-H sequences respectively (for sufficiently large nr). Note that MSDs are

not designed with root distance in mind. We estimate that strong sequences have

roughly double the root distance of I-H sequences, or equivalently, about the same

root distance as O-H sequences.

3.5 Walking Sequences

Our focus in this section is constructing sequences with good root distances. Recall

that difference pairs for adjacent integrated codewords are of the type (k, k - 1), and

that,

('1k- k-i) < k>2
2.9k

Hence, one (0,1) pair contributes about six times as much as a (1,2) pair, and, nine

times as much as a (2,3) pair, etc. This motivates exploring sequences where most

adjacent difference pairs are of type (0,1).

Definition. We define root integer distance, thus,

dz(t,t') [ I12

and by extension,

dz (t, t') = dz (tj, t)

and,

dz (T(c)) min dz (t, t')
t,t'ET(c)

Note that drt (T(c)) > dz (T(c)). We will henceforth abbreviate root integer to

integer distance.

Corollary 3.2. The integer distance between adjacent integrated codewords is the

number of type (0,1) difference pairs.



Theorem 3.7. If a sequence c has,

dz (T(c))> 2t, t N

then its sample length is bounded thus,

nr > t(P + 1) (3.29)

Proof. The proof relies solely on studying adjacent distances. Since the Hamming

distance between every pair of adjacent codewords is at least 2t, every subsequence

must have a weight of at least t, and hence the sequence weight must be no less than

Pt. We now prove that we need as many coordinates to accommodate this weight.

Recall that the Hamming distance between adjacent codewords is determined solely

by the adjacent distance of the active subsequence. Consider the difference pairs

between the active subsequence and its shift. A 1 bit in the subsequence might show

up twice, once, or not at all in the difference set, depending on whether it has zero,

one, or two neighbors that are is. We call the first kind strong and the second weak.

As an example, if,

s - [la lb Ic 0 ld 0]

(the tags allow distinguishing is), then, when s is active,

ti - ti+l = ti + s (1) - s

= ti + [(0 - 1a) (1 a - lb) (lb - c) (Ic - 0) (0 - d) (ld - 0)]

= ti + [-1a 0 0 l - 1-d ld]

Bits a and c are weak, and bit d is strong. Bit b does not participate in any difference

pairs. Consider the case when the weight is exactly Pt. Then, all is must be strong

since every subsequence must realize a distance of 2t using t is. However, no two

subsequences can have a strong 1 at the same coordinate and still generate difference

pairs of type (0,1). This is because the integrated symbol at that coordinate would



be 2, and the only possible difference pair would be (2,1). Hence, we need as many

coordinates as there are is, i.e., Pt. A weight greater than Pt allows weak is, which

may share coordinates with weak is from other subsequences. However, it may be

shown that a weak 1 can share its coordinate with at most one other weak 1. But

we need at least two weak is to make up for every strong 1 we eliminate. Hence,

sharing does not allow reduction in the total coordinates required. We thus have Pt

coordinates where exactly one subsequence is a 1. Hence, every integrated codeword

has at least Pt is. Some codeword must also have at least t zeros to realize 2t

difference pairs of type (0,1). The result follows. O

In the rest of the section, we will explore sequences that approach the bound

(3.29). Note that such sequences need not achieve the maximum root distance for

a given length. However, we will show that they achieve substantially better root

distance than all previously discussed sequences. We will limit ourselves to sequences

that yield only (0,1) difference pairs.

Definition. A sequence, c, is P-sparse if, (i) Its integrated codebook T(c) has only

0 or 1 entries, and, (ii) It is minimum weight, i.e., it realizes a distance of 2t using

the minimum possible weight Pt.

Corollary 3.3. A sequence is P-sparse only if there are at least P - 1 zeros between

any two ls.

Note that the binary constraint implies that all distance measures (Hamming,

squared, root, and integer) are identical for sparse sequences. Also, all distances are

even, since the integrated codewords have constant weight.

A sparse sequence of sample length nr may be specified by a location tuple, £ E

{0, 1, ... , P})" as follows. Divide the sequence into nr successive groups of P bits

each. Then Cj is the location of a '1' in the jth group, with Cj = 0 if the group is all

zeros. For instance, we will see later that,

c=[00 10 01 00 00]



is 2-sparse. The location tuple for P = 2 is,

£(c) = (0, 1, 2, 0, 0)

Lemma 3.6. Every positive element of a location tuple of a sparse sequence is strictly

greater than its left neighbor.

Proof. Clearly, a positive element cannot be smaller than its left neighbor else there

will be less than P - 1 zeros between the corresponding is. The minimum weight

criterion precludes positive neighbors that are equal. To see why, note that f. = k $ 0

implies that subsequence qk-1 has a 1 at coordinate j. Since all is must be strong,

they cannot have is as neighbors, and the result follows. O

Note that minimizing the length of a sparse sequence is equivalent to minimizing

the number of zeros, since the is occupy exactly tP coordinates. Lemma 3.6 implies

that any time a positive element in the location tuple is not greater than its pos-

itive left neighbor (i.e., the closest left neighbor that is positive), we need at least

one intervening zero. This suggests that the following class of sequences might be

desirable.

Definition. If every positive element (except the element 1) in the location tuple of

a sparse sequence is greater than its positive left neighbor, we say the sequence walks,

or that it is a walking sequence (abbreviated w-sequence).

The nomenclature arises since the is in successive groups of P bits appear to drift

rightward when the sequence is parsed from left to right. Note that a w-sequence is

completely characterized by the locations of its positive elements. Hence, there are

tP

candidate w-sequences that we must test for a distance of 2t. Assuming that the

number of required zeros in a w-sequence scales at most linearly with t, i.e., n,(t, P) <



t(P + co) for some constant co, we may show via Stirling's approximation that5 ,

(nr )= 20(tlogP) (3.30)

This is significantly smaller than the total number of sequences of comparable length,

2n r P > 2 t p 2

since nr _ tP (3.29). We will see that for large P, there appears to be no penalty in

restricting sequences with good integer distance to w-sequences.

We now illustrate construction of sparse sequences for small t and P. In what

follows, we will sometimes invoke the following Johnson bound [35] which applies to

constant weight binary codes,

nr (n r - 1) (nr - 2) ' -- (n, - w + t)
A(nr, w, 2t) _ w(w - 1)(w - 2) ... (w - t)

where A(nr, w, 2t) is the cardinality of a set of constant weight (w) binary codewords

that achieve a Hamming distance of 2t. In our case, A = nrP, the number of code-

words, and w > tP. It may be shown that increasing the weight beyond the minimum

relaxes the bound, and hence we set w = tP. The smallest nr that satisfies the re-

sulting inequality is the desired bound. While every integrated codebook of a sparse

sequence is a valid constant weight binary code, the reverse is not necessarily true.

Consider sparse (not necessarily walking) sequences with t = 1. The bound (3.29)

gives, nr > P + 1. This may be tightened to,

nr > P+3 (3.31)

To see why, we claim that for t = 1,

()r rP (3.32)

5We use f(x) = O(g(x)) to indicate that there exist constants xo and co > 0 such that f(x) <
cog(x) V x > zo.



The quantity on the left is the total number of strings of length nr with exactly P is,

and that on the right is the number of integrated codewords. No two codewords may

be identical, and (3.32) follows, and yields (3.31). The w-sequence,

£(c) = (1, 2, 3,..., P, 0, 0, 0) (3.33)

meets the bound (3.31) with equality for all P. The proof is straightforward and

omitted. For example, P = 2 yields,

c=[10 01 00 00 00 00]

and,

T(c) =

which has a distance 2.

Consider next the case t = P = 2. The bound (3.29) yields n, r 6. The Johnson

bound yields nr > 9. Exhaustive searches prove that nr cannot equal 9. There are,

however, several solutions of sample length 10. E.g,

£(c) = (1, 2, 0,0, 0,0, 1,0, 2, 0)

i.e.,

c=[10 01 00 00 00 00 10 00 01 00]



achieves a distance of 4.

As a final example, consider t = 3 and P = 2. The bound (3.29) yields 9, the

Johnson bound is 11, and the best known constant weight code with d = 2t = 6,

w = tP = 6, and A(n,, d, w) > Pnr has length 13 [9]. Computer searches show that

the shortest sparse sequence for these parameters has length 15. One such sequence

is,

£(c) = (1, 2, 0, 0, 0, 0, 0,1, 2, 0, 1,0,2, 0, 0) (3.34)

and c has integrated distance 6. These examples seem to suggest that it might be

possible to construct sparse sequences of length t(P + 3) with distance 2t. We will

introduce a sub-family of w-sequences before presenting a conjecture to this effect.

Definition. Suppose that a w-sequence with distance 2t and length n r has t I nr-

Suppose further that the location tuple of this sequence (or some suitable shift)

may be divided into t successive blocks of equal length, such that each block has an

identical number of zeros. We call such a sequence a block w-sequence.

A block w-sequence with nz zeros per block may be specified by a set of t nz-tuples

that identify the locations of the zeros in the corresponding block,

B (c)= (bi, b 2 ,..., bt)

The length 15 sequence in (3.34) is a block sequence,

£(c) = (1, 2, 0, 0, 0, 1, ,1,0 0, 1, 2, 0, 0

Block 1 2 3

and may be specified thus,

B (c) = ((3, 4, 5), (1, 2, 5), (2, 4, 5))

Conjecture 3.4. There exists a block w-sequence of length nr = t(P + 3) for any

given t and P, which achieves a distance of 2t.



We have verified this conjecture for all t < 8 and P < 16. Note that in light of

the lower bound (3.29), block w-sequences are optimum integer distance sequences in

the limit of large P. Clearly, there are no more than

P + 3)= (p 3t) = 2 0(tlogP)

candidate sequences with block size P + 3 for given t, P. (The expression overcounts

since it ignores shifted representations of the same sequence.) Note that the order

of the exponent is identical to that of general w-sequences (3.30), though it may be

shown that the actual exponent is smaller. While this is considerably less than the

set of all possible sequences, it is still a large number. For instance, for t = 8, and

P = 16, it is about 279 candidate sequences, each P -t - (P + 3) = 2432 bits long! In

practice, two factors substantially mitigate this complexity. First, most of the blocks

have the form in (3.33). Next, there exists a threshold Plim(t), such that the block

structure may be reused for any P 2 Pim(t).

Table 3.2 lists w-sequences with block size P + 3 and distance 2t. We use the

threshold effect to specify the block structure for all P > Plim(t). Such a construction

is only a conjecture for now, but has been verified for P < 16. Note that the block

specifiers bi are 3-tuples, and all unspecified blocks are equal to,

b, = (P + 1, P + 2, P + 3)

or the identity block. Sequences when P < Pim(t) are in appendix B.1.

As an illustration, consider t = 4, P = 7. Since P > Plim(4) = 4, the construction

in the table applies, and the desired sequence is,

B (c) = ((8, 9, 10), (8, 9, 10), (8, 9, 10), (5, 6, 10))

with (8, 9, 10) being the identity block. This is a 280 bit long (= Pt(P + 3)), sparse

sequence with a distance of 2t = 8. This is within about 0.8 dB of the lower bound

(3.29), which evaluates to 224 bits for any sequence with this integer distance, sparse



t = 1,P >2 bl = (P+1, P+2, P+3)
t = 2,P > 3 b2 = (P-1,P+2, P+3)
t = 3 or 4, P>4 bt = (P-2, P-1, P+3)
t = 5, P > 4 b4 = (P, P+2, P+3), b5 = (P-3, P-2, P+3)
t = 6, P > 4 b5 = (P-1, P+1, P+2), b6 = (1, P-1, P+3)
t = 7, P> 5 b6 = (P-4, P-2, P-1), b7 = (1, P-3, P+3)

t = 8, P> 5 b6 = (P, P+2, P+3), b7, bs correspond to b6, b7 for t = 7

Table 3.2: Block w-sequences for arbitrary P > Plim(t), conjectured
to achieve a distance of 2t. Only non-identity blocks are
specified.

or otherwise. (The Johnson bound is 217 bits, and hence not as tight.) If P = 3 <

Plim(4), the table in appendix B.1 gives,

B (c) = ((8, 9, 10), (8, 9, 10), (3, 5, 6), (2, 3, 6))

which is a 72 bit sparse sequence with distance 8, about 1.5 dB away from the bound

(3.29), which yields 51 bits.

3.5.1 Distance Comparison

If conjecture 3.4 holds,

nr
drt = 2t = 2

P+3

2nr

P
(P large)

O-H sequences have the best root distance of sequences studied thus far,

n, + P nr
rt 2P 2P2P 2P (nr > P)

Hence, for large t, P, block w-sequences improve root distance by a factor of 4, or 6

dB. Note that the squared distance of block w-sequences is a factor of P/2 worse than

MSDs, which is unsurprising since these sequences were optimized for root distance.



3.5.2 Almost-block w-sequences

Is it possible to construct w-sequences with a block size less than P + 3? We showed

earlier that there are t, P tuples for which this is impossible. Hence, such sequences

would not exist for arbitrary t, P. However, computer searches suggest that for all

t > 1, and P sufficiently large, we can achieve a block size that approaches P + 2 as

t --* 00.

Conjecture 3.5. For every t > 1, and P > Plim(t), there exists an almost-block

w-sequence with distance 2t, that has t - 1 blocks of size P + 2 and one block of size

P + 3.

The conjecture has been verified for t < 8 and P < 16. Almost-block sequences

permit root distance improvements of 0.4-0.8 dB compared with block sequences.

Table 3.3 presents the construction of almost-block sequences. As an example, the

almost-block sequence for t = 4, P = 7 is seen from the table to be,

B (c) = ((8, 9, 10), (8, 9), (6, 9), (5, 9))

which is a 259 bit sequence compared with the 280 bit block sequence discussed

earlier.

Table 3.4 summarizes the classes of sequences and the tradeoff between length

and search complexity.

3.6 Simulation Results

We now study the simulated performance of sequences in the low and high SNR

regimes, with small and large P values. In conventional coding, the difference be-

tween asymptotic and measured gains is best understood via the distance spectrum:

the frequency of distances from a codeword to the rest. Predicting departures from

asymptotic performance is more involved in our setup. First, the codebook geometry

changes with SNR. The underlying distance function evolves smoothly from Euclidean



t=5, P >8

t=6,P> 7

t=7, P >7

t=8, P 7

(P-i, P+2)
(P-2, P+2)
(P-1, P+2),
(P-2, P+2)
([P/2] -1, P-1),
(1, P+2)
(P, P+2),
(P-4, P+2),
(1, P+2)
([P/2] -1, P-1),
(1, P+2),
(P, P+2)
(P, P+2),
(P-2, P+2),

(1[P/2])-1P-1)
(1, P+2)

Table 3.3: Almost-block w-sequences conjectured to achieve a dis-
tance of 2t (verified for P < 16). The first block has
length P + 3 and the rest P +2. Only non-identity blocks
are specified. Sequences for P values not included here
are in appendix B.2.

Sequence Type

Unconstrained
Sparse
Almost-Blockt
Block t

Bound on Length

> t(P + 1) + 1
> t(P + 1) + 1
t(P + 2) + 1

t(P + 3)

Search Complexity

2 0(tP
2 )

2 0(tPlog P)

2 0(t log P)

2 0(tlogP)

Table 3.4: Bounds on sample length for an integer distance of 2t, ver-
sus search complexity (number of candidate sequences) of
various families. The t denotes results that are conjec-
tures.

to root-Euclidean as SNR is swept from 0 to oo. Hence, the squared and root distance

gains may not always apply at moderate SNRs. Also, the integrated codebook is char-

acterized by a distance spectra for each phase (not all necessarily unique), instead of

just one for the entire codebook, as in linear codebooks.

In what follows, the number of nearest Hamming, squared, and root distance

neighbors are denoted by mH, msq, and mrt respectively. When several spectra exist,

we choose one with the highest number of nearest neighbors for the relevant metric.



We study sequences when P=2, the smallest non-trivial value, and P=16, which is

indicative of the largest integration periods in current systems [33, 49, 40]. For each

case, we compare the SNR required by sequences of a given length, and also lengths

required for a given SNR, to achieve identical performance. We use two modes of

comparison since the translation of coding gain to a reduction in length is SNR

dependent.

Note that we would expect gains from new sequences to increase with P. This is

because their advantage is predicated on departures from conventional geometry, and

such departures are small for small P (all proposed distance functions are identical

for P=1). Second, an increasing number of subsequences appears to offer greater

combinatorial opportunity.

3.6.1 Low SNR

Operation at low SNRs requires large sequence lengths. As in practical systems,

we overcome this problem by repeating shorter sequences followed by a SFD. Note

that this is different from using periodic sequences which repeat a sequence of sample

length 2. We estimated the SFD lengths required for the sequences in this section, and

found that including the overhead changes our comparisons only marginally. Hence,

we do not simulate SFDs.

We start with P=2. Table 3.5 shows the parameters and performance of three

sequences: a (nr=30, dsq=8) O-H, (31,16) I-H, and (31,24) SD6. All SNR figures

quoted in this section are for a probability of codeword error (CER) of 10- 4 . Figure

3-2(a) plots the performance of these sequences when each is repeated 16x. The I-H

sequence is 1 dB, and the SD sequence 1.7 dB, better than the O-H sequence. We now

compare lengths required for equal performance. The I-H and SD sequence require 12

and 9 repetitions, respectively, to match 16 repetitions of the O-H sequence. Hence,

the SD sequence requires only about half the length of the O-H sequence.

Next, we compare a (112, dsq= 4 ) O-H, (107,54) I-H and (111,110) MSD sequence

for P=16. Table 3.6 summarizes the key parameters of these sequences. Figure 3-2(b)
6 SD: An abbreviation for sequences with good, but not necessarily maximum, squared distance.



Seq. I nr dsq msq dH mH Rep. SNR (dB)

O-H 30 8 2 8 2 16 2.6
I-H 31 16 4 16 32 16 1.6
SD 31 24 7 13 1 16 0.9

I-H As above 12 2.4
SD 9 2.4

Table 3.5: Sequences and their performance in the low SNR regime
with P=2. Rep. denotes number of times a sequence is
repeated.

plots their performance for a repetition of 64x. The squared distance gains predict

SNR gains of 5.7 dB and 7.2 dB for the I-H and MSD sequence respectively. (Recall

that the exponent is proportional to squared distance, and square of the SNR in the

low SNR regime.) These track the measured gains of 4.7 dB and 6.6 dB. The table

also confirms the primacy of squared, rather than Hamming distance in this regime.

The O-H and MSD sequences have identical Hamming distances and neighbors. Yet,

the latter has significantly better performance. Finally, the I-H and MSD sequences

reduce length by a factor of 4.5x and 9x respectively, when compared with the O-H

sequence.

Note that the gains are significantly greater for P=16 when compared with those

for P=2. Also, P=16 requires sequence lengths that are an order of magnitude greater

than those for P=2. This is consistent with an exponent that varies inversely with P

at low SNRs.

Seq. nr dsq msq dH mH Rep. SNR (dB)

O-H 112 4 2 4 2 64 4.7
I-H 107 54 3 54 136 64 0.0
MSD 111 110 2 4 2 64 -1.8

I-H As above 14 4.7
MSD 7 4.7

Table 3.6: Sequences and their performance in the low SNR regime
for P=16.
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Figure 3-2: Performance in the low SNR regime with (a) P=2, and
each sequence being repeated 16x, and, (b) P=16, and
every sequence repeated 64x.

3.6.2 High SNR

For P=2, we compare (14, drt=4) O-H, (15,6) block w-sequence, and (15,6.3) SD

sequences (table 3.7, and figure 3-3). Note that the MSD has a marginally better

root distance than the w-sequence, though calculations show that they have the same

integer distance. This is unsurprising, since all sequence families tend to overlap for

short lengths and small values of P. The MSD has a SNR gain of 1.5 dB and reduces

length by a factor of 1.4x compared with the O-H sequence.

For P=16, we compare a (109, drt=3.4) MSD and a (109,12) almost-block w-sequence

to a baseline (112,4) O-H sequence (table 3.8, and figure 3-4(a)). Note that the MSD

and O-H sequence have identical Hamming distances, and number of root and Ham-

ming neighbors. Yet, despite a smaller root distance, the MSD outperforms the O-H

sequence by 3.4 dB. This shows that the squared distance criterion continues to be

10
- 1
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relevant at these SNRs. This also explains the MSD's 0.9 dB advantage over the

w-sequence, despite a root distance that is only about a quarter of the latter. Note

however, that the slopes of the three error curves qualitatively reflect their root dis-

tances. For instance, extrapolating from this figure, we expect the w-sequence to

have the best performance in the 10- 5 to 10-6 region.

The sequences in figure 3-4(b) bear this out. The SNR is about 6 dB higher than

the previous case, and performance qualitatively tracks root rather than squared

distances. A (19, drt=-2) block w-sequence achieves a gain of about 1.1 dB and 3.7

Seq.

O-H

w-seq.
SD

SD

Table 3.7:



Seq. nr drt mrt dsq msq dH mH SNR (dB)

O-H 112 4 2 4 2 4 2 15.6
w-seq. 109 12 18 12 18 12 18 13.1
MSD 109 3.4 2 108 2 4 2 12.2

w-seq. 55 6 30 6 30 6 30 15.1
MSD 45 1.4 2 44 2 4 2 15.9

Table 3.8: Sequences and their performance in the high SNR regime
for P=16.

dB compared with a (19, drt=0.6) MSD and (19, drt=0.3) I-H sequence, respectively

(table 3.9). The advantage is not as large as root distances would predict, and this

probably points again to the slow transition from the squared to root distance regime

(and, perhaps, to a lesser extent, the significantly larger mrt of the w-sequence). The

w-sequence is about 2.5x shorter than the baseline (48,2) O-H sequence, which is the

shortest sequence in that family for P=16.

Seq. nr drt mrt dsq msq dH mH SNR (dB)

I-H 19 0.31 2 10 3 10 48 22.2
MSD 19 0.56 2 18 3 4 2 19.6
w-seq. 19 2 34 2 34 2 34 18.5

O-H 48 2 2 2 2 2 2 17.7
I-H 47 0.75 2 24 3 24 76 18.4
MSD 25 0.75 2 24 2 4 2 18.4

Table 3.9: Sequences for the high SNR regime (P=16).

3.6.3 Summary of Improvements

Table 3.10 summarizes the benefits of using new sequences instead of O-H ones.

Both the SNR gain and the factor by which length is reduced is shown. Length

reductions are quoted for the synchronization sequence by itself, and for the entire

packet. Improvements are calculated for two payload sizes - 10 and 100 bits - which

represent telemetry-type sensing applications. Pulse position modulation (PPM) is

assumed for payload bits, and repetition coding used to achieve a packet error rate
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Figure 3-4: Performance for P=16 in the high SNR regime.

(PER) of 10-3. (Ignoring startup costs, more aggressive coding reduces payload

size, increasing the impact of shorter preambles). Additional overhead for detection,

automatic gain control, SFD, etc. is not included. Note that gains increase with P

and with decreasing SNR, and are close to an order of magnitude for P = 16 at low

SNR.

Reduction in length (factor)

Synch. 10 bit 100 bit

1.7 1.3 1.0
9.2 8.8 6.4
1.3 1.1 1.0
2.5 2.0 1.3

Table 3.10: Gains realized when using new sequences in place of O-H

sequences.

10- 1

2



3.7 Average Versus Peak Power Constraint

The synchronization problem can be stated with a constraint on the average, rather

than peak, power.

Problem 3.1. Design of good synchronization sequences:

Given: n, P, Pav.

Solution: Binary sequence c of length n, and a symbol SNR.

Constraint on the solution:

w(c) SNR w() SN Pay (3.35)

Measure of the solution: p (C(c); P, SNR).

Problem: Find the solution that maximizes the measure while obeying the con-

straint.

When SNR --+ 0, the problem of finding the optimum sequence copt may be recast

thus,

copt(n) = arg max p(C(c);P, SNR)

SNR2
= arg max dsq (T(c))

16P
dsq (T(c))

= arg max

since w(c) SNR = npv ((3.35) holds with equality since distances are monotonic in

SNR). Recall the elementary distance bound (3.9),

d(T(c)) 2
w(c) - P

Also, non-zero distance requires w(c) > P (no subsequence may be all zeros). A

sparse sequence meets (3.9) with equality. Hence, if a sparse sequence of weight

P exists for the specified length, it is optimum. It may be shown that for lengths



nr > P + 3, the w-sequence,

f(c) = (1, 2, 3, .. ., P,

nr-P zeros

satisfies this criterion. We can similarly prove that any sparse sequence that exists

for the specified length is optimum under the average power constraint as SNR --+ 00.

Note that a O-H sequence of length n, = Pir has a weight of P(ir + 1)/2, and a

distance of (nr + 1)/2. Hence,

d(T(c)) hr +1 1
=- ~ (nr> 1)

w(c) P(nr - 1) P

which is a factor of two worse than the w-sequence above. Note that there is a trivial

O-H sequence with hr = 1, which does not incur this loss. However, using such a

low weight sequence will likely cause peak power specifications to be violated. (This

is also true of a w-sequence of the same weight.) This problem may be avoided at

high SNRs by using w-sequences of higher weight, which is not possible with O-H

sequences without incurring the 3 dB loss.

3.8 Summary

This work has only initiated an investigation of good synchronization sequences over

the ES channel. Incorporating additional constraints will facilitate the adoption of

our techniques in practical systems:

* Multipath: Synchronization in the presence of multipath is critical for UWB

systems.

* Simultaneous peak and average power constraints.

* SNR unknown to the transmitter.

* Heterogeneous network: Sequences might have to work with both coherent re-

ceivers, and energy sampling front-ends with different integration periods.



From a theoretical perspective, the original problem of maximizing the exponent

for a given SNR is still unsolved. In conventional synchronization, there is a single

optimum sequence for a given length. In our problem, there is a set of optimum

sequences, each of which maximizes the exponent over a certain SNR interval (since

there are only countably many sequences). This is an interesting set to explore,

particularly if it turns out to have a cardinality that is polynomial in nr, P. The

following characterization might yield some insights. Consider the set of all sequences

that are pareto optimum with respect to the squared and root distances. In other

words, no other sequence can strictly improve both distances for a member of this

set. This work has only considered the edges of the pareto frontier. Are optimum

sequences necessarily on this frontier? Are frontier sequences necessarily optimum?

Part of the difficulty in answering these questions is the intractability of the codeword

distance (i.e. the exponent) at an arbitrary SNR. A partial ordering of codebook

distances does not, however, require an explicit knowledge of distances. For instance,

consider the following conjecture.

Conjecture 3.6. If, for two codeword pairs (c, c') and (b, b'),

d(t(c), t(c')) > d(t(b),t(b'))

for both d = dsq, and d = drt, then,

p(c, c'; SNR) > p(b, b'; SNR)

for all SNR.

If true, this might allow proving that some (non-trivial) sequences are strictly

inferior to others at all SNRs. Other approaches that exploit the convexity of distance

metrics may also be fruitful.



3.9 Selected Proofs

3.9.1 Chernoff Information of X2 r.v.s as SNR -+ 0, 00

We begin by reviewing chi-square r.v.s and some notation. Most of this material is

drawn from [42, Sec. 2.1.4].

If xi jV (pi, o) are independent Gaussian r.v.s, then the r.v.,

n-1

i=O

has a chi-square distribution, X2 ( 2 ), with n degrees of freedom, and centrality pa-

rameter, s2 = CiC".The r.v. y is said to be distributed centrally if s2 = 0, and

non-centrally otherwise. The distribution has moments,

Ey = s2 + na2

a2 = 2na4 + 4ns2 o 2

We assume henceforth that a 2 = 1. The pdf of a central X2 r.v. is given by,

1
Iy(y) a YPY(Y) 2n/2r (n/2) yeC

where a = n/2 - 1. Non-central r.v.s are distributed thus,

py (y) = (Y2 e 2 (

(3.36)

(3.37)

where I, is the modified Bessel function of the first kind.

Recall that in the context of a binary hypothesis testing problem with likelihoods,

Y - pi(y) under hypothesis 06, i E {0, 1}



the Chernoff information (C.I.), py, is given by the Chernoff Bound,

py = - In min Eo eA(y)
A<0

where, £(y) is the log-likelihood ratio,

f(y) = InP ( )

and Ei denotes the expectation under Oi.

We now state three propositions related to C.I. when the likelihoods are X2 r.v.s,

y ~. x (s = tjSNR) i = 0, 1

Theorem 3.8.

(to - t 1 )2 SNR 2

4P

( 2 _ 1)2SNR
2 2

(SNR -+ 0)

(SNR -* oc)

(to - tl)2SNR 2

Py- 16P

and,

Py
(V/- _/l)2SNR

8

(SNR - 0)

(SNR - o)

(s - s )2

4P

and,

D(po Pi)

D(po PI) P

(3.38a)

(3.38b)

Corollary 3.4.



Corollary 3.5. For a vector r.v. with independently distributed X2 elements,

y X22 (tiSNR) A (X 2 (ti,0SNR), X2 (tiSNR), .. , X 2 (ti,n-ISNR)) i = 0, 1

we have,

py - Ito - i2 16P

2 SNR

(SNR - 0)

(SNR - oc)

The last corollary does not follow directly from the one before since C.I. is not

always additive (unlike K-L divergence).

Proof of theorem 3.8. The proof is a straightforward, if tedious, exercise in Taylor

series expansions. A more elegant proof may be constructed for the SNR -- 0 case

using a theorem of Chernoff's [12]. We do not include that proof here.

We exclude the trivial case to = tl, and further assume that ti / 0 i.e. both

distributions are non-central. The case when one of the variables is central follows

the same steps.

Plugging the density function (3.37) into,

D(po 1 pi) a Po(y) In Po( dy

yields,

D(Po P)= --~ to SNR + po(y) In (ytSNR) dy
2 to 2 la (v UllSNR)

and,

(3.39)



From the series expansion,

if follows that,

(F (a + 1)- 1 (1 + ax + a 2 2) + O (x2))

rF(a+1)
where, al = F and a2 =

4F (a + 2)'
we may show that,

rF(a+1)
. Using the series expansion for ln(l+x)321 (a + 3)

In(1 + aix + a2x2 + o ( 2)) = alx (a 2 -

2\
al X2 + o (X 2)2 )

It follows that,

In o (V ) = a inx
2 4

- lnF (a + 1) + aix + (a 2 -

and hence,

In o (v/ytoSNR)
l0 (v/ytiSNR)

a Into
2 (tin t

2- l (t,)

+ a (to - tl)SNR y + a2 (t
(2 - (4

+ blSNR y + b2SNR 2y 2 + o (SNR 2)

where, bl = al(to - tl), and b2 =

Iao (VytiSNR)
a
2

- t2)SNR 2y 2 + o (SNR 2)

(SNR -* 0)

(a 2 - ) (t2 - t2). This gives,

In +blSNR Eo y+b 2SNR 2Eo y2+o (SNR 2) (SNR -+ 0)

(3.41)

From (3.36),

Eo y = P + toSNR

Eo Y2 = Eo 2y + 2 P + 4toSNR
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(3.40)

(x - 0)

(X - >0)

2 )a °(,
(x - 0)

_ (X( l2 00 2 k

ja ( VI-) _ _ E 4
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Substitution in (3.41) and some simplification yields,

Po(Y) In aI (VytoSNR)
I. (VytiSNR)

ay\ to)n to - t1 (to - t1) 2  2dy= - In to 2SNR+ SNR +o (S N R 2

2 tl 2 4P

which, with (3.39), yields the desired result (3.38a).

For SNR --+ oc we use the expansion [1, Sec. 9.7.],

I(z) = e + E Cn -n

n=1

ln I(x) = x + o(x)

Po(Y) In la (VytoSNR)
I. (VytlSNR)

dy = (V- - Vl) Eo / + o

= (to - Vtot)SNR + o (SNR)

SNR)
(SNR -+ oo)

(3.43)

where the last step uses,

Eo = NR+ o tNRo SNR) (SNR -+ oc)

(We omit the proof here.) Substituting (3.43) in (3.39), we get,

D(po 1 pl) = 'ln (- to - t SNR + (to2
- ot)SNR + o (SNR)

(SNR - oo)
- (V -V t) 2 SNR + o (SNR)

and the desired result (3.38b) follows.

Proof of corollary 3.4. Recall that,

Py = D(q* po) min D(q Po)
qEQ
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This gives,

(x large) (3.42)

and hence,

(x -- 00)



where,

Q = {q I D(q Po) = D(q I p)}

It is known that q* must be of the form,

q* = Po p1-Aq 1P~ (3.44)

for some A E [0, 1]. The converse is also true - any distribution of this form in Q is

q*. Inspection of (3.38a) shows that,

q X2 (S2
- s2 1 to2 tSNR) (3.45)

yields D(q | Po) - D(q p) for SNR -+ 0. Similarly,

q X2 Vs2 SS+ S
2

SNR
(3.46)

is equidistant from po and pi when SNR -- oc. All that remains is to check if these

equidistant q distributions have the form in (3.44). We now sketch the essential ideas

to demonstrate that they do. The series expansion (3.40) yields,

IQ c (yS2) a/2

Substituting this in the distribution (3.37) gives,

py(y) oc y"/2e - (+S2)

Thus, for SNR -+ 0,

Pi(y) oc ya/2e-'(y+tiSNR)

and, for the choice of q in (3.45),

q(y) oc y/2e-2(2+ sNR)
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It follows that q 0/2 1/2 Also, A(SNR; to, tl) - 1/2 (SNR -- 0), regardless of to, t1.

A more complete proof of these results keeps a tally of the remainder terms, and is

omitted here.

For the large SNR case, (3.42) gives,

ia ( yS2)5
eV

v2i ys2 (S 2 --- 00)

and substitution in (3.37) gives,

(co constant)

(s2 , y -+ o0)

Note that, as s2 - 00, almost all the probability mass lies at y -- oo. Hence, the

polynomial terms O((ys2)co) vanish in relation to the exponential. Thus,

pi(y) oc

and,

q(y)oe 2
q(y) oce

(s82,y - 00)

(S 2 , y -- 00)

for q in (3.46). Note that,

A -2 + (1 - A) 2 (/Vj- a2)2

2 (1+o(1))

holds for A 1/2, and, a2 (ao + a)/2. Hence, q P0 Pl/2 Note that for q in

(3.45),

Py D(q 1 po) D (q II Pl)
SD(Po Pl)

4

This is also true for q in (3.46), and the result follows. Ol

Proof of corollary 3.5. Consider the vector r.v. y = (YI,, 2, ... Yn) with yi indepen-
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dent, and likelihoods,

The log-likelihood ratios are,

Then,

S= - In min
A<O

Spio(Y)
£j(y) = In

psi (y)

( o e M (y )) - In (min Eo eA (Y))
i \ 1 < 0

with equality only if all the Ai are identical. As shown above, Ai - 1/2, and the result

follows from corollary 3.4. []

3.9.2 Bound on Phases in a Simple, Strong MSD Sequence

Theorem. If a simple sequence of integrated length nr is strong, then, for odd nr > 11,

P > [/2(nr - 7)]

Proof. The main idea is to identify a codeword pair that has a Hamming distance

which does not scale with nr. Since a difference pair can contribute a maximum

squared distance of P 2, P must be on the order of the root of nr.

Recall from section 3.4.1 that all subsequences of a strong sequence belong to the

set,

Salt = ( ~, }, r E [O,n 1]
- alt, alt I r -

where,

Salt= [10 10 ... 10 0]

is a sequence of length nr, and s denotes binary inversion. A useful corollary is,

V s8 E Salt, (3.47)
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for some shift r. (This also illustrates that members of Salt have an alternate adja-

cent distance of just 2, which explains the poor Hamming distance between certain

codeword pairs.) By definition, every simple sequence has the form,

c=s.s - s..s, s fs (3.48)

If it is strong, then s, s E Sait. We can always invert and rotate a simple, strong

sequence to derive another simple, strong sequence which has s = salt in (3.48)

above. If s = s ( ) simply rotate left by rP places to get a new s = Salt- If s = -

invert the sequence after shifting. Since rotations and inversions preserve squared

distances, the resulting sequence is also strong.

Now, (3.48) implies,

e) __ (1) , .(1).. ( 1) , (1 ,

eP-f

c(e+2P) = S(3) . (3) ... (3) .(3) (2) . (2) ... (2)

SP-e

for f < P. Hence,

tt = ( - 1)s( ) + (P - £)s + s(1)
(3.49)

t+2p = ( - 1)s (3 ) + (p _- )s( 2) + g(3)

Consider the case of odd P, and let £ = (P + 1)/2. Then (3.49) gives,

P-1
t P2 1 (s + (1)) + (1)

P-1
t+2P 1 (s(2)+ (3)) + (3)

and hence,

P-1
t - te+2P = 2 ((s + s(1)) - (s(2) + (3))) + ((1) - (3)

tg -g+2 = 2 (8"-8 1 ) - J- ) J-
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Since s = salt,

(s + s(1)) - (s(2) + S(3 )) - [0 1 0 0 .. O -1]
P-3 zeros

Also s(1) - s(3) may be evaluated via (3.47). Thus,

t-t+2P= P-l) [01 00 ... -1]+[-1100 ... 00]()

for some shift r. It may be verified that lt - t+2P11 2 is maximized for r = 0 or -1.

max 1te - te+2 112= P+1)2  (P-l) 2
r 2 2

max Ite - te+2p 2 Ite - t+2P 2
r

P 2 +1
+ 2 > nr,2

For even P, pick f = P/2. Then, (3.49) yields,

t+2P= - 1)

(8 + s (+) + (1)

(s(2) + S ( 3 ) ) S(2) + S(3)

te - te+2p =
P-1)

((S + S(1)) - (S(2) + (3))) (8- 8(2)) + ( (1)

-1) [01 0 0 ... -1] + [1 00... -1] + [-10 0 ... 00](r)

P
(2 -1) 00... 0 -P +[-1100 ... 00](r)

2]+"u ul.

The norm is maximized when r = -1,

max it - t+2P = 4+ (P

r 2
- 1)2 + + 1)2

2
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Also,

p2 + 1
2

Hence,

> dsq (T(c)) = r - 1

P odd (3.50)

and,

p 2

- + 6 > n, -1
2

_ (3))



Hence,
P 2

+ 7 > nr, P even
2

which, with (3.50), completes the proof. The bounds may be tightened by consid-

ering additional codeword pairs, which preclude certain values of r during the norm

maximization. O
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Chapter 4

An Energy Sampling Wireless

Modem

We discuss the design of a single-chip, energy sampling, wireless modem with data

rates up to 16 Mbps, and a synchronizer that can sustain 16 GOPS (billion operations

per second) to synchronize to within ± 1 ns using the new synchronization sequences

developed in the previous chapter. The modem was recently reported in two papers

dealing with the RF and analog front-end that samples and quantizes energy [17], and

the digital baseband that synchronizes and demodulates [40]. The author developed

bit-accurate signal processing algorithms used in the digital baseband, which were

implemented on silicon by Patrick Mercier. Denis Daly implemented the energy

sampler.

The modem was developed for DARPA's Hybrid Insect Microelectromechanical

Systems, or HiMEMS program. The broad goal of the program is "to develop tightly

coupled machine-insect interfaces by placing micro-mechanical systems inside the in-

sects during the early stages of metamorphosis" [18]. The modem establishes a wire-

less link used to control the flight of the hawkmoth Manduca sexta. The only source

of power on the moth is a harvester that converts insect motion to electrical energy.

This imposes severe energy constraints on the modem. Previous work on energy

sampling wireless modems suggested their suitability for this application [58, 33].

We will describe the signaling scheme, packet format, and the top level modem
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structure in the next section. This will be followed by a detailed discussion of VLSI

efficient classifiers (synchronizers). We will end with a description of the chip, mea-

sured results, and a summary of contributions.

4.1 Overview

4.1.1 Pulsed Ultra-Wideband Signaling

The FCC defines an Ultra-Wideband (UWB) signal as one with a -10 dB bandwidth

exceeding 500 MHz, or a fractional bandwidth (bandwidth/center frequency) exceed-

ing 1/5. The regulatory body opened up the 3.1-10.6 GHz band for UWB signaling

in 1999, ushering in a period of remarkable activity in UWB signaling. To reduce the

risk of interference to existing devices (including those of operators who had previ-

ously purchased spectrum in these bands), UWB signals must obey a noise emission

limit of -41.3 dBm/MHz, which amounts to a transmitted power of -13.9 dBm for

a 500 MHz signal. Our focus here is single carrier, pulsed UWB systems, i.e., those

that use amplitudes {0, ±1} to modulate the UWB pulse. Although our receivers are

non-coherent, two phases are still useful. Phase scrambling at the transmitter is a

convenient means to disrupt the periodicity of repeated sequences. Left unchecked,

such periodicity creates spectral lines that violate regulatory requirements.

4.1.2 Packet Format

Our UWB modem employs a packet format shown in figure 4-1, which is similar to

that of the 802.15.4a standard [29].

The packet begins with a preamble which is used to detect the signal and syn-

chronize to it. The preamble is composed of repeated sequences (So), followed by a

start-frame-delimiter (SFD) composed of K sequences, Uo, Ui,..., UK-1, each equal

in length to So. To keep the silicon cost manageable, our system constrains the sam-

ple length, nr, of So to be 32 or smaller. We also permit at most 74 repetitions of So.

This includes 10 repetitions where the modem is busy processing and does not sample
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Preamble Header Payload
| '1

SYNC SFD

So S 0 0 0 0o 0 0 0 UK-1

T n _ _ n o. in
I I i

II I I II I " " " II II [
1 0 1 1 1 0 1 1

nburst

pulses

Figure 4-1: Packet format used in energy sampling modem. Pulse
phase scrambling and modulation are not shown.

I

the incoming signal (more on this in a later section). The remaining 64 repetitions

allow reliable detection and synchronization at the desired SNR. The SFD sequences

U E {So, SI = 0} where 0 is the all-zero sequence. Better choices for S 1 exist, but

this suffices to achieve the desired error rates, and, simplifies implementation. We

support two SFDs. The first is the trivial, Uo = 0, suitable for high SNRs. The other

is 5 sequences long, 000S 00, which, incidentally may be shown to have the same

performance as the 8 sequence SFD used in 802.15.4a (OSoOSoSoOOSo). The So and

U sequences use on-off keying (OOK). The pulses are rectangular and 1.95 ns wide,

corresponding to a -10 dB bandwidth of 550 MHz. They are separated by a chip

period (T,) which is also equal to 1.95 ns in our system. Hence, the pulses are back

to back. The transmitter scrambles pulse phase via a PN-sequence to avoid spectral

lines.

The header is a 8 bit field that conveys the length of the packet in bytes, and the

payload carries the information bits. Both the header and payload use binary pulse

position modulation (PPM). The PPM symbol has two slots, and a bit is represented

by a set of Tburst pulses in the corresponding slot. The system allows the slot time,

and rburst to be programmable.
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4.1.3 Modem Units

A block diagram of the modem is shown in figure 4-2.

LKF. bits

I------------- -- *

Synch. SFD--------J

start

Stat Mahin an Cotro
- - - --- - - - - - - - - - - -

Figure 4-2: Block diagram of the energy sampling modem.

The RF energy sampler uses an integration period of P = 16, and a 5 bit analog-

to-digital converter (ADC) to quantize energy [17]. The digital baseband has four

signal processing units - detector, sample synchronizer, sequence synchronizer (SFD

search unit), and demodulator - coordinated by a control unit. The detector is

programmed with a threshold that determines the probability of detection and false

alarm. The sample synchronizer infers the boundary of the repeated sequences, while

the sequence synchronizer infers the start of the payload by searching for the SFD. The

demodulator decodes the header to determine packet length, and then demodulates

PPM symbols by comparing the energy in the two slots.

Detection and SFD search are classification problems, and use the same hardware

as the sample synchronizer. For detection, we require that the largest of the codeword

log-likelihoods (LLs) exceed the likelihood of the noise codeword by a threshold. De-

tection performance may be traded off for lower energy consumption by sub-sampling

the codebook.

Searching for the SFD, Uo U1 ... UK-1, corresponds to a classification problem
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with the codebook,

So So ... So So

So So ... So Uo

So So ... U0  U1

So U ... UK-3 UK-2

Uo U1 ... UK-2 UK-1

Recall that we restrict U to be either So, or, S, = 0. Hence, the LL of each

codebook entry may be calculated by adding K LLs of the form, logp(y I Si). This

requires an integrated codebook with just So and S1.

In summary, a well implemented classifier is the key to the overall efficiency of

preamble processing. This is the focus of the next section.

4.2 VLSI Efficient Classifiers

A classifier takes the received vector y, and an integrated codebook T as inputs,

computes codeword log-likelihoods (LLs) or suitable approximations, and declares

the most likely codeword. Designing a good classifier is an exercise in balancing

performance (probability of classification error) and complexity (area, power, etc.) In

this section, we study a classifier that strikes a suitable balance when P is large, as

in our case.

4.2.1 Suitable Approximations

The maximum-likelihood (ML) classifier is optimum, but costly to compute because of

the form of the chi-square distribution. A ML implementation that uses lookups and

limits computation to adding sample LLs is possible, though the resulting table sizes

are much larger than those required by approximations with comparable performance.

Matched filter (MF) classifiers, i.e. those that pick the codeword with the maxi-

mum inner product, (y, t), work well at low SNRs, with a performance close to that

of ML classifiers. These are suitable when all codewords have the same norm. This
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is the case for binary integrated codebooks, e.g., O-H and w-sequences. The loss in

MF performance compared with ML increases with SNR.

When codeword norm is not a constant, the minimum distance (MD) classifier that

computes Ily - E[y It] | may be used. On substituting the expected value, E[y I t] =

P + tSNR, and using the property that, Ej tij = w(c), i.e. codewords always have

the same L 1 norm, it follows that the MD metric is equivalent to (y, t) - |ltl2 SNR/2.

While the MD classifier achieves good performance at low SNRs, it may be extremely

sensitive to errors in estimating the SNR 1. For instance, when using I-H sequences

with P=16, a SNR estimation error of about 0.5 dB is enough to render the classifier

unusable. Furthermore, this sensitivity is independent of the SNR. Sacrificing link

margin does not help. There are two possible solutions. One is to use linear/affine

hyperplanes different from those defined by the MD criterion. It may be shown that

there exist simple linear hyperplanes that can discriminate between two codewords

without regard to SNR (at some cost to performance). The main drawback is that

codewords must now be compared pairwise - the most likely codeword cannot be

inferred by computing a single metric per codeword, and picking the maximum. The

alternative is to use quadratic metrics. We now discuss this option.

When P is large, the central limit theorem motivates treating chi-squared r.v.s as

Gaussian,

Yk n(E[yk I tk], var[yk I tk]) (4.2)

where y is, as usual, the received random vector, and t is the transmitted codeword.

Thus the LLs may be approximated by,

nr-1 2 nr-1

lgp(y I t) - (Yk - E[yk I t ] 1 nr

log p(y 2var[yk tk] 2 log(2rvar[yk tk]) (4.3)

k=0 k=0

(The bias term may be ignored with little loss of performance at low error rates.) MD

classifiers assume that the signal is Gaussian with equal variance along all dimensions.

'It may be shown that a MD classifier is sensitive if and only if there exists a pair of codewords,
say, t and t', which lie on the same side of the linear hyperplane with the normal t - t'. This is only
possible if t and t' have different norms, but this is not a sufficient condition. For instance, it may
be shown that no integrated codebook with P = 2 has such a pair, despite unequal norms.
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The approximation above accounts for the unequal variances. For lack of a better

term, we call this the unequal variance Gaussian (UVC) metric. For P = 16, this

approximation essentially matches the performance of a ML classifier. This is true

across SNRs, unlike a MD classifier whose loss grows with SNR. Figure 4-3 illustrates

this for a (nr = 31, P = 16) I-H sequence. Two sets of curves are shown. The first

is when the sequence is not repeated, and the other with a repetition of 32x to allow

operation at lower SNR. The loss in performance of the UVG classifier compared with

the optimum, ML, classifier is about 0.3 dB in the low SNR case (32x) and essentially

zero at high SNRs (ix). The MD classifier has a loss of about 0.6 dB (32x) and 0.8

dB (Ix). Note that losses are sequence dependent, and these are only illustrations.

10-1

S 32x - 1x

0O-2

-3

MD : MD

ML ML

10-4
0 5 10 15 20

SNR (dB)

Figure 4-3: The ML, UVG, and MD classifiers for a (31,16) I-H se-
quence repeated 32x and lx. The UVG curve lies be-
tween ML and MD (32x), and overlaps with ML (Ix).

The UVG approximation is preferable to MD since it is more robust to SNR mis-

matches. Furthermore, this robustness improves with increasing SNR - a desirable

system characteristic. Figure 4-4 shows the impact of SNR mismatch for the same

I-H sequence. Once again, there are two sets of curves corresponding to ix and 32x
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repetition. Dotted curves show performance of the MD and UVG classifier with no

mismatch (i.e. identical to those in figure 4-3). To study the impact of mismatch,

we fix the SNR estimate used by the classifier, and sweep the actual SNR seen by

the channel. The MD classifier fails catastrophically for differences between true and

estimated SNRs that are as small as 0.5 dB. The UVG classifier is seen to be more

tolerant at low SNRs (32x), and indifferent to mismatches at high SNRs (ix). All

these properties may be rigorously derived by considering the codebook geometry.

For instance, in the case of I-H sequences, it may be shown that the MD classifier

can only tolerate a linear SNR mismatch factor of about (P - 1)/(P - 2), for P > 2,

before catastrophic failure. Hence, the MD classifier's tolerance decreases from about

3 dB (P = 3) to 0.3 dB (P = 16) when I-H sequences are used.

10 a
\" \

10-2

FMD %MD

UVG UVG\

10-4
5 10 15 20

SNR (dB)

Figure 4-4: Impact of SNR mismatch on the MD and UVG classi-
fiers. Dotted curves denote no mismatch. Curves on
the left and right are for 32 and 1 sequence repetition,
respectively.

Finally, we will show in the following section that the UVG classifier has essen-

tially the same computational complexity as the MD classifier. This, along with
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the robustness, and good performance across SNRs is a strong argument in favor of

UVG- when P is large. Note that chi-square r.v.s decay with a linear, rather than a

quadratic exponent. Hence, the UVG approximation is mismatched in the tail. This

has not been a problem in our system, perhaps because error rates are not very low

(on the order of 10-4). Lower error rates, or a different geometry might change this,

and designers should be vigilant.

In the next two sections, we will study schemes that reduce the computational

burden of the UVG classifier.

4.2.2 Reducing Computation

Following (4.3), we define the decision metric,

3 (y, t) = E (Yk -) (4.4)
k=O k

where, Uk = E[yk I tk], and oa = var[yk I tk]. Calculating the metric above takes 2

multiplications and 1 addition per coordinate, which we will denote as (2,1). Hence,

the computation required for all codewords is n(2, 1), where n is the symbol length

of the sequence. If R codewords are observed to achieve lower operating SNR, we

end up with Rn(2, 1) operations (ops) per coordinate. Averaging received data and

running the classifier just once is significantly cheaper than running the classifier R

times and averaging the LLs. To see how this may be done, re-write (4.4) as,

/3(y, t) = 1 (y2a2,k + ykal,k) + ao(t)

k=0 (4.5)

= ( 2 , a 2(t) + (y, a(t)) + ao(t)

where, a 2, a1 , and ao are determined by t and SNR (the latter dependence not shown

for brevity). Consider now R repetitions of this sequence. Let y = [yo y, ... YR-11
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where y, is the received vector for the r-th transmitted sequence. Then,

R-1

R y,t)= w (yr, t)
r=o

K , a2 + (t) , i(t)) + ao(t)

( a2 (t))+ ( (t)) +ao(t)

It takes R - 1 additions per coordinate to compute y (the division by R is usually

realized as an arithmetic shift by picking R to be a power of two). It takes R multiplies

and R - 1 adds per coordinate to compute y 2. Hence, the total for both averages

is about R(1, 2). Having computed the averages, it takes n(2, 1) ops to compute all

the metrics. Hence, the overall complexity is R(1, 2) + n(2, 1) = (R + 2n, 2R + n)

ops per coordinate. This represents a reduction in multiplications by a factor of

2Rn/(R + 2n), which is > min(n, R/2). Additions are similarly reduced by a factor

> min(n/4, R/2). If n > R, both operations are reduced by a factor close to R.

Put differently, the averaging cost is insignificant in this case, and the overall cost is

essentially identical to that of a system that does not repeat sequences.

A further reduction is possible as follows 2. It may be shown that,

1
al(t) - - Pa 2(t) (4.6)

for any t. Hence,

R P(y, t)= y2 P, a ) 2 Y + ao(t)

Since the second term is independent of t, this allows the following equivalent metric

to be used,

(y, t)= Y2 - P, a 2 (t ) + ao(t) (4.7)

It takes (1,1) ops per coordinate to compute y 2 - Py once the averages have been

2This transform was discovered after the chip was built, and could not be incorporated.
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computed. It then takes n(1, 1) ops to compute the inner product in (4.7) for all

codewords - the same complexity as that of a MF. This transformation cuts the

number of multiplications in half compared to realizing the quadratic expression (4.5).

The final count is R(1, 2) + (1, 1) + n(1, 1) r (n + R, n + 2R) ops per coordinate, as

opposed to a direct implementation that uses Rn(2, 1) ops.

Implementing the 3 metric efficiently requires pre-computing and storing coeffi-

cients. Note that a2,k and al,k are determined by tk, which is an integer in [0, P].

Hence, we may store the integrated codebook, and a table of P + 1 coefficients for

each of a2 and al, respectively. Also, ao (t()) = ao(t), and hence only P a0o coeffi-

cients need to be stored. The codebook is completely characterized by the first P

codewords. Hence, storing the codebook requires P nr [log 2 (P + 1)] bits. For exam-

ple, if P = 16, n = 512, bcoeff = 12, the codebook requires 2480 bits and coefficient

tables require 600 bits. Since coefficients are SNR dependent, a typical implementa-

tion must store several such tables, depending on the total dynamic range, and the

system's tolerance to SNR estimation error. For instance, a system with a range of

30 dB which can tolerate ±1.5 dB of SNR error would require 10 tables.

4.2.3 Distributing Computation

The building block of a UVG classifier carries out the computation in (4.5) (or (4.7)).

We call this the LL unit (LLU). Every hardware clock cycle, the LLU accepts a

received sample Yk, and the corresponding table entries, and computes the sample

LL. A codeword LL is produced every nr cycles.

The first architectural decision is the number of LLUs required, which determines

the latency of the classifier. Higher latencies translate to larger temporary buffers

to store the incoming signal while the classifier is busy. An alternative is to simply

discard the signal (permissible only in the preamble), and hence sacrifice degrees

of freedom, while the unit is busy. Also, a lower latency, or increased parallelism

allows reducing circuit voltages, which often enables significant reductions in energy

consumed [50]. The latency to compute LLs for the entire codebook is nnr/nLLU

clock cycles, where nLLU is the number of available LLUs. The front-end produces an
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energy sample every clock cycle, thus sampling a complete sequence every nr cycles.

Hence, the latency in terms of sequence durations is n/nLLU. An implementation that

can sacrifice some part of the preamble to manage latency typically limits the loss to,

say, nLoss sequences. Hence, nLLU > n/nLoss. Our implementation uses n = 512 and

achieves nLoss = 4 using 128 LLUs.

The next question is a suitable organization of these units. For instance, every

unit may store a local copy of the coefficients. This reduces the interconnect costs

to conveying the received vector (or averages), but significantly increases the storage

costs. Consider an alternative where we group units into P phase blocks. Units in

a phase block share a common set of coefficients. LLUs in the £fh group compute

S(y, tJ)). These are identical to the metrics 3 (y(-i), te). However, the VLSI cost

of the two expressions is typically not equivalent. In our implementation using the 0

metric, the choice was between rotating two sets of 12 bit wide coefficients, or y 2 and

y, which are 9 bits each. The latter is more efficient, both in energy and storage.

Further optimizations may be possible. For instance, we do not currently share

computation across codewords. A good trellis representation, if one exists for our

codebooks, would permit that. Another possibility is to relay pre-computed products,

rather than the raw data and coefficient vectors. For instance, every clock cycle, a

central unit may compute P+ 1 products of the form /(yk, t) and relay these to LLUs.

The LLUs then select the desired product based on their codeword and accumulate

it. Such a scheme requires only P + 1, rather than 2n multiplications per coordinate

- a savings of close to hr. However, this should be weighed against the increase in

interconnect and multiplexing costs by a factor of P + 1.

4.3 Chip Details

The author implemented a bit-accurate digital baseband in Matlab and C. A floating

point ML classifier was implemented to serve as a performance benchmark. A fixed

point UVG classifier was then developed to enable an efficient VLSI implementation,

while limiting the performance loss compared with the benchmark. Patrick Mercier
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ported the fixed point representation in Matlab to Verilog, a hardware description

language, and established the bit-level equivalence of the two versions. He also carried

out the physical design of the digital baseband, and interfaced it to the energy sampler

developed by Denis Daly on the same chip. The chip was fabricated in a 90 nm CMOS

process, and the digital baseband occupies 2.55 mm2 . More details are included in

[40, 17]. A die photograph is shown in figure 4-5.

Figure 4-5: A single-chip energy sampling modem.

4.4 Measurements

The equivalence of the digital baseband on the chip to the fixed-point Matlab imple-

mentation was established via a mode that allows feeding known inputs directly to

the baseband (i.e. bypassing the RF energy sampler). The outputs were then shown

to match Matlab bit for bit. Figure 4-6 shows the overall performance of the digital

baseband when using length 31 I-H sequences repeated 16 times. It may be seen

that the overall implementation loss of the silicon implementation compared with an

unquantized, ML classifier is less than 2 dB.
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Figure 4-6: Synchronization error rate measured on the chip (cour-
tesy Patrick Mercier), compared with an unquantized
ML implementation (simulated). SNR is the ratio of
average power to noise, and not SNR per symbol.

The sensitivity of the overall modem was -76 dBm for a data rate of 16 Mbps

at a BER of 10- 3 [17]. This is about 1.5 dB worse than the theoretically predicted

value (assuming an unquantized front-end). The discrepancy is probably a result

of, among other factors, unaccounted off-chip losses, imperfect synchronization, and

measurement resolution.

4.5 Summary

In this chapter we discussed the design of an energy sampling wireless modem capable

of accurate synchronization using our new sequences. We showed that the minimum

distance classification criterion may suffer from extreme sensitivity to SNR estima-

tion errors. A Gaussian approximation that takes the unequal variance along signal

dimensions into account overcomes this problem, without increasing the computa-
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tional complexity. This is the first UWB solution to achieve high synchronization

precision without changing the sampling phase of the receiver via a high speed clock.

We hope that this will dispel the widely held notion that such phase adjustment

is a requirement for accurate time of arrival estimation, and lead to more efficient

solutions.
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Chapter 5

Conclusions

We begin with a list of open problems, and conclude with the outlook for this work.

5.1 Open Problems

5.1.1 Coding

Problem 5.1. Good codes for the energy sampling (ES) channel.

Description: A corollary of theorem 3.1 is that coding gain over the ES channel

is given by, { d(k/n)2 (SNR -* 0)

d(k/n) (SNR -o oc)

As an example, in a coherent system, the rate 1/2, K = 7 convolutional code with

octal generators [133 171] yields 5.7 dB gain at a BER of 10-6. Using approximations

for the probability of bit error (and not asymptotic arguments), we estimate that the

gain over a complex ES channel with P = 16 is just 2.5 dB. Using higher rate codes

should improve gain, but will require longer blocklengths. Good solutions would allow

improving 802.15.4a coding performance.

Problem 5.2. Closing the gap to capacity over the observation limited (OL) channel.

Description: We are currently around 2 dB from capacity when sampling the

(24,12) Golay code using the maximum entropy (ME) criterion. What are the best
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codes and sampling techniques to close this gap? According to the sphere packing

bound, a perfect rate 1/6 spherical code with k = 500 would be about a dB from

capacity (at a codeword error rate of around 10-3). This suggests, based on our

work, that k 70 should suffice over the OL channel. What are good candidates?

A rate-compatible punctured convolutional code (RCPC) where the mother code has

a gain of, say, 6.5-7 dB might be an option [27]. Implementing the BCJR algorithm

efficiently, as incremental channel observations are made, would be an interesting

exercise. See section 2.7 for a discussion of short Turbo and LDPC codes of Crozier

et al. and Tong et al., which might also be viable.

Problem 5.3. (Conjecture) Let A(n, d, w) be the cardinality of the largest set of

constant weight binary strings of length n, minimum pairwise distance d, and weight

w. Then,

A(5t, t2t) 2t> 10t t N

Description: This is a special case of problem 5.10 for P = 2, since integrated

codebooks of block w-sequences are constant weight binary codebooks. We have

verified the conjecture for t < 8. The codes for t = 7, 8 are the only ones known for

the corresponding n, d, w parameters. They have a coding gain of about 4 dB, which is

reasonable given the ease of decoding (their codebooks are the union of two circulant

matrices.) See Sloane's website, http://www.research.att.com/-njas/codes/Andw/

for the best known constant weight codes, and also [9].

5.1.2 Information Theory

Problem 5.4. Capacity of the energy sampling (ES) channel.

Description: What is the capacity of the channel in figure 3-1? Energy sampling is

now part of the 802.15.4a standard, and to the best of our knowledge, this is an open

problem. Our work on error exponents as the SNR -- 0, oc may help (theorem 3.1).

Problem 5.5. Sphere packing bound for the observation limited (OL) channel.

Description: Given a rate, Shannon bounded the information blocklength (k)

required to achieve a certain reliability over the AWGN channel by essentially calcu-
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lating the probability that a n-dimensional Gaussian r.v. falls outside a hypercone

with solid angle 2
- k [19]. E.g., for a gain of 9.2 dB, rate 1/6, and codeword error rate

of around 10- 4, this evaluates to k > 81. A k of 12 is possible on the OL channel

by sampling the Golay code using the ME criterion. What is the analogous sphere

packing bound for the OL channel?

Problem 5.6. (Conjecture) If, for two codeword pairs (c, c') and (b, b'),

d(t(c), t(c')) > d(t(b), t(b'))

for both d = d,q, and d = drt, then,

p(c, c'; SNR) > p(b, b'; SNR)

for all SNR.

Description: See section 3.1 for notation. If true, this would be a major step

toward finding sequences which maximize the exponent for a given SNR, rather than

vanishing or infinite SNRs. It would imply that such sequences always lie on the

(dsq, drt) Pareto frontier (see problem 5.12).

5.1.3 Sequence Design

Problem 5.7. Given the sample length of a sequence, nr (odd), find the smallest

integration period (P) for which a strong sequence exists, i.e., dH (T(c)) = nr - 1 (see

section 3.1 for notation.)

Description: We have shown that for a strong sequence to be simple,

P > [2(nr- 7)] nr 11

What is corresponding lower bound if we allow sequences that are not simple? Ta-

ble 3.1 tabulates strong sequences that are not simple.
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Problem 5.8. (Conjecture) There always exists a sequence c such that,

ds, (T(c)) > 3n,]
1 4]

Description: Truth would imply that it is always possible to improve the squared

distance of an interpolated Hadamard sequence by a factor of about 1.5, i.e. roughly

1.8 dB. The conjecture is suggested by table 3.1.

Problem 5.9. (Conjecture 3.3) For all odd n, > 7, and P > Plim(nr), there exists a

simple, strong sequence of the form,

(r(nr)) (5.1)
C = Salt * Salt ... Salt - Salt

where Plim and r are functions of nr.

Description: See section 3.4.1 for details.

Problem 5.10. (Conjecture 3.4) There exists a block w-sequence of length nr =

t(P + 3) for any given t and P, which achieves a distance of 2t.

Description: If true, it proves that we can always achieve a root-distance gain of

4x compared with oversampled Hadamard sequences (802.15.4a-like codes). It also

yields a new family of constant weight codes, and establishes the lower bound,

A(t(P + 3), 2t, Pt) > tP(P + 3) t E N

where A(n, d, w) is the cardinality of the largest set of constant weight binary strings

of length n, minimum pairwise distance d, and weight w.

Problem 5.11. What sequences maximize the squared or root distance in the pres-

ence of multipath?

Description: Studying sequence performance under multipath is critical for use in

real world scenarios. The high SNR case (root distance criterion) might be easier to

tackle first because sequences that are sparse are optimum in the AWGN case, and

this will minimize intersymbol interference (ISI).
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Problem 5.12. Are there families other than strong sequences that are Pareto opti-

mum with respect to the (dsq, drt) criteria (figure 5-1)?

drtdrt 0 Block

O-H o oStrong0 I-H

dsq

Figure 5-1: What does the Pareto frontier look like?

Description: A sequence is Pareto optimum with respect to the (dsq, drt) criteria

if no other sequence can simultaneously improve both these distances. The set of all

Pareto optimum sequences forms the Pareto frontier. If the conjecture in problem 5.6

is true, it would establish the fundamental importance of the frontier in constructing

sequences that are optimum for a given SNR: such sequences will lie on the frontier

(the converse is not necessarily true.) Strong sequences maximize dsq and hence lie

on the frontier. Block sequences likely lie close to the frontier (at least for large P).

Little else is known about the frontier. One quick contribution would be to plot the

frontier for small nr and P values, using computer searches, to get some qualitative

insight into the more general problem.

5.1.4 VLSI

Problem 5.13. A digital baseband that achieves 9x reduction in observation via the

(24,12,8) Golay code.

Description: The baseband would set a record for the shortest blocklength for

this gain, by an order of magnitude, compared with any reported communications

system. The challenge is an efficient VLSI architecture for computing bit APPs on a

tail-biting trellis of the Golay code. Key references are [10, 36].
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Problem 5.14. Demonstrate a 10x reduction in VLSI costs of the energy sampling

synchronizer reported by Mercier et al. [40].

Description: Requires development of new linear classifiers that are robust to

SNR mismatch, and the corresponding VLSI architecture. Our work allows high

precision synchronization without high speed clocks, which would enable cost sensitive

802.15.4a chipsets to offer locationing. (Such chipsets would typically not require high

precision synchronization for the payload.)

5.2 Outlook

We hope that the theme of adaptive sampling - well known to statisticians - will

find systematic use in modem design, beyond the examples in this thesis. The general

ideas are straightforward:

1. Quit computation when the results are reliable enough.

2. Add on some extra observations for the case when the channel is bad and the

metric needs extra samples to reach the reliability threshold.

3. Whenever possible, pick observations using the Box-Hill, or Blot-Meeter crite-

rion, rather than uniformly.

These techniques are probably used in an ad-hoc manner today, but diligent use

may allow trading degrees of freedom for greatly reduced complexity in battery con-

strained devices.

As for specific observation cost coding techniques, we feel confident that reducing

observation by 4-5x is best done by using a small (7,3) code sampled uniformly or

using maximum entropy. We hope that future standards will consider "battery emer-

gency modes" where bandwidth is traded off to conserve battery charge using simple

adaptive sampling. We believe that the main barrier to realizing higher gains (8-9x)

is the ability to rapidly turn a sampler on/off. Currently, this seems practical only

for non-coherent systems.
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Our work on new synchronization sequences suggests that there are considerable

gains for energy sampling receivers operating at low SNR and moderate integration

periods. Should energy sampling systems continue to grow in importance - their

ultra low cost is an important attraction - the best way for 802.15.4a devices to use

these new sequences would be in a special, extreme energy efficiency mode. This might

offer vendors a way to, at least temporarily, distinguish themselves from others. The

experience of 802.11 WLANs shows that standards compliant solutions tend to quickly

converge to a common cost and performance point. Successful vendors in that space

have offered extra modes to differentiate their offerings. An important unknown in our

sequence design work is how multipath changes our relative advantage over current

schemes. Our work on classifiers robust to parameter mismatch will hopefully aid

adoption, should it occur.
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Appendix A

Tables of Sequences with Good

Squared Distance

The table of best known squared distances is repeated for ease of reference.

P\nrl 11 15 19 23 27 31 63

2 8 12 14 18 20 24
3 8 12 163 18 22 243
4 8 12 16 20 243 26
5 10 143 16 20 24 28
6 10 14 182 223 24 28
7 10 14 18 222 262 303
8 10 14 18 22 26 302 60
16 10 14 18 22 26 30 62
16 10 14 18 22 26 30 62

Table A.1: Best known squared-distances for given nr, P. Sequences
in bold are strong. Subscripts indicate sequence dimen-

sion. All sequences without a subscript are simple.

All simple and strong sequences are of the form,

C = Salt * Salt ' .
(r)

SSalt • Salt

where,

Salt = [1 0 1 0 ... 1 0 0]
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and,

r=2 nr +1

The following tables cover the remaining cases. Sequences are identified by the

(nr, P, dsq) tuple. Table A.2 covers the construction of strong MSDs which are not

simple. Table A.3 covers all sequences that are not strong (but may be MSD).

(15,5,14)
(19,6,18)
(23,6,22)
(23,7,22)
(27,7,26)
(31,7,30)
(31,8,30)

0, 0, 9, 13, 13}0, 0,0, 12, 12, 12}
0, 0,15 15, 15, 16, 16}
0, 0, 0, 0, 0,16,16}
0, 0, 0, 0,1 T4, 4,14 }
0, 0, O, 23, 29, 29, 29}
0, 0, 0, 0, 0, 22, 22, 22}

Table A.2: Sequences that are strong but not simple. All subcodes
are shifts, and sometimes inversions of salt. Subcodes are
listed in order from 0 to P - 1, and specified by the right
shift, with an overbar for inversion.
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Table A.3: Sequences that are not strong. Subcodes qi are specified
by the location of is.

q0 ={1, 3, 5, 8}

q1={1, 3, 5, 7}

qo=ql={1, 3, 5, 7}

q2={1, 3, 5, 6, 8}

qo=q 1 =q 2={1, 3, 5, 7}

q3={1, 3, 5, 6, 8}

qo={1, 3, 5, 7, 10, 12, 13}
(15,2,12)

q1={1, 3, 5, 7, 9, 11, 12}

(153,12) qo= 1={1, 3, 5, 7, 9, 11}
(15,3,12)

q2={1, 3, 5, 7, 8, 10, 11, 13}

qo=q 1=q2={1, 3, 5, 7, 9, 11}
(15,4,12)

q3={1, 3, 5, 7, 10, 12}

qo={1, 3, 5, 7, 9, 11, 13, 14}
(19,2,14)

ql={1, 3, 5, 7, 9, 10, 12, 13, 17}

qo={1, 3, 5, 7, 9, 11, 12, 14, 16, 17}

(19,3,16) q1={1, 3, 5, 7, 9, 11, 13, 15}

q2={1, 3, 5, 7, 9, 11, 13, 15, 16}

q=q=qq2={1, 3, 5, 7, 9, 11, 13, 15}
(19,4,16)

q3 ={1, 3, 5, 7, 9, 11, 12, 14, 16}

qo=q1 =q 2=q3 ={1, 3, 5, 7, 9, 11, 13, 15}
(19,5,16)

q4={1, 3, 5, 7, 9, 11, 12, 14, 16}

qo={1, 3, 6, 8, 10, 12, 14, 15, 18, 19, 21}
(23,2,18)

q1={1, 3, 5, 7, 9, 11, 13, 15, 17, 18}

qo=ql={1, 3, 5, 7, 9, 11, 13, 15, 17}
(23,3,18)

q2={1, 3, 5, 7, 9, 11, 14, 16, 17, 20}

qo=q 1 =q2={1, 3, 5, 7, 9, 11, 13, 15, 17, 19}
(23,4,20)

Continued on next page
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Table A.3 - continued from previous page

q 3={1, 3, 5, 7, 9, 11, 13, 14, 16, 18, 19, 22}

o=q=q= 2 =q 3 ={1, 3, 5, 7, 9, 11, 13, 15, 17, 19}
(23,5,20)

q4={1, 3, 5, 7, 9, 11, 13, 16, 18, 20}

(27220) qo={1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 20}
(27,2,20)

ql={1, 3, 5, 7, 8, 10, 12, 13, 15, 18, 19, 20, 23, 26}

o={1, 2, 4, 6, 8, 10, 12, 14, 16, 19, 21, 22, 25}
(27,3,22)

q1=q2={1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21}

o={1, 3, 5, 7, 9, 11, 13, 15, 17, 20, 22, 23, 25}

(27,4,24) qx=q 2={1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23}

q 3={1, 3, 5, 7, 9,11, 13, 15, 17, 19, 21, 22, 24}

= 2qo=q=q2 =3={1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23}
(27,5,24)

q4={1, 3, 5, 7, 9, 11, 13, 15, 17, 18, 20, 22, 24}

qo=q 1=q 2=q 3=q4 ={1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23}
(27,6,24)

q5={1, 3, 5, 7, 9, 11, 13, 15, 17, 18, 20, 22, 24}

o={1, 4, 7, 9, 10, 12, 14, 16, 19, 20, 21, 23, 25, 27, 28, 30}
(31,2,24)

ql={2, 4, 6, 8, 9, 11, 14, 16, 18, 19, 20, 23, 25, 27, 28, 30}

o={1, 3, 5, 7, 8, 9, 11, 13, 15, 18, 20, 21, 23, 24, 26, 29, 30}

(31,3,24) q1={2, 4, 6, 8, 10, 13, 16, 18, 19, 22, 23, 25, 28, 30}

q 2={1, 2, 4, 6, 8, 10, 12, 13, 15, 17, 18, 20, 24, 26, 29}

qo=q 1=q 2={1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25}
(31,4,26)

q3 ={1, 3, 5, 7, 9, 11, 13, 15, 17, 20, 22, 24, 25, 28}

(31528) q={1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 22, 24, 26, 28}
(31,5,28)

q1 =q2=q 3=q 4 ={1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27}

q0o=ql= 2 =q3 =q4={1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27}
(31,6,28)

q5={1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 22, 24, 26, 28}

qo=ql=q 2 q3 =q4=q 5 q6={1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29,

31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59}
(63,8,60)

Continued on next page
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Table A.3 - continued from previous page

q7={1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41,

43, 46, 48, 50, 52, 54, 56, 58, 60}
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Appendix B

Tables of Walking Sequences

B.1 Block w-sequences

b2=(1,3,5)
b2=(1,2,5),
b2=(3,5,6),
b3=(1,2,4),
b3=(3,5,6),
b3=(1,3,4),
b4=(2,3,6),
b3=(1,4,5),
b5=(1,2,4),

b3=(2,3,4),
b5=(2,5,6),
b5=(4,6,7),
b4=(2,4,5),
b5=(3,5,6),
b6=(3,6,7),

b3=(2,4,5)
b3=(2,3,6)
b4=(1,3,5)
b4=(2,3,6)
b4=(1,2,3),
b5=(1,4,6)
b4=-(2,3,4),
b6=(1,3,6)

b4=(1,4,5),
b6=(1,3,4),
b6=(1,5,7),
b5=(1,3,4),
b6=(2,5,6),
b7=(1,4,5),

b5=(1,4,5)

b5=(1,2,3), b6=(1,3,5)

b5=(1,2,5),
b7=(1,2,6)
b7=(2,3,7)
b6=(1,2,5),
b7=(1,3,4),
b8=(1,2,7)

b6=(1,2,4), b7=(1,3,5)

b7=(1,2,3), b8=(1,4,5)
b8=(1,2,6)

Table B.1: Table of block w-sequences. Please refer to section 3.5
for an explanation of the notation.
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B.2 Almost-block w-sequences

b2=(2,6)
b2=(4,7), b3=(2,7)
b3=(2,8)
b2=(2,5), b3=(1,6),
b2=(5,7), b3=(2,5),
b3=(3,8), b4=(5,8)
b2=(2,6), b4=(4,6),
b3=(4,7), b4=(2,4),
b3=(5,8), b4=(4,8),
b3=(7,9), b4=(1,9),
b2=(3,6), b3=(4,6),
b4 =(3,7), b5=(3,5),
b4 =(5,8), b5=(4,6),
b3 =(4,6), b4=(3,6),
b4 =(5,7), b5=(1,4),
b4 =(6,8), b5=(5,8),
b4=(2,4), b5 =(1,5),
b5=(3,7), b6=(2,5),
b5=(4,8), b6=(6,8),

b4=(1,6)
b4=(1,7)

b5=(4,6)
b5=(1,7)
b5=(5,8)
b5=(4,9)
b4=(1,3),
b6=(1,7)
b6=(1,8)
b5=(3,6),
b6=(1,7),
b6=(3,6),
b6=(1,6),
b7=(1,3),
b7=(2,5),

b5=(1,2), b6=(1,6)

b6=(1,4), b7=(1,6)
b7=(3,7)
b7=(1,8)
b8=(3,6)
b8 =(1,7)
b8=(1,8)

Table B.2: Table of almost-block w-sequences of length nr = t(P +
2) + 1. The first block (bl) has three zeros and the rest
have two. Unspecified blocks are identity (see section
3.5.2).
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