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Abstract

The deep web consists of information on the internet that resides in databases or is
dynamically generated. It is believed that the deep web represents a large percentage
of the total contents on the web, but is currently not indexed by traditional search en-
gines. The Morpheus project is designed to solve this problem by making information
in the deep web searchable. This requires a large repository of content sources to be
built up, where each source is represented in Morpheus by a profile or wrapper.

This research proposes an approach to automating the creation of wrappers by rely-
ing on the average internet user to identify relevant sites. A wrapper generation system
was created based on this approach. It comprises two components: the clickstream
recorder saves characteristic data for websites identified by users, and the wrapper
constructor converts these data into wrappers for the Morpheus system. After com-
pleting the implementation of this system, user tests were conducted, which verified
that the system is effective and has good usability.
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Chapter 1

Introduction

1.1 Motivation

With the rapid growth of the internet, search engines have gained prominence as tools

for sifting through the large quantity of information. In 2008, Google reported that

it had indexed more than one trillion unique web pages [2]. While this may seem like

an astronomical number, it represents only a small fraction of the content on the inter-

net. Beyond these one trillion pages lies what is known as the deep web, repositories of

data that are stored in databases and remain mostly invisible to search engines. Deep

web sites are characterized by the generation of dynamic responses to user specified

input requests; examples include Kayak.com (travel information) and 411.com (local

directory). This is in contrast to the shallow web, sites that search engines can index

and consist of mostly textual information, such as CNN.com (world news) and Engad-

get.com (technology blog). It is generally accepted that the deep web is several orders

of magnitude larger than the shallow web [3].

The traditional model for discovering information on the internet is to utilize web

crawlers which follow links from page to page. The contents of these pages are cached

and indexed. When a user performs a search, the search engine queries its repository

of indexed pages and returns a list of results considered most relevant by its ranking

algorithm. This is the model employed by the vast majority of search engines such as

Google, Yahoo, and Live [5]. While these techniques have worked well on the shallow



web, they are not applicable to the deep web. One of the main reasons for this is that

crawlers cannot reach content that do not contain hyperlinks, which is a characteristic

of the deep web. Also, because data on the deep web is generated only after some spec-

ified input, crawlers do not have the sophistication to tap into these contents. Thus, a

new approach is necessary in order to access deep web sites.

The Morpheus system is an attempt to solve the problem of searching for infor-

mation on the deep web. Originally designed as a system for performing general data

integration tasks, Morpheus makes use of transform functions to map input data types

to output types 112]. In its second design iteration, the goal of the project is to solve the

more specific problem of integrating content from the deep web with the shallow web.

Each deep web site is viewed as a function which transforms inputs (user defined pa-

rameters) into outputs (the desired information) [22]. Such a function is used to profile

the interaction of a website, and is known as a wrapper. The main focus of this thesis

is to design and implement a system for efficiently generating these wrappers.

1.2 Wrapper Generation

The primary goal of the wrapper generation system is efficiency, using the least amount

of effort to create each wrapper. This is an important requirement for the scalability

of Morpheus, since a search service is only useful if it has a sufficiently large pool of

sources (in this case wrappers) to draw from. The second goal of the system is to have

good usability. Because wrapper generation is a key task in using the Morpheus sys-

tem, it is important to make the user experience as pleasant as possible. Finally, the

wrapper generation system should be modular and extensible. Because web standards

frequently change, it is imperative that the system be easily adaptable to keep up with

the latest technologies used on the internet.

With these goals in mind, a wrapper generation system was designed and imple-

mented. The general idea of this system is to utilize a human guided approach in the

construction of wrappers. A user is asked to visit a set of web sites that he would like

to wrap, and for each site submit a representative query and highlight the resulting an-



swer. A tool embedded in the web browser records the activity of the user, including

the input information and the highlighted output. A second piece of software converts

the logged data into wrappers using a set of heuristics.

After implementing the wrapper generation system, an experiment was conducted

to evaluate its effectiveness. Five university students were each asked to research a set

of queries, recording their results with the tool embedded in the browser. The result

of the experiment was that over 80% of queries were answered with reasonable results,

and around 55% of queries had optimal answers. Thus, the human guided method for

wrapper generation shows significant promise.

1.3 Thesis Outline

The thesis is organized as follows. Chapter 2 describes the problem of searching the

deep web, previous work done in this area, and introduces the approach that Mor-

pheus takes. Chapter 3 gives background on the system architecture of Morpheus.

Chapter 4 describes the main contributions of this research in creating a more efficient

system for generating wrappers for Morpheus. A detailed discussion is given on several

iterations in the design process, as well as the final system that was created. Chapter

5 details experiments conducted to evaluate the wrapper generation system. Chapter

6 concludes with a summary of the contributions of this research, its limitations, and

possible future work.
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Chapter 2

Searching the Deep Web

This chapter discusses the problem of searching for information in the deep web (sec-

tion 2.1), surveys existing research in this area (section 2.2), and introduces the Mor-

pheus system as a novel solution to the deep web search problem (section 2.3).

2.1 Background

The term "deep web" was coined by Michael Bergman [3], who compares the approach

of traditional search engines to dragging a net across the surface of an ocean; a great

deal may be caught in the net, but treasures hidden deep in the ocean are missed.

While the deep web generally refers to all web sites not indexed by conventional search

engines, we define it more specifically as information that is only available by filling

data into web forms. The shallow web, on the other hand, refers to the part of the in-

ternet which consists of primarily static textual information and is indexable by tradi-

tional search engines. In 2000, a study conducted at the University of Michigan found

that deep web contained over 7500 terabytes of data and 550 billion documents, com-

pared to 19 terabytes and 1 billion documents in the surface web. According to these

figures, the deep web is 400 to 550 times larger than the surface web [4].

Current search engines have become quite adept at returning results when given

keyword phrases such as "New York" or "plane ticket." However, they can not provide

satisfying answers to queries such as "What is lowest price for a ticket from New York to



Boston next Friday?" If a user wishes to find the answer to such a question, he typically

must remember the URL of a deep website which provides travel information (such as

Kayak.com), navigate to that site and fill in the requisite information in a form. Clearly,

it would be desirable for a search service to be able to answer a common query like

this. That is, we would like a system which can find answers in dynamically generated

content that is part of the deep web.

2.2 Previous Work

In recent years, large amounts of research and commercial efforts have been directed

in the area of deep web search. We examine four projects in this field: from Google

[18, 17], Yahoo [9, 10], Endeca [221, and the University of Illinois [6, 7]. In addition,

we briefly discuss two related ideas that have implications to the deep web: federated

search [151, and web harvesting [1].

Halevy's approach at Google is to design a system that attempts to "surface" deep-

web content by pre-computing submissions for HTML forms and adding the resulting

pages into the index of the search engine [18, 17]. For each form found by the web

crawler, an algorithm generates combinations of inputs (based on the number and

types of parameters) to submit to the form. The results of these submissions are ex-

pected to be representative of the data stored in the website. The main advantage of

this system is its scalability. By submitting only a set of sample inputs for each form, a

relatively short amount of time is spent indexing each website. Furthermore, because

the result of the algorithm is a collection of HTML pages to be indexed, it fits neatly

into Google's existing search engine framework. Thus, this approach is one which em-

phasizes breadth of pages over depth of each source. The main disadvantage of this

approach is that it does not work for dynamic pages such as the status page for airline

flights. Another problem is that semantic information, such as the data type of inputs

and outputs, is lost in this "surfacing" process.

Ramakrishnan takes a more depth based approach at Yahoo, and focuses on build-

ing a structured portal based on community sources in specific domains on the web



[9, 10]. An example of a structured portal is the Internet Movie Database, which in-

tegrates information about movies, actors, studios, etc. A differentiating factor in this

approach is the focus on entity-relationship links in the data. This structured approach

is intended to be applied to a very specific vertical market, using specialized knowledge

and techniques applicable to that market. After spending some months in building a

vertical portal, Ramakrishnan hopes to broaden the focus into other markets with less

effort. Thus, the aim of this approach is similar to existing domain specific meta-search

services such as Kayak and Zillow, in the travel and real estate markets respectively.

While this approach allows searches in specific segments of the deep web, its overall

scalability is questionable because techniques which work for one vertical market may

not be applicable for others.

The approach taken by Endecca is to build custom portals for a few carefully cho-

sen vertical markets. This fits into the general strategy of this company, which has

focused on faceted search for the e-commerce market. According to their CTO, they

plan to integrate intra-enterprise data that are not typically found on the internet (such

as data from SAP or Peoplesoft) using conventional data integration techniques [22].

Thus, the Endecca approach is one of applying well known methods to new and tar-

geted markets. There are no novel insights to offer to the problem of searching the

deep web.

Chang from the University of Illinois proposes an entity-based approach in search-

ing and integrating the deep web [6, 7]. Instead of viewing the web as a collection of

documents, Chang states that it should instead be seen as a repository of entities or

data types. This gives users the ability to define the type of data they are searching

for, as well as the context in which it appears. An example of this is the query "Ama-

zon customer service #phone", where phone number is the entity (marked with the #

sign) and the rest of the words are context descriptions. An entity extraction engine is

used to identify and probabilistically match textual information on web pages to enti-

ties. In addition, wrappers are created for each web site in order to extract relationship

between the input and output data types. This entity search system offers significant

innovation in its emphasis on treating data types as a first class citizen. The idea of us-



ing wrappers to encapsulate the functionality of a web service is also quite interesting.

However, because entities are only defined in a probabilistic sense, the system still has

not fully captured the semantic meaning of returned data.

A general approach to information retrieval that has been gaining traction in recent

years is federated search. It works by taking a search query and sending it to multi-

ple databases with the appropriate syntax. The returned results are merged together

with duplicate or irrelevant entries removed [15]. Federated search essentially creates

a portal where multiple sites with information can be searched from one location. An

example of such a service is science.gov, which is a portal for searching all scientific

information provided by U.S. government agencies [20]. Northern Light is another ex-

ample of federated search; it provides a research portal in market intelligence docu-

ments for many industries [141. The idea of translating one search query into queries

into multiple websites is a principle that can be used in searching disparate deep web

sources.

In order to create an efficient deep web search engine, it is essential to identify data

sources that are creditable and relevant. One approach, known as web harvesting, re-

lies on human expertise to direct crawlers to index web content which is difficult to

find [1]. An example of this technique being applied is stumbleupon.com, which al-

lows users to discover and rate interesting websites, and also to explore the recom-

mendations of other users in selected categories [23]. The advantage of using human

expertise is that the collection of discovered websites is likely to be high quality, since

they have been vetted by humans. However, this approach is also problematic in that

the scalability of the service is limited by the number of people willing to contribute

and the effort they put forth.

The Morpheus system is aimed at searching the deep web, and takes a novel ap-

proach which draws from ideas in some of the previous works discussed above. Like

Ramakrishnan's approach, Morpheus is built with an emphasis on data types and en-

tity understanding of the web. Similar to Chang's system, a wrapper framework is used

to extract the input-output relationships from websites. However, Morpheus aims to

capture more of the meaning of returned data by storing semantic information (un-



like Halevy and Chang). Morpheus also aims to be a general purpose system (unlike

Ramakrishnan and Endecca), not one which is restricted to vertical markets. The idea

behind federated search is used in Morpheus; multiple deep web sources are searched

in parallel, with their results integrated into the final output to the user. Finally, the

web harvesting idea provides the inspiration for the wrapper generation system, the

focus of this thesis.

2.3 The Morpheus Approach

The Morpheus project originated as a solution to the general problem of data integra-

tion. Scientists working in academic fields such as biology, physics, astronomy, and

computer science frequently have to work with many disparate schemas when access-

ing different information databases. Biologists, in particular, have had to integrate data

from many large genomic repositories to uncover the function of different DNA se-

quences. These databases typically use different schemas, data models, and query lan-

guage. Although systems such as the Genomic Unified Scheme exist to integrate data

from sources such as GenBank, EMBL, and DDBJ [8], it remains the exception rather

than representative of a general trend.

The data integration problem has also been a hurdle for large enterprises. For ex-

ample, a multi-national corporation might have branches in New York and Paris. At

each location, their human resources system stores information based on the laws and

customs of that location. In New York, salaries are specified in gross terms with the

currency being the US dollar, and there are no lunch allowances. In contrast, Paris em-

ployees have salaries specified in after-tax amounts, in Euros, and include government

mandated lunch allowances. In this scenario, any attempt to create a composite list of

salaries of employees at the two different branches would not be meaningful, because

they are essentially different data types.

A global schema is needed to integrate this human resources system. Individual

schemas, representing the local salary storage format for New York and Paris for exam-

ple, can be mapped into the global schema. These mappings are known as transforms,



written using either general purpose languages (C++, C#) or proprietary syntaxes from

specific vendors. But there are significant difficulties in writing these transforms due

to the inherent complexity in the schema and the large number of variables. Also, the

lack of a common standard in both language and implementation techniques means a

steep learning curves for programmers. Finally, most enterprises often end up writing

the same transforms multiple times, because programmers cannot find existing ones.

The Morpheus system was conceived as a new approach to solving the data integration

problem with the goal of addressing these difficulties.

The initial iteration of Morpheus was built as a tool for creating transforms and a

repository for storing them [12, 13, 21]. There were two primary goals: make it easy

to write transforms, and make it easy to find and reuse transforms written by oth-

ers. Morpheus includes an easy to use Transform Construction Language (TCT) which

promotes a workflow oriented approach to transform construction. The TCT greatly

simplifies the task of constructing transforms; a programmer could create a transform

in around 10 minutes, after some training. The transforms are stored in a Postgres

database, where input and output types are registered as Postgres data types. In ad-

dition, Morpheus enforces a requirement where all transforms must be entered into a

category hierarchy. The hierarchy allows transforms to be stored in a logical manner,

enforcing the semantic relationships that are inherent in the transform input and out-

put data types. A browser tool can be used to traverse along the different levels of the

category hierarchy, and also allow keyword searches and filtering to be performed.

The second version of Morpheus aims to build on top of the established frame-

work, and address the problem of searching the deep web [22, 11]. This evolution can

be seen as taking a general framework and adapting it to solve a particular problem

within the domain of the original design. While the idea of a transform in the previous

iteration of Morpheus is a general function which maps between two arbitrary data

types, now a transform can be understood as taking in some parameters of a search

and outputting the results of the query. Thus, a transform can represent a web ser-

vice such as Kayak.com or 411.com. The category hierarchy still remains, serving as a

logical method for classifying these transforms.



It is on this iteration of Morpheus that much of this thesis is based on. The follow-

ing chapter takes a more in-depth look at the architecture of Morpheus, and how the

main contributions of this research fit into this general framework of the system.



24



Chapter 3

Morpheus Architecture

This chapter gives an overview of the architecture of the Morpheus system (section

3.1) and describes each of its three main components (sections 3.2 - 3.4). Much of

the information presented in this chapter is based on the "Morpheus 2.0" paper by

Dobbins et al [11].

3.1 System Overview

The Morpheus system can be divided into three main components: the graphical user

interface, the query engine, and a Postgres backend (shown in figure 3-1). The interac-

tion between these components is fairly straightforward. The graphical user interface

takes in a query typed in by the user, and sends it to the query engine for processing.

The query engine uses some heuristics to decide which wrappers are relevant to the

query, and executes the functions corresponding to these wrappers which are stored in

the Postgres backend. Finally, the results are passed back to the user interface, which

displays them using a graph-based visualization system.

The interactions with deep web sites are through wrappers, which map from user-

defined functions in Postgres to actual content on the web page. Each wrapper is

placed in a category hierarchy, which allows users to either narrow or broaden the

scope of a query. For example, a wrapper for a general travel website may be placed un-

der the "Travel" category, while a wrapper for booking cruise ship tours may be placed
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Figure 3-1: The Morpheus system comprises three main components: the graphical

user interface, the query engine, and the Postgres backend.

under a subcategory of "Travel" named "Cruises." Wrappers and the category hierarchy

are part of the Postgres backend, since that is where they are stored and executed.

The following sections takes a more in-depth look at each of the main Morpheus

components, starting from the user facing components and working toward the back-

end.

3.2 Graphical User Interface

The purpose of the graphical user interface is to allow users to enter search queries

and display the results. For each search query, the user is prompted for three pieces

of information. The first is the entity for which the user is requesting information, the

second represents the type of information the user is looking for, and the third gives

descriptive characteristics of the entity. For example, if the user wishes to find out the
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email address of a MIT student named "Jeffrey Yuan", the name "Jeffrey Yuan" would

be the first part of the query, "email address" would be the second part, and the third

piece of information might be "MIT student".

The result of a search in Morpheus is a collection of outputs from a set of Postgres

queries. This information is initially in raw text format, but can be converted into RDF

[19]. The advantage of RDF is that it allows data to be stored in a structured format

in the entity-relationship model. In Morpheus, all queries are stored as RDF triples,

where the "subject" is the input parameters, the function name is the "verb", and the

"object" is the output value.

Grouping summary:
name: Leslie Megan K...

email:
email2:

Student (status) - I Ress

Figure 3-2: This is a sample output displayed on the RDF browser. The node at the

center represents the input, in this case is a search for someone named "Leslie." Con-

nected to this central node are results of this search, including information about her

major, email, and phone.

An RDF browser displays the output as a graph where the relationships between

input and output of the query can be easily visualized (see figure 3-2). At the center

of the graph is a node representing the input query, which is linked to all nodes repre-



senting the results. The results are grouped together as clusters by an algorithm which

examines their similarity. Factors which affect similarity include the data type of the

results as well as the wrapper which produced them. Finally, nodes representing the

wrappers are also displayed on the graph, linked to the results they produced. Thus,

this graph model gives an entity-relationship view to the results obtained from Mor-

pheus queries.

3.3 Query Engine

For a given query, the query engine decides which wrappers within the category hier-

archy should be executed, and then runs the corresponding functions in the Postgres

backend. Each Morpheus query contains three pieces of information entered by the

user (as described in section 3.2), all of which are passed to the query engine. The

characteristics of the entity (part 3 of the three pieces of information) are used to de-

termine which wrappers to use. The entity (part 1) is used as input parameter to these

wrappers, and the desired information (part 2) is selected from the output returned

from executing the wrappers.

To determine which wrapper should be executed, the query engine performs a rel-

evance calculation for each wrapper. Some heuristics are used in the scoring the rele-

vance, such as favoring wrappers deeper in the category hierarchy over shallower ones,

and favoring wrappers which match more of the input data types over ones matching

less. The collection of wrappers chosen according to this scheme is executed by run-

ning their corresponding Postgres functions.

While the above procedure works for a typical query, cases can arise where the

search is not specific enough to narrow down the number of potential wrappers to

execute. For example, the query may lack information about the characteristic of the

entity. In such a case, Morpheus would ask the user for more information, rather than

attempting to run the query over a huge number of wrappers which would produce

a large number of low relevance results. If on the other hand, a query could not be

matched to any wrapper, then Morpheus would indicate to the user that no informa-



tion could be found. Thus, the design philosophy of the query engine is to give rapid

feedback to the user, whether it has too many matches or no match. This is different

from most current search systems, which returns some information regardless of how

low the relevance of the results might be.

3.4 Postgres Backend

The backend component for Morpheus is a Postgres database which store three types

of objects: category hierarchies, data types, and wrappers.

The category hierarchy sorts wrappers and data types into different categories within

a tree structure (see figure 3-3). This helps focus a user's search into the right level of

specificity, and also allow the query engine to select an appropriate number of wrap-

pers to process for a particular query. An interesting design choice to note is that Mor-

pheus allows a single wrapper to exist under multiple categories within the hierarchy.

This choice is made so that user queries can be applied to the most specific category,

knowing that all applicable wrappers are included. Also, multiple categorical hierar-

chies can exist, although the system thus far has run on a single categorical hierarchy.

.Academic Competitions
College and University Planning

Higher Education Colleges and Universities
Graduate Education
Research Funding

International Schools
Public Schools

K-12 . Administration
Curriculum
Home Schooling

Correspondence Courses
InstitutionsDistance Learning Online CoursesOnline Courses
Videoconferencing

Figure 3-3: The category hierarchy allows objects to be placed into a tree structure with
increasing specificity as the depth increases. In this example, the categories within the
"Education" field become more specific moving from left to right.



Data types in Morpheus exist to store semantic meaning for queries and results.

They help to categorize searches in a logical way, and allow the right wrappers to be

chosen for the search. For example, a user request to find the cheapest airline ticket

between two locations takes in two pieces of data of type "airport code" for the start

and destination locations, a data of type "date" representing the departure date, and

optionally a return date if it is a round trip. The result is also a collection of data types;

one part could be a number which represents the price of the ticket, another could be

of type "airline", etc. When processing such a query, the input and output data types

of a wrapper are examined and matched with this query to determine if a particular

wrapper is appropriate. Also, the data types allow wrappers to be properly classified

under the categorical hierarchy. Wrappers which accept more specific data type are

deeper in the hierarchy, whereas those wrappers which only take in very generic data

types are shallower in the hierarchy.

Wrappers map from a Postgres user-defined function to the actual details of a web

page. Each wrapper includes information about a particular deep web page which it

represents: the input data type it accepts, the output data types it produces, as well as

the address of the page it describes. It also contains metadata, including information

about who created the wrapper, the date it was created, a description of its function,

as well as its placement in the category hierarchy.

Overall, the Postgres repository acts as the bridge through which deep web results

are obtained and passed through the rest of the system. After the user submits a query,

the relevant wrappers are found in the backend and the user inputs are fed to them.

After executing the wrapper functions, the result is obtained and returned back to the

query engine. To the rest of the system, this process appears as if a stored procedure

has been executed and returned.



Chapter 4

Wrapper Generation

This chapter describes the main contributions of this thesis, a system for generating

wrappers. The design goals of the system are introduced in section 4.1, and section

4.2 describes the iterative process which leads to the final design. Section 4.3 gives an

overview of the system, and sections 4.4 - 4.5 detail its two main components.

4.1 Goals

The primary goal of the wrapper generation system is to make the process of creat-

ing a wrapper as efficient as possible; specifically this means that the system should

minimize the average time needed to create a wrapper. Because the Morpheus system

functions as a deep web search engine, it is crucial that there exist a large repository of

potential information sources. Since a wrapper is needed to represent the functional-

ity of each deep web site, having an efficient wrapper generation system is essential to

making Morpheus a scalable solution.

Another goal of the wrapper generation system is good usability. One metric of us-

ability is known as learnability, which measures how easy it is for new users to learn

the functionality of a system. This is an important consideration since a large number

of people could potentially be involved in the task of generating wrappers; it is cru-

cial that they be able to quickly grasp the operations of this system. Another metric

of usability is efficiency, the performance of the software for frequent users. This is



also important since this software will be run many times to generate the necessary

amount of wrappers for the Morpheus system. Experienced users should be able to

use shortcuts and other methods to accelerate the time needed to perform common

tasks.

A third goal for the system is that it should be modular and extensible. Because

technologies used on the internet changes rapidly, it is important for the wrapper gen-

eration system to evolve as well. The system should be adaptable in such a way that a

change in web standards could be accommodated easily by changing some definition

file.

4.2 Design Iterations

The final design for the wrapper generation system came about after a couple design

iterations. Because the final implementation was a result of earlier failed designs, a

description of the entire design process is provided in order to properly motivate the

final product.

During the early stages of the Morpheus project, wrappers were written by hand.

A programmer would identify a relevant deep web site, and programmatically create a

wrapper. This process took anywhere from thirty minutes to an hour for each wrapper.

Clearly, manually creating wrappers was not a scalable solution; and a more automated

system was needed.

The initial design of an automated wrapper generation system took a similar ap-

proach to that of the traditional search engines. A crawler was be deployed to traverse

the web by following links from page to page. But rather than simply indexing and

storing these pages, the crawler looked for specific features on the web pages such as

HTML forms. If such a feature was detected, a backend component used a parsing

algorithm to extract characteristic information from the page to generate a wrapper.

A crawler which performs some of these functions already existed; the goal of this

theis was to make improvements to the feature identification and web page parsing

algorithms. The existing crawler only supported web pages which containing WSDL



descriptors, a W3C standard for describing the public interface of web services [24].

However, very few web sites actually utilize this standard, so the existing implementa-

tion was not applicable on a large majority of cases.

My plan was to create algorithms for handling additional types of descriptors on

web sites: those containing HTML forms, those with hierarchical data types, and those

which use AJAX technologies. The plan was to write modules for handing each of these

types of sites. When the crawler arrives on a web page, it checks for characteristics for

each of these descriptors, and executes the appropriate module. Such a system would

be adaptable and modular.

A preliminary prototype was created to test the design, but significant flaws were

discovered which made it essentially unworkable. The first problem was that it was

quite difficult to create an algorithm which was general enough to be applicable to

a large class of websites. For example, it was extremely difficult to conceptualize a

method for recognizing AJAX websites and extracting the necessary information from

them, since each site usually has a unique display model and data transfer protocol.

The second hurdle was that the crawler was not adept at identifying which websites

contain relevant information. Because of the vast number of sites in the deep web,

it is very difficult to discern automatically which sites contain important information

versus others which may have been abandoned for years. It was not feasible for the

crawler to save information about each candidate site, since this would create a large

amount of false positives. In conclusion, the prototype did not demonstrate that an

automatic wrapper generation scheme was any faster than writing wrappers manually.

A new approach was formulated which relies on human guidance to generate wrap-

pers. In the previous design iteration, the main difficulty was in using algorithms to

automatically determine which deep web site relevant. However, such a task would

be relatively easy for humans. That is, rather than making the entire wrapper genera-

tion process automatic, it would be more efficient to use the capabilities of humans in

some of the steps.

With this insight, a new process of creating wrappers was devised which consists

of two discrete phases. Some users or volunteers are asked to identify deep web sites



that are relevant to Morpheus. This is done by asking them to answer some targeted

questions using deep web sites, and their answers are recorded. The second phase

consists of converting the information recorded from these users into wrapper code.

This approach has been tested through some prototyping, and has proven to be

reasonably effective. The architecture and implementation of this idea are described

in details in the next few sections.

4.3 System Overview

The wrapper generation system using the human guided approach (as described in

section 4.2) consists of two components: a clickstream recorder which assists a user in

marking relevant deep web sites and logging information needed to create wrappers,

and a wrapper constructor which converts the data from the clickstream recorder into

wrapper code for Morpheus. These two components work together to create wrappers,

but exist as separate pieces of software.

The implementation of these two components offers several challenges. First, be-

cause the clickstream recorder and the wrapper constructor are logically separate but

work together, a clear interface must be defined for their interaction. The XML for-

mat is chosen as the method for both components to import and export data. Another

challenging aspect is that these two components are written using different languages

(see sections 4.4 and 4.5), so it is necessary to deal with the quirks of several program-

ming environments. Finally, the complexity and diversity of the sites in the deep web

makes creating a general solution very difficult. This software tries to capture the com-

mon case which works for most sites. But there are limitations and cases where it does

not work (see section 6.2).

4.4 Clickstream Recorder

The clickstream recorder is used in phase one of the human guided wrapper gener-

ation approach; it assists users in identifying relevant deep web sources. In order to



target the category of websites that users should consider, they are provided with a list

of questions. In researching these questions, users should naturally find answers in

deep web sites. These sites identified are considered to be highly relevant, and their

information is saved by the clickstream recorder.

At a high level, the clickstream recorder has two main functions: log the input in-

formation entered by users to deep web sites, and save the relevant answer identified

by users on the result/output page. Because deep web content is typically accessed

using HTML forms, the clickstream recorder logs all forms, including their input fields

and the data entered by the user. After submitting the form and obtaining the cor-

responding results, users should indicate the answer to their research question. The

clickstream recorder allows them to highlight these answers (there could be more than

one) on the page, and saves information about these selections.

To implement these functions, the clickstream recorder is written as an extension

to the popular browser Mozilla Firefox. There are several advantages to integrating this

tool inside the browser instead of as a separate piece of software. The main benefit is a

more seamless experience for the user, since the clickstream recorder functions within

an environment that is already familiar. Also, as an extension to Firefox, it is easy to

access the APIs in the browser to obtain state information related to the history of the

browser sessions as well as the currently active page. Finally, the Firefox extension

framework provides robust updating functionality, so that an updated version of the

clickstream recorder can easily be pushed to all users.

Following software design principles, it is desirable to separate the graphical user

interface from the data model and backend of a system. The clickstream recorder is

designed with this separation in mind; one component handles the onscreen inter-

action with the user while the other component executes user commands and keeps

track of internal state information.

4.4.1 Graphical User Interface

The clickstream recorder tool exists as a toolbar within Firefox (see figure 4-1). The

main advantage of a toolbar is that it easily exposes all the functionality of the software



Figure 4-1: The clickstream recorder exists as a toolbar in Firefox, it is located below

the navigation toolbar. In the figure, it is the portion enclosed by the box.

to the user without taking up a great deal of screen real estate. This is in contrast to

a side panel which takes up a lot of space, or a context menu which is not always

present on screen. One other consideration in favor of using a toolbar is the proximity

to buttons and menus that form the typical work flow of a user. That is, the location of

the clickstream recorder toolbar is very close to the navigation toolbar (which contains

the back and forward buttons) and the menu bar. This allows users to work with the

clickstream recorder without disrupting their typical usage habits.

The toolbar is divided into three sections (see figure 4-2), separated by gray vertical

line separators. The first section contains general functions of the toolbar. The first

button, a green diamond in the figure, toggles the toolbar between the active and in-

active states. In the active state, all logging and saving functionality is enabled, while

in the inactive state these functions are turned off. To the right is the options but-

ton, which opens a popup dialog that allows preferences to be changed. Some of these

adjustable preferences include the default load/save directory and the naming conven-

tion for saving files.

The second section of the toolbar is used to display the list of questions that the
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Questions
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Figure 4-2: The toolbar is divided into three sections: general, questions, and re-

sponses.

user is trying to answer. The "Load" button allows the user to browse and select the

file which contains the questions. The file containing the questions is an XML file with

a predefined format, and is generated using the wrapper construction tool (see section

4.5). After loading the file, the list of questions is populated in the drop down box.

The user can use the left and right arrow buttons to select the current question that

he wishes to answer or research. Overall, this section of the toolbar functions as a dis-

play element, allowing the user to keep track of his current progress. It also serves an

organizational purpose, keeping the logged information for each question in separate

directories.

The third section of the toolbar is related to answers that users finds to each re-

search question, referred to here as responses. When the toolbar is in its active state,

information about the forms on the current page is saved automatically. The button

labeled "Log Page" saves a more detailed set of data, including a copy of the page. This

is useful if users find the answer to their question on a shallow web page, which is

normally not saved automatically. The last button in this section is labeled "Select Re-

sponses," it allows users to select answers to the question they are answering on the

current page. These responses are associated with the name that is selected in the "Se-

lected Logged Page" dropdown menu, which contains a list of the last ten saved pages

(see figure 4-3). By default, the last saved page is selected.

The "Select Responses" button allows users to select answers to their research ques-

tions; these answers along with information about the page they appear on are saved

by the clickstream recorder to help with wrapper creation. Upon clicking on the "Se-

lect Responses" button, a dialog appears which allow multiple selections on the page



Figure 4-3: In this example, the user is researching the question "What is the email ad-

dress of Jeffrey Yuan", as can be seen in section 2 of the toolbar. The "Selected Logged

Page" dropdown menu contains a list of the most recent saved pages, with the latest

one selected. The user can record the selected text as a response by clicking on the

"Select Responses" button.

to be named and recorded (see figure 4-4).

To understand the process of creating these selections, an example is given. Sup-

pose a user is trying to answer the question, "What is the email address of a MIT stu-

dent named Jeffrey Yuan?" After searching in the MIT directory and arriving at the

results page, the user clicks the "Select Response" button. When the dialog pops up,

he should fill in the "Name" field on the dialog with a description of the result, in this

case it can be "Email." Then by highlighting the answer (shown as jwyuan@mit.edu in

figure 4-3) and pressing the "Get Selection" button on the dialog, the fields describing

the selection are automatically populated with the appropriate data. The start node

and end node are the DOM elements at the start and end of the selection. The XPath

is a description of the location of the node in the DOM hierarchy, and the offset repre-

sents where the selection starts or ends from within the node.

If there are multiple answers on a page, the user could highlight the next one and

again press the "Get Selection" button. The "Prev" and "Next" buttons can be used
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Figure 4-4: This dialog appears after the user clicks the "Select Responses" button on
the toolbar. It allows the user to select and label answers on the current. Each selection
has properties such as the name, the highlighted text, and description of its location in
the DOM hierarchy.

to navigate between the different selections. When all the selections on the page are

processed, the user can press the "Finish" button to exit the dialog, at which time the

information is saved.

The user interface for the clickstream recorder is specified in XUL, an XML user in-

terface markup language used in the Firefox framework [26]. Within this declarative

programming paradigm, the programmer must only specify the location and prop-

erties of each user interface element, known also as a widget. The function of each

widget is linked directly to procedural code in the backend and model. This type of

declarative language enforces good separation of view and model, allowing the look

and feel of the user interface to be tweaked without affecting its functionality.

To obtain feedback on the user interface of clickstream recorder, three rounds of

user testing were conducted throughout the design and implementation process. The

first user feedback session was done informally based on a paper sketch of the inter-

face. A few potential users were asked to describe how they might interact with the

interface to perform some hypothetical tasks. Although this study was conducted on



a low fidelity prototype, it gave valuable information on the learnability of the user in-

terface, and the thought process of users as tried to figure out what to do next. The

second round of user testing was conducted using an early computer prototype. Here,

all the widgets on the user interface were created, but the backend functionality did

not yet exist. This test gave a lot of valuable information on how users interacted with

the interface in real time and the problems they faced. Improvements were made to

address these problematic areas. Finally, in the last session of testing, users gave good

responses on the learnability and efficiency criterion. They also commented that the

interface was aesthetically pleasing, fitting in with the visual theme of Firefox.

4.4.2 Model and Backend

The backend in the clickstream recorder is responsible for executing the different user

commands, including loading and saving files from disk. It is responsible for commu-

nicating with the user interface and the model, which is the internal data representa-

tion of elements that is displayed on screen. Javascript is the language used to imple-

ment all of the backend functionality. This decision was somewhat forced because of

requirements of the Firefox framework [16]. But it does have a lot of advantages, the

main one being the seamless interaction with the Firefox API.

The clickstream recorder is a singleton class which is instantiated upon the start of

a browser session. It attaches a listener to the currently active tab, so that it is notified

every time there is a change in the current web page document. Through this method,

the clickstream recorder can keep a history of pages visited by the user, and also have

access to the currently active document window or tab. Below is a discussion of some

key technical aspects of the implementation of the model and backend.

Document Object

Each webpage is represented internally as a hierarchy of nodes in the Document Ob-

ject Model (DOM). The clickstream recorder attaches a listener to every form element

in the current DOM, so that it is notified when a form is submitted by the user. Ele-



ments within a form, such as input box, text area, and radio buttons, also have listeners

attached to them, which makes it easy to determine if the user interacted with them.

Selection

The clickstream recorder keeps an internal data type to represent each user selection.

Properties of a selection include the location of the node (in the DOM) where the se-

lection starts, the node where the selection ends, and the offset within these nodes. It

is tricky to precisely locate a node within a HTML document, because it is not guar-

anteed to be well formed. Nevertheless, XPath works reasonably well as a selector of

nodes within the DOM hierarchy [251. Although XPath is meant to be used with XML

documents, its usage in the clickstream tool is to locate a node using a very specific

path specification; it works well unless the HTML is severely malformed.

There are also some difficulties in getting the user selection from the Firefox API.

First, there is no support for event handling related to user selections, which makes it

difficult to detect when a user selection has been made. This was resolved by manu-

ally checking to see if the current selection is an empty string or null, in which case

it is assumed that nothing is selected. Also, because the "Get Selection" button is in

a popup dialog, it is tricky to get the user selection from the main browser window.

In the end, as no efficient solutions were found, the selection is obtained from each

opened window or tab. Then, they are each checked to filter out the empty selections

(since non-active tabs or windows have selections that are empty), leaving the actual

user selection. Overall, the main challenges in implementing the selection object came

from the lack of sufficient API support in Firefox, but creative solutions were found to

resolve these difficulties.

Form

Forms are the most important object on a web page, because deep web content is

accessed by submission of a form. The clickstream recorder saves the structure of every

form automatically. This is done by searching for nodes of the type "form" in the DOM

of each page after it loads completely.



Two important attributes of forms are the "action" and "method" attributes. The

"action" attribute indicates the address where the form is to be submitted, and "method"

describes how the form is submitted (either using the GET or POST method). Besides

these two attributes, it is important to save the elements encapsulated in the form.

These can range from input fields, combo boxes, check boxes, radio buttons, etc.

Preferences

Firefox contains a robust system for managing user preferences. The preferences dia-

log maps each of the user modifiable options to a corresponding options entry in the

Firefox preferences database. Most of the challenge in implementing the preferences

component for the clickstream recorder involves setting appropriate default values for

new installations. For example, the default file directory for saving response files is set

to be the user profile location for each user. This must be carefully managed in cases

of multiple user profiles.

Initially, a function was written to export and import preference files, so that a user

could synchronize them across multiple computers. However, user testing revealed

that this feature was ignored by almost all users. So in the end, it was removed to

simplify the user interface.

Input and Output

There are two types of I/O interaction: loading question files and saving response files.

The question file is an XML file that is generated by the wrapper constructor tool, and

the format specification is well defined. When the user loads such a file, the click-

stream recorder simply parses the XML, extracts the questions, and displays it in sec-

tion 2 of the toolbar (see figure 4-2).

The responses file format is more complex, since it must handle several types of

logged file. There are three types of files: form information, selections, and the entire

content of the page. Templates for each of these file formats are defined, the appropri-

ate file template is matched and populated with the relevant data, and then written to

disk.



4.5 Wrapper Constructor

The wrapper constructor is used to generate wrapper files from data saved by the click-

stream recorder. In the Morpheus system, wrappers are stored and executed as Post-

gres user defined functions in the backend component (as discussed in section 3.4).

However, since the query engine is written in Java, it also makes sense for consistency

reasons to first generate wrappers as Java classes, so that they can be examined and

tested. Existing tools can be used to later convert these wrappers from Java into Post-

gres functions. Thus, the wrapper constructor takes in as input XML files containing

information about forms and selections from web pages, and outputs wrappers written

in Java.

The secondary function of the wrapper constructor is to allow question files to be

generated. As mentioned in section 4.4, these files contain the questions that users are

attempting to answer using the clickstream recorder. The wrapper constructor allows

these questions to be entered, and saved into the appropriate format.

The following sections detail the technical aspects behind these two functions of

the wrapper constructor.

4.5.1 Generating Question Files

The list of questions for users to answer is stored in a standard XML file. Each entry in

this file consists of the text of the question, the category it belongs to, and any notes

that are associated with it.

The wrapper constructor allows new question files to be created by entering it into

standard document interface similar to a word processor. Each question along with its

associated metadata is entered on a single line with the \ character separating them.

When the file is saved, the wrapper constructor parses each line into a node in the XML

document hierarchy, with the specified metadata as attributes. Overall, the question

files management functionality is a fairly straightforward implementation in format-

ting questions so that they can be read by the clickstream recorder.



4.5.2 Creating Wrappers

To construct each wrapper, two XML files generated by the clickstream recorder are

necessary: one contains information about the forms used to enter inputs to the site,

and the other describes what information needs to be extracted from the output (see

section 4.4).

From these two files, a wrapper is created which consists of four Java classes: Input,

Output, Wrapper, and Stub. The name given to each of these four classes is the name

of the website concatenated by the function of the class. For example, the wrapper

for 411.com consists of 411_Input. java, 4 l_Ouput.java, 411_Wrapper.java, and

411_Stub. java.

Input

The Input class represents the form that is submitted. Information about each element

in the form is extracted from the input XML file, and stored in an array. Each entry in

this array is a tuple consisting of the name of that input element and its type.

Output

The Output class represents the response fields selected by the user, corresponding to

the results that are derived from the submitted inputs. This class has a similar structure

to the Input class. Each selection made by the user is extracted from the XML file, and

added to an array. The array keeps track of the name of each output selection and its

location on the page (represented using XPath as described in section 4.4.2).

Wrapper

The Wrapper class is responsible for submitting the inputs to the targeted deep web

source, retrieving the response page, and parsing it to obtain the desired outputs. It

takes in an instance of the Input class, which contains all the fields and their associ-

ated values. These are combined with attributes of the form, and a submission URL

is generated. Then, a HTTP request is created and sent to this URL. One item of note



here is the difference between submitting via the "Get" or "Post" method. The "Get"

method is used for instances where the number of inputs is few, so these input values

are directly encoded into the URL. The "Post" method, on the other hand, stores input

fields in the body of the request, and is appropriate for cases where there are many

fields or large data size.

After submitting the request, the response page is retrieved. Before anything can

be extracted from the page, it must first be converted to XML format. This is because

HTML documents sometimes contain unclosed tags or is malformed in other ways.

Converting to XML ensures these problems are fixed. The XPath query language is used

on the resultant XML page to extract the output fields. These fields are subsequently

passed to an instance of the Output class.

Stub

The Stub class is used to execute the wrapper. It contains some simple graphical user

interface elements which are used to prompt the user for each field in the Input class.

These input values are passed into an instance of the Wrapper class, which performs

the web page submission, retrieval, and parsing. The resulting output fields are then

stored in the Output class and also displayed on screen. Thus, the Stub class functions

as a testing tool that can be used to check the functionality of the wrapper as a whole.
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Chapter 5

User Experiment

To assess the effectiveness of the human guided approach to wrapper generation, we

asked a group of potential users to find deep web sources which answer a list of pro-

vided questions. The idea is to evaluate the quality of the answers they arrive at com-

pared to the reference answers that we found.

5.1 Method

Five university students (from MIT and the University of Washington) were asked to

participate in this study; four of them were undergraduates and one was a graduate

students. To insure that a diverse sample of users was chosen, the five students come

from different majors. All of the users were familiar with the Firefox web browser, but

none has had any previous experience with deep web searching or has used the Mor-

pheus system.

Each user was given a list of ten open ended questions, and asked to use the click-

stream recorder to help research and answer these questions. To ensure that no spe-

cialized knowledge is needed for these questions, all were chosen in the domain of

travel and entertainment, topics that most people are familiar with. For example, one

of the questions is: "What are some trails around the Portland, Oregon area that are at

least 15 miles long and have a camp site?"

Users were asked to spend no more than five minutes on each question. At the



end of that time, they should submit their best answer, or indicate that no answer was

found.

For each question, the answer returned by a user is compared to the reference an-

swer that we found. These reference answers are derived after a lot of research, and

are from sources that are considered to be the most relevant for each question. A score

is given based on the quality of a user's answer: 1 if it matches well with the reference

or is otherwise high quality, 1/2 indicates it's passable with some criteria in the ques-

tion not satisfied, and 0 means no answer was returned or the answer is deficient in

significant ways.

5.2 Results

Table 5.1 shows the results of this user study. The rows indicate the scores assigned

to the answers given by each user, and the columns show how each of the five users

performed on the questions. The "mean" gives an average score, with '/2 counting as

0.5 in this computation. Aggregated over all the users, 84% of questions were answered

with a rating of at least "1/2", and 56% of questions were rated "1". This means that a

large majority of users were able to find websites that gave at least decent answers.

Question

1
2
3
4
5
6
7
8
9
10

Mean

User A User

1/2 1
1 1
1 1

1 1/2
1/2 1

1 '/2

1/2 1

1 1
1/2 1

1 1

0.8 0.9

B User

1
1
1
1/2

0
0
1/2

1
1/2

0.6

C User I

1/2
0
0
1/2
0
1/2
1
1
0
0

0.35

D User E

1/2

1
1
1
1

1
1
1
1

0.85

Mean

0.7
0.8
0.8
0.7
0.6
0.4
0.7
0.9
0.7
0.7

Table 5.1: Results from the user study. A score of 1 indicates the user answered the

question perfectly, /2 means that the answer was acceptable, and 0 is given when the

answer was not close or not provided at all.



For the most part, each question had "great" or "acceptable" answers from most of

the users. The only exception to this was question 6, which contains a lot of specific

conditions and is probably quite difficult. Another interesting point to note is that

every question had at least one "great" answer. This means that combining the answers

from these five users would yield perfect results.

When looking at the performance of each of the users, it is clear that some were

better at answering these questions than others. For example, User B produced con-

sistently better results than User D. This was expected, since these users were selected

from different academic backgrounds, and they have different amounts of experience

in performing research using the internet.

This user study demonstrates that the human guided approach to finding deep web

sites shows significant promise. It must be noted that these results are the result of a

general system test and cannot be considered the product of a scientific experiment.

For example, the users were selected in an ad hoc fashion, and the questions have not

been screened for bias. Nevertheless, the results of this study indicate that the wrapper

generation system implemented in this research is effective in locating relevant deep

web sources.
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Chapter 6

Contributions, Limitations, and Future

Work

6.1 Contributions

In this research, I investigated the problem of automating wrapper construction for

the Morpheus deep web search engine. After several design iterations and prototypes,

I implemented a wrapper generation system which utilizes human expertise in find-

ing meaningful deep web content. The system is made up of two components. The

clickstream recorder helps users identify relevant deep web sites, and saves character-

istic information about their inputs and outputs. The wrapper constructor tool then

converts the saved information into wrappers for the Morpheus system.

6.2 Limitations

Because many different languages and techniques are used in constructing web pages,

it is difficult to design the clickstream recorder so that it works in every situation.

Several types of web sites present problems for the clickstream recorder. Sites which

use hierarchical form, where the result of one set of inputs leads to another set of in-

puts, can mislead the clickstream recorder into saving the wrong information. Simi-

larly, pages which use Javascript to dynamically adjust forms can cause the clickstream



recorder to miss form elements during the saving process. Finally, pages which con-

tain multiple forms, such as Orbitz.com, present difficulties in that the constructor tool

cannot determine which form is the relevant one. In all of these cases, a human must

manually adjust the saved data files to correct these mistakes.

6.3 Future Work

In the future, more effort could be spent in improving the methods used to parse

forms in the clickstream recorder. To handle the case of hierarchical forms, a heuristic

could be written to recognize the situation and handle it accordingly. For pages with

Javascript, form information could be saved when the user submits the form, thus en-

suring that no more changes to the structure of the pages can occur. But perhaps a

better solution to these problems is to build a more general framework to let the user

easily adjust the saved data. For example, the clickstream recorder could show the

form information that is extracted to the user before saving, thus allowing adjustments

to be made on the fly. This would be in the spirit of the human guided approach.

The wrapper constructor can also be improved to better handle unusual inputs.

This can be done by creating better heuristics to the different types of information

present in the saved data. The wrapper constructor tool can also give the user more

freedom to adjust the form and selection information during the wrapper creation pro-

cess.
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