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Magnetization Modeling of Twisted
Superconducting Filaments
T. Satiramatekul, F. Bouillault, A. Devred, and D. Leroy

Abstract—This paper presents a new Finite Element numerical
method to analyse the coupling between twisted filaments in a su-
perconducting multifilament composite wire. To avoid the large
number of elements required by a 3D code, the proposed method
makes use of the energy balance principle in a 2D code. The rela-
tionship between superconductor critical current density and local
magnetic flux density is implemented in the program for the Bean
and modified Kim models. The modeled wire is made up of six fil-
aments twisted together and embedded in a low-resistivity matrix.
Computations of magnetization cycle and of the electric field pat-
tern have been performed for various twist pitch values in the case
of a pure copper matrix. The results confirm that the maximum
magnetization depends on the matrix conductivity, the supercon-
ductor critical current density, the applied field frequency, and the
filament twist pitch. The simulations also lead to a practical crite-
rion for wire design that can be used to assess whether or not the
filaments are coupled.

Index Terms—Coupling currents, energy balance principle,
magnetization, superconducting multifilament composite wire,
twist.

I. INTRODUCTION

THE numerical simulation reported here allows us to de-
fine the coupling-decoupling phenomena between super-

conducting filaments. We have shown [1] that the magnetization
obtained in the case of uncoupled superconducting filaments
is smaller than the one obtained for coupled superconducting
filaments.

In practical multifilament composite wires, the supercon-
ducting filaments are embedded in a low-resistivity matrix that
is much less conducting than the superconductor, for example,
OFHC copper. Then, there are currents circulating between the
filaments via the conducting matrix, which result in a filament
coupling. This coupling can be greatly reduced by twisting
the filaments together [2]. The shorter the twist pitch, the
less coupled the filaments. An electromagnetic theory of this
problem is presented in [3].

This paper deals with the electromagnetic coupling under ex-
ternal field, under self field the coupling is different and the
twisting plays no part. We use a method based on the principle
of energy balance to solve the problem of twisted filaments. We
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Fig. 1. 2D representation of six-filament wire over one sixth of a twist pitch.

Fig. 2. Position of six filaments in the planes z = 0 and z = �p=12.

also study how the dependence of the current density on the
magnetic flux density affects the magnetization of twisted su-
perconducting filaments.

II. TWISTED WIRE MODEL

In order to understand the influence of the twisting on the
magnetization, we start by considering a composite wire made
up of six superconducting filaments, twisted together and em-
bedded in a low-resistivity matrix.

Let us consider the 2D representation given in Fig. 1 of the
currents and voltages along a sixth of the filament twist pitch, ,
as well as the positions of the six filaments in the planes
and illustrated in Fig. 2. Given the problem geom-
etry, we assume that the electrical potential, , along filament
, is of the form

(1)

where is a reference potential.
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In addition, for the currents, we assume that

(2)

(3)

In order to avoid a three-dimensional modeling, we divide
the wire into elementary sections of length. Given the
weak slope of the filaments, we assume that, in each section,
the problem can be treated as two-dimensional and that the
currents are independent of . Then, the difference of the cur-
rents in the filaments for two successive sections is equal to the
current circulating in a section of matrix of length sub-
jected to the adequate potentials.

By using the principle of energy balance [4] in the plane
in Fig. 1, we derive

(4)

where is the power dissipated in a section of conducting ma-
trix. In this case, we simply have

(5)

and

(6)

where is the electrical conductivity of the matrix and is a
dimensionless parameter obtained by solving the 2D harmonic
Laplace equation, which in our formulation corresponds to:

. The equation is solved by the finite element method
with the boundary conditions

(7)

By substituting the voltages in (4), we obtain get

(8)

Equation (8) can be re-written in the following matrix form

(9)

where

(10)

(11)

where is defined in Fig. 3 and is the current vector in the
filaments at . The currents can be derived from [1]

(12)

with

(13)

Fig. 3. Definition of the distance d for one sixth of a twist pitch.

Fig. 4. Current density distribution in conducting matrix (in A=m ).

where is the magnetic permeability of vacuum, is the elec-
trical field vector, and and are matrices whose di-
mensionless coefficients take into account the wire geometry.

The matrix system resulting from the discretization of
Maxwell’s equations in the case of the twisted filaments is [1]

(14)

(15)

where is the current density vector, is the source vector,
is the mass matrix, and is a dimensionless matrix.

On the left side of (15), we find that, if the first term is very
small compared to the second term, we are in the case of un-
coupled filaments. Conversely, if the first term is very large
compared to the second term, we are in the case of coupled
filaments [1].

In addition, the current density in the conducting matrix can
be derived from

(16)

Fig. 4 shows the simulation results in the plane .
In order to compute the total magnetization of a multifilament

wire, let us consider the 2D drawing of the currents in Fig. 5. We
find that there are two contributions: one from the currents in the
filaments, and one from the currents in the conducting matrix.
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Fig. 5. 2D Drawing of currents in wire with twisted filaments.

The total magnetization per superconductor unit volume is

(17)

(18)

where is the wire length and is the superconductor cross-
sectional area, and and are the magneti-
zations due to the currents circulating in the superconducting
filaments and in the conducting matrix.

In our case, it can be shown that

(19)

which yields

(20)

where depends on the filament twist pitch.

III. SIMULATION RESULTS AND DISCUSSION

The finite elements code applied for superconductors was de-
veloped by LGEP. Our work is based on this code. The method
consists in using a model with two slopes instead of Bean’s
model [5]. But for the superconductors at high critical tempera-
ture, the real characteristic differs rather clearly from that
of Bean’s model, a more realistic model can be obtained by a
progressive function [6]. We modeled a wire made up of six
superconducting filaments twisted together and embedded in
an OFHC copper matrix at 4.2 K). A
time-varying magnetic flux density was applied vertically with
a maximum amplitude of 1 T and a frequency of 1 Hz. Initially,
the simulations were made according to Bean’s model and as-
suming a constant critical current density of .
In order to study the influence of twisting on the coupling be-
tween filaments and on the magnetization, we varied the fila-
ment twist pitch of the filaments, , from 0.03 mm to 300 mm.
Fig. 6 illustrates the current density distributions in the six fil-
aments in the plane for two extreme twist pitch values.
In Fig. (6a) , we can see the case of perfectly
coupled filaments, while in Fig. (6b) , we can

Fig. 6. Current density distributions at t = T=4 for (a) p = 300 mm and (b)
p = 0:03 mm (using Bean’s model).

Fig. 7. Current density distributions at t = T for (a) p = 300 mm and (b)
p = 0:03 mm (using Kim’s model).

see the case of perfectly decoupled filaments. When decoupled,
the filaments carry their own go and return currents, whereas
coupled filaments behave like one monofilament conductor. For
intermediate values, we can observe cases of partial filament
coupling.

In order to take into account the dependence of the critical
current density on the magnetic flux density, a second set of
simulations were carried out using Kim’s model, with

with and
[1]. The modeled domain, the matrix conductivity value

and the applied magnetic flux densities are the same ones as
those used previously. Fig. 7 shows the current density distribu-
tions in the six filaments in the plane for the same two
extreme cases, where again observe perfect coupling and decou-
pling [2].

Figs. 8 and 9 compare the magnetization cycles obtained
using Bean’s and Kim’s model for three different twist pitch
values. We can clearly see the deformation of the cycle in the
case of partially coupled filaments compared to the extreme
cases of perfect coupling and uncoupling. In the case of Kim’s
model, the deformation is more important at high magnetic flux
densities than at low magnetic flux densities. This deformation
is due to the current density distribution in the filaments [4].

From the magnetization cycles, we can deduce the maximum
magnetization value. According to our computations, we have
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Fig. 8. Magnetization cycles obtained from Bean’s model.

Fig. 9. Magnetization cycles obtained from Kim’s model.

confirmation that this value depends on the electrical conduc-
tivity of the conducting matrix, on the critical current density,
on the frequency of the applied magnetic induction, and on the
twist pitch of the filaments. From (15), it appears that a good in-
trinsic parameter to characterize the effect of twisting for a given
critical current density is: or: , where is the skin
effect in the conducting matrix. Fig. 10 shows that, for Bean’s
model with , the filaments are cou-
pled together when is higher than 5.60. On the other hand,
if this value is lower than 0.056, the filaments can be consid-
ered as decoupled. Then, in practice, if copper is used for the
conducting matrix, it is necessary that the filament twist pitch
be lower than 1 mm to unsure that so that the superconducting
filaments are decoupled. When relying on Kim’s model, the fil-
aments are coupled if the value is higher than 1.90, and de-
coupled if the value is lower than 0.056. Note that this lower
limit is the same as the one obtained with Bean’s model, and that
in our computation where , we

Fig. 10. Maximum magnetization versus p=� ratio.

find that the maximum magnetization obtained by Kim’s model
is always smaller than that obtained by Bean’s model. The dif-
ference between two values is more important in the case of
coupled filaments than for uncoupled filaments.

IV. CONCLUSION

We studied the effects of superconducting filament twisting in
composite wires. We proposed a method based on the principle
of energy balance to solve this problem in 2D. Simulations were
carried out using Bean’s model and Kim’s model. In both cases,
we could express the maximum magnetization as a function of
a reduced parameter directly proportional to the filament twist
pitch. The value of this parameter enables to assess the where or
not the superconducting filaments are coupled together through
the low-resistivity matrix of the wire.
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