
Morphing Content in Mobile Applications

by

Kevin Y. Wang

S.B. Electrical Engineering and Computer Science, M.I.T., 2008

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science
at the Massachusetts Institute of Technology

May 20, 2009
© 2009 Massachusetts Institute of Technology

All rights reserved.

Author

Department of Electrical Engineering an-c omputer Science

A /, ' , May 20, 2009

Certified by_

Accepted __

Professor Glen Urban
T. vid Austin .Brofessor of Marketing

Chairman Ce.iter foQr Digita Business at MIT
. . . " Thesisaf.pervisor

S.A rthur C. Smith

Professor of Electrical Engineering
Chairman, Department Committee on Graduate Theses

MASSACHUSETTS INSTMITE
OF TECHNOLOGY

JUL 2 0 2009ARES

LIBRARIES

ARCHIVES

Morphing Content in Mobile Applications
by

Kevin Y. Wang
S.B. Electrical Engineering and Computer Science, M.I.T., 2008

Submitted to the
Department of Electrical Engineering and Computer Science

May 20, 2009

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

Smart phones are quickly becoming an integral part of our everyday lives. However, the
mobile industry is still young, and the full potential of mobile phones has yet to be
tapped. In this thesis, I present the design of a new mobile "super-application" called
MobileHelp that aims to push the boundaries of how smart phones can make people's
lives easier. MobileHelp uses Bayesian inference to determine a user's current purpose.
Then, it suggests applications the user may want to use, offers deals and discounts for
relevant nearby businesses, shows information about nearby friends and their statuses,
and present search results for relevant queries. The power of MobileHelp is that it does
all this without actively querying the user for information. It can use past information to
make an accurate guess at the user's current purpose, which, if wrong, can be corrected
by the user and learned from. I discuss how such a system is conceptually designed and
then go into the details of how it could be implemented on the Android platform.

The purpose of this thesis is to lay out the framework for a context-aware mobile
application that can be implemented as a first-stage demonstration for France
Telecom/Orange.

Thesis Supervisor: Glen L. Urban
Title: David Austin Professor of Marketing
Chairman, MIT Center for Digital Business

Acknowledgements

I would like to begin by thanking my advisor Professor Glen Urban for his help,

guidance, and friendship. Glen helped introduce me to a world of digital marketing that I

never knew existed before. I've learned many things over the past year working with him,
from how to build and a lead a team of diverse skills and backgrounds, to how to think

outside the box to tackle open-ended questions like those that appear in the field of

marketing. I would like to thank Erin MacDonald for the great work she did managing

the General Motors and Suruga Morphing projects. I should also mention Professor Gui

Liberali, who has been a kind friend and generously offered up his time to answer my

questions about the mathematics of morphing.

I want to thank my fellow researchers Ele Ocholi and Jong-Moon Kim. They have

been great partners to work with, and made the lab a very fun place. I also owe thanks to

Clarence Lee, whom I consider to be one of my great mentors at MIT. He was

responsible for my development as a leader in the MIT Technology Fair, and was the

person who first brought me into Glen's lab. I would also like to thank Jimmy Li and

Shirley Fung for their help and friendship when I first joined the lab.

I would be remiss to not thank Dorothee Bergin and Diego Panama for their

invaluable contributions to the France Telecom/Orange project, which is the subject of

this thesis. Besides being a real pleasure to work with, they are tremendously creative

people whose innovative thinking helped drive the project to where it is today.

Finally, I would like to thank my parents, who have inspired me in vastly different

ways. My mom, by her strength and humility in the face of terrible adversity, has set an

example of how to stay positive no matter what the circumstances. My dad, through his

persistent wise words, has made me realize that I only am solely responsible for my

success and fate in life. Most importantly, I thank them for the sacrifices they made in

their life, so that I could have the freedom and opportunity to pursue whatever I wanted

in mine. The gift of opportunity is the greatest gift of all, and I wouldn't be where I am

today without them.

Table of Contents

Acknow ledgem ents 4

Chapter 1: Introduction.. ... 7

1.1 V ision 7

1.2 Overview 8

Chapter 2: Content M orphing 9

2.1 Cognitive Styles 9

2.2 Previous W ork w ith Suruga Bank................................. 10

Chapter 3: M athem atics of M orphing .. 12

3.1 Bayesian Inference .. 13

3.2 G ittins Index 14

Chapter 4: France Telecom/Orange Mobile Morphing .. 14

4. 1 Goal .. 14

4.2 The M obileHelp Application ... 16

4.2.1 Rationale 16

4.2.2 M aking Inferences................................... .. 17

4.3 Demo Storylines............................. 21

4.3.1 Jim ... 21

4.3.2 Pam .. 22

4.4 Features and U ser Interface ... 23

4.4.1 Applications 23

4.4.2 Search Results .. 24

4.4.3 Deals 24

4.4.4 N earby Friends .. 25

4.5 Cognitive Style and M orphs 25

4.6. Architecture 30

4.6.1 The Android Platform .. 30

4.6.2 Prototype.. 33

4.6.3 Dem o 36

4.7 Demo Specifications 37

4.7.1 Constants 37

4.7.2 Data M odels ... 39

4.7.4 Important Classes .. 49

4.8 U ser Interface Design...52
4.8.1 XML Layout .. 52

Chapter 5: Contributions and Future Work .. 58
Chapter 6: Bibliography .. 59

Chapter 1: Introduction

Imagine it's the year 2010, and you, like a majority of people in the country, have an

internet-enabled smart phone. Everywhere you bring this phone, it seems to know exactly

what you want and when you want it. When you're commuting to work in the morning, it

brings up the train schedule and morning news for you to read. When you're going out to

lunch with your coworkers, it suggests a 10% discount for a place nearby that your

friends have been to. When you're home at the end of the day, it realizes you're trying to

find the show times of a new show, so it automatically brings up the TVGuide

application, even though you don't yet own it. On the weekends when you're out

shopping, it shows you nearby friends who are doing the same so you can meet up. Later

in the day, your phone suggests you and your friends go to a movie theater. In the

process, it automatically brings up the Fandango application so you can find show times

and purchase tickets ahead of time. Best of all, it does all of this without it ever asking

you for anything.

1.1 Vision

This thesis discusses the design of a mobile phone application that uses Bayesian

inference to infer user purpose and offer helpful recommendations. The goal is to work

towards the user experience just described by building intelligence into mobile phones in

way that hasn't been done before. Ideally, the smart phone of the future will

* Know what you're doing based on passively observing your actions and

comparing it to your previous history.

* Offer extremely relevant suggestions and deals for you that will make your life

easier and save you money.

* Present information to you in a way that resonates with how you think.

This is the result of collaboration with Orange Labs, the research division of France

Telecom, and builds on the work of previous projects that used Bayesian inference to

morph content.

Hitherto, morphing technologies have been applied to websites. The idea is to

learn about enduring latent variables, specifically, cognitive style. Once we know a

person's cognitive style (for example, whether they're analytic or holistic), we can

display web pages in a way that better suits them. Previous work with Suruga Bank in

Japan resulted in the design, implementation, and test of such a morphing site that

showed improvement in user satisfaction.

In this project, we would like to apply the same Bayesian inference and morphing

technologies to mobile phones. In addition to using Bayesian inference to infer cognitive

style, we are also applying it to infer user purpose. This is a new area of research and we

hope that our inference engine can perform in this capacity. We will also be morphing the

recommended content based on cognitive style. This is especially important in a mobile

environment where screen real estate is at a premium.

1.2 Overview

In Chapter 2, I illustrate the concept of content morphing by discussing cognitive styles

and previous work with Suruga Bank.

In Chapter 3, I give an overview of the mathematics ofmorphing. Specifically, I

discuss the Bayesian inference engine and Gittins index.

In Chapter 4, I introduce MobileHelp our mobile assistant application. I discuss

our choice of the Android platform for this project and system design decisions for the

demo and prototype.

In Chapter 5, I give specifications for data models and a few important classes of

our demonstration application. I also provide some implementation hints based on past

mobile development experience.

Finally, in Chapter 6, I summarize the contributions of this thesis and lay out

plans for future work.

Chapter 2: Content Morphing

The idea of morphing is based on the fact that humans have difference preferences for

how information is presented to them. This is grounded in the different ways that people

process information and captured in the theory of cognitive styles.

2.1 Cognitive Styles

Cognitive styles influence how people think process information, and learn. Examples of

contrasting cognitive styles are Analytic/Holistic and Visual/Verbal. A person is analytic

if they want to see all the nitty-gritty details, while a person is holistic if they're more

interested in understanding the whole picture. Similarly, a person is visual if they prefer

graphics and diagrams and verbal if they prefer textual explanations.

One definition of cognitive style is given by Riding and Rayner, who say

"Cognitive style is seen to be an individual's preferred and habitual approach to

organizing and representing information." (Riding & Rayner, 1998) Cognitive style is an

enduring latent variable. That is, it is one which is not directly observable but must be

inferred (latent), and also enduring in that it for humans, it generally does not change

over time.

This implies two things. The first is that we need to be clever in evaluating a

user's cognitive style. Second, once we have estimated a user's cognitive style, we do not

need to estimate it again later. We can then use our knowledge of a user's cognitive style

to our advantage by morphing content. The details of how to make these inferences and

choose which morphs to display is discussed in the next section. In the meantime, we

provide an overview of a previous morphing project to give a better sense of how

morphing works in practice.

2.2 Previous Work with Suruga Bank

Since 2006, we have been working with Suruga Bank in Japan to design a morphing card

loan website. The site uses a combination of Analytic/Holistic, Deliberative/Impulsive,

Hierarchical/Egalitarian, and Individualistic/Collectivistic cognitive styles. Deliberative

people tend to plan out their decisions more than impulsive people. Hierarchical people

have more respect for expert opinions while egalitarian people believe in the equality of

all opinions. The last pair contrasts users who like to form their own opinions about

issues against those who like to seek group opinions.

There are two components to this morphing site. The Bayesian engine evaluates a

user's clickstream on the website, and from that, infers the user's cognitive style. This

was done by associating characteristics to each link, after which a user panel was done to

evaluate how those link characteristics map to cognitive styles. After this mapping was

done, we could build a probabilistic model of a user's cognitive style based on the links

they clicked and the order they clicked them. This was built by Clarence Lee, a former

research assistant (Lee, 2008).

The second component is the Gittins index. Given a probability distribution of

cognitive styles for a user, this engine decides which morph to show a user next. A

previous research assistant, Shirley Fung, designed and implemented the morphing layout

functionalities of the website (that is, how to turn the output of the Gittins index to an

actual webpage). Section 5.1.1 of her thesis show great examples of how the same data

can be presented in two entirely different ways based on cognitive style (Fung, 2008). For

purposes of exposition, I will include a couple of samples to let you see the contrast

between the different morphs.

abundant text, attention to detail, and how the data is projected two ways to allow different aICnalysis.

F4.d wph, *p 4W

vnb' *"-

-U't-fID
IS~ st Y~?

abundat text, attention to detail, and how the data is projected two ways to ailow different analysis.

Figure 2: Holistic/Impulsive/Egalitarian/Collectivistic morph of the same data specs page. The data is
much more condensed and summarized with almost no descriptive text. Also, the data is not
projected and shown in one condensed 3D view.

Previous inference work has been done by the Reality Mining group at the MIT

Media Lab. Some of their work involved trying to predict what users were going to do at

any point in time (Farrahi & Gatica-Perez, 2008), and infer relationship status in a social

network (Eagle, Pentland, & Lazer, 2009). Their tools were focused more on machine

learning methods such as Hidden Markov Models. Ours is the first example known to us

that uses Bayesian inference. More information is available on the group website:

http://reality.media.mit.edu/.

Chapter 3: Mathematics of Morphing

The mathematics of morphing is divided into the Bayesian and Gittins engines. Bayesian

inference uses Bayes rules to calculate the probability of being in a certain cognitive style

given a user's clicks. The output is a vector of probabilities of being in each cognitive

style, which is fed into the Gittins engine. The Gittins engine then decides the optimal

morph to show the user. As we will see, this is is not simply the morph with the highest

probability. The paper "Website Morphing" by Hauser, Urban, Liberali, and Braun

describes these methods in great detail (Hauser, Urban, Liberali, & Braun, 2009). We

provide a brief summary here.

3.1 Bayesian Inference

Our Bayesian inference engine uses a multinomial logit function to model the probability

of the user clicking a given link. After this is calculated, Bayes rule is used to calculate

the probability of being a certain cognitive style based on the link the user chose. The

probability of clicking on a specific link is defined as:

]lk e kln
y kj i

where for a particular user n on web page k, Jk is the number of links on the page, ykjn is 1

if the user clicked linkj and 0 otherwise, ckn is a vector of link characteristics, r, is a

vector describing cognitive style, and Q is a matrix (estimated from a pre-study) that

maps link characteristics to cognitive style.

This vector of probabilities of clicking on a specific link is calculated for each

user after every click. Then, the posterior probability of being in a certain cognitive style

is calculated by Bayes rule as follows:

Irn = f= (rI"'f f.h q,(rk)fn, 0)lj, kk.r ,,)

where qo(r,) is the prior distribution (taken to be uniform before any user data, and

afterwards is the posterior from the click before), k indexes the click made by the user

(the first click, second click, etc.), and K, is the number of clicks made by user n. Notice

that in the denominator, we sum over 16 cognitive styles (ro from 0 to 15). This is

because in the Suruga study, we have four binary dimensions, giving us 24 = 16 unique

combinations of cognitive styles. In the study with France Telecom, we have two

dimensions (Analytic/Holistic and Visual/Verbal) so we would sum over 22 = 4 cognitive

styles. The result, q,,n is a vector of probabilities of being in one of the 16 combinations of

cognitive styles. This is fed into the Gittins Engine (below), which decides which morph

to show.

3.2 Gittins Index

The purpose of the Gittins engine is to determine the best morph to shown to a user at a

specific time, given the probabilities of the user have a combination of cognitive styles.

The greedy approach would be to show the morph corresponding to the cognitive style

with the highest posterior probability (in other words, maximum a posteriori). However,

this is not ideal since it's easy to get stuck in local minima: if we keep always show the

user the morph with the highest probability, then the user may never get a chance to

explore other morphs which may better fit him.

The Gittins engine solves this problem by calculating what are called Gittins

indices. Without going into much detail, the idea is determine which morph has the

highest Gittins index, and display that morph. The index value takes into account both the

present and future discounted value of showing this morph. Please refer to Section 4 of

"Website Morphing" for a more detailed explanation.

Chapter 4: France Telecom/Orange Mobile Morphing

4. 1 Goal

The goal of the France Telecom/Orange Mobile Morphing project is to develop a new

mobile phone application that combines Bayesian inference on cognitive style and user

purpose with proprietary network data about user statistics and usage. Specifically,

France Telecom is interested in improving the mobile experience for its users by making

life more convenient for them.

This project will culminate in a demonstration application, not a full-fledged

prototype. If this demo proves interesting to FT (or perhaps other network providers), a

reasonable follow-up project is to create a live working prototype that communicates with

network providers to get access to user search histories and other proprietary information.

This demo will consist of a few storylines that should show evidence of potential

in mobile morphing to better user experiences, should more funds be invested in this

work. It will be limited in scope in that the application will not consist of any "live"

features. Instead, the application will consist solely of pre-determined scenarios that show

off the breadth and depth of what morphing could do. We will have a simple inference

engine running, but probabilities will not be updated. They will be hardcoded in the

database.

We also wanted to limit the demo entirely to the phone itself was for portability.

If someone wanted to show the application to an executive in France, they would not

have to worry about internet connectivity and whether there was a server with a database

running somewhere that could handle the network API calls. However, in this document,

we consider the design of a prototype system that much more mimics real-life scenarios

with dynamic data and inference.

4.2 The MobileHelp Application

We achieve the goal by designing a mobile application called MobileHelp. MobileHelp is

a mobile concierge service that tries to offer the use relevant information, applications,

business deals, and information on friends based on the user's inferred purpose. That is,

the application uses Bayesian inference to determine (on a coarse level) what the user is

currently in the process of doing. Based on that inference, it tries to offer the user helpful

suggestions or information. Specifically, MobileHelp offers

* Information scraped from the web - Examples include search results, news

stories, weather info, etc.

* Applications the user may be interested in - There are 25,000 applications in

the iPhone marketplace. Finding the one you need when you need it is

extremely difficult. We lessen that burden on you.

* Deals about businesses and restaurants nearby - Deals that are relevant to the

user. Includes restaurant, bar, movie, and shopping savings.

* Information about nearby friends - Discover who among your friends are

nearby, and what they're doing.

4.2.1 Rationale

When we were designing this application, we wanted to create something that could

leverage our proprietary Bayesian inference engine. Inferring user purpose seemed a

natural application of that engine in a new context. Then, assuming we had user purpose,

we brainstormed problems that this information could be applied to solve.

One problem that users face today is the overwhelming number of applications

available for download. The iPhone app store has twenty different categories with over

25,000 applications. This number will only increase in the coming years. We believe this

problem can be attacked by offering users applications, whether owned or not, that are

relevant their current purposes. These applications would be tagged by and presented to

the user based on demographic information, location, time, and purpose. For example, we

may serve a news application to a user commuting to work, and a TV Guide application

to a user coming home who recently searched for "American Idol" on their phone.

Another situation where we can use purpose to improve user's lives is by offering

them relevant discounts and promotions for nearby businesses. The idea is that if the user

is interested in buying food or going shopping, we can serve them deals from restaurants,

bars, or stores that they may be interested in. This is substantially different from

traditional advertising in that these ads are elicited by the user. If the user never uses this

feature of the application, then they will never see any ads. Furthermore, we expect the

action rate on these ads to be much higher than traditional ads because the relevancy is

orders of magnitude greater. We will only serve you food ads when it's time to eat, and

discounts at Gap or Best Buy when you're going shopping.

Lastly, people are interested in where their friends are and what they're doing. We

decided to put in a friends feature in our application. The idea is that MobileHelp can

determine the location and purpose of nearby friends who also have the MobileHelp

application installed. If your friend is having lunch nearby, we can alert you and present

an opportunity to meet up, as well as deals you may both be interested in.

4.2.2 Making Inferences

The following figure gives a high level view at the data flow in MobileHelp:

Latent Purpose

* Phone
* Location
* Time of day
* Calendar
* Contacts
* Call, SMS History

* Network MobileHelp

* Search history
An application that infers

SBrowsing history your purpose and serves
* Purchase history you relevant helpful

* User (traditional information.

demographic)

Figure 3: This figure shows the data available on internet-enabled smart phones (specifically,

Android phones).

We make extensivake extensive use of the phone's data to make inferences on user purpose

and cognitive style. We now discuss the details of that process.

4.2.2.1 User Purpose

A large part of this project hinges on our ability to infer user purpose. Although it's been

previously stated that this is a static demo, we discuss how a prototype system could infer

user purpose in a Bayesian framework. Our simple model consists of purpose (P), time

(T), and location (L). From data and surveys, we will estimate P(L IP, T). The whole data

gathering process is opt-in. Users who are interested would be incentivized fill out a

questionnaire on the FT/Orange site that would tell us about their cognitive style. We

would also ask questions such as "How likely will you be in this location if you're having

lunch at work?" We can also gather data points for that conditional probability when

users change their purpose inside MobileHelp. Users who choose to opt-in would also

agree to be in a panel that records their location, purpose, and time, and sends it back to a

Dat

central server. An example where this has been done is with the Statistics Bureau of

Japan, where people were asked to log their activities (games, gardening, walking the

dog, etc.) every 15 minutes (What People in Tokyo are Doing on a Tuesday, 2008).

We have to be careful when treating these probabilities, because in general,

location and time are continuous variables. To deal with that, we can quantize the

possible values they can take on. For example, we can view time as buckets of hour-long

intervals. Two times T, and T2 will be equivalent if IT1 - T2 I < 8. Unfortunately, this is

not an equivalence relation because transitivity does not hold. We can define a similar

equality function on locations using Euclidean distance.

Let ET(T) = {Ti I IT - Ti < 6), or the set of all times that are within 6 of T. The

value of 6 will have to be adjusted, but a reasonable starting point may be 1 hour. Define

a similar equality set for locations EL (L). Then our new probabilities become

P(EL (L) IP, Er (T)), or the probability of being within a certain physical area given the

current purpose and chunk of time we're in. Using Bayes rule, we can solve for

P(PIEL (L),Er(T)) as follows:

Po(P)P(E (L)P, ET (T))
P(PIEL (L), ET(T)) = P(P)P(EL(L)IP, ET(T))

i P(Pi)P(E (L)|Pi, ET(T))

In our demo, we will implement this form of Bayesian inference with fixed

probabilities. That is, at each stage of our scenario, we will have probabilities for each

possible combination of times, locations, and purposes stored. In that sense, the inference

engine will be used, but not updated. To update the probabilities in the prototype, we can

respond to user input. If the user corrects the displayed purpose, we will take that into

account as another data point in our history of observations. In the future, that point

affects what our computed probabilities are.

4.2.2.2Cognitive Style

We will have an independent component of the Bayesian engine making inferences about

cognitive style. This component would be very similar to the previous work we've done

with Suruga Bank and follows the scheme from the previous section. As mentioned,

initial cognitive style information can come from surveys done on the FT/Orange site,

which then get sent to the phone. Clearly, this would have to be done on external servers,

hosted either by FT/Orange or MIT.

4.2.2.3Prototype Gittins Engine

The Gittins engine in the prototype will be used to determine which morph and relevant

information to show users, given an inferred purpose. There will be two independent

components. The first component determines which information the user should see

given his purpose. This allows us to learn what type of information the user wants to see

for a given purpose. The second component determines which morph of the relevant

information to show users. This is the standard Gittins engine we've used in previous

web morphing studies.

The Gittins engine needs success metrics in order to learn. In websites, we

typically consider the information the Gittins present as "correct" if the user made some

sort of "purchase" action (a conversion) such as requesting more information. The Gittins

engine here will use that same idea to determine whether the morphs and information it

showed the user was good and relevant. However, things are more complicated because

we have to be careful not to conflate cognitive style with purpose. Initial thoughts include

using the guessed purpose as a conversion. If the user does not change the purpose, then

we can guess it's correct. Conversions for morphs may consist of clicking links, using

apps and apps, and interacting with nearby friends. The full details of this have yet to be

determined and will require future research.

4.3 Demo Storylines

We now present the storylines for our demonstration. They tell the day-to-day activities

of two different people, Jim and Pam. We follow Jim, a married male in his early forties,

through a typical weekday. We follow Pam, a single female in her mid twenties, through

a fun day Saturday. In both cases, we offer two storylines for two cognitive style

combinations: Analytic/Verbal and Holistic/Visual. This gives us a total of four

walkthroughs. In each case, we try to emphasize how MobileHelp can make their lives

easier.

4.3.1 Jim

Jim is in his early forties, married, and has two children. He lives in Lexington, MA and

works for a finance company in downtown Boston, where he commutes to work every

day. Here is a typical work day in Jim's life, and how MobileHelp can make his hectic

day easier:

Heads home. On the
way back, he does a
few searches for TV
show names.
Arrives home, turns
on the TV, and
prepares dinner.

Gets his search history and categories them as
entertainment. Brings up the TV Guide
application.

Sets status to "Home".

Since Jim is a working professional, the things that are most relevant to him are new

applications and deals. Despite the fact that his day is fairly routine, MobileHelp still

finds ways to provide value to Jim, without his actively seeking help.

4.3.2 Pam

Pam is a recent college graduate who lives in Boston. She's an active socialite and is

usually busy on the weekends out with friends or meeting new people. Here's how a

typical Saturday for her might go:

10:15 AM Calls some friends to
arrange brunch.

5:15 PM

6:00 PM

dinner. Pulls up some movie show times
and recommends the Fandango
application. Also displays information

Since Pam is young and single, her life is focused more around her social circle. Thus,

she's more interested in friends and deals for places that let her meet new people. This is

why MobileHelp recommended the bars and jazz performance to her. For someone of a

different demographic (say Jim), it would not have recommended the bar scene, but

instead an older or more family-oriented restaurant.

4.4 Features and User Interface

We present the MobileHelp features, which consists of the four main screens on our

application: recommended applications, search results, offered deals, and nearby friends.

We tried to design the user interfaces consistently so that all the pages of our applications

share a common theme and navigation scheme. This isn't always possible because the

pages present very different content. For example, the visual version of nearby friends is

a map, which is nothing like a grid of application icons. However, we can make the

verbal list view of applications look very similar to the list view for nearby friends.

4.4.1 Applications

The applications page lists the applications you may be most interested in based on your

purpose. The list contains both applications you own and those you don't. It helps in the

process of application discovery, which can be a challenge by itself given the plethora of

applications available. The AnalyticNerbal morph shows a list of applications with some

descriptive information. The Holistic/Visual morph shows a grid of large icons, much

like the iPhone application selector. Applications you already own will be highlighted in

such a way to make it obvious, but the grid/list you see will most likely be a mix of

applications you do and don't own.

Applications you own will open when clicked. The state of MobileHelp will be

saved and can be resumed later. Applications you don't own will bring up the app store

when clicked and directly link to the chosen application where you can buy it.

4.4.2 Search Results

The information page shows web search results and other information we think is

relevant to you. This is useful since there should be plenty of information the web that's

of immediate interest to the user. We do not present the results in a typical way shown in

web browsers, but instead in a sanitized list that looks similar to the other pages for

consistency.

4.4.3 Deals

The deals page shows deals offered by nearby businesses that may interest you, given

your current purpose. This is better than traditional advertising because the ads are much

more targeted and entirely user solicited. The Analytic/Verbal morph will show a list of

business names with short textual descriptions of the deal. The Holistic/Visual morph

will be a grid of business logos (similar to the grid of applications). When a deal is

selected by the user, the screen goes to a new page which provides more information

about the deal. This screen shows the deal name and a text description of the exact details

of the offer, including location, expiration date, and business contact information to learn

more.

4.4.4 Nearby Friends

The friends page tells the user the location and purpose of nearby friends. The

AnalyticNerbal version is a scrollable list of nearby friend names, locations, and

purposes. The HolisticNisual version shows a map with pinpoints representing friends.

When a pin is tapped, a popup comes up showing the friend's name, picture, purpose, and

any text status he or she has set.

4.5 Cognitive Style and Morphs

As mentioned earlier, this demo focuses on AnalyticNerbal and HolisticNisual cognitive

styles. We consider the scenario where someone is eating lunch at Au Bon Pain. For each

of the different pages (recommended apps, information, deals, and friends), we show

what AnalyticNerbal (left) and HolisticNisual (right) morphs would look like. Although

these mockups were in an iPhone setting, the spirit is the same for Android. (Note that

these images were created by Jong-Moon Kim, who graciously agreed to let me use

them).

First, we present the apps page.

The Analytic/Verbal morph shows a list of applications, showing their icons, the

name, a short description of the app, and whether the user currently owns it or not. The

Holistic/Visual morph shows a very simple grid of application icons. When a user selects

an icon, more information is shown below. Colored backgrounds around the large icons

tell the user whether he currently owns the app or not.

We also have two mocks showing how the user can change his purpose:

There is a dropdown menu that shows other high probability purposes. If none are

correct, the user can type the choice he wants into the textbox.

The next morphs are for the info/search results page.

We show search results in a much more organized way than a typical browser, in addition

to tying it into your social network. Notice in the Analytic/Verbal morph that each search

result shows not only how far away the relevant place is, but also how many of your

friends have been to the place. This extends beyond restaurants to any geographic place,

or even perhaps websites your friends may frequent. The Holistic/Visual morph shows

relevant search results in a map with icons representing the relevant results. It shows the

same information that the Analytic/Verbal morph does when an icon is selected.

Next, we compare the deals page.

The Analytic/Verbal offered deals display is similar to the info/search page,

except instead of information about the business, we present information about the deal

being offered. The Holistic/Visual morph is very different from any morph we've seen

before. It is big and to the point. Users can browser different deals by swiping the screen

left and right.

Last, we present the friends page:

The Analytic/Verbal version shows a list of friends with their names, pictures, and

text statuses. Contrast this with the Holistic/Visual version which shows a map view of

where users are, allowing the user to get a broad summarized view of the situation

immediately.

4.6. Architecture

4.6.1 The Android Platform

4.6.1.1 Overview

We chose to develop our demo on the Google Android platform for several reasons. The

overarching theme of Android is openness. The operating system provides user-level

applications with deep access to phone resources that other development platforms hide.

The other main contender for the demo platform is the iPhone. Generally speaking, the

iPhone platform is closed and doesn't give application much freedom. The following

table contrasts what phone services are available to applications on both platforms.

Utilities Android iPhone

Calendar gcal

Contacts
Call Log
SMS In/Outbox
Location passive
Notifications

Table 1: This table compares the features that are available on the Android and iPhone development

platforms. It's evident that Android offers many more capabilities than iPhone does, and thus makes

a better candidate for a protoype platform.

Even though our demo is strictly canned, we took future prototype prospects into

consideration when choosing our development platform. It's clear to see that Android

offer us access to all of the phone resources we need to implement a working prototype.

Furthermore, Android allows services to run in the background. This is absolutely

necessary for a prototype. The iPhone does not currently allow this, although there are

talks of providing such a capability in the near future (Siegler, 2009).

4.6.1.2Core Components

Android development is centered on four core components: activities, services, broadcast

receivers, and content providers. We provide a brief overview of the first two

components. Each component has a lifecycle it must follow. These stages in the lifecycle

consist major phases in the lifetime of a component, from when it was created to when it

is destroyed.

Components (except for content providers) are activated by intents, which are

asynchronous messages that signal an "intent" to do something and carry information that

helps that "intent" be acted upon. For example, an intent might notify an application that

user wants to edit text, in which case the application can handle the intent by letting the

user perform the desired action. As another example, a user might click on web URI,

which launches an intent to browse a web page. This intent would be caught by the

phone's default browser, causing that application to open and navigate to the requested

URI.

4.6.1.2.1 Activities

Activities are visual interfaces for specific tasks the user can perform. For example, one

activity might show a list of options for a user to select, or a map the user can scroll

around and click on. Activities have three essential states: active, paused, and stopped.

An activity is active if it is currently in focus and taking user inputs. It is paused when it

is partially visible to the user but not the focus of the user's actions. This can happen

when another activity takes up part of the screen (a popup, for example) and takes focus.

Lastly, an activity is stopped when it is no longer visible to the user (perhaps because it

was superseded by a new activity). Stopped activities retain all state information.

4.6.1.2.2 Services

Services are background processes that run for an indefinite period of time. They have no

user interface. For example, a service might quietly poll GPS data and start an activity if

anything interesting happens. An application can communicate with a service by binding

to it. Services are necessary for a functioning prototype, but not for our demonstration

purposes. For the prototype, the service is a critical component. It is the part of the

application always monitoring what the user is doing to detect a change in purpose and

offer recommendations.

4.6.2 Prototype

4.6.2.1 Cross-Platform Compatibility and Client-Server Considerations

One of France Telecom's goals is to develop applications that are usable across a wide

range of mobile platforms while rewriting as little code as possible to work with each

individual platform. This is especially important to them because their network features

many different phone types. Thin-client applications, where most of the brains are on a

server and the client just renders what the server sends are good examples of this. The

extreme example would be to consider the web browser as the ultimate thin client. It is

mostly stateless (except for cookies) and features a universally adopted GUI layout

language: XHTML/CSS and Javascript.

The cost of this compatibility is functionality. The advantage of customized native

phone applications is that they can access the entire range of functionalities provided by

each phone's API. This includes things like access to the calendar, SMS logs, call logs,

contacts list, calendars, and GPS that traditional thin clients have difficulty getting access

to. There has been some work in making GPS available to web browsers, but security

issues make this a very tricky proposition.

To aid France Telecom in their goal of cross-platform compatibility, we consider

ways of turning MobileHelp into a thin client. The extreme case is to move all the client

processing to the server and have the client render (via WebKit, for example) a layout

response from the server. Although we may strive for this ideal, we most likely will not

be able to achieve it. MobileHelp depends on several phone features that are only

available through the phone's custom API and development environment. These include

all of the features mentioned above, but specifically GPS, contact list, and calendar.

One way to get around this problem is to have the phone send this data over to a

central server. Ignoring issues of server load, bandwidth costs, and battery consumption,

we could conceivably update a central server with the phone's location and pushes any

changes in its contact list or calendar as they happen. Then, the server would have all the

necessary information to make a Bayesian inference and return the relevant information

back to the phone to show to the user.

Another solution is to create a compromise between a thick and thin client. We

leave the engine and custom capabilities on the phone, but design the application such

that they are lightweight blackbox systems that can be replicated on different platforms

with little work. The GUI would be written with WebKit so that it could remain

untouched across platforms. This may make the most sense for a live prototype, since it

will be extremely difficult to move everything over to the central server model. However,

it is reasonable to change our views from Android Activities to WebViews.

4.6.2.2Architecture

The prototype will be a full-fledged client-server model. There are a couple of possible

designs. We present both options and defer a decision until later as our experience may

make certain facts more apparent that will affect our choice. The two models differ in

where the inference engine is. The thick client model puts the inference engine onto the

phone itself, and only communicates with external servers to learn cognitive style and

demographic information about users. The thin client model puts the brunt of the work on

external servers (hosted either by MIT or FT/Orange), where not only inferences are

made, but XHTML/CSS compliant output also computed and sent to the phone to

display.

I

Cognit ve Style
Demogriphics
Search Results

Database

This shows the thick client that gathers user data and performs inference on the phone.

The only exchange with external servers (besides search results) is to ask the FT/Orange

servers for information about the user's cognitive style and demographics. Contrast this

with a thinclient architecture.

Service

I I

I I

Database

I Database

Location
Purpose Cognitive Style
Clicks 2 Demographics
XHTML/CSS Search Results

The main difference between these two systems is where the intelligence is

located. In the first scheme, the phone is responsible for running the inference engine and

creating the display. In the second scheme, external servers get a feed of all of the

phone's information necessary to do inference, and sends back XHTML/CSS for the

phone to display.

4.6.3 Demo

4.6.3.1Simulating Time

Since this is a static demonstration, we will need to "simulate time" to let our users

progress in the storyline. The simplest way to do this is to make each scenario in the

storyline a snapshot in time, such that the user can flip forward and backwards in time. A

snapshot consists of the user at a specific time and place with a given purpose. Then, each

of the four tabs in MobileHelp will change to reflect this new scenario. As mentioned

before, each tab is morphed to the user's cognitive style. Thus, time is not continuous, but

treated instead as an ordered set of discrete events. Each event corresponds to one

scenario in a user's storyline.

4.7 Demo Specifications

The following section presents a specification for the major components of the demo

application. Standard software engineering principles dictate that writing a specification

up front and strictly adhering to it is bad practice. Software engineering is an iterative

process, and trying to exactly detail every aspect of a system before building it will surely

lead to failure. In that sense, consider these specifications as design guidelines and not as

dogma. As the application develops and engineering issues arise, they should be dealt

with in the most practical manner at the time. In the subsequent section, I will also

include performance considerations for developing on the Android platform, and mobile

phones in general.

These specifications are by no means exhaustive. Since we are still in the process

of finalizing the details of the application, there will be a need to change the design. With

that in mind, we write these specifications only highlight certain parts of the application

that are unlikely to change.

4.7.1 Constants

We begin by defining some integer constants that will be used throughout the application.

We choose integers instead of enumerations because the latter is much costlier in terms of

performance. Note that although the design of these constant is reasonable, the evolving

project may require the addition or deletion of constants (for example, as purposes are

added and removed).

These constants should live inside the class constants. Constants should be

capitalized and declared public static final.

4.7.1.1 Cognitive Style

The most efficient way to store cognitive style is to use a bitmask on an int (or perhaps a

byte). We define the least significant bit (1 st bit) as the representative for

Analytic/Holistic, and the second least significant bit (2 nd bit) as the representative for

Visual/Verbal. We define Analytic as 0 and Holistic as 1, and Visual as 0 and Verbal as

1. This is convenient because there's a simple integer representation of the current

cognitive style, which is just the integer value. This can be trivially saved and read to and

from the database. Manipulating the cognitive styles is simple using bitmasks.

Thus, we have the following constants:

public static final int CS_ANALYTIC_HOLISTIC_MASK = 1;

public static final int CSVISUAL_VERBAL_MASK = 1 << 1;

In general, cognitive style constants will have the form cs_*. The following is an

example of how to use the bitmaps to set the cognitive style to Analytic/Visual:

int cogStyle = 0;

cogStyle &= ~CS ANALYTIC HOLISTIC_MASK;

cogStyle J= CS VISUAL VERBAL MASK;

// cogStyle = Ob00000000 00000000 00000000 00000010 = 0x02

4.7.1.2Purpose

The full list of purposes is undetermined as of the writing of this thesis. The framework

for specifying them is simple however. We have monotonically increasing integer

constants of the form PURPOSE *, where * is from the set { "HOME", "WORK",

"OUT", "FOOD:, etc ... }. All references in the database specifications to the "home"

purpose would refer to PURPOSE_HOME, for example.

4.7.2 Data Models

We now discuss the data models in our database. We break down the models into three

groups. The first group consists of those necessary for the application, regardless of

whether it's the demo or a real prototype. The second group consists of models used

solely for the demonstration. The third group consists of models needed for the prototype.

In general, if the value of a field is unknown, it should be set to NULL. The

application should check for this.

4.7.2.1SQLite Considerations

We begin by discussing several subtleties of SQLite, the database on the Android phone.

SQLite is a more compact form of a standard SQL database and is thus well suited for

mobile platforms. However, this compactness comes at a cost in functionality. For most

practical purposes, there aren't many differences between SQL and SQLite, but we list

some issues that developers should be aware of.

The first thing to note is that SQLite stores DateTime fields as strings. Therefore,

if you want to compare DateTimes in the database, you must store them in ISO 8601

format: YYYY-MM-DD HH:MM: SS. Since strings are compared in lexicographic order,

following this standard ensures that a given DateTime is less than another DateTime if

and only if the former's string representation is lexicographically less than the latter's. A

relevant discussion can be found online at http://groups.google.com/group/android-

developers/browse thread/thread/132ff8acl671dadd.

The ISO 8601 standard is implemented in Java as follows:
private static final String SQL DATETIME FORMAT STRING =
"yyyy-MM-dd HH:mm:ss";

This string can be parsed by the DateFormat class. A full SQL utility class which

makes use of this can be found in the Appendix. Further information about how SQLite

handles dates and times can be found here

http://www.sqlite.org/cvstrac/wiki?p=DateAndTimeFunctions. From here on forward,

unless explicitly state otherwise, a DateTime field in a database will be a Text field in the

ISO 8601 format.

From the SQLite FAQ states that SQLite only supports INTEGER, REAL, TEXT,

BLOB, and NULL. SQLite also does not do type checking on the data you insert into

columns, so you are free (although certainly not encouraged) to insert floats in a boolean

column, arbitrary length strings in integer columns, etc. Care should be taken to avoid

this. In addition, SQL support foreign keys, but does not enforce them in any way.

One performance consideration is that SQLite uses atomic transactions. Each

INSERT is considered a transaction, and these take a long time to complete. Therefore, if

you are making many contiguous INSERT calls, it may be best to batch them together

and surround the multiple INSERT statements with BEGIN ... COMMIT. This amortizes

the transaction cost over all of the INSERT statements, which should increase speed

dramatically.

4.7.2.2Core Application Models

The core application models consist of database table specifications that would be needed

by any version MobileHelp, regardless of whether it is a demo, prototype, or final

product. This includes data about the phone user's cognitive style and demographic

information, friends, deals, applications, and businesses offering deals.

4.7.2.2.1 UserInfo

The UserInfo table stores basic demographic information about the phone's owner, as

well as information about cognitive style. This is traditionally proprietary information

that mobile applications don't have access to. Since we are partnering with a network

provider, we have special access to this information. The cognitive style information

could be gathered by a survey, the user's action's on the network provider's website, or

the user's actions on the phone.

Data Format Comments
FirstName Text
MiddleName Text
LastName Text

Age Integer
Sex 0/1 0 = Male, 1 = Female

Birthday DateTime The time portion of the ISO 8601

standard, if unknown, should be set to
00:00:00

HouseNumber Integer Can also be the apartment number

Street Text

City Text
State Text Two letter state code

Zipcode Text String is better than integer (consider
"11790-2620")

Country Char[3] 3 letter country code following the ISO
3166-1 alpha-3 standard
(http://en.wikipedia.org/wiki/ISO 3166-
1 alpha-3)

CognitiveStyle Text The int representing the user's

cognitive style

We need one data model for each main page of our application: applications,

deals, and friends. We also have a table for all the businesses that deals might be

associated with.

4.7.2.2.2 Applications

We store all of the information we need about an application in order to present it to the

user. Note that some information (like Purpose) would have to be manually examined by

humans set in a central server for distribution.

Data Format Comments

Name Text
VersionCode Integer Integer code of version (for internal use).

A string like "3.1.4" to show to the user
(http://developer.android.com/guide/publish

VersionText Text ing/versioning.html)

Description Text
The name of the category under the

Category Text application store
The purpose this application is associated

Purpose Integer with

Price Text A string like "$3.99"
Link to the app store where the user can

AppStoreLink Text buy this app

Owned Boolean True if owned, else false
LastRecommend
edTime Datetime Last time this app was recommended

4.7.2.2.3 Businesses

We store information about businesses so that users can find out more information about

where their deals are being offered, such as the address to claim it and a phone number to

call for more information.

Data Format Comments

Name Text The name of the business
Latitude Float The latitude from GPS

Longitude Float The longitude from GPS

PhoneNumber Text Pure numbers, no delimiters

StreetNumber Integer

Street Text

City Text

State Text

Zipcode Text 3-letter ISO 3166-1 country code

Country Text
Food, Drinks, Music, Movies,

Category Integer Transportation, Shopping, etc

Icon Text Local URI of icon image

The purpose this business is

Purpose Integer (generally) associated with

ForeignKey Most recent deal offered by this

LatestDeal into Deals business

LastRecommendedTime Datetime Last time this app was recommended

4.7.2.2.4 Deals

One point to keep in mind about our demonstration is that deals should always be valid.

That means we need to dynamically generate a time window that would overlap the

moment in time the deal was shown. Therefore, the fields highlighted below would not be

used in the demo

Data Format Comments

Name Text The name of the deal

Description Text A short description

Image Text Local URI for image to display

The purpose this deal is

Purpose Integer associated with

ValidBegin Datetime The valid start time

ValidEnd Datetime The valid end time

ForeignKey into The business this deal is

Business Businesses associated with

Something the business
supplies us that allows the

UseCode Text user to use this deal

4.7.2.2.5 Friends

This tables stores information about friends and friend relationships between contacts and

users. In a normal setting where a phone is used and owned by only one person, we don't

need to store "friend relationships" since all the contacts are friends with the phone's

user. However, this is a demo application with many simulated users. In this case, we

have to store all the friends that each simulated user has. This is accomplished with the

highlighted field below.

Data Format Comments
FriendOf ForeignKey into Only for the demo

UserInfo
ForeignKey into

ContactKey Contacts The friend's contact information
LastLatitude Float The latitude from GPS
LastLongitude Float The longitude from GPS

The time the last location was
LastLocationTime Datetime recorded
LastPurpose Integer

Time the last known purpose was
LastPurposeTime Datetime recorded

Picture Text Local URI for photo

4. 7.2.3Demonstration Models

The models required for demonstration store all the scenario information required for

each demo user's storyline. This includes a list of demonstrations, and tables that store

nearby friends, recommended applications, recommended deals, and relevant information

for each scenario in each user's storyline.

4.7.2.3.1 Storylines

We begin with a model that stores a list of all the storylines that a user can try.

Data Format Comments
DemoNumber The unique ID for this

Integer demo/storyline
ForeignKey into

User UserInfo The user (story) we're demoing
Name Text The name of this storyline

A short description of the

Description Text storyline

DayOfWeek Text Monday, Tuesday,

Photo Text Local URI of the person's photo
The cognitive style of the user for

CognitiveStyle Integer this storyline
The number of scenarios in this

NumScenarios Integer storyline

Although we store the cognitive style for this storyline, we can conceive of changing it

throughout the demo as we please. Next we present a model that stores the scenario

information for each storyline.

4.7.2.3.2 Scenarios

This model stores each "slide" of the "slideshow" that makes up one storyline.

Data Format Comments

DemoNumber Integer The unique ID for this demo

The order of this row in the given

SequenceNumber Integer user's demo
The time of day this demo is
happening (The yyyy-MM-dd should be

Time DateTime ignored when read)

Purpose Text The user's purpose in this scenario

Description Text Text description of the scenario

We now present the models for recommended applications, deals, and nearby friends and

relevant information.

4.7.2.3.3 RecommendedApps

This table simply joins a scenario with an application we recommend. We use join tables

because they allow us to associate an arbitrary number of applications for any scenario.

The software should determine the order in which to show the apps (alphabetically, for

example).

Data Format Comments

RelatedScenario ForeignKey into The scenario where we are
Scenario recommending this app

AppKey ForeignKey into Apps The recommended app

Likewise, the recommended deals table simply joins a scenario with a deal.

4.7.2.3.4 RecommendedDeals

Data Format Comments
RelatedScenario ForeignKey into The scenario where we are

Scenarios offering this deal
DealKey ForeignKey into Deals The deal we are offering

4.7.2.3.5 FriendsNearby

This model is also a join table, except we include some extra information about the

nearby friend.

Data Format Comments

RelatedScenario ForeignKey into The scenario where we are
Scenarios recommending this app

FriendKey ForeignKey into The friend that's nearby
Friends

Purpose Integer The friend's purpose

Status Text The friend's text status

Latitude Float The GPS latitude
Longitude Float The GPS longitude

4.7.2.3.6 RelevantInfo

This table holds lists of relevant information for each scenario. Once again, it is up to the

software to determine what order to display this information.

Data Format Comments

RelatedScenario ForeignKey into The scenario this information
Scenarios pertains to

Title Text The title of the info snippet
Text Text The info text body

URI Text The link for the web resource

4. 7.2.4Prototype Models

This section includes database models that would be required by a working prototype to

function. The main parts consist of required inference information about the user.

Specifically, we store a history of past events that update our Bayesian engine, search

history, and data aggregated and processed from the phone's data sources (calendar,

contacts, SMS in/outbox, call logs, location, notifications, etc.).

4.7.2.4.1 Inference

The barebones essentials for an inference engine are history of user time and position

coordinates. If we have the user's purpose at the given time, we store that also.

Data Format Comments

Latitude Float The latitude from GPS

Longitude Float The longitude from GPS

Timestamp DateTime The time this information was

recorded

CognitiveStyle Text The cognitive style if the user

set it.

TimeOfDay 0-1439 Minute of day

DayOfWeek 1-7 for Mon-Sun Day of week

TypeOfDay 0/1 0 = Weekday, 1 = Weekend

Day of Month 1-31 Very high entropy (provides

almost no information. We may

not even want to use this).

Month 1-12 Month of year

Year 4 digit year #

Note that in addition to the GPS latitude/longitude coordinates, the cognitive style

(if the user set one), and the date and time the information was recorded, we also store

summary information about the timestamp (highlighted yellow). This summary

information would be invaluable for a Bayesian inference engine to use. Otherwise, the

engine would have to recalculate this information every time it did a Bayesian update,

which would be computationally infeasible.

4.7.2.5.1 Search

Our hypothetical prototype would also store search history, something we would get from

the network provider. The Bayesian engine would also make use of this information in

updating cognitive style and purpose. Search terms are stored token by token to ease

some of the work of the Bayesian engine, which would most certainly need to tokenize

the search results. This allows the engine to make direct search queries into the database,

which can take care of things such as counts.

Data Format Comments

Not unique. We use this to join
SearchID UID individual tokens of a search

The index of this keyword in
the search phrase. First index

KeywordOrder Integer is 0.

Keyword Text The search term
Latitude Float The latitude from GPS
Longitude Float The longitude from GPS
Timestamp DateTime The time the search was made

The above information would be enough for a very basic simple search inference engine.

We also include other information worth considering putting into an inference model.

They consist mostly of summaries of search and SMS history, and calendar information.

In terms of summary information, the idea is to associate certain words with purposes.

For example, we could associate restaurant names or food types with food, transportation

terms like "MBTA" or "train schedule" with traveling, etc.

Data Format Comments
Calendar event @ this Integer 0 = None, 1 = meeting, 2 = food, 3
time class, etc.
SMS in last hour with Integer
"work" words
SMS in last hour with Integer
"play" words

searches in last hour
Integer

4.7.4 Important Classes

4. 7.4.1Datastore

The Datastore is the data abstraction layer. All data access, whether local or across the

network, should happen through the Datastore. This is for two reasons. The first is that it

provides a good abstraction. Activities requesting data should not have to go to different

sources for the data. The second reason is that centralizing data access allows the

Datastore to cache both local and network data. The Datastore should either be a

singleton or static class.

The Datastore class should have a private internal class named DbAdapter. The

purpose of this class is to provide a database abstraction for Datastore to user internally

when querying the database. We now discuss some details of the Datastore and

DbAdapter.

4.7.4.1.5 Context

There is an important Android abstract class named Context. This class allows

applications to access application-specific resources such as the database. The Datastore

must be given a context before any data access is done. This is an invariant that must be

maintained (and so should be checked before performing any operation that requires a

context). The class Activity is an indirect subclass of Context (the inheritance hierarchy is

Context 4 ContextWrapper - ContextThemeWrapper 4 ActivityActivity).

Therefore, when an activity starts, one of the first thing it should do is pass itself (this)

as a context to the Datastore. This context should then be passed into DbAdapter. This

allows DbAdapter to call context. openDataBase (...) to retrieve the proper database.

4.7.4.1.6 DbAdapter

The DbAdapter should take a context parameter in its constructor. From that, it can get

a SQLiteDatabase object from context. openDataBase (...) .DbAdapter should expose

open/close calls and provide an API for accessing data from the database. The

SQLiteDatabase class is mostly used via its query, execSQL, and update methods. The

SQLiteOpenHelper class should be useful for interacting with the actual database. It has

helpful functions that are called when the database is created for the first time (one

should put table creation code in here). It will need to define a database name (string) and

version (int) in order to access the database.

It would be too difficult to exhaustively list the methods the DbAdapter should

provide, but the general principle is to have create/update/remove methods for each data

model. DbAdapter also needs to have a list of table creation queries. A good format to

adhere to is given by the following example:

/** Every table has a "last modified" field */
private static final String MODIFIED FIELD = "modified";

/** The fields for the Events table */
private static final String USERINFO TABLE = "userinfo";

private static final String USERINFO ID = "uid";

private static final String USERINFO FIRSTNAME = "firstname";

private static final String USERINFO MIDDLENAME = "middlename";

private static final String USERINFO LASTNAME = "lastname";

private static final String USERINFO AGE = "age";

private static final String USERINFO SEX = "sex";

private static final String USERINFO BIRTHDAY = "birthday";

private static final String USERINFO STREET NUMBER =

"street number";
private static final String USERINFO STREET = "street";

private static final String USERINFO CITY = "city";

private static final String USERINFO STATE = "state";

private static final String USERINFO_ZIPCODE = "zipcode";

private static final String USERINFO_COUNTRY = "country";

private static final String USERINFO_COGNITIVE_STYLE =

"cognitive_style";

/** The SQL insert fields for the UserInfo table */

private static final String USERINFO INSERT FIELDS =

"(" + StringUtils.join(",", Arrays.asList(new String[] {

USERINFO FIRSTNAME,
USERINFO MIDDLENAME,
USERINFO LASTNAME,
USERINFO AGE,

USERINFO SEX,
USERINFO BIRTHDAY,
USERINFO STREET NUMBER,
USERINFO STREET,
USERINFO CITY,
USERINFO STATE,
USERINFO ZIPCODE,
USERINFO COUNTRY,
USERINFO COGNITIVE STYLE})) + ")";

/** The prefix for insert queries into the UserInfo table */

private static final String USERINFO_FULLINSERTPREFIX =

"INSERT OR REPLACE INTO " + USERINFO TABLE + " " +

USERINFO INSERT FIELDS + " VALUES";

/** Create UserInfo table */

private static final String CREATE_USERINFO_TABLE =

"CREATE TABLE '" + USERINFO TABLE + "' (" +

"'" + MODIFIED FIELD + "' NOT NULL DEFAULT

CURRENT TIMESTAMP, " +

"" + i + "' INT UNSIGNED NOT NULL ," +

.. '". + USERINFO FIRSTNAME + "' VARCHAR(64) NOT NULL ," +

"'" + USERINFO MIDDLENAME + "' VARCHAR(64) NOT NULL ," +

"'" + USERINFO LASTNAME + "' VARCHAR(64) NOT NULL ," +

"'" + USERINFO AGE + "' INT UNSIGNED ," +

"'" + USERINFO SEX + "' INT UNSIGNED ," +

"' + USERINFO BIRTHDAY + "' TIMESTAMP ," +

"'" + USERINFO STREET NUMBER + "' INT UNSIGNED ," +

"'" + USERINFO STREET + "' VARCHAR(128) ," +

"' + USERINFO CITY + "' VARCHAR(128) ," +

"'" + USERINFO STATE + "' VARCHAR(64)" +

+ USERINFO COUNTRY + "' CHAR(3) ," +

+ USERINFO ZIPCODE + "' VARCHAR(16) ," +

"'" + USERINFO COGNITIVE STYLE + "' INT UNSIGNED ," +

"PRIMARY KEY ('" + + "'))";

This creates the UserInfo table (specified earlier) and provides the prefix/skeleton for an

INSERT or UPDATE query for later use. StringUtils. join (...) is a method from a utility

class that concatenates the given array of elements by the given string. Note that we

define VARCHAR fields. These are treated as TEXT fields in SQLite. TIMESTAMP is treated as

DATETIME, which is analogously treated as TEXT by SQLite. The MODIFIED FIELD which

is defined as DEFAULT CURRENT_TIMESTAMP creates a timestamp that is always set to the

last date and time each row was created/modified. This could be useful (for caching, for

example) and should be included as a field in every table.

4.8 User Interface Design

We now discuss the user interface design. Recall that we are presenting Analytic/Verbal

and Holistic/Visual cognitive styles for this demonstration. We have designed two

distinct morphs for each screen in our application that appeals to each pair of cognitive

styles. Regardless of whether we're showing friends, recommended applications, or

deals, Analytic/Verbal users will get vertical lists of options with text descriptions.

Holistic/Visual users will get a map for friends and tables of icons for applications and

deals with almost no text.

Since activities in Android typically correspond to one screen, we will need

several activities. At a high level, we need one screen/activity (the demo selector) to let

users choose which storyline they want to follow, one screen/activity to show lists of

friends/apps/deals, one map to show friends locations for Holistic/Visual users, and one

screen/activity to show grids of application and deals icons.

Android eschews traditional Java layout schemes such as Swing and AWT in

favor of XML layout. We give a brief overview of this system and then talk about the

different types of views (map, list, and table) (Murphy, 2009).

4.8.1 XML Layout

The purpose of laying out views in XML is to make clearer the physical structure of a

view. It provides separation of concerns of layout and functionality. The layout should be

in the XML, and the functionality should be in Java code.

When an Android project is loaded inside Eclipse with the Android plugin

installed, the developer will see a res folder with two thee subfolders: layout, values,

and drawable.

%1 .~T f

LocoBeta
e src

l k Referenced Libraries
assets

r doc
,a res

a
drawable

Slayout
dualserviceclientxml
eventcreator.xmi

eventcreatormap.xml
Seventdetails.xnl
jeventiconchooserxmi

fe ventsistxml
frienddetailsxmi
inviterriendsrow.xmn
inviteriends.xml
Iocostart.xmi
mainrmap.xml

Smangfagefriendstml
newsfeed.xml

Sphototakerml
Sphotoviewer.xml

L photoviewerblank.xmia
Ssettings.xmi

values
AndroidManifest.xmn

Figure 4: The default folders inside an Android project. The expanded res/layout folder shows XML
layouts for activities.

i

A large share of the GUI work will take place within the layout and values

folders. The XML layout files under res/layout define the structure of the view. The

values folder is for constants, and drawable is for images. We explain how to use XML

layout via an example.

4.8.1.1Lists

Consider laying out a vertical list of options (i.e., a simpler version of our list views) in a

file called res/layout/demolist. xml.

<?xml version="l.0" encoding="utf-8"?>
<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android: orientation="vertical"
android:layout width="fill parent"
android:layoutheight="fill parent">
<ListView

android: id="@android: id/list"
android:layout width="fill parent"
android: layout height="wrap content"/>

</LinearLayout>

This creates a simple vertical list. The list can be filled with arbitrary data, which

can be rendered with custom user-defined views. For example, if we wanted each list

element to show information about a nearby friend, we define an Adapter (which is a

class that extends BaseAdapter). This adapter (call it FriendsListAdapter) would

implement a method called getView (...) which returns an object of class View (call it

FriendsListRowView) that can be rendered by Android to show the desired friend

information. FriendsListRowView could create any type of view. For example, it could

create a LinearLayout with a horizontal orientation, where the leftmost element is a

picture and the element to its right is a TextView with the friend's name. It would add

this linear layout for display by calling addView (...), after which that linear layout

becomes a row in the master linear layout.

For simplicity, we show how use this layout to fill the list with strings using an

ArrayAdapter:

public class ListViewDemo extends ListActivity {

/** The strings to show in our list view */
private final String items[] = {"foo", "bar", "baz", "apple"};

/** Called when the activity is first created. */

@Override
public void onCreate(Bundle icicle) {

super.onCreate (icicle);
setContentView(R.layout.demolist);
setListAdapter(new ArrayAdapter<String>(this,

android.R.layout.simple expandablelist item 1,
items));

This fills the vertical list created by demolist. xml (referenced as

R.layout.demolist) with the strings "foo", "bar", "baz", "apple".

4.8.1.2 Tables

The TableLayout class in Android mimics HTML tables in many ways. A table can have

multiple rows and each row is a subclass of LinearLayout. Rows can span across

multiple columns, just like in HTML. One potential disadvantage of using tables is that

since each row inherits from LinearLayout, elements inside the table are not

"selectable". This does not mean that they aren't clickable, but if for some reason in the

future, we wanted to let the user "select" an item in the table, we would have to switch to

a customized ListView.

Consider this simple TableLayout named demotablelayout. xml which creates

a table with some rows and columns with text inside.

<?xml version="l.0" encoding="utf-8"?>

<TableLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"

android:layout height="fill_parent"

android:stretchColumns="l">

<TableRow>
<TextView

android:layout column="l"

android:text="Open..."
android:padding="3dip" />

<TextView
android:text="Ctrl-O"
android:gravity="right"

android:padding="3dip" />

</TableRow>

<TableRow>
<TextView

android:layout column="1"

android:text="Save As..."

android:padding="3dip" />

<TextView
android:text="Ctrl-Shift0S"
android:gravity="right"
android:padding="3dip" />

</TableRow>
</TableLayout>

This creates a simple table that looks the following (without the dashed lin

To display this in an activity, we simply call setContentview on this reso

inside the oncreate method of an activity.

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.demotablelayout);

es):

urce

The cell contents can be filled with whatever. In our case, it should be a custom

view that displays an image that reacts to user clicks.

4.8.1.3Maps

Using maps in Android is slight more complicated than other views. First, we must

include the Google Maps library, since it's not a standard part of the Android library.

This can be done by declaring it in Android Manifest file, which is basically a file that

presents essential information about the application to the Android operating system. In

other words, it's the major configuration file for each Android application.

We also need to grant the application access to the internet so Google maps can

load. Therefore, we place the following inside the manifest file:

<application>

<uses-library android:name="com.google.android.maps" />

</application>

<manifest>

<uses-permission android:name="android.permission.INTERNET" />

</manifest>

The next step is to define a simple MapView XML layout file (name it

demomapview.xml):

<?xml version="l.0" encoding="utf-8"?>
<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android: id="@+id/demomapview"
android: orientation="vertical"
android:layout width="fill parent"
android:layoutheight="fillparent" >

<com.google.android.maps.MapView
android:id="@+id/mapview"
android: layout width="fill parent"
android: layout height="fill_parent"
android: clickable="true"
android:apiKey="Your Google Maps API Key" />

</RelativeLayout>

Clickable is set to true so that the user can interact with the map. Also notice that you

must enter an apiKey. To get an API key, apply for one here:

http://code.google.com/android/add-ons/google-apis/mapkey.html. Now create a

DemoMapView class that extends MapActivity.

public class HelloMapView extends MapActivity {

/** Required to override this. */
@Override
protected boolean isRouteDisplayed()

return false;

This should start a map that lets you pan around.

Chapter 5: Contributions and Future Work

This thesis laid out the design and specifications for a demonstration and prototype

application called MobileHelp. We determined the best mobile platform to develop based

on specifications of what features we need and were available. We discussed how a

Bayesian inference engine and Gittins index could be used in a mobile setting to not only

infer cognitive style, but also user purpose. This has not previously been tried before.

In the design phase for the demonstration, we created scenarios that would exhibit

the potential power a mobile application could unlock from inferring user purpose, and

built mocks showing what the user experience would be like. Specifications were created

for data flows in both a static demonstration and live prototype with server interactions.

A basic primer on the aspects Android development relevant for eventual implementation

was also provided. In the design phase for the prototype, we developed two possible

client-server configurations each with their different advantages and disadvantages.

Future work consists of crystallizing the details of the user interface and

experience, and implementing the demonstration application we've outlined. Eventually,

we would hope to see this move from the demonstration to prototype stage where

information with live information, both from the network and phone, is being used to

present the user with helpful suggestions.

Chapter 6: Bibliography

Eagle, N., Pentland, A., & Lazer, D. (2009). Inferring Social Network Structure using
Mobile Phone Data. Proceedings of the National Academy of Sciences .

Farrahi, K., & Gatica-Perez, D. (2008). What did you do today?: discovering daily
routines from large-scale mobile data. Proceeding of the 16th ACM international
conference on Mulitmedia, (pp. 849-852).

Fung, S. (2008). User Adaptive Web Engine: A Marketing Application in E-Commerce.
Massachusetts Institute of Technology.

Hauser, J. R., Urban, G. L., Liberali, G., & Braun, M. (2009). Website Morphing.
Marketing Science .

Lee, C. (2008). User Adaptive Web Morphing: An Implementation of a Web-based
Bayesian Inference Engine with Gittins' Index. Massachusetts Institute of Technology.

Murphy, M. L. (2009). The Busy Coder's Guide to Android Development.
CommonsWare, LLC.

Riding, R., & Rayner, S. (1998). Cognitive Styles and Learning Strategies. David Fulton
Publishers.

Siegler, M. (2009, May 15). Apple Is Indeed Talking About Opening iPhone Background
Tasks. Retrieved May 17, 2009, from TechCrunch:
http://www.techcrunch.com/2009/05/15/apple-is-indeed-talking-about-opening-iphone-
background-tasks/

What People in Tokyo are Doing on a Tuesday. (2008, October 22). Retrieved May 15,
2009, from Information Aesthetics:
http://infosthetics.com/archives/2008/1 0/tokyos statistics right_now.html

