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1. Low signal-to-noise environments

Introduction

E
xtracting a particle signal in a collision event

consists in discriminating the signal (what is wanted)
and the background, or noise (fake candidates). This pattern
classification is achieved through the use of several charac-
teristics for each candidate, herein called cut variables or
observables, and the discrimination relies on the fact that
the probability distributions of these characteristics are dif-
ferent for the signal and the background.

The simplest method, described in § 2.4.1, will be re-
fered to as classical analysis or classical cuts. The values
of the applied cuts, sometimes numerous, are often consi-
dered as independent parameters while the variables are
generally correlated. This method may therefore be very
long to tune and usually provides an improvable discrimi-
nation. This note describes the adaptation of the Fisher
Linear Discriminant Analysis (Fisher-lda), a pattern clas-
sification method widely used in data processing, to the ex-
treme signal-to-noise conditions of central heavy ion colli-
sions in alice, and shows its advantages over the “classical
analysis”.

The first section explains why such methods are needed
in heavy ion Physics and gives examples. The second sec-
tion is a short introduction to pattern classification. Fisher-
lda and its modifications are presented in the third and
fourth sections. Finally, the last section explains how the
final multi-variable cut is tuned and used in practice, and
shows some results obtained in the alice framework for the
Λ and Ξ hyperons and the D0 charmed meson.

Paragraphs 2.1 and 3.2 have been written with the help
of [1, 2]. A part of the material of this note has been publi-
shed in [3].

The method described in this paper has been imple-
mented as a plug-and-play C++ class. Its source code and
documentation are available upon request to the authors, or
currently at this url : www.pd.infn.it/∼faivre/lda.html.

1 Low signal-to-noise environments

1.1 Examples of signal-to-noise ratios

We will focus on the weak decays, studied by recons-
tructing topologically their secondary decay vertex [4], as
this is the analysis type for which the method presented in
this note has been tried.

Heavy-ion collisions however make topological recons-
truction of the weak decays a challenging task, because of
the high charged track density (multiplicity) in the detec-
tors. The amount of background for a 2-particle decay scales
with the square of this multiplicity, while for a 3-particle de-
cay it scales with its cube.

For the case of the Ω− = sss → Λ0K− in star’s cen-
tral collisions, the yield of about 0.6 Ω + Ω per event [5]

and the multiplicity of more than 3 000 tracks give an ini-
tial signal-to-noise ratio 1 only slightly above 10−10. At the
reconstruction stage 2, loose cuts are applied to reduce the
computing time and the disk space taken by the storage.
While these cuts remove 99.99 % of the combinatorics, the
signal-to-noise ratio is still as low as 10−6.

For the D0 = cu → K−π+ in alice, the initial signal-
to-noise ratio 1 is of the order of 10−8 [6]. Although this is
higher in value than for the Ω, the fact that the signal and
background distributions of the geometrical variables differ
more in the case of the Ω than in that of the D0 (because
of the larger cτ of the Ω) makes the latter more difficult to
reconstruct than the Ω.

Analyses in such extreme conditions, also encountered
in the fields of top quark analysis or Higgs search, benefit
from the advantages brought by the pattern classification
methods. Yet, other fields – industry, health, image pro-
cessing in general – do not deal with such situations, but
rather with poor training statistics and large numbers of
observables and/or of classes. The methods created for their
needs therefore do not meet ours, which made necessary the
development of a method adapted to our conditions.

1.2 Cut variables

This paragraph gives examples of cut variables which
can be used to discriminate between the signal and the
background (bad associations of tracks) in the case of a
Λ0 = uds → pπ− analysis by topological reconstruction.

A weak decay is characterized by a sizeable decay length
(cτ of a hundred microns for charm decays, more than a cen-
timeter for strange decays). The reconstruction of a neutral
particle decay (V0 vertex) is made by examining all com-
binations of pairs of opposite charge tracks, and filtering
out those (background) which have a geometry incompa-
tible with that of a real particle (signal).

In reality, real particles and a significant fraction of the
background have a similar geometry. This makes the discri-
mination challenging, and achievable only statistically : the
candidates selected as signal are mostly signal, those which
are filtered out are mostly background. The proportion of
signal kept or rejected by the selection process can be esti-
mated by simulation studies for instance.

The projection in the transverse plane of the geometry
of a V0 vertex is shown in Fig. 1. Because the reconstruction
is imperfect, the tracks of the two decay daughters do not
cross and the trajectory of the reconstructed parent particle
does not meet the primary vertex.

The decay length, the distances of closest approach bet-
ween the tracks, or between a track and the primary vertex,

1. Here, not calculated in an invariant mass window selecting the
signal peak.

2. Reconstruction of the secondary decay candidates from the
tracks.
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Fig. 1 – 2-dimensional geometry of a V0 vertex. The tra-
jectory of each of the daughter particles is a thick solid line,
the extrapolations towards the primary vertex are thin solid
lines. The trajectory of the reconstructed parent particle is
the thick dashed line. dca stands for “distance of closest
approach”.

constitute geometrical variables which can be used to dis-
criminate the background and the signal. Most of these va-
riables are correlated, e.g. the distance of closest approach
between a daughter track and the primary vertex is corre-
lated with the Λ decay length.

Other interesting geometrical variables are the pointing
angles, which are, in the general case, the angle between
the reconstructed momentum of a particle and its flight line
given by the vector joining the primary vertex to the decay
vertex of the considered particle.

The cosine of the decay angle (cos θ∗, θ∗ is the angle
between the momentum of the mother particle and that of
either daughter in the center-of-mass frame) is also often
used for 2-body decays to eliminate the background : the
distribution of this variable shows strong peaks at −1 and
+1 for the background.

The track quality can also be of some help, for example
by cutting tracks having a too small number of hits in the
tpc. Their pid, obtained from detectors such as the tof and
the tpc, also allows to achieve large background rejections.

Finally, variables can be combined so as to obtain a
more discriminant variable, such as the product of the si-
gned distances of closest approach between each daughter
track and the primary vertex.

Examples of usage of these variables may be found in
[5,7] and [6] respectively for the multi-strange hyperons and
for the D0 analyses, and in [8, 9] for other analyses.

Fig. 2 – Data classi-
fication process.
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2 Pattern classification

2.1 Short introduction and general proce-

dure

Pattern classification consists in classifying an object
(a candidate) in a category (class). The input data are ge-
nerally : p classes of objects (e.g. signal, noise), n obser-
vables defined for all the classes (n is thus the dimension of
the space with which we will work), and, for each of the p
classes, a sample of Nk objects for training and test, k being
the class index. These notations will be kept in the rest of
the note. The observables used may be chosen amongst the
parameters which are directly measured (see § 1.2 for an
example), or may be calculated from these.

The aim is the creation of an algorithm which is able
to classify an object into one of the classes defined. A trai-
ning (or learning) phase first optimizes (tunes) the method’s
parameters until a maximum of candidates whose class is
known are classified correctly. A new object, the class mem-
bership of which is unknown, can then be presented to the
algorithm for classification.

Figure 2 describes the data classification process. The
phase involving the detectors is the data collection. In our
case, it is the collection of the hits in the subdetectors for
example. The phases of segmentation and feature extraction
transform this low-level information into mid-level informa-
tion, smaller in size but more suited to distinguish various
classes. For us, segmentation corresponds for example to
the track and vertex reconstruction, and feature extraction
is the calculation of the various cut variables of the candi-
dates.

Sorting is the phase in which pattern classification me-
thods are involved. It consists in calculating, from the pre-
viously mentioned mid-level information, high-level infor-
mation : only a handful of variables – or even just one – but
which contain the relevant information to distinguish signal
and background. They are those used for the discrimina-
tion between the classes. At this stage, two objects can be
compared. Yet, the final decision – classifying the candidate
into one of the classes – can be taken only after the post-
treatment phase, which takes into account an efficiency and
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2. Pattern classification

a background rejection, via the minimization of a cost, in
the calculation of the decision.

In our case, the number p of classes is two, hereaf-
ter called signal and background (or noise) and indexed by
k ∈ {1; 2}. The signal is made of the real particle, while the
background is made of all the other candidates (e.g. combi-
natorial association of tracks, in the case of particles which
decay into two or three daughters).

2.2 Comparing the performance of various

methods

In this paragraph, S and N will refer respectively to an
amount of signal and of noise left when cuts are applied.

Here are some variables that can be used as indicators
of cuts’ performance :

– Amount of signal S,

– Efficiency εS =
Spost-cuts

Spre-cuts
: proportion of signal that is

kept by the cuts,

– Background rejection 1−εN =
Nremoved by cuts

Npre-cuts
: propor-

tion of background that is rejected by the cuts,

– Signal-to-noise ratio S/N ,

– Purity πS = S
S+N

: proportion of kept candidates that
actually are signal,

– False alarms rate N
S+N

: proportion of kept candidates
which are actually background,

– Significance S/
√

N or S/
√

S + N ,

– Relative uncertainty σS/S, where σS is the error on S.

Our cost function will be the relative uncertainty, as it
is the indicator that directly guarantees the smallest pos-
sible statistical error on the result 1. To determine the per-
formance of a method or to compare various methods, it is
common to show these indicators by pair :

– Signal with respect to the signal-to-noise ratio,

– Signal with respect to purity (strictly equivalent to an
efficiency-purity diagram, as well as to the diagram
mentioned below),

– Efficiency with respect to the false alarms rate,

– Relative uncertainty with respect to signal.

In such diagrams, all the points that are reachable with
a given method, by changing the cuts, define a region which
may be a surface or a curve 2. In a signal-S/N or an efficiency-
purity diagram, a movement along the curve (or along the
border of the surface) inducing an improvement of one of
the variables results in a deterioration of the other one. In
a diagram showing the relative uncertainty versus the effi-
ciency, the curve is a decreasing, then increasing function

1. Thus no discrimination criterion will be defined here to compare
various pattern classification methods.

2. For an optimized pattern classification method, this region
is most often a curve, as such methods usually tranform the n-
dimensional space of the observables to a one-dimensional cut variable.
For classical cuts though, it is possible to obtain e.g. various purities
for a given efficiency ; the region is therefore a surface.

C

P L

x

y

Fig. 3 – Training samples and shape of various boundaries.

which has a global minimum. The latter corresponds to the
searched optimal cut.

The performance of a method can then be defined as
the minimal relative uncertainty achievable. In other fields
though, using the relative uncertainty as the cost function
may be irrelevant. In the case of tumor detections for example,
one certainly wants to base his decision on the tumor detec-
tion probability and set the cut value to a high probability :
this selects more background but is safer.

2.3 Performance tuning and evaluation

For all trained methods, a test phase is essential to
obtain an algorithm which works well, as its performance
is not the same if calculated on the training sample or on
another sample (a test sample). The latter performance is
always worse than the former, which is biased since the cuts
have been optimized for the training sample.

This is illustrated by Fig. 3, in which the distributions
of two classes are shown for the training samples, as well as
three examples of border : a straight line L, a simple curve
C which describes a bit better the boundary between both
classes, and a complex parametrization P that describes the
samples almost candidate-by-candidate.

The result of those boundaries on a test sample would
be very different : the line would have a fair performance and
the simple curve would have a better one, but the perfor-
mance of the complex curve would be bad, because, while
two samples are globally close to identical, they have yet
significant local differences. The performance therefore al-
ways has to be evaluated on a sample that is different from
the training sample.

This phenomenon is called overtraining when L, C and
P are actually obtained with the same pattern classification
method.

Because they are able to select very sophisticated shapes
in the variables space, fancier, non-linear methods are in-
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2. Pattern classification

trinsically prone to overtraining, while basic lda is not. We
will show that the lda method developed here is also not,
provided a simple condition is respected.

Overtraining should not be mixed up with the lack of
statistics in the training sample : they have similar effects,
but the latter is bound to happen whenever the training
sample is not large enough, whatever the method, while the
former may also occur when large samples are used, but
only for methods which give too much importance to local
parts of the distributions.

2.4 Some pattern classification methods

2.4.1 Classical cuts

In this note, we chose the expression “classical cuts”
to name the simplest pattern classification method. It is
illustrated by the top sketch of figure 5 (p. 6), and consists in
applying a straight selection cut on the variables. The zone
selected as being signal is thus delimited by hyperplanes all
perpendicular (or possibly parallel) one with another.

Correlated cuts can occasionally be used, when the
background is found to be well demarcated in a two-dimen-
sional plane. While uncorrelated classical cuts are expres-
sed as e.g. “xi > ci”, correlated classical cuts take the follo-
wing form : “xi > fi(xj)”, where fi can be any non-constant
function. Uncorrelated and correlated classical cuts can, of
course, be used jointly. Examples of such cuts can be found
in [10] for an Ω (triply strange baryon) analysis.

Optimizing classical cuts is most often done “by hand”,
plotting the 1- and sometimes 2-dimensional distributions of
the signal and of the background, and adjusting step by step
the cut values. Even when automatized, this procedure is
very long and, due to the correlation between the variables,
complex, since the distribution shape of variable xi depends
also on the cut values cj, j 6=i.

Attempts to optimize directly letting free all the para-
meters (the cut values) have been made with Minuit [11],
with 6 cut variables : the procedure does converge and the
processing time is kept at a reasonable level by applying
(classical) pre-cuts before the optimization step. Yet, if these
cuts are not tight enough, the processing time may rapidly
become a limiting factor. Care should be taken that none
of the variables chosen be too strongly correlated, otherwise
the convergence is made more difficult.

A probably faster method, which could be called the
“matrix method”, consists in attributing a range to the
possible cut values ci and dividing each of these ranges
into mi values {c1

i ,c
2
i , · · · ,cmi

i }. For each set of cut values

(cj1
1 ,cj2

2 , · · · ,cjn
n ) (ji ∈< 1; mi >), the signal significance is

computed and stored in the corresponding matrix element
(j1,j2, · · · ,jn). Searching for the maximum of the matrix
then directly provides the optimal cut values. This method
has successfully been applied to the D0 [12] and D+ [13–15]
topological reconstruction in alice. When the number n of

cuts is large, the number of matrix cells m1×m2×· · ·×mn

becomes very large and the calculation time may be prohi-
bitive. It may then be advantageous to read twice the data,
with smaller values mi but with restricted variable ranges
on the second pass according to the position of the maxi-
mum found after the first pass.

However, even with fancy optimization methods, clas-
sical cut tuning remains a tedious task and leads anyway to
perfectible cuts since, even when optimized and apart from
the correlated cuts, it always consists in a set of perpendi-
cular hyperplanes.

2.4.2 Neural networks

The purpose of this section is to give a very brief des-
cription of the mechanism of the neural networks. More
complete information can be found in virtually any book
dealing with pattern classification (e.g. [1]), or with pattern
recognition as they can also be used for that purpose. Some
information can also be found in e.g. [16, 17], and particu-
larly [18, and references therein], from which the informa-
tion given in this paragraph is taken.

Artificial neural networks (ann) are not easily defi-
ned since their common feature is a concept rather than a
technique. They involve computing elements (the neurons)
which are interconnected and often operate in parallel. The
network structure and the links between the elements de-
fine the answer to an input. The knowledge of the network
is acquired during a learning process, during which the data
relative to each element are modified.

A well known category of ann is the feed-forward ann,
which consists of networks organized in layers of neurons.
The information flows towards only one direction, such that
the input of each neuron depends only on the outputs of the
neurons of the previous layer.

We will take the example of the multilayer perceptrons,
which we have chosen for the comparison between neural
networks and multicut-lda in section 5.6. It is the most
widely used and simplest type of neural networks. They are
feed-forward ann which have one input layer, one output
layer, and for which any neuron receives input from all the
neurons of the previous layer and from no other neuron.

An example structure of a multilayer perceptron is re-
presented on Fig. 4. The first layer of neurons – the input
layer – collects the entries, so there is one per variable used.
The output layer has only one neuron in the case of a discri-
mination between two classes, and the output of that neuron
is the discriminating variable. In between, there is at least
one hidden layer.

The connection between two neurons is weighted, that
is : a weight is applied to the output of a neuron before it
is sent to the input of another neuron. There is one weight
per connection, and their values are tuned during the trai-
ning process. They can be called synaptic weights, from the
analogy between the neural networks and the brain.
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Fig. 4 – Example structure of a multilayer perceptron.

Every neuron of the network normalizes its input – a
linear combination of the (weighted) connections – by ap-
plying it a sigmoid function, and sends this output to each of
the neurons of the next layer. The sigmoid function usually
normalizes into [0; 1] or [−1; +1]. Its shape and steepness
choice are left to the user, while the position in abscissa of
its maximal steepness (the so called “offset”) is a parameter
tuned during the training.

The good performance of such a structure is due to the
fact that any continuous function can be approximated by
a linear combination of sigmoids. Moreover, if the system is
trained to give an output equal to one for the signal and to
zero for the background, the answer of the network to an
input is equal to the probability that this input is signal.

The network learns by modifying the weights and the
offsets during a training stage, for which a set of examples
with inputs and correct outputs are given. There are several
learning methods, most of them implementing what is cal-
led a back-propagation of the errors. The back-propagation
of the errors minimizes an error function calculated by com-
paring the calculated output with what it should have been.
The first derivative of that error with respect to the weights
allows to calculate a small correction to apply to the weights.
A network needs to process all the examples several times
in order to minimize the error and converge to an optimized
state. Processing the full example set is called an epoch.

The fundamental parameters of the multilayer percep-
trons which have to be chosen by the user are thus the num-
ber of hidden layers, the number of neurons in those hidden
layers, and the number of epochs for the training stage. The
choice of the learning method as well as the associated pa-
rameters, to which belong the sigmoid steepness, are also
free. Unfortunately, there are no general rules to set those
free parameters and it is clear that a systematic study of the

performance of the neural networks as a function of those
parameters is long and difficult.

One can though limit a bit the range of possibilities
considering that for applications like ours, the improvement
brought by a second hidden layer is often small – and by a
third one negligible –, and that too many hidden neurons
make the network have a lower generalization power (over-
training), while too few ruin its performance. A good range
generally found in the literature is n to 2n neurons in the
hidden layer.

We can eventually mention that a neural network with
no hidden layer is strictly equivalent to a Linear Discri-
minant Analysis, it just has different optimization criteria
(they change with respect to the training method). We did
not try to compare the performance of such criteria with
the Fisher criterion and with the “optimized criterion” des-
cribed respectively in sections 3.2 and 4.2.

2.4.3 Other methods

Many other types of pattern classification methods exist,
each of them having several subtypes. We can e.g. mention
the Markov fields, the nearest neighbors methods, the trees,
the Parzen windows or the discriminant analyses, on top of
unsupervised learning methods which are able to determine
themselves how many classes are dealt with. Details can be
found in [1]. Some methods have already been applied to
particle Physics [8, 19–23].

Discriminant analyses themselves can be subdivided
into Linear (lda), Quadratic (qda) and higher degree Dis-
criminant Analyses as a function of the shape of the se-
parating surface. We can also mention the existence of a
second-order Linear Discriminant Analysis [24, 25].

For each (trained) method coexist several criteria usable
for the training, and often several training and/or optimiza-
tion methods. Most of the time, there does not exist any ge-
neral mathematic way to chose between them, and one has
to find the best solution basing himself on personal judg-
ment and tries on the data.

Let’s finally add that, independently of the method cho-
sen, the input data can be transformed non-linearly and/or
combined before the pattern classification method is used,
so as to provide more discriminant input variables. Space
dimensionality expansion or reduction methods can also be
applied, upstream as well, again to create more discrimi-
nant variables, or to be able to cope with too low statistics
training samples or too large computing times (see also §
5.4).

2.4.4 Advantages over classical cuts

With respect to the classical method, a common pro-
perty of all the other pattern classification methods is their
ability to better discriminate between the signal and the
background, and therefore to provide better results.
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3. Fisher Linear Discriminant Analysis

Many of the methods share a second essential advan-
tage over the classical cuts : they provide a transformation
of the n-dimensional space of the cut variables to a single
output value, and can be seen as functions defined from Rn

to R. While using the classical cuts consists in minimizing a
function (the relative uncertainty) of n variables, most pat-
tern classification methods reduce the problem of cut-tuning
to the minimization of an only 1-dimensional function.

3 Fisher Linear Discriminant Ana-

lysis

3.1 Basic principle of lda

The principle of the lda method is illustrated by the
two drawings of Fig. 5. It has been supposed that two ob-
servables, x and y, were accessible to the observer, and the
signal and background candidates have respectively been
attributed opened circles and closed triangles.

The first drawing shows the behavior of the classical
cuts, i.e. straight cuts on one or several of the observables.
It has to be kept in mind that we are interested in applica-
tions where the number of background candidates is much
higher than that of signal candidates. When the cuts are
chosen loose for the efficiency to be high (solid thick lines,
the eliminated region is in grey), the contamination of the
signal by the background is large. Tighter cuts (dashed thick
lines, the additional region cut is hatched in black) drasti-
cally reduce the background, but the price to pay is a small
efficiency.

lda consists in cutting along a linear combination of all
the observables, rather than along each of the observables.
This linear combination is defined by an lda direction (or
axis). The result, shown in the bottom plot, is a better dis-
crimination between the classes. In an efficiency-purity dia-
gram for example, this translates into a more interesting
position than any of the positions accessible with classical
cuts.

The algorithm consists in calculating the direction of
the axis that gives an optimal discrimination between the
classes according to a given criterion. After this training
phase, a cut on the axis’s coordinate minimizing the cost
function is chosen. This cut defines as border between both
classes a hyperplane perpendicular to the axis.

3.2 Fisher criterion

The most frequently used criterion for the calculation
of the axis’s direction is the Fisher criterion, which results
in what is called Fisher-lda, introduced by Ronald Fisher
in 1936 [26]. The advantage of the Fisher criterion is that,
on top of being easy to settle, it gives the exact expression
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Fig. 5 – Basic principle of classical selections and of lda :
example with two variables. Top plot : loose (solid line and
grey area) and tight (dashed line and hatched area) classical
cuts. Bottom plot : lda cut.

of the direction of the lda vector, without need for a nu-
merical optimization. There is indeed a maximization, but
the solution is analytical.

Let’s call Dk the training samples (with e.g. k = 1
for the signal and k = 2 for the background). The Fisher
criterion consists in requiring the best separation of the pro-
jections of the classes on an axis ∆ defined by −→u , i.e. the
averages µk of those projected distributions should be as
far as possible from one another relatively to their squared
widths σ2

k =
∑

−→x ∈Dk
(−→u .−→x − µk)2, for the overlap between

the distributions to be minimal. The criterion to be maxi-
mized is :

λ(∆) =
|µ1(∆) − µ2(∆)|2
σ2

1(∆) + σ2
2(∆)

(1)

Let −→x be an observation (thus an n-coordinate vector).
The normalized n-coordinate vector −→u which drives the line
∆ characterizes, together with the cut value defined on the
axis’s coordinate – that is to say, on the scalar product −→x .−→u
–, the hyperplane which plays the role of a border between
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4. Optimized multicut-lda

both classes.
Let’s call −→mk the n-dimensional averages of the distri-

butions and write tM for the transposed matrix of a generic
matrix M . With SB = (−→m1 −−→m2).

t(−→m1 −−→m2) the between-
class scatter matrix, Sk =

∑

−→x ∈Dk
(−→x −−→mk).t(−→x −−→mk) and

SW = S1 + S2 the within-class scatter matrix, we can write
the Fisher criterion matricially :

λ(∆) = λ(−→u ) =
|µ1 − µ2|2
σ2

1 + σ2
2

=
t−→u SB

−→u
t−→u SW

−→u (2)

Maximizing this expression can be done analytically by using
the Lagrange multiplier method. A vector −→u maximizing
expression (2) obeys : ∃ ω ∈ R / S−1

W SB
−→u = ω−→u . t(−→m1 −

−→m2).
−→u being a scalar, SB

−→u is always collinear to −→m1 −−→m2,
and the expression giving −→u becomes :

∃ ξ ∈ R / S−1
W (−→m1 −−→m2) = ξ−→u (3)

The problem is therefore reduced to a matrix inversion.

3.3 Problems with Fisher-lda

Using the Fisher criterion, even though it is satisfactory
for many applications, raises problems in our case. The fact
that Fisher relies only on the mean and width of the dis-
tributions makes it a “global” criterion, hardly sensitive to
the local features of the distributions. The Fisher approach
can not succeed in our situations, where the initial S/N is
extremely small and the background populates the whole
space, including all the signal area. A better discrimination
between signal and background requires a local description
of the zones where the signal lies and where the background
has to be cut. The next section describes how lda can be
improved to meet this requirement without resorting to non-
linearity.

4 Optimized multicut-lda

4.1 Multicut-lda

A first modification brought to lda to better cope with
the low S/N environments is the application of several suc-
cessive lda cuts. This also allows for a finer description of
the non-linear boundary between the classes, the same way
as a circle can be approximated by an n-sided polygon, all
the better as n is high, and yet keeping linear properties to
some extent.

The mechanism of this method, which will be called
multicut-lda, is depicted in Fig. 6. The first lda direction
is determined by a learning phase using all the candidates
of both samples. A cut value is then determined according
to a criterion which will be described in paragraph 4.2, with
an efficiency on the signal close to 100 %. This first cut is
applied to the learning samples, and a second lda direction
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Fig. 6 – Mechanism of the multicut-lda method. The first
lda cut is the thick solid line and eliminates the grey area.
The second lda cut is the thick dashed line and filters out
the hatched area. If only one cut had to be used to reach a
similar background rejection, its efficiency would be much
lower, as shown by the dotted line.

is calculated with the remaining candidates. The process is
then repeated until not enough candidates remain in the
training samples to calculate more lda axes.

Multicut-lda therefore provides a set of lda directions,
each being a vector −→ui of the space of the observables (n
coordinates). It also provides a cut value ci associated to
the direction −→ui . The value of ci depends on −→ui , and the
direction −→ui is a function of −−→u

i−1
and c

i−1
. Each pair (direc-

tion , cut) defines a hyperplane, and this set of hyperplanes
demarcates a connex and even convex shape, by construc-
tion, in which the candidates are considered as being signal
by the algorithm. Further studies can estimate the amount
of background selected as signal.

4.2 Optimized criterion

Multicut-lda can be improved by replacing the Fisher
criterion by another one, which takes the local – and not
global – behavior of the distributions into account, therefore
more adapted to the multicut method.

Here are two such criteria :

• Optimized criterion I : given an efficiency of the lda

cut on the signal, maximization of the amount of back-
ground removed ;

• Optimized criterion II : given a background rejection
of the lda cut, minimization of the amount of signal
removed.

Their formulation is antisymmetric for the signal and the
background, but, as the criterion II requires a prohibitive
computing time to be run, we have not tested if these two
criteria give a similar performance. We therefore used only
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4. Optimized multicut-lda

the criterion I.

4.3 Optimization

Contrarily to the Fisher criterion, using an optimized
criterion requires the implementation of a maximization al-
gorithm, here expressed for the criterion I.

4.3.1 Mathematical expressions

Let ε
Si

be the given efficiency (chosen) of the ith cut on
the signal and DSi

the set of candidates of the signal sample
after the i−1 first cuts. If 1 is assigned to true and 0 to false
in the sum term in (4), the number of signal candidates
removed by cutting at value ci along the axis −→ui is :

Si − Si+1 = (1 − ε
Si

)Si =
∑

−→x ∈DSi

(−→x .−→ui < ci), (4)

with Si the number of signal candidates (in the training
sample) used to determine the ithdirection. The value of ci

can also be determined so as to obey the following equality :

1 −

∑

−→x ∈DSi

(−→x .−→ui < ci)

Si

= ε
Si

. (5)

4.3.2 Limits set by the no-overtraining condition

Using directly the number Si − Si+1 to calculate ci is
however more judicious than using the efficiency, because
it allows to control the “locality degree” of the optimized
criterion.

This “locality degree” is determined by a comparison
of the numbers of candidates which are removed with two
numbers :

– The number of signal candidates removed has to be
larger than the typical size of the statistical fluctuations
for a sample of size Si, for the algorithm not to trigger
on one of those fluctuations. The number of candidates
removed should not be too much above this threshold
though, as the efficiency of the cut should be kept close
to 100 % to take all advantage of the multicut method.

– The numbers of signal and background candidates which
are removed have to be larger than a fixed absolute
number which ensures that the candidates that are re-
moved are numerous enough to be really representative
of the actual shape of the distributions in the area that
is cut.

In our studies, in 25 dimensions, values of 500 signal
candidates removed and above were satisfactory, for samples
of 10 000 to 100 000 signal candidates.

Respecting this simple condition guarantees that there
is no overtraining, so this problem can basically be conside-
red as absent from the optimized multicut-lda method.

4.3.3 Function to maximize

The function f that is maximized is of course the num-
ber of background candidates that are removed by the cut ;
hence we can write :

f : Rn −→ N
−→ui 7−→

∑

−→x ∈DBi

(−→x .−→ui < ci), (6)

where DBi
is the set of candidates of the background sample

after the i−1 first cuts.
The efficiency ε

Si
being fixed (it is a chosen parameter),

the optimization consists in maximizing f as a function of
−→ui . As the value of ci depends on −→ui , it needs to be recalcu-
lated at each step.

4.3.4 Maximization algorithm

For the results presented in the next section, the algo-
rithm chosen to maximize f consists in varying each coordi-
nate of the vector −→u at a time, moving the vector by a given
angle α. The first coordinate is changed until f has reached
a maximum, then the second coordinate is changed, etc...
When all n coordinates have been changed, the process is
repeated until the vector does not move anymore. Then α
is divided by two and the whole algorithm is repeated. One
keeps dividing α by two until the gain in number of back-
ground candidates removed becomes null or insignificant.

We used 8o as starting value for α, and final values
depending on the analysis, but ranging from 0.5o down to
( 1
256 )o, with basically no change in the performance.

The expression of the coordinate change for the axis
vector −→u as a function of α is given by the following expres-
sion :







−→u` =(u1,u2, · · · ,uj , · · · ,un)
−−→u +̀1 =−−→v +̀1/‖−−→v +̀1‖−−→v +̀1 =(u1,u2, · · · ,uj + δj , · · · ,un)

δj =
−2uj sin

2
α ±

√

1 − u2
j sin(2α)

2(u2
j − cos2 α)

(7)

It is worth mentioning that when the jth coordinate is va-
ried (e.g. increased) to move −→u by α, this loop is exited when

(−̂→u ,−→xj),
−→xj being the unitary vector driving the jth coordinate

axis, reaches a value smaller than α. This is due to the fact
that to move by another step of angular width α, −→u has
to “pass on the other side” of −→xj , and therefore one of its
other coordinates has to change sign. This is not possible,
since the algorithm changes only the jth coordinate. The
loop is therefore exited, and the algorithm starts another
one, changing the j+1th coordinate.

A common problem to many maximization algorithms
is the possibility of being trapped in a local maximum. In
our case, the problem is partially resolved by the initial
condition : the natural start vector for this algorithm is the
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5. lda practical guide and results

Tab. 1 – Comparison of the characteristics of classical cuts, ann, and the multicut-lda method presented in this note.

Classical cuts Multicut-lda Neural networks

Setting up of the method Trivial, fast Easy, fast Complex, long

Nb. of parameters to be chosen Several (or nonea) One Several
Training None Simple Complex

(or long and complex a) Overtraining
Nb. of parameters tuned during the training None (or fewa) Few Many
Clarity of the analysis and data treatment Under control Under control “Black box”
Linear treatment of the observables Yes Yes No

Gives optimized cuts (in the method’s scope) No (or Yesa) Yes Yes

Gives optimized cuts (in n × n) No Yes Yes
Final tuning to minimize the cost function Complex, long Simple, fast Simple, fast
Shape of the boundary signal/background Linear Linear, but Non linear

multicut ⇒ OK

Volume selected as being signal Convex Convex Non connex

a When a maximization algorithm of the n-dimensional function is used (see text for details).

direction found with the Fisher criterion, which guarantees
that the final result will necessarily be better than with the
Fisher criterion. We observed an average improvement with
respect to it of around 50 % more background candidates cut
per lda cut, although with strong variations. One can also
implement a genetic algorithm, which in principle converges
to the global maximum [27].

4.3.5 Comparison between ann and lda

Table 1 compares several characteristics of the classical
cuts, of multicut-lda and of the artificial neural networks
(ann), the latter being probably the most used pattern clas-
sification method in particle Physics. The positive charac-
teristics are emphasized in bold.

The choice of lda over a higher order discriminant ana-
lysis or over a pattern classification method like the neural
networks is justified by its extreme simplicity, which has
direct consequences like a better control of how data are
handled and selected, as well as a large gain in the amount
of time spent on setting up and tuning the method, as des-
cribed in § 5.6 and e.g. [23].

Moreover, although the ann should reach a higher per-
formance than lda in theory, choosing the right configura-
tion, the right values of the free parameters and the trai-
ning method is far from trivial, and in fact may rapidly
result in lower performances than what could be expected.
An example of this effect can be seen for example in Fig. 8
(p. 13).

Neural networks also suffer from the huge background
statistics : they focus on removing its overwhelming part
and leave untouched the comparatively small amount of
background which is close to the signal area. This problem
can be avoided by cascading several neural networks (it can
be seen as an equivalent of multicut-lda, which naturally

solves the problem), each stepping up the S/N ratio by an
order of magnitude, but at the cost of an exploding number
of parameters of the method : it scales with n2, while that
of multicut-lda scales with n.

The exact number of degrees of freedom can be calcu-
lated by the following formulas : with n cut variables and N
cascaded cuts (either multicut-lda or neural networks), and
one hidden layer with m neurons in the neural networks, the
numbers of degrees of freedom write :

NLDA =N(n − 1)
NNN =mN(n + 2) , m'n

(8)

As the number of candidates needed in the training samples
is roughly proportional to the number of parameters set
during the training (the degrees of freedom), multicut-lda

has the advantage of being less statistics demanding. As a
numerical example, we can take the analysis presented in
section 5.7, for which n=10 and NLDA =21. For the neural
network hypothesis, we can choose e.g. NNN =3 according
to the study presented in section 5.6, and, conservatively,
m=n+1. We obtain :

NLDA = 189, NNN = 396 ' 2×NLDA

5 lda practical guide and results

5.1 Size of the training samples

Determining the minimal statistics needed for the cal-
culation of the lda directions can be done by calculating the
performance for various sizes of the training samples. The
performance should rise, with possible oscillations, when the
size of the training samples is increased, and saturate when

9



5. lda practical guide and results

the latter reaches the minimal size necessary for a good de-
termination of the lda directions.

A lazier way to do, but probably as reliable, is to check
that the performance of the ith lda cut is better than that
of the i−1th cut tightened beyond the cut value at which
the ith cut should begin to be applied. If it is not the case, it
is a strong indication that the statistics used to determine
the ithdirection was not sufficient.

Preliminary studies done with the “lazy method” in-
dicate that 2 000 candidates in each sample, possibly even
less, are already enough. This was done with 10 dimensions
and is not expected to change with the number of dimen-
sions. This number is, of course, to be considered for the
last direction calculated, so the size of the initial samples
is larger and depends on the efficiency on the signal and
background of the previous calculated directions.

Unlike for Fisher-lda (see Eq. (1)), when the optimi-
zed criterion is used the relative proportion of signal and
background candidates in the training samples has no im-
portance.

5.2 Composition of the training samples

The lda cuts calculated are optimized for signal and
background populations which are similar to those of the
training samples. As a consequence, when an analysis is
done under other conditions (e.g. other collision centrality,
other range of transverse momentum p⊥), the relative pro-
portion of background may be different, as well as the signal
and background distributions in the phase space.

Therefore tighter or looser cuts may be needed (case of
centrality change, for which the distributions are not expec-
ted to change so much), or even a recalculation of the lda

cuts (case of a change in the p⊥-range of the analysis).
While classical cuts require in both cases another n-

dimensional minimization, multicut-lda provides rapidly ano-
ther set of cuts optimized for the new situation, simply by
using in the training samples only candidates belonging to
the desired part of the whole sample, for example the low-p⊥

part of the mother particle p⊥-spectrum.
Multicut-lda also enables the use of previously calcula-

ted lda cuts, which can simply be adapted to the new envi-
ronment by a tightening or a loosening, until the new mini-
mum of the cost function is reached. This solution is extre-
mely fast, as it only consists in minimizing a 1-dimensional
function ; it has been used in the first analysis presented in
section 5.5.

5.3 Setting the lda parameter

The only parameter of the multicut-lda method that
has to be chosen by the user is the number of signal candi-
dates of the training sample removed at each step.

Section 4.3.2 gives a reasonable range for this value. We
did not make a full study, but the results obtained never

seemed to depend much on the choice of that parameter, as
soon as it was in the range.

We can though mention that one strategy, that was
used for example in the second analysis presented in section
5.5, consists in using the minimal value (e.g. 500 candidates)
for the first 2 or 3 cuts so as to remove the dominant parts
of the background with an efficiency on the signal as close as
possible to 100 %, and then to increase that value (possibly
progressively, up to e.g. 1 000 or 2 000, depending on the
size of the training samples) when the background rejection
factor becomes smaller, so as to reach the minimum of the
cost function with a much lower number of lda directions.
A sufficiently large number of candidates in the training
samples is yet needed to use this trick.

5.4 Variables used

5.4.1 Distributions shapes

Because multicut-lda selects a convex (and therefore
connex) signal area, the signal’s distributions have to show
only one main peak whenever possible, for the method to
be efficient.

It is also preferable to use reasonably well shaped dis-
tributions, e.g. an angle value may be better than using its
cosine, as the cosine function will flatten everything towards
1, which may cause the algorithm to fail using that variable
in the optimization (the peak would be very narrow).

An identical consideration leads to the conclusion that
the various variables should have values of the same order
of magnitude.

Normalizing the distributions’ shapes eliminates this
constraint, but is a non trivial issue, above all because the
real data are a mixture of signal and background, whose
distributions’ shapes are different.

Two studies have been made on the data presented in
section 5.7.

First, we modified the convergence criterion of the maxi-
mization algorithm to investigate the possibility to make it
independent of the variables distributions : instead of having
the algorithm stop when the angle α (see § 4.3.4) reaches a
minimal value, or when the variation in the number of back-
ground candidates removed becomes smaller than a thre-
shold, we had it stop only when all the variables were used
at least x times in the optimization process 1. This attempt
did not lead to any satisfactory result, mostly because some
variables were actually never used, even for values of α as
small as ( 1

1024 )o.
On the contrary, an unsophisticated normalization had

some effect on the same data. The variables distributions
have been normalized using the mean and the variance ei-
ther of the signal candidates only, or of the background can-
didates only, or of a mixture of both, either in equal propor-

1. By “variable j used in the optimization process”, we intend that

the jth coordinate of the axis’ vector has been changed.
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tions or in the proportions of the training samples. An im-
mediate consequence that appeared is that fewer variables
were not used during the optimization, and those which were
“left out” were no longer the same for all the lda directions.
The result on the performance was very slight though. All
four normalizations provided a similar, tiny improvement.
None provided better results than the others, but a norma-
lization by the mean and variance of the background can-
didates provided slightly worse results than the three other
methods.

5.4.2 Number of variables

The number of variables to use should in principle sim-
ply be as high as possible, so as to reach the highest pos-
sible discrimination. Non-linear combinations of the initial
cut variables can be added 1.

The number of variables to use can yet be limited by
statistics or processing time reasons – numbers of a few
tens are in principle not critical. When the training statis-
tics is very limited, it may be desirable to give a try in a
space of lower dimensionality : a better performance may be
reached. Methods exist to reduce this number of variables
while avoiding a drop in discrimination : we can cite for
example under-optimal lda, Principal Component Analy-
sis, or fractional-step lda.

Under-optimal lda (see [5, 7]) is the outcome of the
fact that due to the large number of combinations, it is vir-
tually impossible to examine the performance of all the 2n−2
m-uplets, m < n, to find those which perform better than
the full n-uplet, as illustrates Fig. 7. The method is the-
refore to search for the most performant j-uplet, with j a
small integer, and to iterate in adding variables, examining
only the j+1-uplets containing the most performant j-uplet.
The limitations of that method are firstly that there still is

a total number of combinations to examine of n(n+1)
2 , and

secondly that the most performant j+1-uplet does not ne-
cessarily contain the most performant j-uplet. Yet, it may
be worth a try if the processing time makes it possible : if a
better performance is reached, the method can be conside-
red the lesser of two evils.

Principal Component Analysis (pca) [5, 7, and descri-
bed in most data processing books] is a much faster – be-
cause based on a simple n×n matrix diagonalization –, but
unsupervised, matrix-based analysis which reduces the di-
mension of the working space by taking out the least infor-
mative dimensions. pca provides an ordered base (−→v1 ,

−→v2 , · · · ,
−→vn) of the n-dimensional space such that −→v1 drives the di-
rection along which the distribution (signal + background)

1. Such as the product of the signed distances of closest approach
of the daughter tracks to the primary vertex, as mentioned in § 1.2.
Kinematic variables should be added with care though, as too clever
algorithms may well be able to calculate and cut on the invariant mass
themselves (if in doubt, one might feed the method for training with
simulated background candidates very close to the pdg mass of the
analysed particle, and see whether a smaller bias is obtained).

n jm

Pj

1 2

Under−optimal LDA

m

Exhaustive
LDA

Fig. 7 – lda performance Pj on a sample with infinite sta-
tistics as a function of the number j of variables used. A sa-
tisfactory performance (dotted line) is reached faster by an
exhaustive test of all the combinations (m1 variables used,
in black) than by under-optimal lda (m2 > m1 variables
used, in grey). When calculated with low statistics samples,
these curves may saturate earlier and to a lower value, and
decrease when j approaches n.

has most information (i.e. its dispersion is largest), −→v2 the
second best one, and so forth. The base calculation and
dimensionality reduction has to be performed in the full n-
dimension space before each lda cut. The results are not
guaranteed to improve when pca is used, because the least
informative directions may also be the most discriminating
ones. Here again, one has to try and compare.

It is worth to note that pca also provides a partial solu-
tion to the normalization problem : a whitening of the data
(with the usual limitation that signal and background have
to be considered as a unique distribution) can be perfor-
med by normalizing the distributions along the directions
of the pca base by a factor of 1

λj
, λj being the eigenvalue

associated to the jthvector of the pca base.

Fractional-step lda, better described in [28], performs
dimensionality reduction while keeping a better discrimina-
tion than pca. Instead of removing abruptly the least infor-
mative direction −→vn, data along that direction are squeezed
by some factor 2. The new vj vectors are calculated and the
process is repeated until the squeezing is judged sufficient to
remove completely one dimension. Although initially concei-
ved to avoid class overlap after dimension reduction when
many classes are used, this method should also perform well
in our case. Its drawback however is a large increase in the
cpu-time needed, as it multiplies the multicut-lda-time by
the number of steps in which a dimension is removed. It
remains yet faster than under-optimal lda.

2. Technically, this is made possible by the scaling of each row i of
the between-class scatter matrix SB (see § 3.2) by a weight wi which
is a decreasing function of the distance between the means −→mk of the

classes projected on the ithvector.
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Tab. 2 – star preliminary results for the Ω + Ω in the top
10 % Au-Au central data at two different

√
SNN energies :

gain brought by lda over classical cuts for various variables
relative to the amount of signal counts integrated in p⊥ [3,
5, 31].

200 GeV 62 GeV

S (εS) ×1.3 ×1.8

N ÷1.1 ÷1.1
πS ×1.2 ×1.4
S/N ×1.4 ×2.0
σS/S ÷1.2 ÷1.6

5.5 Results on real data

Optimized multicut-lda has been tested with 25 cut
variables on the Ξ and Ω multi-strange baryons in 200 GeV
Au-Au collisions in star and has shown to provide more
precise results than the classical cuts [5] : the statistical er-
ror on the production yields was 25 % (Ξ) to 40 % (Ω)
larger with the classical cuts than with lda. Furthermore,
the transverse mass spectra obtained with lda had small
enough error bars to rule out the formula that was then
commonly used to fit it.

The method has then successfully been applied to star’s
62 GeV Au-Au collisions [29,30], and has proven another of
its advantages : while classical cuts had to be tediously re-
tuned to be adapted to the new – lower than at 200 GeV –
track multiplicity, a simple loosening of the lda cuts calcu-
lated in [5] provided, with respect to the re-tuned classical
set of cuts, 75 % more signal and a relative uncertainty on
the raw amount of signal 1.6 times lower. This loosening
of the lda cuts is made by plotting the new valley-shaped
curve (relative uncertainty versus efficiency) and determi-
ning its minimum. One could also have recalculated lda

directions with 62 GeV simulation to have possibly more
optimized lda cuts.

These results are summed up in table 2. The notations
adopted are those introduced in § 2.2.

5.6 Comparison with the neural networks

In this section, we show on simulated events that the
reconstruction of the hyperons in alice can be optimized
by using the Linear Discriminant Analysis. The examples
of Λ and Ξ in central Pb-Pb collisions at

√
SNN = 5.5 TeV

are shown, in comparison with results obtained with neural
networks and classical analyses.

The topological variables used for the V0 are described
in [32]. As already mentioned in the previous sections, inves-
tigating the best cut values for classical cuts is a non-trivial
and time-consuming task, since the parameters are nume-
rous and correlated. Moreover, these classical cuts clearly
do not give the best signal to noise separation, it is there-

fore worth using a better selection method. Neural networks
are usually considered in this case ; however, they can have
major drawbacks. Indeed the definition of the suitable para-
meters of a neural network is not trivial, as one has to decide
the numbers of hidden layers and of neurons in these layers,
the calculation method of the weights and the number of
epochs, and there are also risks of overtraining. The results
obtained with multicut-lda on star’s real data, presented
in the previous subsection, encouraged us to test it on our
data.

For this purpose, a sample of 198 Pb-Pb events has been
generated by the hijing event generator with a multiplicity
of dNch/dη ' 4 000 at mid-rapidity. In addition, 100 Λ, 100

Λ, 15 Ξ− and 15 Ξ
+

have been simulated separately and
merged in each hijing event. The resulting events have been
reconstructed by the alice offline software, after which the
V0 and cascade vertices have been reconstructed with very
loose cuts. From these secondary vertices, we have extracted
the samples of signal and background for Λ and Ξ, which
have been used to test multicut-lda and to confront it to
other methods.

The initial statistics in the training samples, obtained
after propagation and reconstruction of the generated par-
ticles and application of very loose cuts at the reconstruction
level, was 11 376 signal and 964 281 background for the Λ,
and 2 545 signal and 593 099 background for the Ξ.

To discriminate the true Λ and Λ hyperons against
their background, we have tested multicut-lda, a neural
network and the classical cuts. 11 variables were used for
the multicut-lda and neural network analyses : the decay
length, the dca (distance of closest approach) between the
daughters, the pseudo-rapidity difference between both daugh-
ters, the smaller of the dca to the primary vertex among
both daughters, the pointing angle of the V0, the opening
angle of the daughters in the lab frame, the cosine of the
decay angle, and the number of hits of both daughters in the
its and in the tpc. The number of neurons in the unique
hidden layer of the neural network was set to 11. It was
found that a second hidden layer did not bring improvement,
and that the performance of the neural network saturated
beyond about 11 hidden neurons. For the classical cuts, only
4 variables were used – the most efficient ones as classical
cuts have been chosen –, because of the increasing difficulty
to optimize them when the number of variables rises : the
decay length, the dca between the daughters, the smaller of
the dca to the primary vertex among both daughters, and
the pointing angle.

For the selection of the Ξ and Ξ hyperons, we have tes-
ted multicut-lda with 9 variables (8 plus the output from
the lda applied to the V0) and the classical cuts with 5
variables – here too, the variables discarded where the least
efficient ones as classical cuts. Those used for lda were the
cascade and V0 decay lengths, the dca of the bachelor and
of the V0 to the primary vertex, the cascade pointing angle,

12



5. lda practical guide and results

ε
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

si
gn

ifi
ca

nc
e

0

10

20

30

40

50

60

70

80

90

, LDAΛ+Λ

, neural networksΛ+Λ

, classical cutsΛ+Λ

Fig. 8 – Significance as a function of the intrinsic efficiency
ε for Λ+Λ for central Pb-Pb collisions at

√
SNN = 5.5 TeV

in alice. The significance is calculated as S/
√

S + N , with
S the amount of signal and N that of noise.

the mass difference between the reconstructed V0 and the
pdg Λ mass, the number of hits of the bachelor in the its

and in the tpc, and the lda output value for the V0. The
variables used for the classical cuts were the cascade decay
length, the dca of the bachelor and of the V0 to the pri-
mary vertex, the dca between the reconstructed V0 and the
bachelor, and the cascade pointing angle.

We have also developed an automatic procedure to cal-
culate the cut values for the classical cuts. It consists in ge-
nerating randomly some sets of cut values, calculating the
corresponding efficiency and background rejection and kee-
ping only the cut values which give the best efficiency for
a given noise rejection. This procedure allows to obtain the
best values of the classical cuts as a function of the efficiency,
which gives optimal results and is used for the comparison
with multicut-lda. However, we estimate that the proces-
sing time may become prohibitive as soon as more than half
a dozen variables are used.

Figures 8 and 9 show the significance obtained with
the various methods which have been tried, as a function
of the intrinsic efficiency ε, i.e. the quantity of signal kept
over the quantity of signal that can be reconstructed (when
all the tracks produced by the weak decay have been re-
constructed in the central tracker). From right to left, each
lda marker corresponds to an additional lda cut removing
a small amount of signal. Each marker of the classical se-
lections represents a set of fixed cuts for a given efficiency.
The Λ neural network analysis uses 3 cascaded networks.
3 was found to be the minimal number required for the
neural network method to be able to deal with the large,
complex-shaped background and to reach reasonable signi-
ficance values. The variations of the significance and of the
efficiency are obtained by moving the selection threshold on
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Fig. 9 – Equivalent of figure 8 for Ξ + Ξ.

the output of the third neural network. A loose threshold is
fixed on the outputs of the previous networks.

The comparison between the results of the various me-
thods is done by looking at the best achievable significance
and the corresponding efficiency. The best significance ob-
tained with multicut-lda for both hyperons is 20 % better
than that obtained with the classical cuts, and, in addi-
tion, the efficiencies have been increased by more than 60
%. The neural networks give an intermediate result, which
illustrates the difficulty to tune them.

The time spent on the analyses can also be considered
as a valid criterion for the comparison. Multicut-lda stays
in the lead, since it runs just once and only one parameter
has to be set. On the contrary, the analysis with a neural
network needs a lot of parameter tuning and was effecti-
vely the most time-demanding analysis, as about an order
of magnitude more time has been dedicated to it than to
multicut-lda.

In conclusion, the multicut-lda method has proved to
be able to improve the results of the hyperon reconstruction
in comparison with classical analysis, and is moreover fast
and simple to apply. In our case, multicut-lda appears also
to have advantages over neural networks, not only for the
performances reached, but also because the setting is faster,
the training as well, and the reliability is higher.

5.7 How to do the final tuning

The final tuning consists in finding how many lda di-
rections have to be applied, and how much is the cut value
of the last one, to reach the minimum of the relative uncer-
tainty. In this process, those of the last directions which have
not been calculated with enough candidates in the training
samples should be discarded.

The way the final tuning is done can be illustrated by
the example of the D0 → K−π+ study in alice, in central

13



5. lda practical guide and results

Pb-Pb collisions at
√

SNN = 5.5 TeV . The results shown
come from a simulation sample different from the training
sample, and the relative and absolute amounts of signal and
background have been rescaled to match the amounts that
are expected to be found in 107 real events.

The number of cut variables used was 10 : the decay
length, the dca (distance of closest approach) between the
daughters, the dca to the primary vertex of the V0 and
of both daughters, the product of the signed dca to the
primary vertex of both daughters, the pointing angle of the
V0 and of both daughters, and the cosine of the decay angle.
The number of signal candidates of the training sample to be
removed by each lda cut has been set to 499 (the candidate
with −→x .−→ui = ci is not removed), for an initial sample size
of 15 967.

5.7.1 The valley-shaped curve

Figure 10 shows our cost function : with respect to the
amount of signal that passes the cuts, the relative statisti-
cal uncertainty on that variable. The valley is clearly visible,
and finding its minimum is a trivial task. In the zoom pre-
sented in the inset, black squares have been put when an
additional lda cut was applied : the rise in performance is
very visible, in the form of a steeper slope with an additional
direction (left of a point) than without (right).

The corresponding efficiency-purity plot is shown in
Fig. 11. Such plots can be used when a different cost func-
tion is wanted. One may for example wish to have a higher
background rejection to avoid problems due to the back-
ground estimation : here, the proportion of background falls
down by a factor of more than 3.5 for the same efficiency
as the classical cuts. Conversely, a higher efficiency may be
desired to reduce possible bias due to tight cuts : here, lda

multiplies the efficiency by 2 for a purity equal to that given
by the classical cuts. It can then be checked on the relative
uncertainty curve that the statistical error obtained is not
too much higher than the minimal one.

A zoom on Fig. 10 is presented in Fig. 12 to illus-
trate the multicut process. The black curves (lda) and the
black point (classical) have been obtained by assuming a
background estimation via rotating, i.e. the V0 vertices are
reconstructed with one of the two tracks rotated by 180o.
This preserves the combinatorial background and destroys
the signal (it can not be reconstructed). The grey curve and
point will be explained in the next section. In this relative
uncertainty versus efficiency diagram, as already said, each
lda cut results in a valley-shaped curve. A cut along the
first direction is applied and progressively tightened until
the cut value c1 is reached (cf. § 4.3). At this point, the
algorithm has calculated a second lda direction, which has
a better performance than the first one. The second lda

cut is therefore applied and progressively tightened, till the
cut value c2, and so on. The plot shows the end of the pro-
cess, and the envelope of all the valley-shaped curves is the
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Fig. 10 – σS/S of the D0 as a function of the amount of
signal, for central Pb-Pb collisions at

√
SNN = 5.5 TeV in

alice. The closed circle shows the performance reached with
the current classical cuts [32], and the valley-shaped curve
is the locus of the points described when the lda cut is gra-
dually tightened (right to left). The crosses (×) mark each
addition of a new lda direction ; the open triangle shows the
minimal value reached. A zoom on the boxed area is shown
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Fig. 11 – D0 efficien-
cy-purity plot corres-
ponding to Fig. 10.
The efficiency is that
of the cuts only.

locus drawn when the lda cut is gradually tightened (and
directions progressively added).

The minimum of this locus, indicated by the opened
triangle, is obtained with the searched number of directions,
here 21. The optimal number of cuts to use in this case is
therefore 21, and the 21st cut value corresponding to the
minimal relative uncertainty can easily be determined by
the program. It obviously belongs to ] −∞; c21].

The curve obtained with a 22nddirection is rather si-
milar to that obtained by keeping tightening the 21st cut
beyond c21. The 22nddirection has been determined with
5 488 signal and 1 120 background D0 in the training samples,
and was the last one calculated for low statistics reasons.
If the statistics were enough, further calculated directions
should behave like the dashed curve labeled “24?” : an im-
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tating), the dashed line shows how could be this curve when
24 cuts are applied.

provement is brought, but the relative uncertainty does not
fall below the previously found minimal point, as this point
is the absolute minimum of the envelope.

5.7.2 The minimum

Yet, the final value of the lda cut is not determined
at this stage, because the final error bar depends on other
factors. There is usually further “manipulation” of the data,
such as an efficiency correction and a fit to some distribu-
tion. The minimal final statistical error may then be obtai-
ned for another value of the lda cut. The process is iden-
tical though, therefore simple and instantaneous, and one
may wish to use various lda cut values, depending on the
Physics observable looked at.

The grey curve of Fig. 12 illustrates how fast is a re-
tuning : this curve results from the assumption that the es-
timated background is obtained from event-mixing rather
than rotating. Event-mixing consists in reconstructing V0
vertices with one track taken in an event, and the second
track taken in another event of similar multiplicity and pri-
mary vertex location. Like rotating, this destroys the signal
candidates, but preserves the combinatorial background. As
many events can be mixed together, event-mixing provides
an estimation of the amount of background with a much
smaller error bar than rotating (other characteristics have
to be taken into account though, but a comparison of the
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Fig. 13 – Example of systematics study taken from [5] : the
variation of a variable is plotted as a function of the tigh-
tening of the lda cuts (black). The value obtained with the
classical cuts is shown in grey (identical value duplicated all
along the axis). The inset shows the variation in raw num-
ber of candidates : there is a factor of 4 between the tightest
and loosest lda points.

background estimation techniques will not be addressed in
this note). This results in a different cost function curve.
Again, the new minimum is easily found, as well as the cor-
responding lda cut.

As a summary, these preliminary results show that the
relative uncertainty on the raw number of D0 is divided
by 2 for a similar efficiency when lda is used, compared
with the classical cuts. When rotating is replaced by event-
mixing to estimate the amount of background, the bottom
of the valley is not much lower, but is much flatter and
extends up to 5 500 signal counts. The cut efficiency can
thus be multiplied by 1.8 while the relative uncertainty is
left untouched.

5.8 Extended usage of lda

5.8.1 Systematic error estimation

As we have seen, lda, even multicut, provides a trans-
formation from Rn into a set of segments that is equivalent
to R. Changing the cut efficiency and obtaining the corres-
ponding best purity is therefore an obvious task, as it simply
consists in tightening or loosening the lda cut, possibly ad-
ding or removing directions if needed. Doing so describes
the valley-shaped curve.

Figure 13 illustrates on a real example how this helps
estimating a systematic error due to the cuts : as a function
of an arbitrary quantification of the tightening of the lda

cuts, one plots the evolution of the value of the observables
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he is studying.
Moreover, as a set of lda cuts is rapidly calculated,

studying the variation of the Physics results as a function
of the cuts used is straightforward. Various lda cuts can be
calculated for example leaving out or inserting one of the
variables, applying kinematical cuts or reducing the space
with classical pre-cuts.

5.8.2 Deriving classical cuts

Classical cuts also reinforce a systematic study. Yet, as
we mentioned earlier, obtaining optimized classical cuts is
a tedious and time-consuming task.

In some cases, it is possible to use lda to find classical
cuts. The principle is simple : naming fj and gj the distri-
butions of the jth cut variable respectively before and after
the lda cuts, one only has to examine the ratios Rj =

gj

fj

for the signal and background distributions. If Rj falls off
or rises steeply for both distributions, an equivalent classi-
cal cut can be found on that variable. If Rj is constant, the
variable should not be cut.

Unfortunately, it seems that most of the time, the steep-
ness is far from large. References [5, 7] can be consulted for
results and for details about how to quantify the steepness.

Yet, a try on the analysis shown in section 5.7, with
lda cuts giving a similarly low steepness of the Rj functions,
lead to classical cuts more performant than those which were
used before [33, 34]. This encourages tries to derivate clas-
sical cuts out of lda cuts even when the shape of the Rj

functions does not look promising.

Conclusions

Because lda provides an optimized transformation from
Rn to R, cut-tuning is made obvious, as it consists in a
simple minimization of a one-dimensional function (e.g. the
relative uncertainty). Moreover, as the n-dimensional infor-
mation of the distributions is taken into account, rather
than the n projections as the classical cuts do, lda also
provides an improvement of the statistical error bars. While
Fisher-lda can not deal with low initial signal-to-noise ra-
tios such as those considered above, optimized multicut-lda

succeeds in reducing significantly the statistical uncertainty
in the analyses presented.

A drawback of this method is that it can be used only
with two classes : it is not able to distinguish e.g. several
sorts of backgrounds, and removes all of them as if it was
a single contribution. Moreover, the selected area is always
convex.

On a more technical side, additional advantages are
that the method has fewer parameters to be tuned during
the training phase than pattern classification methods like
the neural networks. The minimal size of the samples needed

to train the method correctly is therefore lower for lda.
Furthermore, lda is not subject to overtraining, and has
only one parameter to be set by the user – namely, the
efficiency of each cut –, which makes the method fast to set
up.

lda can also be used to calculate a systematic error
due to the cuts : the lda cut can be tightened and loosened
while permanently staying on the optimized curve shown in
Fig. 10. As a set of lda cuts is easy and fast to determine,
results can be obtained with several of them and compa-
red together, and sets specific to conditions which require
a maximal improvement (e.g. collision centrality, particular
range in transverse momentum) can be determined quickly.
Finally, classical cuts can sometimes be rapidly derived from
the projected distributions of the candidates cut with lda,
and be used to estimate a systematic error.

Multicut-lda has successfully been applied to the Λ, Ξ
and D0 analyses in Pb-Pb collisions in alice. It should work
equally well for other topologically reconstructed particles
like the Ω, the D+, the D+

s , the Λ+
c , etc..., and could possi-

bly lead to dramatic improvements for resonance analysis,
for which the statistical error bar is about proportional to
the background level. The method can more generally be
applied to any 2-class discrimination problem for which the
zone to be selected is thought to be convex. It can also be
seen as a tool to explore the n-dimensional space more ea-
sily than with the classical method, and to investigate cor-
relations and biases, with the possible addition of variables
which are not used in the final analysis, but which play a
role in the estimation of the bias and systematic errors.
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