
SOCIALRANK: RANKING USERS AND INFORMATION IN ONLINE SOCIAL

NETWORKS

by

ABDULRAHMAN I. TARBZOUNI

Bachelor of Science, Massachusetts Institute of Technology (2007)

Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

at the MASSACHUSE
OF TECI-

MASSACHUSETTS INSTITUTE OF TECHNOLOGY JUL 2

June 2009 LIBRi

© Abdulrahman I. Tarbzouni 2009. All rights reserved.

TTS INSTITUTE
INOLOGY

0 2009

%RIES

ARCHIVES

The author hereby grants to MIT permission to reproduce and to distribute publicly
paper and electronic copies of this thesis document in whole or in part in any

--jelium now known or hereafter .

Author:
Department o cr~ioLum ngmeernng ancatmputer Ncience

May 01, 2009

Certified by:

Department
,. ~__~~:,...,1

Robert H. Rines
of Electrical Engineering and Computer Science

Thesis Supervisor

Accepted by:
Arthur C. Smith

Chairman, Department Committee on Graduate Students

SOCIALRANK: RANKING USERS AND INFORMATION IN ONLINE SOCIAL

NETWORKS

by

ABDULRAHMAN I. TARBZOUNI

Bachelor of Science, Massachusetts Institute of Technology (2007)

Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Abstract

The goal of this project is to explore the design and implementation of SocialRank. SocialRank
is a personalized ranking algorithm that provides-for each user-ratings for people in his online
social network. Subsequently, these ratings are used to rank incoming information received by
the user from those in his social network.

We analyze the use of actions on online social networks as proxies for measuring the strength of
relationships between users and introduce an action scoring mechanism that uses different factors
to evaluate an action's significance.

We implement SocialRank in a generic online social network that we build as part of this
research project and explore the effectiveness and usefulness of SocialRank.

Thesis Supervisor: Robert H. Rines
Title: Lecturer, Department of Electrical Engineering and Computer Science

Acknowledgements

I would like to acknowledge the following people:

My thesis advisor, Professor Robert Rines, for challenging me and being a great mentor, teacher
and friend. His achievements will always remind me that the ultimate satisfaction in life comes
from transforming the lives of others and making the world a better place. I am honored to have
been a student of Professor Rines.

My academic advisor, President Emeritus Paul Gray, for his limitless support and dedicated
guidance. I am deeply touched by his genuine care and consideration to every detail of my MIT
experience. He was always there and I cannot thank him enough. His noble character is a sources
of great influence to me. I am truly privileged to have had the opportunity of being advised by
Professor Gray during my time at MIT.

Words cannot describe the amount of admiration and respect I have for Professor Rines and
Professor Gray. I will always cherish the relationship and personal stories I've shared with them.
Indeed, I will forever remain a student of them.

My wife, Jana. For her love and encouragement. For her unyielding support even in the face of
impossible challenges and potential failures.
You complete me.

My dearest mother, father and siblings; Abdulmohsin, Najla and Abdulaziz. For their eternal love
and support. For their unquestionable faith in what I do.

Thank you.

Contents

1. Introduction 9

2. Background and Related Work 12

3. Design and Development of SocialRank 14

3.1 Overview 14

3.2 Actions as Proxies of Relationship Strength 15

3.3 Determining Action Scores 15

3.3 Calculating SocialRank Values 20

4. Implementation of an Online Social Network with SocialRank 23

4.1 Building an Online Social Network 23

4.2 System Architecture and Specifications 23

4.3 Data Model for the Online Social Network 24

4.4 Integrating SocialRank 26

5. Conclusion 30

5.1 Summary of Results 30

5.2 Future Work 31

A. Database Schema for Online Social Network 32

6. References 39

1. Introduction

Online social networks are becoming increasingly popular mediums of information exchange.

They are lowering the cost of live communication and information sharing. People we know

share updates with us through Facebook, photos through Flickr, news through Digg and

broadcast messages to us through Twitter. But given how effective these systems have become

as platforms of information dissemination and the ever-growing number of people adopting such

platforms, the information inflow created can grow quite dramatically. Consequently,

information overload is becoming a real problem in online social networks.

Information we receive through online social networks are usually displayed in chronological

order without an indicator as to how important a received piece of information is. This usually

leads us to linearly scan our online social network feeds to identify important items. Essentially,

information is ranked based on recency, not on importance.

Take for example the case of Facebook. Facebook allows a user to connect with friends, and

share blog posts, links, photos, videos. Facebook implements a news feed that lists all updates

from a user's friends. An average user of Facebook has 120 friends'. Regardless of who the

friend is, friend updates are displayed sequentially in chronological order. Consequently, the

news feed becomes quickly overloaded with updates from all friends, whether their updates

matter to a user or not. Facebook currently tries to solve this problem by allowing the user to

1 Official Facebook statistics: http://www.facebook.com/press/info.php?statistics

manually "hide" specific friends from the news feed so that the user can focus on updates from

more closer friends. But this process is not dynamic and requires the user to consciously filter

out unwanted friend updates from his news feed.

Another example is Twitter. Twitter is a fast-growing platform for sharing information and

broadcasting messages or what is referred to as "tweets" from friends. A user can sign up and

follow other users to receive their tweets. The more people a user follows, the more tweets the

user receives. The number of tweets a user receives can become overwhelmingly large given the

amount of activity on Twitter. Tweets are also ordered chronologically which requires a linear

scan to identify important tweets.

It is clear that an automated mechanism for ranking information we receive through online social

networks is highly desirable. In this research paper, we present SocialRank: a personalized

ranking algorithm that provides-for each user-ratings for people in his online social network.

We explore a novel mechanism of using online actions made between users to infer individual

ratings that reflect the importance users place on each other in the online social network. These

ratings are subsequently used to rank and sort incoming information received by the user.

This paper is organized as follows: Chapter 2 provides information about background research

and related work. Chapter 3 describes the design of SocialRank and analyze the use of actions in

online social networks as proxies for measuring relationship strength. Chapter 4 explores the

implementation of SocialRank within an online social network that we build as part of this

research project. Finally, Chapter 5 concludes with our findings and future work.

2. Background and Related Work

Ranking and trust algorithms generally follow two main approaches when rating items of

interest: a global approach and a personalized approach. The global approach results in a single

global rating for each item. In that case, the algorithm uses ratings shared by individual users (or

entities) to compute a global rating for each item. The implementation of such algorithms could

be based on collaborative filtering methods [1] or reputation algorithms. In the personalized

approach, the ratings of items in the system are typically different for each user. Every user has

her own ratings of the items involved.

The most well-known ranking algorithm is PageRank [2]. PageRank analyzes links between

webpages to create a graph inferred from their interconnecting links. Based on that, a webpage

has a high rank if the sum of the ranks of its backlinks is high. A personalized version of

PageRank [3] takes user profiles and their usage patterns into account and computes a

Personalized PageRank Vector that is used to compute personalized rankings of webpages for

each user.

The Eigentrust algorithm [4] determines the reputation of a set of peers in P2P networks based

on their interactions. Each peer determines a local trust value for every other peer based on the

number of satisfactory and unsatisfactory interactions it had with that peer. The algorithm then

uses those local values to computer a global reputation value for each peer in the network.

Our SocialRank algorithm is a personalized ranking algorithm that builds on some of the

concepts described above. We believe that a personalized approach is more reasonable than a

global approach when ranking users in online social networks. This is due to how a globally

high-ranking person might not be as important in the personal context of a user when compared

to others who are personally closer and more important.

3. Design and Development of SocialRank

3.1 Overview

SocialRank utilizes the user's own historical actions to construct a social graph that captures the

strength of connections between the user and people in his network. Consequently, when

implemented in an online social network, SocialRank rates important people in a user's social

graph and ranks information received by them accordingly. The higher the rank of a person, the

more important is the information shared or created by that person. Actions made between a user

and people in his social network are at the center of how SocialRank computes its ratings. User

A's SocialRank of user B is defined as SR(A--B) and uses the set of all actions made from user

A to user B to compute that value.

SR(A--B) = 0.30 SR(A--G) = 0.20

SR(A-,F) = 0.50

F
Figure 1. SocialRank Graph for user A.

3.2 Actions as Proxies of Relationship Strength

Online social networks enable users to interact with each other and share data. There are many

types of online social networks. Some of them are centered around sharing news, some are built

around exchanging photos, others are customized to publishing different geo-tagged data.

Depending on the theme and purpose of an online social network, there are many types of

actions users could perform. We focus on actions that have an extended effect on other users or

their data. For example, in a typical online social network, users could: Become friends with or

follow other users, send messages to each other, comment on information shared by others, and

answer questions posted by other users, etc.

We posit that any of the aforementioned online social network actions can serve as proxies for

gauging the importance users place on other users in their social network. Evidently, email

exchange has been used in previous social studies as a proxy for measuring strengths of

relationships [5].

3.3 Determining Action Scores

The set of possible actions between two users in an online social network are many. Given a set

of possible actions between two users, not all actions are equally significant. Hence, actions need

to be scored. Given an action as input, the score assignment method should output a value that

accurately reflect an action's significance. The action scoring mechanism also needs to be

modular so that SocialRank can be flexible enough to be applied to any type of online social

network given how different online social networks have different views on how some actions

are considered more significant than others.

We define aA-,B to be an action made from user A to user B. The score of aA--B is computed as:

Score (UA-,B) =. T

where

6 = the action's directness factor

T= the action's strength value

We will define the two factors 5 and T in the following two sections.

3.3.1 Action's Directness Factor (6)

Given an action aA-*B, 6 is a rational number between 0 and 1 that acts a scaling factor for the

action's strength value (T). The 6-value measures the level of directness in an action. Take for

example two actions alA-B and a2 AB: alA-B, is the action in which user A posts a comment

on one of the articles created by user B, a2A--,B, is the action in which user A posts a comment on

the main profile page of user B. alA-B describes an action where A acted indirectly on user B -

through one of B's articles-. a2A-B describes an action where A acted directly on user B. The

latter is more direct and hence signals more importance. This property is captured by 6 when

calculating the score of an action.

To assign a 8-value to an action, we argue that there are three levels of directness when

classifying actions in online social networks:

1) Direct Actions

A direct action from user A to user B is defined as any kind of activity on the online social

network where user A's action is directly targeted at user B. Examples include user A sending a

message to user B, user A posting a personal note on the main profile page of user B, or user A

marking user B as a "favorite", etc.

sends message to

A B

posts on main profile page

Figure 2. Two direct actions from user A to user B.

2) Indirect Actions

An indirect action from user A to user B is defined as any kind of activity on the online social

network where user A's action is not directly targeted at user B but rather on an object owned by

user B . Examples include user A commenting on a post by user B, user A marking an article

published by user B as a favorite, or user A answering one of the questions posted by user B, etc.

answers

comments on

Figure 3. Two indirect actions from user A to user B.

3) Mutual Actions

Given three users A, B and C, a mutual action is defined as a pair of actions where both users A

and B act mutually, either directly or indirectly, on user C. The pair of actions that constitute a

mutual action should be of the same type and have the same target. Examples include user A and

user B both sending a direct message to user C, or user A and user B both commenting on the

same post created by user C.

sends message to sends message to

created by

A B

comments on comments on

Figure 3. Two mutual actions between user A and user B.

The classification of actions based on the three levels aforementioned allows us to have three

distinct 8-values: 8direct, 6 indirect, 6 mutual. Generally, in a typical online social network where direct

actions carry more significance than indirect or mutual ones, it is fair to assume that 6 direct >

6 indirect > 6 mutual. We could program the algorithm with preset values to the three 6-values (for

example, 6 direct = 1, indirect = 0.5, 6 mutual = 0.3) or give the user more control in determining the 6-

values appropriate for his own usage pattern.

There are interesting cases to consider where that general case (6 direct > Sindirect > 8mutual) might not

be the best scenario. One example is social networks where users are interested in discovering

other users who share their same behavior and interest in specific information. In that case,

boosting 8mutual to a higher value relative to the other 8-values would allow the ranking algorithm

to present better ranked results to the users.

3.3.2 Action's Strength Value (T)

Indeed, classifying actions as direct, indirect or mutual already gives us one level of granularity

in determining scores for actions. But we still need to evaluate a numeric value that reflects the

strength of the action itself. This could be done using different heuristics. Time duration of an

action is one heuristic; the more time an action requires, the higher its strength value. Another

would be the size of an action represented by the number of characters involved.

We follow a more general approach of classifying actions based on their distinct types (for

example: commenting, posting, answering actions, etc.) and assigning a strength value T to that

general type that gets inherited by all individual actions of that type.

Again, we could program the algorithm with preset T-values to different action types (for

example, T comment = 5, T post = 8, T answer = 6) or give the user more control in determining the T-

values appropriate for his own usage pattern.

To summarize:

* Given a direct action aA-B with a strength value r, its score is calculated as: 6 direct . T

* Given an indirect action aAB with a strength value T its score is calculated as: 6indirect . TU

* Given a pair of mutual actions A-B and a c-B (whether they are a pair of indirect actions or

a pair of direct actions) with equal values of T, the score for the pair of mutual actions is

calculated as: 6 mutual. T

3.3 Calculating SocialRank Values

We model the online social network as a weighted directed graph G = (VE). Where V, the set of

nodes, represent users and E, the set of edges, represents some relationship between users. We

define the weight function for every edge connecting two nodes A and B to be SR(A-*B).

SR(C-B)

SR(B--A)

SR(C-A)

Figure 4. SocialRank Graph for all users.

When using action scores to calculate SR(A--+B), we need to normalize action scores by dividing

them by the total sum of all action scores made by user A to all other users. User A's SocialRank

value of user B is defined as:

SR(A-+B) = Score(aA-B) / Score(aA)

where

Score(aA-B) = Sum of scores of all actions from user A to user B

Score(aA) = Sum of scores of all actions from user A to all other users

The SocialRank values are cached until they are updated every preset time interval. The figure

below shows an example of how SocialRank determines the personalized ranks for three users

based on their actions.

C C

created by
SR(A-C) = 0.21

SR(C-*B)

SR(C-A) =0

SR(A-B) = 0.79

A post B A

SR(B-A) = 0.37

SR(A--C) =5 *0.5 /[(5 * 0.5) + (8 * 1) + (5 *0.3)] = 0.21

SR(A-B) =[(8 * 1) + (5 * 0.3)]/[(5 * 0.5) + (8 * 1) + (5 * 0.3)] = 0.79

SR(B--C) = 5 * 0.5/[(5 * 0.5) + (5 * 0.3)] =0.63

SR(B--A) = 5 * 0.3 / [(5 * 0.5) + (5 * 0.3)] =0.37

post 8
comment 5

T-values

action directness 6-value
6 direct 1

6 indirect 0.5

6 mutual 0.3

Figure 5. An example showing how the set of direct, indirect and mutual actions in the graph on the left were used

to compute SocialRank values SR(A--+C) and SR(A--+B) in the graph on the right.

4. Implementation of an Online Social

Network with SocialRank

4.1 Building an Online Social Network

In this chapter we build a fully functional online social network that uses SocialRank. The

implementation of the online social network is meant as a proof of concept of the design of the

SocialRank algorithm. The platform includes a suite of typical features found in social

networking websites. Users can register for accounts, create profile pages, upload personal

avatars, follow friends, create blog posts and forum posts, comment on posted items, ask

questions, and answer questions, etc. Moreover, it allows different user-generated data to be

tagged and rated. The home page-for every user-lists the latest updates from people in his

social network in a newsfeed style.

4.2 System Architecture and Specifications

The online social network is a client-server web application programmed using Ruby on Rails 2

Ruby on Rails is an open source MVC-based web application framework. The online social

network is hosted on a server using Mongrel3 as a web server, and SQLite4 as a database server.

2 Ruby on Rails Framework: http://rubyonrails.org

3 Mongrel: http://mongrel.rubyforge.org/

4 SQLite: http://www.sqlite.org/

SQLite Databse Ruby on Rails Application Mongrel Webserver User

Figure 6. System architecture for the online social network.

4.3 Data Model for the Online Social Network

Rails uses ActiveRecord 5 to implement Object Relational Mapping (ORM). ORM is a

programming technique that maps objects in object-oriented programming languages to database

records in an SQL table. Hence, the schema of each SQL table in the database maps to a class

model.

Provided in the table below is a brief description of each of the data models used in the online

social network and the names of the tables that hold SQL records of that model (refer to

appendix A for the full listing of SQL tables and the schema used to build the online social

network's database):

Class
Model SQL Table Description

User Users Represents a user with different attributes such as name, login,
hashed password and total sum of scores of actions made by the
user.

5 ActiveRecord: http://ar.rubyonrails.org/

ClassCla SQL Table Description

Action Actions Represents an action. Attributes include a reference to the user
who the action was made from, a reference to the user who the
action was made to (directly, indirectly or mutually) and a score
for the action.

SocialRanks SocialRanks Represents the collection of SocialRank values. Attributes
include a reference to the ranked user, a reference to the ranking
user, and the value of the ranking.

Post Posts Represents a post with different attributes such as title, body,
and a reference to the user who created the post.

Comment Comments Represents a comment with different attributes such as body, a
reference to the user who created the comment, and a reference
to the parent object of the comment.

Question Questions Represents a question with different attributes such as title,
body, a reference to the user who created the question and a
reference to the parent object of the question.

Answer Answers Represents an answer with different attributes such as body, a
reference to the user who created the answer and a reference to
the parent question-object of the answer.

Friendship Friendships Represents a friendship connection between two users with
attributes such as references to the user, the friend, and their
friendship status.

Category Categories Represents a category which a question, answer or post can be
listed under.

Rating Ratings Represents a rating with different attributes such as value, and a
reference to the parent object which the rating is applied to.

Tag Tags Represents a tag which a given user could apply to any post,
comment, question, or answer.

Table 1. Class model and SQL tables used in building the online social network.

4.4 Integrating SocialRank

The actions table described above holds records of all the actions created on the online social

network. Below is the full table schema for the actions table:

Field
Field Name Fie Description

id integer action's unique identifier [Primary key]

reference to user who is the source of the actionfrom user id integer [Foreign key]
[Foreign key]

touser id integer reference to user who is the target of the action. [Foreign key]

Reference to the object that was created/modified by this
objectid integer action.

[Foreign key]

object_type string the type of object that was created/modified by this action.

Reference to the parent of the object that was created/
objectparentid integer modified by this action

the type of the parent of the object that was created/modified
object_parenttype string by this action

by this action

score float the value of the action's score

hash string a string that concatenates: to_user id + objecttype +
object_parent_id + object_parent_type. Used to quickly find
mutual actions when scanning the table.

createdat datetime date and time of when the action was made

description string text description of the action

Table 2. Actions table scheme.

Every time an action is made, a new record is added to the actions table. We show below a partial

sample view of the actions table after some activity on the online social network-highlighting

only the important parts of the records:

object object_ Object
From To objectid - parent parent-_ Score Hash Description

tpe id type

3 , Post, 3, "Jana posted aUser message to Abdul"

'5 "Jana commented
1 5 27 Comment 11 Post 4 Comment, Bill's post"on Bill's post"11, Post

4, Answer, "Steve answered
2 4 33 Answer 72 Question 7 72,Question Tom's question"

Table 3. Sample partial view of the actions table

The table above shows three actions. The first one captures the direct action where Jana (user id:

1) sent the message (message id: 20) to Abdul (userid: 3). The action was given a score of an 8

using the mechanisms described in the last chapter. The action's hash is a string that concatenates

together the action's target (3), its object type (Post), its object parent id (3) and its object parent

type (User); resulting in "3, Post, 3, User". This string helps when scanning the actions table to

find mutual actions between users.

The second action captures the indirect action where Jana (user id: 1) created the comment

(comment_id: 27) on post (post_id: 11) by Bill (user_id: 5). The action was given a score of a 4.

Information for the third action is inferred similarly.

Given the table of actions, we run the SocialRank procedure to determine the SocialRank values

for users in the online social network. The SocialRank procedure takes as input the table of

actions. A Ruby on Rails-like pseudocode for the SocialRank procedure is provided below:

user scores sums = Hash.new
userfriends_scores_sums = Hash.new
For each user in Users

user_scores_sums[user] = 0.0
userfriends scores_sums[user] = Hash.new

Let userActions = the set of all actions made by user

For each friend in {Users - user}

usersfriends_scores_sums[user][friend] = 0.0
direct and indirect actions sum = 0.0

mutual actions sum = 0.0

Let direct and indirect actions sum = the sum of scores of direct and indirect actions

from user to friend

Let userfriends_scores sums[user][friend] += direct_and_indirect_actions_sum

LetfriendActions be the set of all actions made by friend

For each user-action in userActions

Unless user-action. hash has already been seen before

Let friend-action = the first action where
friend-action.hash = = user-action. hash

Let mutual_actionscore = the score of the pair of mutual

actions friend-action and user-action

Let mutual actions sum += mutual action score

End
End
userfriendsscores sums[user][friend] += mutual_actionssum

userscores_sums[user] += userfriendsscoressums[user][friend]
End

End

For each pair of users (user], user2)

SocialRank(userl,user2) = user_friends_scores_sums[userl][user2] / userscores sums[userl]
End

Figure 7. Pseudocode for SocialRank procedure

After running the procedure, the SocialRank table gets populated with SocialRank values for all

pairs of users on the online social network. A sample partial view of what the SocialRank table

looks like after running the SocialRank procedure is included below:

Jana Abdul 0.4

Jana Bill 0.2

Bill Jana 0.7

Table 4. Sample partial view of the SocialRank table

5. Conclusion

5.1 Summary of Results

After implementing the online social network discussed in Chapter 4, we deployed two versions

of it in parallel: the first one used SocialRank to rank friend updates in the user's newsfeed, the

second one did not use SocialRank. We had two groups of users separately using each of the two

deployments. Group 1 tested the deployment that used SocialRank, while group 2 tested the

deployment that did not use it. The experiment ran for 4 weeks and each of the two groups had 5

users. The 6-values to determine actions scores were 6 direct = 1, indirect = 0.5, 6 mutual = 0.3. The z-

values where T friendship = 9 , T post = 8, T answer = 6, t comment = 4. The SocialRank procedure ran

once every 6 hours to update values in the SocialRank table.

The lack of a large user base did not enable SocialRank to have enough critical mass to be fully

effective. But we did notice two interesting patterns:

1) On average, users in group 1 spent less time on the newsfeed than users in group 2.

2) On average, users in group 1 had a higher click-through rate on the newsfeed items than users

in group 2.

In spite of the small number of users involved in the experiment, we believe that these findings

support the idea that SocialRank could indeed be useful in ranking information in online social

networks. It does so by potentially lowering the amount of time a user spends on finding

personally relevant and important information. It also shows that when users are presented with

more important information first on a list-in this case, important friend updates appearing first

on the newsfeed-users are more likely to click on that information; signaling that users'

attention span and click-potential is limited to the first items on a list of information.

5.2 Future Work

A fully scalable ranking mechanism for online social networks is a complex problem and much

remains to be done. We plan on improving the efficiency of the ranking procedure and allowing

it to scale for larger numbers of users. Moreover, another area of improvement is dynamically

determining when to rerun the SocialRank procedure to update rank values. We are also working

on a hybrid global-personalized ranking algorithm that takes into account the global ratings

determined by a global variant of SocialRank and factors those ratings in when determining

personalized SocialRank values for users.

Lastly, we are working on implementing SocialRank as a webservice that aggregates all friend

updates from different online social networks. The webservice would rank updates from friends

on all online social networks-even when the same friend has different screen names on

different platforms-and display ranked information in one unified interface. Given the

enormous amounts of social interaction data available in social networking websites, we believe

SocialRank's approach of using actions as proxies of relationship strength is a step in the right

direction but only touches the surface of what is possible. Ranking algorithms for online social

networks is an uncharted path and a very rich field of experimentation and research ideas.

SocialRank is only the beginning of more interesting work in that field.

A. Database Schema for Online Social

Network

Provided below is a full listing of the SQL tables used in building the online social network

along with their detailed database schema:

Users

Field Name Field Type Description

id integer user's unique identifier. [Primary key]

login string user's unique login handler

first_name string user's first name

lastname string user's last name

email string user's email address

city string user's city

country string user's country

gender string user's gender

kind string kind of user class (admin, power user, etc.)

preferences string A hash structure with different user preferences

locale string user's language choice

birthday date user's birthdate

crypted_password string user's password encrypted using SHA1

salt string user's password salt

Field Name Field Type Description

activation code string randomly generated activation code sent to user's email upon
signup to confirm user's details

activatedat datetime date of when current user was activated

posts_count integer cached count of posts made by user

actionscoressum integer total sum of scores for all the user's actions

createdat datetime date and time when user's record was created

updated_at datetime date and time when user's record was last updated

Posts

Field Name Field Type Description

id integer post's unique identifier [Primary key]

title string post's title

body text post's body

postable_id integer reference to post's parent object [Foreign key]

postable_type string type of post's parent object

category_id integer reference to post's category [Foreign key]

comments_count integer cached count of post's comments

userid integer reference to user object which created this post [Foreign key]

created_at datetime date and time post was created

updated_at datetime date and time post was last updated

Comments

Field Name Field Type Description

id integer comment's unique identifier [Primary key]

body text comment's body

commentable_id integer reference to comment's parent object [Foreign key]

commentable_type string type of comment's parent object

user id integer reference to user that created comment [Foreign key]

createdat datetime date and time of when comment was created

updated_at datetime date and time of when comment was last updated

Friendships

Field Name Field Type Description

id integer friendship's unique identifier [Primary key]

user_id integer reference to the befriending user [Foreign key]

friend_id integer reference to the befriended user [Foreign key]

status string status of friendship connection

created_at datetime date and time friendship connection was created

updated at datetime date and time friendship connection was last updated

Questions

id integer question's unique identifier. [Primary key]

title string question's title

body text question's body

questionable_id integer reference to question's parent object [Foreign key]

questionable_type string type of question's parent object

category_id integer reference to category [Foreign key]

answerscount integer cached count of question's answers

user id integer reference to user that created this question [Foreign key]

created_at datetime date and time question was created

updated_at datetime date and time question was last updated

Answers

Field Name Field Type Description

id integer answer's unique identifier [Primary key]

body text answer's body

question_id integer reference to answer's question [Foreign key]

userid integer reference to user that created answer [Foreign key]

created at datetime date and time of when answer was created

updated_at datetime date and time of when answer was last updated

Categories

Field Name Field Type Description

name string category's name

parent_id integer reference to parent category, if any [Foreign key]

created_at datetime date and time of when category was created

updated_at datetime date and time of when category was last updated

Actions

Field Name Field Type Description

id integer action's unique identifier [Primary key]

from_userid integer reference to user who is the source of the action. [Foreign key]

to_user id integer reference to user who is the target of the action. [Foreign key]

objectid reference to the object that was created/modified by this action.
objectid integer [Foreign key]

object_type string the type of object that was created/modified by this action.

id integer Reference to the parent of the object that was created/modified by this
objectparentid inactiotegern

object_parent_type string the type of the parent of the object that was created/modified by this action

score float the value of the action's score

hash string a string that concatenates: to_userid + object_type + object_parent_id +
object_parent type. Used to quickly find mutual actions when scanning the
table.

createdat datetime date and time of when the action was made

description string text description of the action

Ratings

Field Name Field Type Description

id integer rating's unique identifier [Primary key]

userid integer reference to the user creating the rating [Foreign key]

value float value of the rating

rating_type string type of the rating

ratable_id integer reference to the object being rated [Foreign key]

ratable_type string type of object being rated

created at datetime date and time of when the rating was created

updated_at datetime date and time of when the rating was updated

SocialRanks

Field Name Field Type Description

id integer ranking's unique identifier [Primary key]

from_userid integer reference to the user who is the source of the ranking [Foreign key]

to_userid integer reference to the user who is the target of the ranking [Foreign key]

socialRank float value of the rank

Tags

Field Name Field Type Description

id integer tag's unique identifier [Primary key]

name string tag's name

Taggable

Field Name Field Type Description

id integer unique identifier [Primary key]

tag_id integer reference to tag [Foreign key]

taggableid integer reference to the object being tagged [Foreign key]

taggable_type string type of the object being tagged

6. References

[1] P. Resnick and H.R. Varian. Recommender Systems. Communications of the ACM, 40(3):56-
58, 1997.

[2] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bringing
order to the web. Technical report, Stanford University, 1998

[3] G. Jeh and J. Widom. Scaling personalized web search. In Proc. of the 12th Intl. WWW
Conference, 2003.

[4] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The eigentrust algorithm for reputation
management in p2p networks. In Proc. 12th International World Wide Web Conference,
Budapest, Hungary, May 2003.

[5] J. Tyler, D. Wilkinson, and B. Huberman. Email as spectroscopy: automated discovery of
community structure within organizations. In M. Huysman, E. Wenger, and V. Wulf, editors,
Communities and Technologies, pages 81-96, Deventer, the Netherlands, 2003. Kluwer.

