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Abstract

We present a new approach to deformation invariant image matching. Our approach
retains the broad range of linear and nonlinear deformations that viscous alignment

methods can model, but introduces a selectivity that is necessary for recognition.
Our method models viscous kernels with an over-complete filter basis. The basis is

parameterized with a single scalar parameter, the spectral radius r, which selects

deformations ranging in complexity from tranlations to "turbulence." The spectral
radius is used for cascaded alignment starting from low deformation frequencies and

finishing with high deformation frequencies.
Cascaded alignment makes deformation invariant matching for recognition feasible

and efficient. Because spectral radii map directly to deformation complexity, their

contributions are selectively weighed to calculate the template-target similarity. In

this way, our model can distinguish deformations by their relevance to recognition,
without losing the flexibility of viscous alignment for handling nonlinear deformations.
Our approach is applied to recognize flexible bodies of animals, and results indicate
that the method is very promising.
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Chapter 1

Introduction

Deformation invariant matching is the task of recognizing that two different images

are of the same object despite some variability in pose, lighting, or viewpoint in

the images. There is an inherent trade-off between selectivity (the accuracy of this

recognition) and deformation invariance (how much - and what types of - variability

we wish to allow). The more variability we accept between images that are "the

same" (i.e. of the same object), the more likely we are to accidentally call two images

of different objects equal, when they really should not be. Conversely, the stricter we

are about variability in images, the more likely we are to label two images unequal

even if they truly are the same [10].

The work presented here is new approach to deformation invariant matching. In

broad terms, our approach measures the similarity between two images by measuring

how "difficult" it is to morph one image into the other. Our method makes it simple

to parameterize the types of warps allowed or disallowed, which makes the process of

evaluating the "difficulty" of a warp more straightforward.

Image processing methods, like the one proposed here, can be applied to ecological

problems. For example, algorithms to recognize animals from photographs greatly

aid the study of migratory behavior, which can, in turn, aid the development of

conservation plans [9]. However, a vast number of animals and plants deform in

highly nonlinear ways, which presents a challenging and interesting object recognition

problem.



Figure 1-1: The marbled salamander (Ambystoma opacum) has a unique marbling
pattern on its back. These images demonstrate the variability in patterning and
background of images taken from a CMR study.

1.1 Application Motivation

Capture-Mark-Recapture (CMR) studies provide essential information on demogra-

phy, movement and other ecological characteristics of rare and endangered species [9].

This information is required by conservation managers to focus their strategies on the

most relevant threats and life stages, to identify critical habitat areas, and to develop

benchmarks for measuring success in recovery plans.

CMR involves capturing the animal of interest, physically marking or tagging it,

and releasing it. Once the animal is marked, researchers can track its movement as

it is recaptured throughout the study. CMR studies that use physical marking or

tagging techniques are intrusive to varying degrees and may even affect the fate or

behavior of the creature [9].

Because of this possibility, photographing the animals is sometimes the only re-

alistic technique, but manual photo-identication is not scalable as the image cata-

log grows; computer-aided recognition has mostly been conned to large-bodied an-

imals [9]. For example, whale shark I (Rhincodon typus) movements are tracked

via semi-automated comparison of amateur photographs. The whale shark system

lhttp://www.whaleshark.org/



matches manually identied spots using their spatial geometries [14]. While very use-

ful, such an approach, we argue, is limited in scope, especially when animal surfaces

are textured or contain arbitrary patternation that does not lend easily to geometric

description.

The marbled salamander (Ambystoma opacum) is a creature that is the subject of

CMR studies that has just such arbitrary patternation. The salamanders' dorsal pat-

terns can be used as ad hoc fingerprints. Figure 1-1 shows a few marbled salamanders

images taken from a CMR study. Ravela applied his pattern recognition algorithm

in an effort to automate recognition of the marbled salamander [9]. The recognition

algorithm ranks all images in a database against each other using a computational

metric to model perceptual visual similarity; images that are the most similar to each

other in this way are proposed to the user as the same individual individual. Using

this process, then, individuals can be tracked through the study, as they are captured,

photographed, and indexed.

Our work is an effort to improve on the performance on this recognition sys-

tem. The original recognition algorithm is faster but less accurate than our proposed

matcher. Eventually, the matcher will be folded into the overall recognition system

as an even-finer filter on recognition results.

1.2 Problem Formulation

Two primary difficulties arise in adapting current recognition techniques to animal

or plant targets: (1) No succintly parameterized models exist that can handle the

broad range of deformations found in nature. (2) As model capacity for nonlinear

deformations grows, there is a corresponding loss of selectivity because deforming

perceptually unrelated objects into one another also becomes easy [10].

Our work assumes that objects can be recognized by matching their images. We

develop an efficiently parameterized deformation invariant matcher. We are partic-

ularly motivated by viscous alignment methods [3, 4, 11, 25] that can handle very

nonlinear deformations. Prototypically, many such approaches can be viewed as a
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Figure 1-2: (a) Viscous alignment can be used to deform the rectangle completely

into the "flower." After the alignment is complete, the template is indistinguishable

from the target, which can lead to a loss of perceptual selectivity. The intermediate

snapshots during iterations of the alignment are also shown. (b) Viscous alignment

can produce highly nonlinear deformations to explain simpler transformation. A

translated and rotated "cross" prompts nonlinear transport, as the iteration sequences

show. The loss of selectivity and control of alignment prevents this approach from

being immediately useful for deformation invariant image matching.

minimization problem of the form:

J(q) - IIY - X o q| + L(q) (1.1)

X and Y are the template and target images respectively, R is a covariance defining

the norm, q is a deformation vector field, and X o q - X(p - q(p)) is the defor-

mation of the template by the vector field q. Regularizing constraints are expressed

by L(q). If L(q) express smoothness and non-divergence constraints, the Euler-

Lagrange equation of this objective leads to a nonlinear PDE that can be solved

iteratively [4]. Because smoothness and non-divergence constraints can be viewed as

viscous constraints in an evolving fluid, this approach is termed viscous alignment

or fluid alignment. Although only locally convergent, such viscous models can pro-

duce very complex deformations without explicit feature point correspondence and

even with sparse measurements [25]. Thus whole images or image patches around

distinguished locations can be aligned.

Target



However, the issues of selectivity and parameterization prevent us from converting

viscous alignment into a deformation invariant matcher for recognition. Illustrated in

Figure 1-2(a), we see snapshots of a rectangle deforming (iteratively) into a flower. Af-

ter convergence, the rectangle is identical to the flower; clearly the result of alignment

will not allow us to distinguish between the two. This loss of selectivity cannot be

naively resolved by stopping the alignment before convergence because intermediate

states may bear no meaningful resemblance to the template or the target. Example

(b) in Figure 1-2 shows how a complex deformation is generated when only a simple

translation and rotation is required. There is no easy way to control viscous alignment

to produce this simpler solution. We need an effective way to constrain the viscous

model without losing the ability to deform over a broad range. We must then be able

to use such a model to match images.

1.3 Proposed Approach

These issues are solved with our proposed approach. Our method, akin to multi-

scale texture decomposition, uses a spectral representation of deformations [19]. Low

wavenumber deformation fields are smooth and global; higher wavenumbers are tur-

bulent and local. This decomposition is produced by using an over-complete filter

basis to approximate the regularizing kernel L(q) in the objective (Equation 1.1) in

viscous alignment. This basis is parameterized with the spectral radius r, that con-

trols the deformation solution. At r = 0, only translations are allowed. At r = 1/2

cycles, global affine deformations are admitted. At r = 1/2 cycles/pixel, deformation

solutions are turbulent.

Images are aligned in a cascaded manner. Higher-frequency deformations are

produced subject to the convergence of filters at smaller spectral radii. This approach

retain viscous alignment's full deformation power because the entire spectrum can be

still be represented. Unlike viscous alignment, however, we can now decompose the

reduction in error between template and target by deformation complexity. Thus,

perceptually matching images becomes possible, because we can selectively weigh



errors that are associated at specific frequency bands of the deformation spectrum.

This leads to a perceptually relevant deformation invariant matcher.

To the best of our knowledge, such an approach to deformation invariant matching

has not been demonstrated using viscous alignment before. This simply parameter-

ized deformable model is powerful and can be used for matching without detecting

corresponding features and possibly with sparse measurements. Results from apply-

ing our technique to the marbled salamander CMR data indicate that our approach

substantially improves the previous technique's recognition performance.

1.4 Overview

The remainder of this thesis is organized as follows. In Chapter 2 we describe exist-

ing work relating to current viscous alignment techniques and deformation invariant

matching. In Chapter 3, we will develop our version of viscous alignment. In Chap-

ter 4, we explain how to build a deformation invariant matcher from our formulation

of viscous alignment and apply the method to biological image retrieval. Finally, we

conclude in Chapter 5 with a summary and discussion of the technique, and possible

avenues of future work.

(As an aside, Table 1.1 summarizes the mathematical notation used for the rest

of this thesis.)

x Scalar
x N-D column vector

xT N-D row vector
x Vector field

x Column-rasterized vector field e.g. (b
X Scalar field
X Column-rasterized scalar field
X Matrix

Definition

Table 1.1: Notation summary.



Chapter 2

Related Work

2.1 Deformable Template Matching

Processing (e.g. registration, segmentation, matching) using model-based shape match-

ing is a well-studied technique in computer vision. While early research was focused

on rigid shape matching (where deformations were simple translations, scaling, rota-

tion, and affine movements), their usefulness is limited because of that rigidity con-

straint. Deformable templates, in contrast, use a flexible template. This flexibility

makes these techniques much more versatile and much more capable of dealing with

in-class shape deformations and variations [16]. Figure 2-1 summarizes the categories

of template-based object matching techniques.

Template-Based Object Matching

Rigid Template Matching Deformable Model Matching

Hough Transform Free-Form Parametric

Analytical Prototype-Based

Figure 2-1: Template-based object matching technique summary. The proposed
scale-cascaded alignment can be viewed as an example of free-form deformable model
matching. This figure follows after [16].

Correlation



Figure 2-2: An example of analytical parameter template modeling for the task of

eye recognition. (a) An eye template model is constructed using two parabolas and a

circle. (b) The template parameters are changed until they match an example image.

From [24].

2.1.1 Parametric Deformable Templates

Parametric techniques fall into two categories: analytical and prototypical. Analytical

techniques rely on parameterizing the template as one or more analytical shapes (e.g.

splines, circles, ellipses). The template is dynamically changed into a query image by

adjusting the parameters of those analytical shapes (i.e. increasing the radius of the

circle or moving the control points of a spline) in response to query image forces. To

match an image, the template parameters are changed until the best match can be

found. If the optimal parameters for this image are within a designated "acceptable"

range, the image is a match. Figure 2-2 shows how an eye can be modeled using

a combination of simple shapes, and adapted to an image of a real eye. Widrow's

rubber masks [32] and Fischler and Elschlager's spring-loaded templates [8] were the

first examples of such an analytical technique.

Prototypical template matching involves comparison with a so-called "standard,"

"prototype," or "generic" template image of the relevant class of objects [16]. All

images are parameterized in relation to this exemplar template; varying parameters

generates new shapes. Techniques based on principal component analysis (e.g. [29])

are prototype-based methods. The mean image of some training set is taken to be

the prototype image. All other images are parameterized as the weighting of the top



N eigenvectors of that training set's singular value decomposition.

The approach proposed does not assume a shape prior (which would be difficult

to use to represent texture) or a prototypical template image. Our alignment method

falls into the category of free-form deformable models.

2.1.2 Free-Form Deformable Models

Free-form deformable models do not use a shape prior but rather local constraints on

the deformation to regularize the search. Kass et al.'s snakes [17] is arguably the first

example of such models. A spline (the "snake") is pushed by external constraints

and forces from the image (i.e. image gradients) toward image features like edges,

lines, and contours. The snake dynamically alters its shape and position, trying

to seek the minimal energy state. Kass et al. defines the snake parametrically as

v(s) = (x(s), y(s)), and its energy as:

Etotal = j (Einternal + Eimage + Econstraint) ds (2.1)

Einternal is the internal energy of the spline:

Einternal = a(s) 2 + /3(s) 2 (2.2)

The settings a and / control the stretching and flexing (respectively) the spline is

allowed - essentially, how nonlinear the spline can be. This is somewhat analogous to

our approach's spectral radius parameterization, which similarly controls how global

or local a transformation can be, although the formulation is completely different.

Eimage is the energy of the image along the path of the spline. If we set

Eimage = WlI(x, y) (2.3)

the snake will be attracted to light or dark lines, depending on the sign of wl. If we

set



Eimage = w 2 VI(x, y) 2

the snake will be attracted to or repelled by edges, depending on the sign of w2.

Econstraint is used to express high-level, user-defined "springs" (attracting points)

and "volcanoes" (repelling points) [17]. Snakes give us a framework in which to solve

various low-level problems, including segmentation and edge detection [17].

Snakes are just one example of such dynamically deforming methods (so-called

"active models"); others include [6, 13, 22, 27]. These models all tend to be low-

dimensional in the types of deformations they can produce or describe. Our cascaded

viscous alignment, in contrast, is easily parameterized and can encompass deforma-

tions between simple translation to turbulence.

2.2 Correspondence-Based Deformation

Correspondence-based deformation warps images by corresponding a small set of fea-

tures and constructing a global warp based on that correspondence. In [30] and [5]

dense correspondence fields on two images are used to compare their similarity. Be-

longie et al. obtained excellent results on digit recognition using the shape contexts

of feature points [2]. The method proposed here, however, uses no feature correspon-

dence and thus is applicable for whole image matching. Alternatively, this method

can be adapted to use correspondences by applying the matcher to the neighborhood

of potential correspondences.

2.3 Viscous Image Alignment

Christensen has done much work on using a viscous fluid model as a regularizer for

nonlinear image deformation for registration [4]. Using viscous constraints allow large

distance, nonlinear kinematics that would be impossible using regularization methods

based on linear elasticity or thin plates. Christensen uses a Navier-Poisson Newtonian

fluid model as his viscous constraint because it allows for large, nonlinear deformations

(2.4)



while maintaining a continuous homeomorphic map with smooth deformations of the

template [4]. Templates are aligned to query images, for each image point x in the

unit cube, by iteratively solving:

pV2q(_) + (A + p)V(V - q(_)) + f = 0 (2.5)

where q is the deformation vector field (the instantaneous velocity field), p and A are

viscosity constants, and f is the "body force" generated by the difference between

evolving template and target. Christensen solved the objective given in Equation 2.5

using successive-over-relaxation (SOR) [4]. His computational techniques were im-

proved by Gramkow and Bro-Nielsen's work using convolution filters [11].

We can relate Christensen's formulation to our prototypical alignment objective

(Equation 1.1) by setting the following:

OL(q) pV 2q + (A + p)V(V - q) (2.6)
aq

S(Y- Xoq = f (2.7)
bq

(This formulation is developed more fully in Chapter 3.) Our work shares his viscous

model but differs from previous work in this area in several key ways.

First, our spectral solution to the objective PDE improves both [4] and [11]. The

spectral interpretation of the fluid kernel is related with Heeger's spatio-temporal

filters [12], but the deformable model formulation is different. Second, our Gabor

basis approximation of the viscous kernel is new. Thirion [28] uses a Gaussian to

regularize, but there is no connection to image matching, and the filters proposed

here use higher order (Gabor) filters. Finally, our cascaded approach jumps the gap

between alignment and matching. Previous viscous approaches were developed for

registration, not recognition [1].



(a) Original Signal

(b) a= 1/2

(c) a = 3/4

(d) a = 9/10

I

I Iir

* 4*j a
• amm mmi

p' ;q-,
ras

m
1I

q

q

q/

P
!IO •

r •r•,Ww

q/

II

PEPp I
V

Figure 2-3: Geodesic distance is invariant to deformation. (a) shows the original 1D
signals (intensity is height). The signal on the right is a deformed version of the signal
on the left. The curve (p', q') is the deformed version of the curve (p, q). (b)-(d) show
the effect of the embedding for increasing values of a. As a approaches 1, the length
of the curve (p, q) approaches the length of the curve (p', q'). This is the geodesic
distance, and it is deformation invariant. Figure follows after [21].

2.4 Deformation Invariant Matching

The most closely related work that we draw motivation from is that of Ling and

Jacobs, who use the geodesic-intensity histogram (GIH) as a local descriptor that is

deformation invariant [21]. The (2D) images of comparison are embedded in a 3D

space where the intensity of the image is the z dimension. Let I (x, y) be a 2D image

and let I2(u, v) be a deformed version of I1. Because deformation is homeomorphic

(and thus invertible), we can write each image's coordinates in terms of each other.

Thus, we say 12(u, v) = I1 (x(u, v), y(u, v)).

We then embed both images in a 3D space. Let al, a2 be the embeddings of I
and I2 respectively. We write:

q



0 1 = (x' = (1 - a)x, y' = (1 - a)y, z' = aIl(x, y)) (2.8)

2 = (u' = (1 - a), v' = (1 - )v, w' = a 2 (x, y)) (2.9)

a is the aspect weight, which controls the weight on the intensity compared to the

weight on the image coordinate - as a approaches 1, the less significant the spatial

differences are and the more significant intensity differences become [21]. Figure 2-

3 illustrates this for a simple 1D example. As a approaches 1, the differences in

intensity dominate the arc length between the two points on both curves.

Let -1 be a curve on al, and let Y72 be the deformed version of yi on o2 . Ling and

Jacobs show that as a -+ 1, the arc lengths of ao and g2 become the same, regardless

of the deformation relating Ii and I2. Therefore the geodesic distance, the distance

of the shortest path between two points on the embedded surfaces, is deformation

invariant [21]. They use this to build a geodesic-intensity histogram descriptor that

is deformation invariant.

There are similarities to the effect of their invariance parameter a and our spec-

tral radius parameter r, but both the representations and problem formulations are

entirely different.
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Chapter 3

Scale-Cascaded Alignment

Our objective is to exploit the power of viscous alignment for deformation invariant

matching. The main obstacle to achieving this goal is that there is no way to control

the complexity viscous alignment's solution. As we saw earlier, viscous alignment

can generate very complex deformations when simpler ones would work just as well.

Intuitively, we would like simpler deformation possibilities to be exhausted before we

search for more complex ones.

We solve this problem with scale-cascaded alignment. We interpret the viscous

constraints of alignment as a filter in the frequency domain. This is useful because

we will show that spectral radius is directly related to deformation complexity. The

lower the frequency, the "simpler" the solution, and the higher the frequency the

more "complicated" the solution. If we only allow a certain frequency of the viscous

filter through, then the deformations generated will be constrained to be of a certain

"complexity" - this is the key to controlling viscous alignment! Alignment proceeds

as a continuation over filter frequency: we allow alignment to "use" the high frequen-

cies of the filter only after alignment using lower frequencies has converged. Thus,

"simpler" deformations are produced before "complex" ones.

We develop SCA in four stages. First, we review a prototypical method for viscous

alignment, for context and motivation. Second, we spectrally reinterpret the underly-

ing equations of motion. Third, we introduce the spectral radius as a simple control

for deformation and analyze precisely how spectral radius relates to deformation field



complexity. Finally, we present and discuss our cascaded approach to alignment in

detail.

3.1 Viscous Alignment

A 2D template image X is aligned to the target image Y, and both images are

discretized on domain G. Let p = (x, y)T E G be the discrete position in a gridded

field, and let q be a continuous displacement vector field. X(p - q(p)) is used to

denote the image X displaced by field q.1

We seek the deformation field q that maximizes the a posteriori probability

P(qjX, Y). Using Bayes' rule we write:

P(q|X, Y) oc P(YIX, q)P(X)P(q) (3.1)

The right-hand side of Equation 3.1 consists of (1) the data likelihood P(YJX, q),

(2) an amplitude prior P(X) which is independent of displacements, and (3) a dis-

placement prior P(q). We will suppose that these component densities are all Gaus-

sian and thus produce a quadratic objective:

J(q) = E {[Y(r) - X(r - q(r))] C(r, s) [Y(s) - X(s- q(s))]}
rEQ sEQ

- In P(X) + L(q) (3.2)

Here C is the field associated with the matrix C, the inverse of covariance of the

likelihood. We assume that C is static with respect to the deformation field for the

optimization. The displacement prior is based on an energy function L(q) modeled

with divergence and non-smoothness penalties [25]:

L(q) = [Vq(z)TVq(z)] + J[V. q(o)]2  (3.3)
zEQ oEQ

1 Since the displacement field q is real-valued, X(p - q(p)) may be evaluated using interpolation.



The Euler-Lagrange equation of the objective (Equation 3.2) is a highly nonlinear

PDE, so we solve iteratively. At iteration i, we solve the following:

Xi(p) +-- X(p - qo:i-1(p)) (3.4)

X =C [Y - X] (3.5)

L(qi () = VX(r)i6 (r) (3.6)
&qi(r)

-fi(r) (3.7)

Here qo:i_1 is the total deformation field at the start of iteration i and qi is the

instantaneous displacement at the end of iteration i. The image Xi is obtained by

applying the total deformation to the original (template) image. The vectors Y and

X__ are the target and the evolving template respectively, rasterized to column vector

form. The field qo:i-1 is advected by qi to obtain qo:i.

Thus, at iteration i and at point r, by fixing fi, we have a linear system:

Wl2i() 2V(V qi(r)) - fi() = 0 (3.8)

Gqa = fi (3.9)

Here G is the sparse matrix representing the differential operators, and the column

vectors qi and fi are obtained from rasterizing their corresponding fields.

Christensen solved Equation 3.8 using SOR [4], which was improved using con-

volution filters [11], and conjugate gradients have been suggested [3]. However, we

use spectral methods (the FFT diagonalizes G), which are exact, relatively efficient

and pose no issues representing homogeneous dirichlet boundary conditions. The re-

sults are excellent and may be combined with pyramid approaches for even better

computational efficiency [11].

The elegance and utility of this method lies in the fact that X(p - q(p)) is not

linearized as in optic flow.2 Complex deformations are thus produced by advecting

the evolving deformation field with the instantaneous displacement field at each it-

2See Appendix A for an in-depth discussion of how optical flow relates to viscous alignment.



eration (and optionally with restarts, see [4]). The solution, to be sure, is still local.

Nevertheless, we, as have many others, seen deformations of amazing complexity with

no correspondences whatsoever.

This should not be surprising really because Equation 3.8 represents Navier's

equation in equilibrium [23], with an image-driven body force. If we drop the Lapla-

cian term V 2qi(p), it is a proper (inertia-less) fluid. If we drop the continuity term

V(V .qi(p)), we have the Laplace-Beltrami operator. We can thus represent viscoelas-

tic, viscous and fluid-like motions. This flexibility is the basis for success in aligning

objects with complex deformations.

3.2 Spectral Interpretation

The spectral interpretation shows exactly why viscous alignment is a limitation for

matching images to recognize objects. In what follows, we drop the explicit notation

for iteration i and simply use q to denote the instantaneous displacement, so we can

rewrite the viscous alignment objective (Equation 3.8) as:

W1V 2 q(p) + w2V(V q(p)) = f(p) (3.10)

Each grid position has two components p (x, y)T and so too do the fields q(p) and

f(p). Let us define them as q(p) (QX(p), QY(p)) and f(p) ' (F(p), FY(p))T.

We rewrite the instantaneous objective in Equation 3.10 in terms of its components

(we drop the dependence on p for clarity):

W 2 Q+ _ 2 X2 Fx (3.11)

Ox2 ay2  12 ( yx
w 2  + + w2 + y)= (3.12)

y 2 2 ) zy + y 2

We define a wavenumber space w _ (m, n)T, and the following Fourier pairs:



q(p) (QX(p),Qy(p)) T

f(p) (F"(p),FY(p))T

(* Q( ' (OW), QY(W))
"- ((W (c)~~W)

We can rewrite the componentized objective equations (Equations 3.11 and 3.12) in

Fourier space (omitting the dependence on w for clarity):

W1 (-m 2 Qx - n 2 QX) + w 2 (-n
2Qx - m nQY)

W1 (-m 2Q y - n 2 Qy) + W2 (-mnQx 2- 2 Qy)

We can rewrite this system of equations in matrix form:

T= (3.15)

(3.16)

(3.17)

i-w (m2 + n 2 ) - w2m2

-w 2 mn

-w2 mn

-wl (m 2 + n 2) -

This is easy (and exact) to invert (for m = 0 and n f 0). The determinant of g is:

det g

det g

= [-wi(m 2 + n 2 ) - W2 
2 ] [-w1(m 2 + n2) _ -W 2

2 ] (-2)2

w 2(m 2  2 )2 + WIW 2
2 ( 2 + n 2 ) + WW 2 

2(m2 + n 2 )

2 222
+wU2m in72 - w 2m in

= (w 2 + wiw 2 )((M2 + n2) 2 (3.19)

Finally, we can write: Qx a =[ b [xQ=Q T b 7 c y ' (3.20)

(3.13)

(3.14)

where

(3.18)
W2 21

Q =
Q Y J .L'YY



where

a  -w (m 2 + n 2 ) - W2n 2
(w + ww 2)( 2 )2  (3.21)

K.b - W2m 3.

(W + ww 2 )(m2 2  2)2 (3.22)

-w(m 2 + L 2) - W2m 2

(w + ww 2  
2 )2  (3.23)

For the sake of simplicity, let us set w2 = 0, which leads to Laplace-Beltrami (but

the problem obviously remains well-regularized to produce complex deformations).

Thus, the filter Kb = 0, and:

1
7"= K = K -__ - (3.24)

w 1(m 2 + n2 )

Equation 3.24 is simply the Fourier transform of the Laplacian and clearly pre-

scribes a power-law energy spectrum for instantaneous deformations. Thus, this filter

is capable of producing nonlinear (as a function of the grid) deformations because

the instantaneous deformation field Q can have all frequencies (see Figure 1-2 and

Figure 3-1).

While this is useful for alignment, high frequency deformations may undesirably

arise even where the solutions are apparently "simpler," as shown in Figure 1-2. Such

a broadband response is not selective enough for recognizing objects by matching

their images. Although no perceptual basis for modeling deformations as Navier's

equation (or Laplace-Beltrami) has been shown, can we leverage power-law spectra

to gain selectivity for recognition without losing its kinematic range?

3.3 Deformation Filters

To answer the question, let us look at the viscous formulation under discussion.

As a scalar variable, w1 only controls the convergence rate (provided stability is

maintained, see [25]) but not the shape of the spectrum. We may choose wl to

be anisotropic and space-varying, but that is difficult to design. So as a first step,
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3-1: An exponential envelope (red) approximates the power-law envelope
(blue) from Equation 3.24.
envelope, shown here in 1D.

The basis filters - are attenuated by the exponential

we build a tuner to control the complexity of deformations - from translations to

turbulence.

3.3.1 Laplacian Envelope

Let us approximate the filter Hp (Equation 3.24) with the Laplace "distribution":

e(r) = -pe - Ir1/2a2 (3.25)

where r = m 2 + n2, which overcomes the singularity in the power law and can be

adapted to many different spectral profiles. The parameter P can be interpreted as

controlling the gain of the filter, and a controls the bandwidth. A comparison of the

original filter and the tunable approximation is shown in Figure 3-1.

Figure
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Figure 3-2: The 1-a contours of the filters in the Gabor filter bank in frequency
domain. Each ring uses twice the number of filters than the previous ring. Similarly,
each ring also doubles a.

3.3.2 Building the Basis

The value of representing texture spectra using multi-scale filters is well under-

stood [19]. Similarly, the deformation spectrum is decomposed into multiple scales,
here using a Gabor basis. Figure 3-1 shows the basis. The power (peak) of any filter
in this basis is constrained by the corresponding power of the Laplace approximation

(Equation 3.25) at its location in the frequency spectrum. This intuition is further

developed in the rest of this section.

Let us consider rings labelled Ro to RN in w. N is designed to be logarithmic in
the size of the image. In each ring R, at a radius ri = r(Ri) from the origin, we place
ni Gaussians Gj, j = 1... n azimuthally at Oj and all with scale ca. Each Gaussian



is parameterized as G(r, 0, a). The filter bank at ring Ri is thus:

i =(R) = G(ri, 7rj, i) (3.26)
j=1

where Ri is a normalizing constant. The filter No is simply a unit impulse at the

origin. For all other filters, rl = 1/2 cycle and ri+ = 2ri, al = 1/2 and oi+l = 2i,

and nl = 4 and nj+l = 2ni. Thus we obtain the cascade. The amplitudes are scaled

by the magnitudes of the Laplace approximation. Thus,

N

N = /N + e- Iril'/2a2 (R) (3.27)
i=1

This filter bank has two constants ca and P - which set how much we want high

frequency deformations to be used and the step size of the update. Figure 3-2 shows

the 1-a contours of the filters in the filter bank. Note that the original kernel is real

and so is our filter bank.

We have not modeled the off-diagonal term Nb in Equation 3.20. It is also real

and exhibits similar power-law behavior, and it can easily be incorporated. N and

Nc sufficiently regularize the problem, however. We thus rewrite Equation 3.20 as

N

Qx = - T= i- F (3.28)
i=O

N

&QY -- = -= -3 N ' (3.29)
i=O

Such a reparameterization of viscous alignment has not been proposed before.

3.3.3 Understanding the Filter Bank

Each filter ring Hi in the bank corresponds to a certain type of deformation. We will

discuss some of the filters in greater detail to facilitate understanding of the power of

our approach.



'Ho: Pure Translation

Let us consider a template X. The target Y is X, but shifted by the vector so -

(sx, s,)T. The ideal deformation field we can find is clearly the constant vector field

q(p) = s. Therefore:

Qx = Q = sX3(m, n) (3.30)

QY = Sy QY = syS(m, n) (3.31)

where 6(m, n) is a unit impulse as the origin. In our formulation, Qx 4= _yx and

QY = -7-.FU. To generate the desired deformation field, either I must be a unit

impulse or the forcing terms x, .Y must be. Even in this constrained case where

Y is a translated version of X (and in general), Fx and F' will have high-frequency

components i. e. is not an impulse at the origin. To generate the preferred deformation

field, R must be the impulse. We have defined - 0 to be precisely that!

Using K =- /-/o = -6(m, n), we can use the DC Value Theorem [20] to write:

q = -/ VX(p) (Y(p) - X(p)) (3.32)

q is indeed a constant vector field. It moves in the direction of increasing the overlap

between Y and X. As the template converges to the target, X = Y so q approaches

0. Here 3 is literally the step size, and we must ensure that / is small enough so that

the template does not oscillate around the true convergence point.

K 1: Affine Transformations

Let us consider a target Y that is an affine transformation of the template X. Ta-

ble 3.1 summarizes the ideal deformation field for each type of affine transformation.

Notice that all the fields are linear combinations of x and y. The Fourier trans-

forms of x and y are complicated to write out explicitly, but they are 0 at the origin

and everywhere else except on the m and n axes. On the axes, nearly all their power

is located (m, n) = (±1/2 cycles, 0) and (m, n) = (0, ±1/2 cycles). That means if we



Affine Type Y Ideal Field

Q = (1 - al)x
Scale X(ax, a2y) QY = (1-a 2)y

Qx = (1-al)y
Shear X(aly, a2) QY = (1-a 2)

Qx = x(1 - cos ) - y cos

Rotate X(x cos 0 - y sin O, x sin O + y cos O) QX = x(sin+ y(+sin9)
QY = xsinO+y(1+sin9)

Table 3.1: Summary of affine transformations of the template X to form the target Y

and the corresponding deformation field to recover that transformation. Notice that

all the fields are linear combinations of x and y, which means that a filter with the

power spectrum characteristics of (x + y) can generate these affine deformations.

p=2 p=10 p=18 p=26

p=34 p=42 p=50 p=58

Figure 3-3: Power spectra of Fourier transform of polynomial deformation fields of

various powers p (blue is low, red is high). As p increases, the power spectrum

broadens. Local, more "complicated" deformation fields occupy higher-frequency

bands than global, "simpler" ones.

construct a filter with these characteristics, then it can generate affine deformations.

The filter bank ' 1 is precisely this filter.

Higher-Order Transformations

Less global (more local) transformations require deformation fields that are higher-

order functions of grid position. For the sake of explanation, let the deformation

field be a polynomial function of grid position of power p, i.e. QX = O(xayb) and

QY = O(xayb). We can plot II QIl and IQY I. Figure 3-3 show the power spectra for

fields a = b = p for various even values of p. As the exponent increases, the more



complex the deformation field and the broader the energy. Of course, we are not

constrained only to polynomial deformation fields for solutions, but it illustrates the

intuition neatly. Our filter bank cascade on spectral radius captures the idea that

the more complicated the deformation, the higher frequency filter band needed to

generate it.

3.4 Scale-Cascaded Alignment

Algorithm 1 describes our alignment procedure, obtained as a continuation of the

spectral radius. We note that because there are multiple filters at each radius, we

can assert even finer control over the deformation by selecting a subset (or even a

single one) from among them. Such fine-grained control is neither necessary in the

application nor is it further developed here.

Algorithm 1 Scale-cascaded alignment.
1: INPUTS: Template X, Target Y, Filter bank FI
2: Xo <-- X

3: for i = 0 to N do
4: qo: +- 0, j +- 1
5: while has not converged and j < limit do
6: Calculate YFj, Pj using Y and Xi(p - qo:j- 1())
7: Solve: Q' = -Hi.F
8: Solve: QY = -Hiy
9: Update: qo:j using qj and qo:j-1

10: j-- j+l
11: end while
12: Xi+1(p) +- X (p - q(p))
13: end for

In Figure 3-5, we see the primary benefit of the cascaded approach. The red er-

ror curve is the result of using Equation 3.8 for aligning the images in Figure 1-2.

The blue one, with its characteristic drops, depicts the dissipation of error energy

from the lower to higher frequency in sequences shown in Figure 3-4. For the rect-

angle to "flower" case, viscous alignment converges relatively quickly, but there is no

way to factor the error into perceptually relevant deformation classes. The cascaded

approach converges more weakly, but we can see exactly what the contributions of
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Figure 3-4: Scale-cascaded alignment of template/target pairs shown in Figure 1-2.
Each column shows the converged image using the sub-band '-i. Notice how each
deformation corresponds well to a perceptual notion of complexity.
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Figure 3-5: Error sequences for rectangle to flower (a) and translating-rotating cross
(b). Red curves show the error sequence using viscous alignment [Figure 1-2]; blue
curves show the error sequence using the scale-cascaded approach [Figure 3-4]. Con-
vergence rates of viscous alignment are not correlated to perceptual similarity.

800 1000



each radius3 are. For the translating and rotating cross, viscous alignment ironically

takes much longer to converge, explaining the rotation and translation with very high

frequency deformations. The scale-cascaded alignment approach converges rapidly,

identifying the translation and then rotation, leaving negligible numerical residue for

higher wavenumber filters to resolve.

Because we can assign the dissipation of error energy to spectral radii, we may

"stop" the process at a desired spectral radius or weigh the errors at different radii

differently. There is no way to be selective in the original viscous alignment ap-

proach, and this difference is key to how scale-cascaded alignment can be adapted for

deformation invariant matching.

3 These filters were run to their iteration limit.



Chapter 4

Deformation Invariant Matching

With scale-cascaded alignment, we are ready to build the deformation invariant

matcher. We introduce scoring curves, which selectively weigh the error curve gener-

ated by the SCA, and discuss their design. Then we apply our deformation invariant

matcher to a problem in conservation biology. We review the setup of the problem,

existing results, and finally present the results of our technique.

4.1 Deformation Invariant Matching

Scale-cascaded alignment results in an error sequence A(X, Y) = [AoA ... AN] cor-

responding precisely to the dissipation of the optimization objective energy by each

filter -o... 7- N. The entire sequence can be thought of as a vector, as shown in the

plot in Figure 3-5(d).

Deformations are scored as a weighted sum with a scoring curve, that is:

e(X, Y) = A(X, Y)W (4.1)

There are several ways to choose W. If we suppose that lower frequency deformations

are perceptually irrelevant, we can weigh them lower. If the image is prone to high-

frequency noise or localized specularities, we may wish to discount higher frequency

deformations. Although estimating W is best viewed as a learning problem, here we
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(c) Incorrect Match

0.2 01
0 200 400 600 800

Iterations

Figure 4-1: Error sequences generated by aligning (b) to (a) and (c) to (a) are shown

in (d) in red and blue respectively. The scoring curve is shown in dashed green.

Although (b) is the true match, it has higher initial and terminal error than (c).

design scoring curves manually.

As a primer, we present an example of three image patches in Figure 4-1. Though

it is obvious to the reader that template (b) is the true match to the target (a),

multiscale PCA (with sample statistics computed over 6000 images) identified the

template (c) as a better match. Note that PCA is a special case of the objective

(Equation 3.2) when the displacement and associated regularization constraint are

dropped. Thus, as shown in Figure 4-1(d), the starting point of the error sequence

also shows the wrong template to be a better match. But as we run the scale-

cascaded alignment, the correct template aligns itself rapidly while the incorrect one

struggles. As the alignment proceeds to higher wavenumbers, the error reduction

is dominated by work done "undoing" the effects of nuisance variables (specularity

and noise, for example). This must be discounted. Thus, there is a band within the

alignment sequence that accurately depicts the relative closeness of the two targets

to the template. Its active region corresponds roughly to -0 , ' 1 and H2.



We choose a parameterization of W with j > 0 as the iteration sequence (con-

catenated over the cascade):

W(j; or, O) = () e- ( O)  (4.2)

Here, ac is the cut-off point and O is the order of the weight curve. For the three-

patch example, the scoring curve is also shown in Figure 4-1, obtained by setting

ac = 600 and O = 10.

Scoring functions can be designed (or learned) to reflect any set of preferences for

deformation invariance. For example, we might prefer to be invariant to global affine

transformations and turbulent motion (i.e. noise) but be sensitive to all other defor-

mations. This is difficult to model in other approaches, such as Ling and Jacobs [21],

but presents no difficulty in the scale-cascaded approach.

4.2 Experimental Application

We apply our method to capture-mark-recapture study of marbled salamanders [9]. A

database of 6021 images was collected over six years in the field by trapping individual

salamanders and photographing them (see Figure 4-2). The scientific objective is to

track each salamander's movement individually so that we may establish migratory

patterns and thus develop appropriate conservation strategies. For our purpose, we

need to index the database by matching individuals.

4.2.1 Baseline Work

As shown in Figure 4-2, marbled salamanders have extremely deformable bodies.

The images themselves are blurry, noisy, and specular (see Figure 4-1). To solve

the animal pose problem, Gamble et al. [9] artificially straighten the salamanders

by detecting their medial axis manually and warping the image so that the medial

axis becomes straight in the rectified image, removing large lower-order deformations.

Then the authors extract patches between key features (the feet) and match them



(a)
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Figure 4-2: Salamanders show extreme variability in pose, background, and specu-
larity.

using multiscale PCA [9]. Illumination was compensated by contrast-normalization,

and specularity was not explicitly dealt with. The ROC curve of this method is shown

in blue in Figure 4-3, determined using relevance judgements provided by users who

examined the top N = 20 retrievals over 150 queries.

4.2.2 Challenges

The primary difficulties in improving the performance of our system are still the

existence of specularity and local deformations (see Figure 4-1 and Figure 4-4). Spec-

ularity is difficult to explicitly marginalize in this application because the color of

light and the color of the salamander are the same (see Figure 4-2). As pointed

out in Chapter 4, specularity causes large variance in the patch covariance, which

may partially explain MS-PCA's relative success. Because specularity is also local-

ized, very high frequency deformations are necessary to "paint" it out. We mitigate

this by down-weighting the contributions of large wavenumber deformations in W.

(The population covariance technique described Chapter ?? is promising but was not

implemented.)

The nonlinearity in pose remains as a difficulty, but it does not occupy the high

frequencies required to marginalize noise and specularity. Thus, a mid frequency

portion of the deformation spectrum is worth exploring. Therefore, we apply the
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Figure 4-3: ROC curve for deformation invariant matcher (blue) and MS-PCA (red).
The dashed lines show the variance for each method over 150 queries.

scale-cascaded viscous alignment with the scoring curve shown in Figure 4-1 (dotted

green curve).

4.2.3 Results

We re-ranked the top 20 ranks for which relevance judgements were available. We

use the same 150 queries as in [9]. To set the filter bank parameters, we manually ran

alignments on sample template/target pairs for various settings. The settings a = 1/8

and / = 1 were numerically stable and converged reasonably well. SCA was run with

a 300 iteration maximum per filter 7-i. Patches were resized to be 64 x 64 pixels.

A small Gaussian blur (width of 3 pixels) was applied to patches before alignment.

With these settings, each alignment took approximately 5 minutes.

The ROC shows marked improvement (Figure 4-3). Figure 4-4 shows examples of



two retrievals. In each case, we show the target, the top few MS-PCA retrievals (right)

and the corresponding ranks of the deformation invariant matcher (left). The Label

"Y01C1S2P932" indicates that the salamander is from year 2001. Thus, matches are

found across many years.

MS-PCA matches well (as can be seen in Figure 4-3). Even if the MS-PCA

mismatches look plausible, our scale-cascaded approach ranks the retrievals better.

Our method succeeds because it can relate image alignment into deformation classes

that are relevant for perceptual image similarity.
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Figure 4-4: Two sample retrievals comparing the deformation invariant matcher and
MS-PCA. The queries are marked (a) and (b) and the retrievals proceed in rank order
down a column per method. Mismatches are highlighted in red and their labels are
crossed out.
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Chapter 5

Conclusion

We demonstrate a new approach to deformation invariant image matching for recog-

nition. Our approach retains the broad range of deformations that viscous alignment

methods can model, which is possible because the template is never linearized (in

contrast to optic flow) and nonlinear deformations can be iteratively produced. How-

ever, our approach remodels the viscous constraint with a filter bank that introduces

the selectivity necessary for recognition. It is a simply parameterized model, and

can be efficiently implemented using spectral methods. It does not require explicit

correspondence and can be easily tuned to prefer simpler or specific explanations of

the template-target misfit. It is this utility that allows us to mitigate the effects of

nonlinear deformations in a recognition task, where the results show a clear and sub-

stantial improvement. Our choice of parameterization has biological motivation [12],

and more concretely relates representation of texture and deformation via a common

bank of filters [19].

There are several areas that we wish to explore. First, we wish to explicitly incor-

porate the change in amplitude uncertainty C (Equation 3.2) as alignment progresses.

Although we assume C was constant with respect to the deformation for our experi-

ments, it is not because the original covariance contains position errors in addition to

amplitude errors that must be factored out [3, 25]. Second, we want to examine ways

to learn W, and learn sparse-prior models for learning activations of 7- or the filter

bank itself [26]. Third, we want to examine if this approach can calculate deformation



statistics better [3]. Fourth, although correspondence was not sought, we can extend

PCA-SIFT [18] with this approach easily. Finally, it may be useful to reformulate

our approach with mutual information measures [7, 31].



Appendix A

Deriving Optical Flow from

Viscous Alignment

We can easily show that optical flow [15] is a special linearized case of the generalized

viscous alignment described in Chapter 3.

As before, X and Y are the template and target images respectively and q is the

deformation field. Let each discrete grid point p " (x, y)T. We wish to solve the

nonlinear objective function from Chapter 3.1 (Equation 3.2):

J(q) = 1 S 5 [Y(r) - X(r - q(r))] C(r, ) [Y(s) - X(s - q(s))] - In P(X) + L(q)
r 8S

(A.1)

Optic flow assumes no observation noise, which means that C is the identity so that

C(r, s) is 1 when r = s and 0 otherwise. Therefore we can rewrite Equation A.1 as:

J(q) = 1 E [Y(r) - X(r - q(r))]2 - In P(X) + L(q) (A.2)

In optic flow, we linearize the image difference. In our notation, we make the following

approximation:
OXT

X(p - q(p)) X(p)- - q(p) (A.3)
Pp



where aT (- O). We define the quantity AX(p) as:

AX(p) = Y(p) - X(p) (A.4)

We can thus rewrite the objective given in Equation A.2 as:

1 OX r  ]2

J(q) = 2 [AX(r) + - q(r) -In P(X)+ L(q) (A.5)

To minimize this function, we differentiate with respect to q at every grid position r:

OJ(q(r)) X L (q(rX L(q())
AX(r) + q(r) + Oq()= (A.6)

Oq(r) r - r q()

In an optic flow formulation, we assume that an image undergoes constant motion,

described by the velocity field q, over some small time step 6t [15]. We can think

of our template and target images X and Y as the start and end images resulting

from that motion. The velocity field q is constant over time, and is regularized using

smoothness i.e. L = V2q [15]. Let E(x, y, t) be the irradiance function [15] that

describes the apparent motion; we can then rewrite our variables in the optic flow

notation given in [15]:

E(x,y,t) = X(p) (A.7)

E(x, y, t + 6t) = Y(p) (A.8)

Et(x, y) = AX(p) (A.9)

OX
(EX,E) E = x (A.10)Op

(U, V)T = qi(p) (A.11)

We can thus write:

V2U K (Et + Exu + Ev) (A.12)

This is precisely the optic flow formulation as given by [15]. Optic flow is thus a



special case of viscous alignment where (1) we use only smoothness to regularize the

velocity field and (2) the image body force is linearized.
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