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To analyze the recovery process from a resistive transition of a 
magnet string of a LHC sector, a mathematical model is established 
based on the existing models describing the cooldown from 300 K to 
1.9 K. In the new model, the number of magnet strings which undergo 
a resistive transition, as well as their location are considered. 
According to the analysis, the recovery process is optimized as well as 
the temperature evolution in the magnet cold-mass, the pressure 
profile in the very low pressure header during the recool-down 
process and the time used for the recool-down are presented. 

 
 
 
INTRODUCTION 
 
During the normal operation of a LHC sector, a resistive transition may occur in some 
superconducting magnet strings (so-called cells, 107 m each). The influence of the resistive 
transition of some cells on the other cells and on process headers, as well as the re-cool down 
time is essential for the operation of the sector. Previous studies were devoted to the 
cooldown of a whole 3.3-km sector from 300 K to 4.5 K, the helium filling operation at 4.5 K 
and the further cool-down from 4.5 K to 1.9 K [1][2]. By using these models, the recovery 
operations from the resistive transitions of 1 to 3 cells and from fast current ramp-down 
(FCRD) are simulated and optimized. 
 
 
FLOW SCHEME AND CONSTRAINT CONDITIONS  
 
The simplified flow-scheme for the recovery process after a resistive transition of a typical 
LHC sector (sector 7-8) is shown in Figure 1. The refrigerator is hydraulically connected to 
each cell of the sector via the cooling headers B, C and D and different control valves. All 
LHC cells, which belong to the regular arc, Dispersion Suppressor next to and opposite to the 
refrigerator (DSN/O) and the Long Straight Section next to and opposite to the refrigerator 
(LSSN/O, which consists of Inner Triplets, IT and stand-alone magnets, SAM) respectively, 
are filled and cooled down in parallel. There are four phases for the recovery process, which 
are recool-down from 30 K to 5 K, filling from 0 to 67 %, filling from 67 to 100 % and 
recool-down from 4.5 K to 1.9 K. During the 1st and 2nd phases, the helium is supplied to the 
cold-mass of magnet via CV920 and header C, and returned via QV and header D. However, 
during the 3rd and 4th phases, the helium from header C is supplied to the magnet cold-mass 
via CV920, and to the 1.8 K heat exchanger (HX) after passing through a subcooling heat 
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exchanger (HR) and CV910. The liquid helium flowing inside the 1.8 K heat exchanger is 
heated by the helium at 0.13 MPa in the cold-mass, and the vaporized flow is returned to 
header B at about 1.6 kPa.  
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1  Simplified flow scheme for recool down of a LHC sector after a resistive transition 
 

Based on the flow-scheme in Figure 1 and the models we developed in [1] and [2], the 
recovery process has been studied. In this study, the main boundary conditions are: 1) 
mass-flow rate of header C ≤ 225 g/s; 2) mass-flow rate of header B ≤ 125 g/s; 3) temperature 
at the inlet of header C = 4.6 K; 4) pressure at the inlet of header C = 0.3 MPa; 5) pressure at 
the outlet of header B = 1.6 kPa; 6) pressure of helium inside all magnet strings = 0.13 MPa. 
 
 
SIMULATION RESULTS AND DISCUSSIONS 
 
Fast current ramp-down 
In the case of FCRD, all magnets are heated to the temperature below the lambda line Tλ (no 
magnet resistive transition occurs). To reduce the recool-down time of all the magnets from 
Tλ to 1.9 K, the distribution of the available cold helium to the different cells should be 
optimized to recool down the different cells simultaneously. Figure 2 shows this optimized 
distribution scheme.    
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Figure 2  Mass-flow rate of cells during recool-down 

after a FCRD 
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Figure 3  Magnet temperatures of a cell during 

recool-down after a FCRD 

 Figure 3 shows the evolution of the magnet (e.g. magnets Q2, Q1 and D1) temperatures 
of one cell after FCRD following this optimized scheme. In this case the recool-down of a cell, 
namely the whole sector, will take about 2.3 hours. 

In
te

rc
on

ne
ct

io
n 

B
ox

 (Q
U

I)
 

Sector  (L = 3300 m)

 
IT 

CELL 
 

DSN 
CELL 

 
DSN 

CELL 

header B 
header C 

ARC
CELL

ARC
CELL

DSO 
CELL 

 
DSO 

CELL 
ARC
CELL

ARC
CELL

HR 
CV920CV910 

LSSN DSN regular arc DSO LSSO

QV 
header D 

SAM SAM IT

HX



 

 3

 
Resistive transition of 1 cell 
The recovery process after the resistive transition of 1 cell and the impact of its location of on 
the recool down have been studied. Figures 4 and 5 give the mass-flow rate and pressure 
profiles of header B respectively. For comparison, the recovery processes of a cell close to 
QUI and a cell far away from QUI after a resistive transition have been analyzed. As the 
helium mass-flow rate is much higher for the cell which underwent a resistive transition than 
for other cells, the mass-flow rate and pressure distributions in header B change profile at the 
location of this cell (e.g. x/L ≈ 0.205 and 0.825).  
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Figure 4  Mass-flow rate of header B during recovery 
after a transition of 1 cell 
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Figure 5  Pressure of header B during recovery after a 
transition of 1 cell 

  
The recovery time of the final re-filling and final recool-down is shorter (by about 9 

minutes) for the cell close to QUI than that for the cell far away from QUI (see Figure 6). 
Considering the corresponding time difference for the re-cool down from 30 to 5 K and 
re-filling from 0 to 67 %, the total time difference is 12 minutes (representing 4.2 % of the 
total time). The mass-flow rate is the same for the two cases, but the cooling capacity of the 
helium is lower for the cell far away from QUI (higher supply temperature and down-stream 
pressure) and this may explain the difference in the recool-down time. 
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Figure 6  Magnet temperatures during 4.5–1.9 K recool-down after the resistive 

transition of the corresponding cell   
Resistive transition of 2 and 3 cells 
The recovery processes after the resistive transition of 2 and 3 cells have also been studied. 
As illustrated in Figure 7, the recool-down from 30 to 5 K after the resistive transition of 2 
cells takes about 50 min. As shown in Figure 8 the processes of re-filling from 67 to 100 % 
and recool-down from 4.5 to 1.9 K after the resistive transition of 3 cells take about 4.3 hours. 
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Figure 7  Magnet temperatures of a cell during  

30-5 K recool-down (resistive transition of 2 cells) 
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Figure 8  Magnet temperature of a cell during 
4.5-1.9 K recool-down (resistive transition of 3 cells) 

 
Optimized flow distributions 
The optimized distributions of the total helium mass-flow rate to the different cells in the case 
of FCRD and resistive transition of 1 to 3 cells are shown in Figure 9. From this figure we can 
notice that during the recool-down from 30 to 5 K and re-filling from 0 to 67 %, due to no 
constraint for the flow-rate of header B, all the available mass-flow rate of 225 g/s (supplied 
by header C) can be used and the main part of the helium is supplied to the cell(s) which 
underwent a resistive transition to accelerate the recovery process. However, during the 
re-filling from 67 to 100 % and recool-down from 4.5 to 1.9 K, more and more helium returns 
to header B, and its mass-flow rate is limited to 125 g/s. Consequently, the total supply flow 
and the mass-flow rates for the cell(s) which underwent a resistive transition have to be 
decreased. 
 
Summary of recovery time 
The optimized times of each phase of the recovery after all resistive transition cases and 
FCRD are given in Figure 10. The recovery from FCDR will take 2.28 hours, the recovery 
from the transition of 1 cell close to and far away from QUI will take 4.67 and 4.87 hours (the 
difference rate is 4.2 %) respectively, and the recovery from the transition of 2 and 3 cells will 
take about 5.6 and 6.5 hours, respectively. 
 

0

20

40

60

80

100

120

140

160
CD 30-5K
Filling 0-70% Filling 70-100%

CD 4.5-1.9K

        Q = each quenched cell
        U = all unquenched cells
      Tr. = Transition 

M
as

s-
flo

w
 ra

te
  [

g/
s]

 

 
 
 

Figure 9  Mass-flow rate distribution of header C 
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Figure 10  Recovery time for the different study cases 
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