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ABSTRACT

Driven by commercial promise, the carbon nanotube (CNT) industry is growing rapidly,
yet little is known about the potential environmental impacts of these novel materials. In
particular, there are no methods to detect CNTs in environmental matrices (e.g.,
sediment) and thus, there is no way to study their transport or gauge ecological exposure.
Thermal methods were developed to quantify CNTs in coastal sediments down to 10 ug
per sample, which is sufficient to for CNTs in laboratory air, but not sufficient to measure
contemporary levels of CNTs in the environment (which were estimated to be present at
pg g' sediment levels using a dynamic mass balance model). In addition to the CNTs
themselves, potential impacts of CNT production were assessed by monitoring emissions
from a representative synthesis. An ethene-fed chemical vapor deposition process
generated several compounds of environmental concern, including the greenhouse gas,
methane, the hazardous pollutants, benzene and 1,3-butadiene, and toxic polycyclic
aromatic hydrocarbons. By identifying critical CNT precursors (alkynes), I delivered
these compounds without thermal pre-treatment and achieved rapid CNT growth. This
approach reduced carbonaceous emissions by more than an order of magnitude, and
lowered initial feedstock requirements and energetic demands by at least 20%, without
sacrificing CNT yield.
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CHAPTER 1:
GENERAL INTRODUCTION:

A NEW APPROACH TO THE DESIGN OF
NOVEL ANTHROPOGENIC MATERIALS

By

Desiree L. Plata



INTRODUCTION

Carbon nanotubes (CNTs) are a promising new material whose production is

increasing rapidly. Historically, no industrially important chemical has been synthesized,

used, and disposed of without some release to the environment (e.g., dichloro diphenyl

trichloroethane (DDT), polycholorinated biphenyls (PCBs), polybrominated diphenyl

ethers (PDBEs), or methyl-tert-butyl ether (MTBE)). Similarly, by-products of large-

scale syntheses are often unintentionally discharged to the air, land, and nearby

waterways (e.g., perfluorooctanoic acid (PFOA) from Teflon® manufacture and dioxins

from polyvinylchloride (PVC) production). Thus, as the CNT industry expands, one can

expect to see an increase in environmental levels of (1) CNTs and (2) co-products of

CNT manufacture.

Currently, there are no established procedures to quantify CNTs in environmental

matrices (e.g., air, water, or sediment). As a result, there is no way to gauge the release

of these materials or study their environmental fate. Furthermore, early investigations

suggest that CNTs may be toxic, and the development of a means to determine ecological

and human exposure to CNTs is critical. Thermal techniques have been used to quantify

recalcitrant carbon forms (e.g., black carbon (BC)) in the environment, and CNTs share

many structural and physical similarities with BC (e.g., high thermal stability relative to

most organic matter). I hypothesized that CNTs could be detected and distinguished

from other organic carbon using a thermal analytical method. Such an approach would

provide a low-cost, high-throughput analysis for the quantification of this engineered

material in the natural world.



The environmental impact of CNT production is not limited to the release of

CNTs, but includes emissions from CNT synthetic practices. The industrially favored

production method, catalytic chemical vapor deposition (CVD), is plagued by low

efficiency, suggesting that large amounts of carbonaceous by-product or un-reacted

feedstock may be released to the atmosphere. Given that typical CVD methods require

heating carbon source gases to high temperature (e.g., 700-1000C), I hypothesized that

the CVD effluent would contain compounds of environmental concern, including CNT

fragments, BC, polycyclic aromatic hydrocarbons (PAHs), and volatile organic

compounds (VOCs). Furthermore, by developing a chemical understanding of the

dominant CNT formation mechanisms, I expected that I could design a synthetic

approach that minimized the content of dangerous material in the effluent.

As the CNT industry is poised for (or arguably in the midst of) rapid growth, there

is a critical need to understand the potential impacts of CNT release and consequences of

industrial-scale synthesis prior to significant monetary investment or environmental

damage. In this thesis, I strived (1) to develop a method to monitor the fate of and

biological exposure to CNTs in complex environmental matrices (e.g., air, water, soil,

and sediment), and (2) to assess emissions from a common CNT production method and

reduce the release of compounds of environmental concern (e.g., green house gases,

toxins, and materials that form secondary pollutants, such as smog and aerosols). When

possible, I rapidly communicated these results to industry and government, and I continue

to encourage them to adopt practices to lessen the environmental impacts of this

burgeoning industry. In this way, I sought to prevent unacceptable ecological and human



health consequences due to material manufacture, and thereby alter the, so far,

unfortunate trajectory of industrial chemicals in the Earth system.

BACKGROUND

Characteristics of carbon nanotubes. CNTs are hollow cylinders of sp 2-

hybridized carbon atoms arranged in repeating hexagonal rings (Figure 1). They are

aromatic, resembling rolled up graphene sheets with hemi-fullerene caps. CNTs may

consist of a single cylinder (single-walled carbon nanotubes (SWCNTs)) or multiple,

concentric cylinders (multi-walled carbon nanotubes (MWCNTs)), where the former

have smaller diameters (0.7 - 2 nm) than the latter (diameters ranging from 8 to 40 nm).

Regardless of the number of tube walls, high van der Waals forces between individual

tubes cause them to agglomerate into CNT "ropes" or randomly ordered free-floating

particles'. These CNT "powders" are distinct from ordered CNT structures (e.g.,

vertically-aligned CNTs or CNTs grown on scaffold networks), which can be produced

for specific industrial applications on large (mm to cm scale), solid substrates. The

macroscale configurations of CNTs are as diverse as their potential and demonstrated

applications, and these CNT structures will influence the ultimate environmental fate of

the nanomaterials.



(c) (d)

(f) (g)

Figure 1. Ball-and-stick model representations of (a) single-walled carbon nanotubes
(SWCNTs) and (b) multi-walled carbon nanotubes (MWCNTs) 'www.photon.t.u-
tkyo.acljp/-maruyama/fticr/ft-icr.html). Scanning electron micrographs of (c) unpurified
SWCNTs (where the white spheres are metal catalyst clusters) and (d) purified SWCNTs
(www.fibrils.com) powders. High-resolution transmission electron micrograph of (e) a
SWCNT rope (Nicolaev et al. 2) in a SWCNT powder. Ordered CNT structures can be
grown (f) between silicon island scaffolds (SWCNTs, Kong et al.") or (g) in vertical
alignment (MWCNTs, www.nanobliss.com).



The industrial promise of CNTs arises from their exceptional mechanical strength,

high thermal stabilities, heat transfer characteristics, sorptivity, unique optical properties,

and ability to support large current densities 2. Current CNT-based consumer products

rely on epoxy-encapsulated MWCNTs and include sporting equipment (baseball bats,
bicycles, tennis rackets, and sailboat masts)3, as well as conductive plastics, which have

been produced and sold for over twenty years4. In the future, CNTs are expected to offer

breakthroughs in the electronics industry, from improved energy storage to faster super

computers, meeting the demands of today's challenging scientific questions via enhanced

computational power and bringing us toward the common goal of carbon neutral energy

production through advanced battery technology. In addition, CNTs may enable non-

invasive monitoring of blood components (e.g., glucose for diabetics), as well as cell-

specific drug delivery (e.g., for cancer patients). These significant, potentially life-

saving, societal benefits may prove indispensible, and it is critically important that CNTs

develop in a sustainable fashion that will not threaten their commercial longevity.

Given the diverse and powerful proposed uses of CNTs, the market is expected to expand

from $215 million in 2009 to $1,070 million in 2014, implying a doubling rate of once

every two years5 (and assuming no change in the dollar-to-mass CNT ratio over the next

five years). Historically, increased production of industrial chemicals augments their

release to the air, water, and soil 6, and it is reasonable to expect that environmental levels

of CNTs and their by-products will mimic the growth in CNT production volume.

CNT synthesis. Since the recognitiona of CNT structures in 199110, the principle

challenge limiting the commercialization of CNT-based products was the ability to

synthesize the materials in significant quantities. This challenge was met in 1998, with

the development of CVD techniques"' 2. CVD syntheses involve the introduction of a

carbon-vapor feedstock (CH 4, CO, C2H4 , C2H2, etc.) to an 0 2-free heated zone (500-

10000 C) where catalytic metal particles (e.g., Fe, Co, Mo, or Ni) are free-floating or fixed

a MWCNTs were first reported in the late 1970s but were referred to as "fibers" made of
crystalline carbon layers "wrapped together" 7-9



to a stationary substrate. The resultant product is a mixture of CNTs, metal catalyst, and

carbonaceous impurities that are often referred to as "amorphous carbon"12,13. Attempts

to remove the metallic and carbon-based co-products often involve oxidative processes

that damage the CNT lattice, and purification techniques represent a compromise

between impurity removal and product quality. Thus, "pure" carbon nanotubes that are

free of co-products are not yet a commercial reality 4.

Large volume CVD reactors are capable of producing kilograms of CNT material

per day, and current global production is roughly 300 tons (3 x 108 g) per year 5.

Although the rate of environmental release of CNTs is unknown, we suspect that the

reduced, highly aromatic carbon will be relatively recalcitrant after it is introduced to

environmental settings. Thus, while the annual mass of CNT released to the environment

may be small relative to other carbon fluxes (e.g., BC fluxes are on the order of Tg (Tg =

1012 g)), the accumulation of CNTs over time could become important.

CNT-carbon only represents a fraction of the carbonaceous material that goes into

CNT production. Although there have been few comprehensive mass-balances of a

carbon feedstock through a CVD process, it is believed that less than 3% of the

introduced carbon yields CNT product 16. Unreacted feedstock and by-products are often

vented to the atmosphereb. If we assume a maximum efficiency of 3%, then untreated

effluents could result in an annual release of 10 x 109 g of carbonaceous material

(growing to 0.3 x 1012 g year-1 by 2019). These effluents were completely

uncharacterized prior to this study", but the high reaction temperatures suggested that the

composition would be distinct from the feedstock gas. In particular, high-temperature,

gas-phase carbonaceous reactions may promote the formation of VOCs, PAHs and BC

soot, all of which raise environmental and public health concerns. VOCs are primary

pollutants that can be acutely toxic (e.g., benzene or 1,3-butadiene) or act as greenhouse

gases (e.g., methane). They also exacerbate the formation of secondary pollutants, such

b Unidym (formerly Carbon Nanotech, Inc.), SouthWest Nanotechnologies, and Nanocyl
recycle their effluents for use in more than one CNT batch, but ultimately (after recycle)
release non-CNT material to the atmosphere. Nanocyl flames (combusts) any un-recycled
effluent before release to the atmosphere.



as smog, which impacts respiratory health. PAHs are toxic, persistent, bioaccumulating

compounds that affect both public and ecological health, while BC soot influences the

global heat budget, either by acting as light-absorbing particles and reducing the

reflectance of ice caps. BC soot can also influence the fate of hydrophobic organic

contaminants and act as a pulmonary toxicant itself. Without accurate identification and

quantification of the effluent constituents, we can neither describe nor mitigate the impact

of CNT production on health of the oceans, atmospheres, ecosystems, or society.

CNTs in the environment and similarities to BC. A recent report by the National

Research Council 18 highlighted that programs to assess the risks associated with

nanomaterials and their production are severely deficient. In spite of substantial

investments in CNT-based applications research (>5,000 journal articles), fewer than 100

studies have been devoted to assessing the potential environmental impacts of CNTs and

only a handful discuss the effects related to CNT manufacture 19. While sparse,

preliminary toxicological studies suggest that CNTs are cytotoxic to alveolar

macrophages20' 21, may result in pre-cancerous, pulmonary granulomas22, and adversely

affect the life cycle development of marine organisms that play a critical role in nutrient

cycling in the upper ocean23. These effects have been attributed to the metals associated

with CNTs2 4 , carbonaceous impurities 23, the shape of the CNTs (whose long aspect

(length: diameter) ratio is similar to asbestos 22), as well as the functional groups on the

CNT surface25

In addition to their own toxicity, CNTs can act as vectors of toxic molecules

across cellular membranes that are otherwise impenetrable 26. CNT-uptake into the cell is

via phagocytosis 26, rather than via diffusion across an activity gradient. Indeed, as

particles, rather than molecules, CNTs will not partition into biological media (e.g., cells

and lipids of macrofauna) in a classical sense, but will instead bioaccumulate via physical

ingestion of the particles (e.g., filter feeding23 or phagocytosis). Thus, equilibrium

partitioning models will not describe CNT exposure accurately, and bioaccumulation

models will have to incorporate considerations of particle transport as well as feeding

mechanisms.



If CNTs have a natural source and have been present in the environment over

evolutionary timescales, it is possible that organisms have some capability to either

degrade or excrete potentially harmful CNTs. Murr et a27,'28 argue that CNTs have a

natural source, reporting CNTs in contemporary and ancient air samples. Although these

were observed by electron microscopy using statistically insignificant sample sizes

(individual water droplets), it is possible that CNTs have been produced throughout

history. The contribution of natural CNTs to a recalcitrant carbon pool cannot be

assessed until an analytical method is developed for samples that will provide a historical

record, such as coastal marine sediments. If natural CNTs have been present in the

environment, it is possible that they have been quantified with another refractory form of

carbon, BC.

BC soot and CNTs share many chemical and physical characteristics (Figure 2).

Both are made up of aromatic, graphitic structures and exist as black, low-density

powders that are difficult to distinguish by visual observation alone. However, the two

materials are clearly distinct when investigated by electron microscopy. BC soot has a

highly condensed configuration with multiple, stacked graphene sheets that are spaced by

0.34 nm29. These stacks are layered in an "onion-like" fashion that forms 30-50 nm

spheres, which agglomerate to form "grape-like" arrangements. CNTs, in contrast, are

long (um to mms), hollow cylinders of narrow diameter (0.7 - 40 nm). (Concentric CNT

cylinders that form MWCNTs also have 0.34 nm spacing between individual CNT walls,

similar to the spacing in graphene layers in BC soot). These tubes can either be vertically

aligned or exhibit curvature, resembling tangled, "spaghetti-like" structures. These

structural differences may give rise to distinct physical properties that could be used to

distinguish the two materials in complex mixtures. For example, the relative proportion

of carbon on the surface of a CNT is greater than that of BC soot, which has a substantial

mass of carbon stored in interior layers. Thus, chemical reactants, such as diatomic

oxygen (02), have reduced access to the majority of carbon in BC soot. CNTs, and

especially SWCNTs, might be more susceptible to complete transformation by oxidation

in engineered systems (e.g., temperature-programmed oxidations or other thermal



analyses) than BC soot, resulting in a lower thermal stability of CNTs relative to the

otherwise similar BC.

In spite of nanoscopic structural differences, BC soot and CNTs are expected to

have analogous surface chemistry, optical properties, hydrophobicity, and sorptivity. BC

plays a significant role in the cycling of organic contaminants, as well as the atmospheric

heat balance30 31', and CNTs may exert a similar influence on these processes. Several

studies suggest that CNTs, like BC, are highly sorptive32, although few of these reports

account for unexpected sources or losses of sorbates due to CNT impurities (e.g., native

PAHs desorbing from CNTs or CNT-associated metals acting to degrade amended

sorbates). In addition, none of these investigations consider the effect of experimentally

induced CNT surface functionality (e.g., many samples are sonicated to improve CNT-

water interaction, and sonication can shorten CNTs and add oxygen-containing functional

groups to the CNT surface). While there are no explicit research efforts aimed at

determining the CNT contribution to the atmospheric heat balance, BC and CNTs have

similar light absorbing properties and are assumed to have comparable atmospheric

lifetimes. The latter supposition needs to be evaluated, but it is reasonable to expect that

BC soot and CNTs will be subject to similar transport and natural modification processes,

especially considering the hydrophobicity, tendency to agglomerate, and surface

chemistry of the two materials. Until there is a better understanding of transformation

and transport phenomena that are unique to CNTs, initial models of CNT partitioning in

the environment can be constructed assuming that engineered nanomaterial (i.e., CNTs)

and the natural nanomaterial (i.e., BC) will have similar environmental fates.



Figure 2. Photographs of (a) black carbon soot (BC soot, National Institute of Standards
and Technology Standard Reference Material 1650, Diesel Particulate Matter) and (b)
SWCNTs produced by Carbon Nanotech, Inc. The black scale bars are roughly 1.5 cm.
Transmission electron micrographs (TEM) of (c) BC soot and (d) SWCNTs (same
materials pictured in (a) and (b), respectively). The black scale bars are 100 nm. High-
resolution TEM images of (e) BC soot, showing the "onion-like" structure contained in
the concentric spheres and (f) MWCNTs, where the multiple walls of the concentric
nanotubes are visible. Both scale bars are 5 nm. (Images are courtesy of (c) David Kuo,
(e) http://www.ems.psu.edu/%7Eboehman/flamematerials.html, and (f) Matteo Seita).



ESTIMATED ENVIRONMENTAL CONCENTRATIONS OF CNTS

Since the discovery of buckminsterfullerenes in 1985 at Rice University in

Houston, Texas, Houston has become the center for fullerene and nanotube research.

There are four CNT facilities within Houston's city limits (compared to 7 total facilities

in the remainder of the country), and at least twoc of those facilities employ CVD to

produce CNTs (specifically, SWCNTs). Each facility is capable of producing 45 kg of

bulk product per day (roughly 16,500 kg annually), and assuming that the product is 30%

CNT-C and the process is 2% efficient, then CVD effluents in the metropolitan area

could reach roughly 4.8 x 108 g C annually. Assuming that CNTs could be released at

0.15% of the production mass and neglecting post-fabrication release of CNTs, current

CNT production volumes would correspond to a particle release of 5 x 104 g year-1.

Emitted CNTs and BC could travel thousands of kilometers before settling out of the

atmosphere (given an average lifetime of 5.3 days for BC in the atmosphere33 and an

average windspeed 34 of 5.7 m s- ), potentially reaching the Pacific Ocean. Houston is

located on the southeastern coast of Texas, adjacent to Galveston Bay in the northwestern

corner of the Gulf of Mexico. Given the proximity to CNT point sources, I estimated

CNT levels to be on the order of 4.4 pg m-3 in Houston air, 0.2 pg L- ' in Galveston Bay,

and 2.0 pg g-1 in Galveston Bay sediment (Figure 3. This model assumed no CNT

transformation or degradation reactions in the environment. See Supporting Information

for calculations and additional assumptions). At present, CNTs are a trace analyte and

any detection method developed for CNTs in the environment will need to be extremely

sensitive.

c One of these facilities, Unidym (formerly Carbon Nanotech Inc.) may stop production
in Houston in the near future and relocate to California.
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Figure 3. Estimated SWCNT concentrations in Galveston Bay and Houston, TX based
on a dynamic mass balance model. The assumptions, calculations, and references for this
box model are given in the Supporting Information. Values in black are from the
literature, values in green are estimated, and values in red are calculated.
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THESIS OVERVIEW

In our history, no industrially important chemical has been produced, used, and

disposed of without some release to the environment. Furthermore, chemical

manufacturing procedures are often designed to maximize material performance and

minimize production costs, with little attention devoted to environmental impact

mitigation. This model results in postponed recognition of malignant environmental and

public health effects, and at an advanced stage of industrial development, it is very

difficult to arrest, let alone rectify, the resultant damages. Aware of this pattern and

poised at the expansion of an industry, engineers and environmental scientists have a

unique opportunity to alter the future approach to the development of all materials: by

incorporating environmental objectives prior to industrial scale-up of synthesis. In doing

so, we will not only prevent unnecessary harm to the earth and human health, but will

also preserve the public's confidence in a field that promises many benefits to society.

When this work began in the fall of 2005, there was no established method for detecting

CNTs in complex sample matrices (e.g., air, water, sediments). This limitation precludes

both the study of CNT transformation and transport in the environment and limits the

ability of government agencies to enforce regulation or gauge public and ecological

exposure to the materials. A large portion of this dissertation research was dedicated to

overcoming this challenge. First, I investigated the composition of commercially

available CNTs to determine (1) the level of diversity in CNTs that might be released to

the environment and (2) if there were any characteristics that could be used distinguish

CNTs from other organic matter in natural samples (Chapter 2). I then hypothesized that

thermal analyses could provide an accessible, cost-effective, high-throughput, minimum-

sample-handling technique to isolate and quantify CNTs in the environment. This

method was developed using thermal gravimetric analysis-mass spectrometry (TGA-

MS), and while it is not yet sensitive enough for current environmental CNT levels (pg

m-3 of air, pg L- ' of water, pg g-' of sediment) it is sufficient for detection of CNTs in

production facility air (ug m-3 of air (Chapter 3)) and can distinguish between BC soot

and CNTs. These methods will enable industry and regulators to place upper limits on



potential emissions from factories and, with further development, will facilitate study of

CNTs in the atmosphere, sediments, and ocean.

The environmental impact of CNT production is not limited to the release of

CNTs, but includes the release and cycling of carbonaceous co-products. The industrially

favored production method, carbon vapor deposition (CVD), is plagued by inefficiency.

Less than 3% of the source carbon feedstock becomes CNT product, while the remaining

-97% is typically vented to the atmosphere. This material was completely

uncharacterized prior to my dissertation research, but I hypothesized that the reaction

conditions (heating carbonaceous gas to high temperatures, 500-1200 oC) would result in

the formation of VOCs, PAHs, and soot, all of which raise environmental and public

heath concern. Using a representative CVD reactor, I developed a collection apparatus

that enabled detection of some compounds at parts per trillion levels; six orders of

magnitude lower than previously possible for these systems. My results showed, as

hypothesized, that VOCs, PAHs, soot, and the potent greenhouse gas, methane, were

formed from an ethene-fed, laboratory-scale synthetic process and released at

unacceptable quantities (Chapter 4). Furthermore, by monitoring the in situ kinetics of

CNT formation, I was able to identify which of the thermally generated products were

important for CNT growth. Using this information, I successfully delivered the critical

CNT precursors without thermal heating, thereby limiting the formation of unwanted by-

products and eliminating the most energetically expensive component of production

(Chapter 5).

These results have been and/or will be shared with CNT manufacturers, so that

they may make (1) accurate measurements of CNTs and by-products released from their

facilities and (2) informed decisions toward environmentally sound production practices

as their businesses continue to grow. At this critical juncture, there must be an

understanding of the potential environmental impacts of these promising materials, so

that we may tailor fabrication procedures and product handling in such a way so as to

protect public health, as well as the health of the Earth System.
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SUPPORTING INFORMATION

Box Model Calculations & Assumptions

For Houston air: This expression accounts for CNT input from production
facilities and advection into Houston from other areas, and CNT loss due to advection out
of Houston and dry deposition settling from the air column. Symbols, references, and
assumptions are given in Table 1.

dtV dt = Rir + Cjn (vwind AHouston) - Cair (vwind AHouston) - Cairfsettling (1)

Assuming steady-state and solving equation 1 for Cair:

Cair = in, + Cair,in (Vw ind AHouston) (2)
(vind AHousto, ) + fsettling



Table S1. Information used to calculate Cair in Houston, TX.

Definition

Cair

Numerical Value
12.7x 104kM3 I

Original Source/ Calculation
From AHouston, HHoustonVolume of Houston box

Steady-state CNT
concentration in Houston air

Emissions from CNT
production facilities

CNT concentration in air
flowing in from outside of
Houston

Average 2004 Houston wind
speed

Area of Houston Consolidated
Metropolitan Statistical Area

Loss from atmosphere due to
settling

Height of Houston
atmospheric mixed layer

Symbol

4.4 pg m -3 -

4.5 pg m -3

0.5 x 105 g yr-1

0 pg m -3

5.7 m s-'

2.25 x 104 km 2

0.73 - 3.10%

1200 + 600 m

Cair,in

Vwind

AHouston

fsettling

HHouston

Calculated from Equation 2

Assuming two CVD facilities in Houston,
16,500 kg bulk CNT yr' per facility (CNI),
and 0.15% release of CNT material.

Assumed negligible, as Rin Houston >> Ri,
other US cities

NOAA National Buoy Data Center, 2004;
Buoy 42035.

www.houstontx.gov, US Census Bureau,
2005.

Vutvwind )Osettle

fsettling H VHuin
nHouston

(osettle = 0.1 cm s-' for a 10-100 nm particle
(Ganzeveld et al.) by dry deposition

dour= 75 km (max) or 106 km (min), distance
for particle to travel out of Houston "box"

Assumes that particles reaching ground are
removed from atmosphere

Senff et al., 2000.



For Galveston Bay water: This expression accounts for CNT input from the air
and river (as one term), and CNT loss due to advection out of Galveston Bay and settling
from the water column with organic carbon (see Table 2 for definition of terms).
Symbols, references, and assumptions are given in Table 2.

VbavdCwaerV bayin - wa,erFrocAba - CwaterTOCdt

Vbay

T water

Assuming steady-state and solving equation 3 for Cwater:

Cwater = Q VinVba
Froc Abay - Co b

wTwater

Table S2. Information used to calculate Cwater in Galveston Bay, TX.

D9ifitioe f water in bay hth &reical Value Qlalnw&~ZS~a~eirf ~cmdL etib a!.. 2001
Vbay Volume of Galveston Bay 3.2 x 109 m 3  From Abay, Hbay.
Hbay Average depth of bay 2 m Santschi et al., 2001

Steady-state CNT concentration
in Galveston Bay

Atmospheric and riverine
runoff into Galveston Bay

Flux of total organic carbon
(TOC) to sediments

Area of Galveston Bay

TOC concentration in bay

0.2 pg L-' -
0.15 ng (g TOC)'-

22.1 g yr'-1 -
*66.3 g yr-'

25.55 g m-2 yr-

1.6 x 109 m 2

1.33 mg TOC L-'

Calculated from Equation 4

Given 0.1 cm s- settling rate, HHouston, 85 km
distance from Houston center to beyond
Galveston Bay, winds blow to east/southeast
5.2% of time with an average speed of
5.6 m s-1. Assumes that all of the CNTs that
settle on land, in river, and on the surface of
Galveston Bay, are transferred into Galveston
Bay over the course of the year.
*maximum employed in calculation.

Assumed TOC flux in Galveston Bay similar
to that in Pensacola Bay, FL (70 mg C m-2 d',
Murrell et al., 2001). (Sediment accumulation
rate in Santschi et al. (2001) is 160 g m -2 yr-1,
but includes inorganic materials in addition to
TOC).

Santschi et al., 2001

2003. www.galvestonbaydata.org

ya~bol

Cwater

Qin

FTOC

Abay

CTOC



For Galveston Bay sediment: Assuming steady-state, where CNT flux to the
sediment-water interface is equal to the CNT burial, then we can solve for Csed:

CSed = (9sed P( - )
Csed =

CwaterFToc

Symbols, references, and assumptions are given in Table 3.

Table S3. Information used to calculate Csed in Galveston Bay, TX.

Defiitio Stady-tat CNTconentrtio
Steady-state CNT concentration
in Galveston Bay sediments

Sedimentation rate

Density, bulk sediment

Sediment porosity

Numerical Value
2.0 pg (g sediment) -

0.38 cm yr-

2.5 g cm 3

0.8

Original Source/ Calculation
Calculated from Equation 5

Santschi et al., 2001

Santschi et al., 2001

Santschi et al., 2001
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ABSTRACT

Commercially available single-walled carbon nanotubes (SWCNTs) contain large

percentages of metal and carbonaceous impurities. These fractions influence SWCNT

physical properties and performance, yet their chemical compositions are not well

defined. This lack of information also precludes accurate environmental risk assessments

for specific SWCNT stocks, which emerging local legislation requires of nanomaterial

manufacturers. To address these needs, we measured the elemental, molecular, and

stable carbon isotope compositions of commercially available SWCNTs. As expected,

catalytic metals occurred at percent levels, but purified materials also contained

unexpected metals (e.g., Cu, Pb). Nitrogen contents (up to 0.48%) were typically greater

in arc-produced SWCNTs than those derived from chemical vapor deposition. Toluene-

extractable materials contributed less than 5% of the total mass of the SWCNTs. Internal

standard losses during dichloromethane extractions suggested that metals are available

for reductive dehalogenation reactions, ultimately resulting in the degradation of aromatic

internal standards. The carbon isotope content of the extracted compounds suggested that

SWCNTs acquired much of their carbonaceous contamination from their storage

environment. Some of the SWCNTs, themselves, were highly depleted in '3C relative to

petroleum-derived chemicals. The distinct carbon isotopic signatures and unique metal

"fingerprints" may be useful as environmental tracers allowing assessment of SWCNT

sources to the environment.

INTRODUCTION

Single-walled carbon nanotubes (SWCNTs) are promising new materials noted for their

exceptional electrical properties, mechanical strength, and thermal stability. Due to their

unique characteristics and novel synthetic methods, there is a great deal of uncertainty

surrounding the possible influence of SWCNTs on the environment [1] and human health

[2]. Previous efforts to assess the risks associated with the industry have considered

production reagents and energy use [3], but there is a distinct lack of information

regarding the environmental influence of the produced nanomaterials themselves. Two

recent reports [1, 4] highlighted the need for such analyses, outlining challenges to the



safe advancement of the SWCNT industry. Explicitly, the authors call for the

development of (1) methods to assess the environmental fate of engineered nanomaterials

and (2) nanomaterial-specific toxicity data for dependable risk assessment modeling.

Wiesner et al. [1] emphasize that surface chemistry and morphology may influence the

toxicity and environmental mobility of a given nanoparticle.

SWCNTs, which are formed from a variety of synthetic techniques, will have variable

chemistries and physical properties resulting from their different metal catalysts or

amorphous carbon coatings [5]. The latter can have environmental and toxicological

impacts. For example, fluorescent fractions of the amorphous carbon associated with arc-

produced SWCNTs impaired the development of estuarine copepods, whereas purified

materials showed no remarkable toxicity [6]. Preliminary studies indicate no clear

relationship between SWCNT metal content and respiratory impairment [7, 8], however,

the metal composition may dictate the environmental transport of, and ultimate biological

exposure to, SWCNTs. For instance, oxides of the selected catalyst could confer charge

on the nanomaterials. As surface charges control the aggregation of submicron-sized

particles [9], SWCNTs with different metal catalysts may exhibit differing environmental

lifetimes in air and water. Additionally, associated impurities could control SWCNT

participation in photochemical processes and interactions with biological membranes [2,

10, 11]. Metal catalyst and amorphous carbon impurities can account for up to 70% of a

bulk SWCNT material [12-14], yet these fractions are largely uncharacterized. Thus, our

ignorance of the diversity of compositions of SWCNTs prohibits a mechanistic

understanding of SWCNT electronic character, environmental transport, transformation,

and ecotoxicology. Consequently, no predictive risk assessment models can be

constructed at this time. Maynard et al. [4] warn that this lack information could result in

eroded public confidence through real or apparent dangers, impacting market growth

during this critical time of expansion, as well as unintended environmental and public

health consequences.

To begin to rectify this situation, we determined the metal, carbon, nitrogen, stable

carbon isotopic, and solvent-extractable aromatic hydrocarbon content of SWCNTs

produced by ten companies in the United States (US) (Table 1). Our specific goals were

to (1) identify metal catalysts and aromatic hydrocarbons that would be released with and



affect the properties of SWCNTs, (2) seek compositional data suited to pursuing

environmental exposure modeling of SWCNTs, and (3) find properties that would be

helpful for detecting, and perhaps apportioning sources of, SWCNTs in environmental

matrices. By pursuing these objectives while the SWCNT industry is developing large-

capacity facilities, we seek to provide feedback to the manufacturers so as to avoid

human health and environmental damage.



Table 1. United States single-walled carbon nanotube manufacturers and purchase information.
SWCNT supplier namea  Symbol b  Production Purchase Puri- Purchase

locationc price fied?d date
-111

SES Research SES Houston, TX $375 g-' Yes 1/14/06

Carbon Solutions Inc. CSI Riverside, CA $50 g-' 2/15/06
CarboLex, Inc. CLex Broomall, PA $100 g-1 2/14/06e
Materials & Electrochemical MER Tucson, AZ $60 g-1 1/13/06

Research Corp.
Helix Material Solutions Helix Richardson, TX $83 g-' 1/13/06
Manufacturer Xf  ManX Renton, WA $69.95 g-1 Yes 1/23/06
Nanocs Inc. Nanocs New York, NY $250 g-1  Yes 2/13/06
Nanostructured & Amorphous NanoAm Houston, TX $210 g-' Yes 2/13/06

Materials
SouthWest NanoTechnologies SWPurifiedg  Norman, OK g$500 g-1 Yes 3/9/06

Inc. (SWeNT, Inc.) SWIntermed.h h$ 2 0 0 g-1
Carbon Nanotechnologies Inc. CNI Houston, TX $275 g-' 9/29/05'
aCompanies that manufactured single-walled carbon nanotubes (SWCNTs) for commercial sale in the
United States during September 2005 and March 2006 are listed. Companies that manufactured
SWCNTs for direct incorporation into end-use products (i.e., flat-panel displays, bicycles, atomic
force microscopes, polymer composites) are not listed. bSymbols used in the tables, figures, and text
of this paper do not represent notations employed by the manufacturers. SWCNT production location
is shown. CarboLex, Inc. and Nanostructured and Amorphous Materials have affiliate offices in
Lexington, KY and Los Alamos, NV, respectively. dSelect manufacturers reported removal of metal
catalysts, inorganic supports, and/or amorphous carbon. eCLex SWCNTs are available for purchase
through Sigma-Aldrich. fManufacturer closed on April 26, 2006 and requested that we protect the
identity of the business name. gPurified SWCNTs are routinely available from SWeNT, Inc.
hSWIntermed. = SWIntermediate. This material represents an intermediate product in the
manufacture of purified SWCNTs. These SWCNTs are only available by special request from
SWeNT, Inc., who provided us the opportunity to examine the SWCNT material mid-process. 'These
nanotubes are synthesized using the HiPco® process and often referred to as such in the literature.
This sample is from lot number R0511C.



EXPERIMENTAL METHODS

Samples. SWCNTs were purchased from all known, US-based manufacturers

between September 2005 and March 2006 (Table 1). Advantageously, the materials

represent a variety of fabrication techniques and include both purified and unpurified

SWCNTs. As-produced SWCNTs (AP-SWCNTs) contain metal catalyst and amorphous

carbon impurities and range in price from $50 to $275 g-'. Purified SWCNTs are

thermally and/or chemically treated and cost between $70 and $500 g'-. To compare the

differences in purified and unpurified SWCNTs, we analyzed nanotubes from one

manufacturer, SWeNT, Inc., before (SWIntermediate) and after purification (SWPurified)

(Table 1).

Metal, metalloid, and rare earth element analysis. Plastic and quartz ware were

cleaned by soaking for 2 weeks in 3 M hydrochloric acid (HC1) and 2 days in 8 M nitric

acid (HNO 3) at room temperature (acids were Fisher Trace Metal Grade). SWCNTs were

delivered to 10-mL quartz (Type IV) beakers in ethyl acetate (EtOAc) suspensions (see

Supporting Information), evaporated to dryness, and combusted for 6 hr at 8500 C.

Samples were then digested by refluxing in 1 mL 16 M HNO 3 (Fisher Optima) for 30

min, evaporated to dryness, dissolved in 3 mL 12 M HCl (Fisher Optima), evaporated to

dryness again, and finally re-dissolved with 1.2 M HC1. Solutions were filtered through

0.2 mm filters and analyzed in quadruplicate (duplicate measurement of two distinct

dilutions) by inductively coupled plasma-mass spectrometry (ICP-MS). Samples were

analyzed for Al, Ag, Au, Ba, Be, Bi, By, Ca, Ce, Cd, Co, Cr, Cs, Cu, Er, Fe, Ga, Gd, Hf,

Ho, Hg, Ir, La, Li, Lu, Mo, Nb, Nd, Ni, Os, Pb, Pr, Pt, Re, Rh, Ru, Sb, Sm, Sn, Sr, Ta,

Tb, Te, Th, Ti, Tm, U, V, W, Y, Yb, Zr. Only elements present above the detection limit

are reported here. Detection limits (all in ppm) were 100 (CNI), 50 (Helix, Nanocs), 20

(CLex, CSI, MER, ManX, SES, SWPurified, SWIntermediate), and 7 (NanoAm), varying

between samples due to differences in SWCNT sample size and consistent between

elements because the maximum detection limit for any one element is reported.

Silica was measured in two samples thought to contain SiO 2 as a growth substrate

(SWPurified and SWIntermediate). Briefly, samples (5-10 mg) and LiBO 3 (-70 mg)

were added to graphite crucibles and heated at 9500 C for 15 min [15]. The hot liquid was



poured into a Teflon beaker, stirred with 10 mL of 0.8 M HNO3 for 15 min, transferred to

a tared plastic vial, and diluted with milli-Q water to a final mass of 20 g. After filtration

though a 0.45 mm filter, solutions were analyzed by ICP-emission spectroscopy.

Determining bulk carbon and nitrogen content ofSWCNTs. SWCNTs were

delivered to silver capsules (15 x 7.5 mm) in EtOAc suspensions using 1-mL, glass gas-

tight syringes. Syringes were rinsed seven times between sample replicates and were

disassembled and sonicated for 20 min in EtOAc between different SWCNT samples.

After drying overnight (600 C), the residue was analyzed for carbon (C) and nitrogen (N)

content using an Elementar CHN Analyzer. Samples were analyzed in triplicate, except

for CNI and CSI (n = 6).

In order to distinguish SWCNT-C from amorphous C and other carbonaceous

impurities, we performed a temperature-programmed oxidation using thermogravimetric

analysis (TGA, TA Instruments Q50). The initial sample mass was 3-3.5 mg, except for

SWIntermed., whose initial mass was much larger (15 mg) to compensate for the low

expected C content. Each sample was heated at 5C min -1 to 950 C (10 min hold) in dry

air. The differentiated thermogram was fit assuming a bimodal Gaussian distribution

using a non-linear least squares technique. Co-oxidizing phases can bias the analysis,

giving higher-than-actual measured C content. These phases were present in SES (giving

an overestimate of amorphous C), CSI (giving an overestimate of SWCNT-C), and MER

samples.

EtOAc was used to deliver the SWCNTs to the silver capsules, as it improved

precision by reducing sample loss and sample-to-sample contamination due to

electrostatic interactions. To confirm that EtOAc did not affect our results, we compared

the C content of the National Institute of Standards and Technology Standard Reference

Material 1649a "Urban Dust" delivered with and without EtOAc; both gave values that

matched the certified C content.

Determining stable carbon isotopic content of SWCNTs. Dry SWCNTs were

transferred to a 9-mm cylindrical quartz insert, which was then inverted into a 12-mm

quartz tube containing roughly 2 g of cupric oxide. The tubes were evacuated on a

vacuum line, flame sealed, and combusted for 5 hr at 850C. Carbon dioxide was

isolated through a series of cold traps and '3C/12C was measured by isotope ratio mass



spectrometry (IRMS) [16]. The '3 C/ 12C content is reported relative to the 13 C/12C of

Vienna Pee Dee Belemnite (VPDB) as

6CVPDB( ) r (C ) sample 12 VPDB x1000 (1)O 1Coo) , 3 1oPDBo

Each sample was measured in quadruplicate, except for SES, MER, SWIntermed., Helix

(n = 2), and CLex (n=3).

Dichloromethane and toluene extractions

Extractable polycyclic aromatic hydrocarbons (PAHs). Dry SWCNTs were

added to 50-mL glass centrifuge tubes containing 50 mL of DCM or toluene. To gauge

extraction efficiency and sample recovery, 5 ug each of dio-acenaphthene, m-terphenyl,

and d12-perylene were added as internal standards. The solutions were then equilibrated

over 8 days at room temperature. After a 5 hr, 2250 rpm (680 g) centrifugation, 10-mL

sub-samples of the extracts were transferred to pear-shaped flasks and concentrated by

rotary evaporation. Each extract was spiked with calibration standards (dio-anthracene,

dio-fluoranthene, and dl2-benz[a]anthracene) and analyzed in triplicate by gas

chromatography-mass spectrometry (GC-MS). Detection limits (Table 2) vary between

SWCNTs due to differences in the initial mass of SWCNTs extracted and reconstructed

ion chromatogram noise.

The dichloromethane extraction was performed twice and the toluene extraction was

performed once. To ensure the validity of the comparison, data shown here are from

toluene and dichloromethane extractions that were performed simultaneously.



Table 2. Polycyclic aromatic hydrocarbon (PAH) detection limits in
Detection limit of analyte

SWNT supplier

naphthalene,
acenaphthylene,
acenaphthene,
fluorene,
phenanthrene,
anthracene

0.1
0.2
0.5

0.5
0.1

fluoranthene,
pyrene,
benz[a]anthracene,
chrysene

0.2
0.2
0.3

0.5
0.3
2

1.2
0.2

toluene extracts (unless otherwise noted).
(UgPAH (gSWNT)-')

benzo[b]fluoranthene,
benzo[k]fluoranthene ,
benzo[e]pyrene,
benzo[a]pyrene,
perylene,
indeno[1,2,3-c,d]pyrene,
dibenz[a, h]anthracene,
benzo[g,h, i]perylene
0.1 (4) a

0.2 (1)
0.07 (2)

0.1 (2)
0.05 (7)
2

0.3 (10)
0.1 (2)

Swdnterme. 0.02 0.06 0.03 (0.1)
CNI 0.4 0.2 0.1 (4)
aparenthetical value gives recovery-corrected detection limit (i.e., the quantity of the PAH that would
have to be present initially in order to persist following the 8 day degradation). This was calculated
assuming that the listed analytes are recovered with the same efficiency as d12-perylene in toluene (see
Figure 4, Results and Discussion). bSample not analyzed. cNanocs detection limits are from a DCM
extraction, as the toluene sample was lost during preparation.

SES
CSI
CLex
MERb

Helix
ManX
Nanocsc
NanoAm

SWPurified

~



Stable carbon isotope content of extractable carbonaceous material. Another

10-mL sub-sample of each DCM extract was concentrated by rotary evaporation and

transferred to a pre-combusted 1.5-mL amber vial. Samples were passively evaporated in

a laminar flow hood and re-dissolved in chloroform (CHC13). The 13C content of the non-

volatile material was analyzed in triplicate by moving wire-IRMS (MW-IRMS) [17].

MW-IRMS gives accurate dl 3CvpDB values on nanogram quantities of material. Briefly,

1 mL of liquid sample was deposited on a nickel wire, and as the wire moves through a

drying oven (60'C), the solvent evaporates and non-volatile compounds remain on the

wire. The sample then combusted and dried, and the resultant CO 2 is analyzed by IRMS.

RESULTS AND DISCUSSION

Metal and metalloid content. Residual metal catalysts are considered the

principal components of metallic impurities in SWCNTs, accounting for up to 30% of the

bulk material [12]. Commercial syntheses utilize diverse metals in variable proportions,

and there are no purification procedures that successfully eliminate all metals from the

SWCNTs. Since the abundance and oxidation state of associated metals can impact the

charge carrying capacity of the SWCNTs, their reactivity, as well as their environmental

fates and effects, one of our objectives was to identify all the metals and their abundances

in commercial SWCNT materials. In addition, we sought to identify unique metal

"fingerprints" that might be applied to track SWCNTs in the natural world.

Expected and unexpected metals. Purified SWCNTs contain the reported metal

catalysts at low abundances (1.3 to 4.1% total metal; Table 3). Perhaps surprisingly,

purified SWCNTs also have unexpected metals (Cr, Cu, Pb) at part per thousand levels

(0.02 to 0.3 ppt). Comparing an intermediate product in SWCNT synthesis with a

purified material (SWIntermediate and SWPurified, respectively), SWIntermediate

contains Co and Mo, as expected, while SWPurified has Fe, Cu, and Pb in addition to the

known catalysts. Acid treatments are common in SWCNT purification procedures

intended to leach metals from the bulk materials [12]. We speculate that SWCNTs, damp

with residual acid, could come in contact with metallic manufacturing equipment,

transferring trace quantities of metals to the SWCNTs. Carbon nanotube-associated



metals can influence charge transfer capacity [18], and unexpected metals may degrade

the electronic performance of the materials. Unpurified SWCNTs contain the metals

used as catalysts in their syntheses at weight percentages (14 to 29% total metal, Table

3). Our results agree with those of Warheit et al. [8] for the CarboLex and CNI samples,

and are generally similar to those reported previously for the catalysts [19]. Thus,

SWCNTs will act as carriers of these metals to the environment. Such releases may have

undesirable environmental consequences, acting as either toxic substances [2, 20] or

nutrients [21] in niches where these substances are present at low levels. For example,

Maynard et al. [22] reported airborne levels of SWCNTs during handling near 50 ug m-3;

for nanotubes containing 10% cobalt catalyst, this would imply 5 ug Co m-3, an exposure

that is within a factor of 10 of OSHA's time-weighted average exposure limit. Since it

seems likely that greater concentrations of SWCNTs would occur in industrial settings

[20], toxic exposures to metals like cobalt could result.



Table 3. Bulk metal and metalloid content of SWCNTs.
Additional

Reported metal A
SWCNT Puri- metal Metal Content (Weight %)c elements/ SiO 2catalystsb
supplier fied?a (ppt)

Ni Y Fe Co Mo

SES Yes Fe-based nde nd 0.47 + 0.01 2.80 + 0.08 0.69 _ 0.02

. CSI prop f  22.4 ± 0.5 6.0 + 0.2 nd nd nd

" CLex Ni,Y 24.3 + 0.5 5.0 + 0.1 nd nd nd

MER Co, Ni 3.53 ± 0.07 nd nd 10.5 0.2 nd

Helix Ni, Y 15.3 ± 0.4 5.3 ± 0.1 nd nd nd

ManX Yes Fe-based nd nd 1.21 ± 0.03 nd 0.08 ± 0.01 Cu: 0.3 0.1,

Pb: 0.1 0.01

Nanocs Ni-based 20.3 ± 0.9 4.2 + 0.2 nd nd nd

NanoAm Yes Mgg, Co, Mo nd nd 0.24 ± 0.01 2.87 ± 0.06 1.00 ± 0.02 Cr: 0.02 ± 0.001

SWPurified Yes Co, Mo nd nd 0.07 ± 0.01 4.1 ± 0.2 6.9 ± 0.3 Cu: 0.1 ± 0.01,
Pb: 0.2 + 0.01,
SiO,: 2.5 ± 0.4

SWIntermed. Co, Moh nd nd nd 0.50 ± 0.01 1.30 ± 0.04 SiO 2: 820 ± 30

(6.4 ± 0.5)' (16.6 ± 0.5)' SiO 2: 0'
CNI Fe nd nd 22 ± 3 nd nd

aManufacturer reported removal of metal catalysts and inorganic supports via SWCNT purification techniques. Note that Nanocs, Inc. reports purifying
samples for amorphous carbon only, not for metal catalysts. bHere, we note the manufacturer-reported catalyst. Some manufacturers chose to limit the
description to a single component of a mixed catalyst or a partial description (e.g., "Ni-based" means the catalyst contains Ni and other metals, and Ni is
not necessarily the most abundant component). cData shown are the mean value and standard deviation on quadruple measurements (duplicate analysis
of two distinct dilutions). dArc = SWCNTs produced by arc-discharge. CVD = SWCNTs produced by catalytic chemical vapor deposition. end = not
detected above the detection limits listed in Experimental Methods section. "prop = proprietary information. gMagnesium (Mg) was not quantified due
to high procedural blanks. hManufacturer reports that the sample contains 82-87% SiO 2 support. 'Parenthetical value shows the calculated element
content assuming no substrate is present and C, N, Co, and Mo are the only components of the sample (i.e., 100% recovery). This calculation relies on
the measurement of SiO 2. JValue is assumed for the purposes of calculating SWCNT composition in the absence of the growth substrate.



Unique metal ratios for SWCNT source apportionment. While these expected

and unexpected metals raise environmental concern, they may be valuable for detecting

SWCNTs and apportioning them to diverse sources (both natural and synthetic), as the

unique metal composition of an aerosol source can be used to study its transport in the

environment [23]. For example, automobile emissions have been traced using platinum

group element ratios, which reflect the composition of metal catalysts in catalytic

converters [24, 25]. Given the diversity of metal catalysts used in nanotube synthesis,

there is no universal metal "fingerprint" for all SWCNTs. However, we suggest that

metal abundances in environmental samples (e.g., aerosol concentrates), in combination

with other elements, could be used to help determine if SWCNTs are present and

potentially identify the source. For example, when Ni was used as a catalyst in

SWCNTs synthesis, the Ni:C ratio in the product was quite high, varying between 0.20

and 0.37 (Figure la). These proportions are orders of magnitude higher than those of

other common aerosol sources, such as coal (Ni:C = 2.2 x 10-5), petroleum (Ni:C = 7.7 x

10-5), and continental crust (Ni:C = 5.9 x 10-3) [26]. If crustal-derived dust occurred in an

air sample at 1 ug m -3 and has 1% carbon content, then the crustal Ni:C ratio implies 0.06

ng Ni m-3. If SWCNTs of interest contain 20% Ni, then only 0.3 ng SWCNTs m-3 would

be needed to double the Ni in the air. Therefore, ng m-3 levels of SWCNTs would result

in Ni levels six times higher than background. Thus, Ni measures can detect industrially

produced SWCNTs at ng m-3 levels in air samples. Moreover, key metal ratios might be

diagnostic. The Ni:Y of the commercial SWCNTs varied between 2.9 and 4.9 (Figure

la), and these ratios are also distinct from coal (Ni:Y = 1.3), petroleum (Ni:Y = 66,000),

and continental crust (Ni:Y = 0.9) [26]. Hence, the proposed natural sources of SWCNTs

(e.g., products of combustion processes [27]) could be distinguished from some industrial

sources based on metal content. This will be particularly useful for identifying

responsible parties if SWCNT manufacturers are called on to remediate SWCNTs found

in the environment, as other users of industrially important materials have in the past

(e.g., DuPontTMfor perfluorooctanoic acid (PFOA) $108 Million for Parkersburg, WV

[28]; General ElectricTM for polychlorinated biphenyl ethers (PCBs), $115 Million for

Hudson River, NY [29]; and W.R. GraceTM for asbestos, $58 Million for Libby, MT

[30]).
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Figure 1. Metal ratios in SWCNTs and other aerosol sources. (a) Ni:Y ratios in SWCNTs
are distinct from those in coal, petroleum, and continental crust. Furthermore, the metal
abundance of these catalysts relative to the C content is much higher than Ni abundance
in other materials. These distinct metal contents could be useful tracers of SWCNTs in
environmental samples. (b) Co:Mo ratios in SWCNTs vary (see text) and overlap with
some natural sources. However, the relative abundance of Co:C is distinct from coal,
petroleum, and continental crust and could be used to identify SWCNTs in aerosol
concentrates. The relative metal and carbon contents of coal, petroleum, and continental
crust were calculated from data in Klee and Graedel [26].



Currently, there is a narrow range of Ni:Y ratios used in commercial SWCNT

production. There is more variability in the relative amounts of Co:Mo that successfully

yield SWCNTs. When only Co and Mo are used as metal catalysts in SWCNT synthesis,

the Co:Mo ratio was 0.31 ± 0.01 or 0.59 ± 0.04 (for SWIntermediate and SWPurified,

respectively), whereas the ratio is much higher (2.9 ± 0.1 for NanoAm and 4.0 ± 0.2 for

SES) for SWCNTs grown from Fe/Co/Mo catalyst mixtures. Thus, metal catalyst ratios

may be used to distinguish SWCNTs produced by different SWCNT manufacturers.

Unlike Ni:Y abundances, the Co:Mo ratios in industrially synthesized SWCNTs (0.31

± 0.01 to 4.0 ± 0.2) overlap with those of coal (1.67) and petroleum (0.43), making it

difficult to identify natural and anthropogenic SWCNT sources using metal ratios alone.

However, SWCNTs have relatively high Co:C content (0.31 and 0.88) compared to coal

(Co:C = 5.6 x 10-6), petroleum (Co:C = 4.0 x 10-6), and continental crust (Co:C = 3.7 x

10-3) [26]. If crustal-derived dust occurred in an air sample at 1 ug m-3 and has 1%

carbon content, then the crustal Co:C ratio implies 0.04 ng Co m3 . If SWCNTs of

interest contain 3% Co, then only 1.3 ng SWCNTs m-3 would be needed to double the Co

in the air. Therefore, 4 ng m-3 levels of SWCNTs would result in Co levels six times

higher than background. This sensitivity for Co-containing SWCNTs is slightly less than

that for Ni-containing SWCNTs and results from the higher Co content of continental

crust and lower Co content of SWCNTs, as compared to the Ni content of the respective

materials. Nevertheless, Co measures can detect industrially produced SWCNTs at

several ng m -3 levels in air samples. Thus, the unique metal-to-carbon content of

SWCNTs can be useful for tracing these emerging contaminants as they are released to

and travel through the environment.

Total carbon and nitrogen. The total carbon content of the SWCNTs ranged from

60-97% (Table 4). The measured values agree with the manufacturer-reported carbon

contents, except for SWPurified and Nanocs. SWPurified contained 81 ± 2% C when

measured by elemental analysis, whereas 93% C was reported by the manufacturer. This

offset may result from differences in analytical methods, as SWeNT Inc. determines the

elemental content using x-ray photoelectron spectroscopy (XPS). XPS is used to

determine the chemical composition of a surface (typically the upper 10 nm or less). It is

possible that thick (>10 nm) amorphous carbon coatings in the SWPurified sample biased



the carbon content to an artificially high value. Nanocs contained 66.3 ± 0.8% C even

though this product was listed as "high purity." The Nanocs C content is quite low for

traditionally purified SWCNTs; and when contacted, Nanocs, Inc. explained that they

emphasize structural purity, eliminating amorphous carbon and retaining intact SWCNTs

without removing metal catalysts. Metal analyses confirm that this sample was not

purified of metal catalysts. Purified and unpurified SWCNTs are often difficult to

distinguish without chemical analyses, and such subtleties in nomenclature may confound

toxicity, environmental transport, and SWCNT application studies.

An intermediate product in SWCNT synthesis, SWIntermediate, had an unusually

low C content (5.7 ± 0.2%), primarily due to the presence of inorganic growth substrate

(SiO 2). Correcting for the presence of the substrate gave a calculated C content of 76 ±

2%. While this corrected result certainly puts the product in the range seen for other

SWCNTS, it is clear that the carbon contents of these ostensibly carbonaceous materials

were quite variable.

Similarly, there was a broad range in the SWCNT-C and amorphous C content of

these materials, irrespective of the reported purity level (Table 4). Arc-produced samples

contained between 23 ± 1 and 44 ± 1% SWCNT-C, whereas CVD-generated SWCNTs

contained between 41 ± 1 and 81 ± 1% SWCNT-C. Again, the SWIntermed. sample

contains 82 ± 3% SiO 2 growth substrate (Table 2), and correcting for the presence of this

material gave 71 ± 3% SWCNT-C. Perhaps surprisingly, some purified samples,

NanoAm and SWP, contained "amorphous C" at or above the SWCNT-C content. We

suspect that this was due to the formation of a partially oxidized carbon phase during the

SWCNT purification process, which typically involves thermal and/or chemical oxidation

steps. Clearly, these lower-thermal-stability (relative to SWCNT-C) phases were not

removed during subsequent purification steps.



Table 4. Bulk carbon and nitrogen content of SWCNTs commercially available in U.S.
SWCNT Carbon Purif- Total C (%)b SWCNT-C Amorph. C Total N C + N +
supplier feedstock ied?a (%)c (%)c (%)b metals + SiO 2

(%)

SES graphite Yes 89 ± 1 58 + 1 31 ± 1 0.14 ± 0.06 93 ± 1

CSI graphite 60 + 3 44 + 1 13.4 + 0.3 0.17 ± 0.01 93 ± 3

CLex graphite 66.3 ± 0.2 23 ± 1 34 + 1 0.20 ± 0.04 96 ± 1

MER graphite 84 ± 1 nmd nm 0.19 ± 0.02 98 ± 1

Helix graphite 78 ± 2 32 ± 1 33 ± 1 0.45 ± 0.01 99 ± 2

ManX C2HsOH Yes 97 ± 2 81 ± 1 nd nd' 98 ± 2

Nanocs CxHyf  Yes 66.3 ± 0.8 nm nm 0.48 ± 0.04 91 ± 1

NanoAm CxHy' Yes 88.6 ± 0.6 48 ± 1 41 ± 4 nd 93 ± 1

SWPurified CO Yes 81 2 41 ± 1 37 ± 1 0.11 0.02 92 ± 2

SWIntermed. CO 5.7 ± 0 .2g 5.3 ± 0.2 g nd nd 89 ± 3

(76 ± 2) (71 ± 3)9 (100) h

CNI CO 68 ± 5 28 ± 4 45 ± 4 nd 96 ± 3

aSelect manufacturers reported removal of metal catalysts, inorganic supports, and/or amorphous carbon. bStandard
deviation on triplicate analyses, except for CNI and CSI (n=6). cCalculated area under TGA curve with mathematical fit
uncertainty on one sample (i.e., n=1). Amorphous C and SWCNT C are distinguished by their relative thermal oxidation
temperatures. Other phases, such as multi-shell carbon, may exist as part of the bulk material. dnm = not measured. We
could not resolve the contribution of SWCNT-C, amorphous carbon, and other carbon species, as their co-oxidation
precluded an accurate model fit of the differentiated mass loss curve. end = not detected above 0.3 [tg blank (0.02-0.04%

N). fTypically, Nanocs uses ethyne (acetylene, C2H2) and NanoAm uses ethene (ethylene, C2H4), but both companies
report using a variety of CxHy sources. Nanocs also manufactures arc-produced SWCNTs from graphite. gSWIntermed.
contains inorganic substrate material, SiO 2, which is removed prior to sale. Parenthetical value shows the calculated C
content assuming no substrate is present. This calculation relies on the measured quantity of the SiO 2 and assumes 100%
sample recovery. hAssumed recovery for calculation of C and metal content in substrate-free material.



Given the diversity of procedures and metals used in SWCNT synthesis, and the

influence of those choices on the thermal stability and relative abundance of SWCNTs

[31, 32], it is difficult to compare directly our results with the literature. Nevertheless,

we note that CarboLex samples analyzed by the same TGA method exhibited roughly

25% amorphous C and 30% SWCNT-C (by inspection of the mass-loss thermogram)

[31], in agreement with our results. In addition, Itkis et al. [33] report 31.8% SWCNT

purity for the CSI sample, analyzed by near-infrared spectroscopy. Our TGA results

indicate that this sample contained 44 ± 1% SWCNT-C. This discrepancy may reflect

the differing analytical biases of the two methods. For example, the thermogram in this

sample indicated the presence of purported multi-shell carbon [31 ] co-oxidizing with the

SWCNTs. This co-oxidation could result in a mathematical overestimation (due to curve

fitting procedure) of the SWCNT content. Alternatively, the discrepancy could result

from differences in the commercially available product over the time frame of the two

studies.

Unfunctionalized SWCNTs are expected to have very low N contents. However, we

found that all arc-synthesized SWCNTs contained measurable amounts of N, ranging

from 0.14 to 0.45% (Table 4). In contrast, catalytic chemical vapor deposition (CVD)-

produced materials did not have detectable quantities of N (0.02-0.04% N), except for

SWPurified and Nanocs. We hypothesize that the presence of N in SWPurified results

from N incorporation during (1) SWCNT synthesis, (2) the purification process,

especially if HNO 3 is used, or (3) post-manufacture processing and transport.

Additionally, although Nanocs, Inc. currently employs CVD as their principle fabrication

method, they also use arc-discharge synthesis. It is possible that this particular batch of

SWCNTs was arc produced. The high-energy environment of arc-discharge synthesis

may favor the incorporation of N, even if derived from atmospheric N2 [34], into

SWCNTs. The direct incorporation of N into the carbon-based skeleton can influence the

helicity and, therefore, the conductivity of the nanotube [35]. Thus, manufacturers

designing synthetic processes for a particular application may choose low- or high-energy

fabrication depending on the desired tube chirality. If the N is incorporated into the

nanotube itself, the added functionality may alter SWCNT persistence in the environment

by influencing the surface charging and increasing susceptibility to transformations.



Moreover, if the N occurs as part of the population of aromatic hydrocarbon side-

products (which will be discussed in more detail below), there is cause for concern

regarding the toxicities derived from N-heterocyclic compounds [36].

From a mass balance perspective, the measured quantities of C, N, metals, and SiO 2

accounted for between 89 ± 3 and 99 ± 2% of the SWCNT materials (Table 4). None of

our analyses quantified the oxygen content of the SWCNTs, and so the remaining

fraction of unaccounted material could contain oxygen. Such oxygen could be present as

functional groups on the SWCNTs or, perhaps more likely, as metal oxides. If we

assume that metal oxides are present at 50-100% of the SWCNT-associated metal content

and in representative stoichiometries (i.e., NiO, Y20 3, Fe20O3, MoO 3, and CoO (or,

equivalently, CoMoO 4)), we find that oxygen can account for the missing mass in all of

the AP-SWCNTs (Figure 2). In the case where we assume 100% of the metal is present

as metal oxide, the total mass balance is overestimated by as much as 2.5% (outside of

the analytical error), whereas the mass balance is within the analytical error when we

assume 50% of the metal is present as metal oxide. (For the intermediate product

(SWIntermed.), no amount of metal oxide can account for the missing material,

suggesting that we have failed to quantify some portion of the material. TGA results

confirm that we are not accounting for approximately 10% of the AP-SWCNT product).

In purified SWCNTs, metal oxides cannot account for the missing mass, and 2-6% of the

material remains unexplained. We propose that purified materials contain oxygen

functional groups within the SWCNT lattice, as oxidizing acids used during purification

can induce such functionality, especially at SWCNT ends and defects. These oxygen

functional groups, along with acid residues (e.g., HC1, HNO 3, and H2SO3), could account

for the unquantified proportion of the purified SWCNTs. Whether present as metal

oxides or functional groups on the SWCNTs, oxygen functionalities contributing up to

10% by weight of the SWCNTs would dramatically affect the surface properties of these

nanoparticles (e.g., conferring pH-dependent charging in aqueous suspensions), which

will be important for many applications that rely on SWCNT adsorptivity (e.g., water

filtration) and suspension stability.



-- t SES (1) -- NanoAm (1) --- CSI (3) -- -Helix (2)

-23-ManX (2) --- SWPurified (2) -- CLex (1) -- CNI (3)

- Nanocs (1) -- SWintermed (3)- MER (1)

106

102

0- 98

z 5
+ +

o 90

86

0 0.2 0.4 0.6 0.8 1

Fraction of metal existing as metal oxide

Figure 2. Total accounted SWCNT mass as a function of assumed metal oxide content.
For this calculation, we assumed that metal oxides existed in representative
stoichiometries (i.e., NiO, Y20 3, Fe20 3, MoO 3, and CoO (or, equivalently, CoMoO4)).
Using the quantified metal abundances, we calculated the mass of oxygen that would be
present as metal oxide. The uncertainty in the calculation is given in parentheses in the
legend, next to the sample name. (Error bars are omitted for figure clarity). For AP-
SWCNTs (filled, red symbols), metal oxides easily account for the unidentified material
if we assume that 50% of the SWCNT-associated metal is present as metal oxide. For
purified materials, (open, blue symbols) oxygen present as metal oxides cannot account
for the total mass of the SWCNT, and oxygen present in the SWCNT carbon lattice could
explain the missing mass fraction. For the intermediate SWCNT product (black, hatched
symbols), SWInermed., no amount of metal oxide can explain the unaccounted fraction
of material.



Stable carbon isotope composition ofSWCNTs. SWCNTs exhibited a wide

range in 613 CVPDB values (-53.2 to -23.50/oo, Figure 3, see Experimental Methods for

definition of 6 13C notation). The observed 13C abundances can result from either the C

source material or isotopic fractionation during fabrication and post-production

treatments. Carbon isotopic fractionation typically diminishes with increasing reaction

temperature [37], and we expect that such effects are minor at SWCNT synthesis

temperatures, which often exceed 700'C. Thus, we believe that the diverse 13C

abundances primarily reflect the varied '3C content of their respective source materials

(Table 4). A variety of carbon source materials are used for CVD SWCNTs, including

ethanol, carbon monoxide, and ethane [5]. Ethanol can be produced from the sugar

derived from C3 plants (woody plants, 8 13CVPDB = -30 to -250/oo) or C4 plants (maize,

grasses, 6 13CVPDB = -20 to -140/oo) [38]. Carbon monoxide is typically produced from

methane, which can be depleted in 13C (8 13CVPDB, biogenic methane = -110 to -500/oo) [39].

Graphite (a carbon source for arc SWCNTs), ethene, and ethyne are all industrially

produced from petroleum coke. Petroleum cokes and associated compounds can have a

range of 13C contents depending on the isotopic signature of the source reservoir and

can range from -34 to -22o0/ [40-42].
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Figure 3. Stable carbon isotopic signatures of SWCNTs, SWCNT-associated solvent
extractable material, and selected carbon sources. SWCNTs synthesized from arc-
discharge (U), CVD (*), and CO-CVD (0) exhibit a broad range of 13C/ 12C ratios,
primarily resulting from the distinct isotopic signatures of their respective starting
materials (000). Graphite is industrially produced from petroleum coke (613CVPDB,
petroleum-derived = -34 to -220/oo) [40-42], and provides a carbon source for arc-discharge
synthesized SWCNTs. A variety of carbon source materials are used for CVD-
synthesized SWCNTs, including ethanol and carbon monoxide. Ethanol can be produced
from the sugar derived from C3 plants (woody plants, 6 13CVPDB = -30 to -250/oo) or C4
plants (maize, grasses, 8 1 3

CVPDB =- -20 to -140/oo) [38]. Carbon monoxide is typically
produced from methane (8 13 CVPDB, biogenic methane = -110 - -500/oo) [39, 42]. Error bars
represent one standard deviation on quadruple analyses, except SES, MER, SWIntermed.,
Helix (n=2), and CLex (n=3). The '3C content of dichloromethane solvent extractable
material (0) is consistent with petroleum-derived sources, characteristic of ambient
hydrocarbons. Error bars represent one standard deviation on triplicate measurements.
The larger relative error of the extracts (as compared to the SWCNTs) is due to the small
quantity of extracted material.



Arc SWCNTs have dl 3CVPDB values ranging from -36.7 to -23.50/oo, indicative of

graphitic sources. The 13C abundance of ManX (-28.0o/oo) is consistent with growth from

a C3-derived ethanol [38]. Ethene-derived NanoAm (-35.2/,,oo) had a 13C content similar

to Nanocs (-33.8o/oo), which has a proprietary C source. Given the broad and overlapping

range of 13C abundances, it is not possible to differentiate arc and CVD SWCNTs using C

isotopic techniques. Conversely, CO-CVD SWCNTs have a distinct 13C composition (-

51.7 to -49.80/oo), reflecting growth from a '3C-depleted feedstock. This unique isotopic

signature may be another useful tracer of CO-SWCNTs and their metabolites in both

laboratory and field studies. For example, the 13C abundance of CO-SWCNT

transformation products will be depleted relative to the bulk carbon of most systems (i.e.,

SWCNT-derived biomolecules will have a different isotopic signature than biomolecules

from other carbon sources). In addition, CO-derived SWCNTs' isotope signature is

distinct from the bulk isotopic content of marine seawater and sedimentary organic matter

(-30 to -20 /o,,) [38]. This isotopic fingerprint may be particularly valuable for the

development of analytical methods to quantify SWCNTs in complex environmental

matrices, as the isotopic content of an artificial sample (e.g., a lab-generated aerosol

sample containing CO-derived SWCNTs) could be used independently to calculate the

quantity of nanotubes persisting through each step of the analysis (i.e., sample collection,

separation, and quantification). A similar approach would allow one to quantify

SWCNTs in mixture-based applications, such as polymer composites and pharmaceutical

vectors.

Total solvent-extractable material (TSEM). Amorphous carbon and graphitic

nanoparticles are considered the principle components of C-based SWCNT impurities

[12], accounting for up to 30% of as produced-SWCNT material. In addition, amorphous

carbon formation plays an important role in catalyst deactivation during CVD growth,

resulting in sub-optimal carbon nanotube formation [43], and influences the electronic

character of the SWCNT [44]. The chemical composition of this amorphous carbon

fraction is largely uncharacterized, and one of our objectives was to develop a more

detailed description of the SWCNT co-products, their behavior, and their origin through

solvent extraction.



TSEM isotopic composition and hydrocarbon origin. The '3C abundances of

the DCM solvent extracts of all the SWCNTs were approximately -29o/o, (range -35 ± 6

to -26 ± 70/oo, Figure 3), irrespective of the '3C content of the SWCNTs. This suggests

most of the TSEM derived from a common source for all of the SWCNTs. The '3C

signature of the TSEM was consistent with that of ambient petroleum-derived

compounds (-34 to -220/,,) [40, 41], and SWCNTs could be acquiring hydrocarbons

through contact with industrial apparatus and packaging material, as well as through

exposure to ambient vapors and aerosols. The presence of phthalates (ubiquitous organic

compounds used in the manufacture of plastics) in all of the solvent extracts, as compared

to our phthalate-free laboratory blanks, also supported the contention that SWCNTs have

a tendency to sorb organic contaminants from their surroundings. Sorbed organic

material influences the electronic properties of SWCNTs [19], and thus manufacturers

concerned with the electronic integrity of their nanotubes should take care to minimize

SWCNT contact with plastics, other organic-rich materials, and urban air. These data

indicate that SWCNTs released to the environment may continue to sorb organic

compounds, influencing the mobility and persistence of both natural and pollutant

compounds. Depending on the strength of the sorptive interactions, SWCNTs will either

act as a local sink for anthropogenic contaminants or as a vector for distributing them in

the environment.

TSEM mass and metal reactivity. The quantity of solvent-extractable material

was remarkably low (<1% in dichloromethane (DCM), <5% in toluene, Table 5),
suggesting that carbonaceous impurities were either (1) not soluble in DCM or toluene

due to their macromolecular/particulate nature, (2) strongly sorbed to SWCNTs, or (3)

degraded during the solvent extraction procedure. While we would not expect

amorphous or graphitic nanoparticles to be soluble, it is somewhat surprising that small

(<350 amu), soluble molecules contribute less than 5% of the SWCNT co-products [45,
46]. If such molecules are formed, preserved, and associated with the SWCNTs, we

would expect that milliliter quantities of apolar solvent would efficiently extract them

from milligram quantities of SWCNTs, based on our physical-chemical understanding of

hydrocarbon sorption [47]. Thus, we hypothesized that a degradation reaction was

consuming some of the low molecular weight compounds during extractions. As noted



previously, both purified and unpurified SWCNTs contain substantial quantities of metals

(Table 3). Reduced metals are able to react with dichloromethane to form chloromethyl

radicals, and such radicals can react with expected components of the TSEM, such as

PAHs [48]. These transformations would result in losses of PAHs in halogenated solvent

extractions.

To test this hypothesis, we compared the recovery of three added PAH internal

standards (dio-acenaphthene, m-terphenyl, dl2-perylene) with toluene versus DCM

extractions of the SWCNTs. DCM extractions of SWCNTs showed poor recoveries for

all three internal standards (Figure 4). In contrast, the toluene extractions were very

efficient (96± 8% to 114± 8%) for dio-acenaphthene and m-terphenyl from all SWCNTs,

and the d12-perylene was also recovered better by the toluene. Interestingly, DCM

extractions of purified SWCNTs showed markedly worse recoveries of m-terphenyl and

d12-perylene than DCM extractions of unpurified SWCNTs. Purification processes

typically remove the amorphous carbon coating of the SWCNT-associated metal catalysts

[12], and while decreasing the overall metal abundance, purification could increase the

effective surface area of available metal catalyst. The poor internal standard recoveries in

purified SWCNT-DCM extracts are consistent with degradation of PAHs by radicals

generated via metal-halogenated solvent reaction. These data suggested that metals are

not "inaccessible to the outside environment," [2] as some have suggested, but rather, the

metals are available to participate in reactions.

Given the difficulty of removing metal catalysts from SWCNTs with 100% efficiency

(Table 3) and the apparent increase in metal reactivity with SWCNT purification (Figure

4), manufacturers and users must consider the effect of metal catalysts in their products.

For example, the metal content of SWCNTs designed to deliver pharmaceuticals to cell

targets [49] will influence the lifetime of the drug in the body. Additionally, the presence

of reactive metals will almost certainly influence the toxicity of the nanomaterial [10, 20,

21]. SWCNTs released to the environment could also react with halogenated

contaminants, generating radical species and degradation products with elevated toxicity

[50, 51]. For example, zero-valent metals are used to remediate chlorinated ethenes via

reductive dehalogenation to produce toxic vinyl chloride [50]. Furthermore, such

reactions result in oxidation of the metal catalyst, which will alter the solubility of the



metal, the SWCNT's ability to carry and dissipate charge [18], and the charging of the

nanoparticle surface. Consequently, risk assessment models must consider the presence

of the reactive metal, and we cannot continue to ignore the presence of catalytic

impurities in manufactured nanomaterials.

Table 5. Mass of solvent-extractable material from SWCNTs
SWCNT supplier Total solvent extractable material (TSEM)

DCM extraction Toluene extraction
GCa-amenable mass b GC-amenable mass b

(ug (g SWCNT) -') (ug (g SWCNT) -1)

SES 0.23 ± 0.03 0.16 ± 0.03
CSI 0.13 + 0.01 0.20 ±0.03
CLex 0.052 ± 0.002 0.05 ± 0.01
MER d dMER---- ----
Helix 1.2 ± 0.8 23.6 0.7
ManX 0.25 + 0.05 8.2 + 0.3
NanoAm 0.8 ± 0.1 13 3
Nanocs 0.3 + 0.1 d

) SWPurified 0.11 + 0.02 2.23 + 0.09
SWIntermed. 0.07 + 0.02 2.93 + 0.02
CNI 0.8 + 0.3 49.2 + 0.1
aGC = gas chromatography. "Mass determined by integrating total ion
chromatogram and applying the response factor for pyrene. CMass determined by
moving wire-isotope ratio mass spectrometry. dSample not analyzed.
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.0 scale (fraction recovered = 1).

. 0.4 Recoveries are reported relative
to the SWCNT-free controls

0.2 ("no SWCNTs"), and error bars
represent one standard deviation

0. . . . on duplicate analyses.



Solvent-extractable polycyclic aromatic hydrocarbons. SWCNTs are formed at

elevated temperatures from reactive carbon species. PAHs share this formation

mechanism, and we hypothesized that PAHs would be co-formed during SWCNT

synthesis [49]. Based on the effectiveness of our toluene extractions for the low-

molecular-weight (LMW)-PAHs (<200 amu), we determined the abundance and identity

of such PAHs for the different SWCNT samples (Table 6). All samples contained

naphthalene (0.035 ± 0.002 to 112 ± 4 ug (mg SWCNT)-'), and some carried additional

PAHs (CSI, Helix, ManX, Nanocs, SWPurified, NanoAm). CLex and CNI contained a

full suite of PAHs, including benzo[b]fluoranthene (0.07 ± 0.03 and 0.28 ± 0.01 ug (g

SWCNT) -', respectively). Since the isotopic analyses indicated that the majority of

SWCNT-associated hydrocarbons were derived from the environment rather than the

SWCNT synthesis (Figure 4), the same may be true of the PAHs. Naphthalene and

phenanthrene are present in many of the extracts, and they often appear in the greatest

abundance. These compounds are common air contaminants, and we suspect that the

PAH composition reported here is largely a function of the lifetime of the SWCNT

sample (e.g., quality of air and carbonaceous materials to which it was exposed during

manufacturer, transport, storage, and use). These results suggest that LMW-PAHs only

contribute a small fraction of the amorphous material associated with SWCNTs.



Table 6. Polycyclic aromatic hydrocarbons extracted from SWCNTs using toluene (unless otherwise noted).

(D ZZZ

SWCNT g

supplier 2 -

SES 9.8 ± 0.6 nda nd nd nd nd nd nd

CSI 2.3 ± 0.1 nd nd nd 0.31 ± 0.08 nd nd nd

CLex 52 ± 7 10.0 ± 0.5 2.9 ± 0.3 2.2 ± 0.4 7.8 ± 0.3 1.01 ± 0.05 5.4 0.1 0.73 ± 0.07
MERb

Helix 9 ± 4 0.90 ± 0.02 nd nd 2.0 ± 0.2 nd 0.89 ± 0.04 nd

ManX 1.1 ± 0.1 nd nd 0.25 ± 0.01 1.1 ± 0.1 0.52 ± 0.09 nd nd

Nanocsc 4.5 ± 0.6 nd 2.6 ± 0.3 nd nd nd nd nd
Q NanoAm 4.0 ± 0.4 nd 0.46 ± 0.05 0.70 ± 0.08 2.2 ± 0.2 nd nd nd

Y SWPurified 0.39 ± 0.05 nd nd nd 0.22 ± 0.04 nd 0.32 ± 0.04 nd
SWIntermed. 0.035 ± 0.002 nd nd nd nd nd nd nd

CNI 112 ± 4 7.8 ± 0.6 2.6 ± 0.2 1.4 ± 0.1 12.3 ± 0.5 3.12 ± 0.07 6.2 ± 0.1 9.1 ± 0.3
and = not detected above detection limit. Detection limits (Table 2) varied between samples due to differences in the initial
SWCNT mass of the sample and reconstructed ion chromatogram background noise. In addition to the compounds given in the
table, samples were analyzed for benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[e]pyrene,
benzo[a]pyrene, perylene, indeno[1,2,3-c,d]pyrene, dibenz[a,h]anthracene, and benzo[g,h,i]perylene. bSample was not analyzed.
cResults reported were obtained from a DCM extraction, as the toluene extraction sample was lost during processing. DCM
recoveries of do-acenaphthene varied between 74 and 100%, and we expect these naphthalene and acenaphthalene abundances
reflect their presence in the sample. Higher molecular weight PAHs (>202 amu) may have been lost due to DCM-metal catalyst
interactions (Figure 4) and present in greater abundance than reported here.



IMPLICATIONS AND CONCLUSIONS

With an industry-projected doubling rate of more than once per year [52], the

anticipated growth of the carbon nanotube industry is nearly unprecedented, and

SWCNTs will soon be in broad use by the general public in a variety of different

applications. These materials will appear in the environment in the near future, and there

is an urgent need to develop methods to study SWCNT transport [4]. These data provide

metal-to-metal, metal-to-carbon, and carbon isotopic information that can be used,

independently or in concert, as forensic tools to identify SWCNTs in natural and artificial

samples.

In addition, we have suggested that SWCNTs, associated metals, and solvents can

react to degrade aromatic hydrocarbons. This reactivity may be useful for chemical

transformations. However, unintended reactions will affect the surface charge and

conductivity of the nanomaterial, and thus the SWCNTs' suitability for a particular

application.

Commercially available SWCNTs are highly diverse materials whose character and

constituents vary with the production scheme and post-fabrication treatment. During

these early stages of SWCNT research, investigators and regulators should be aware that

there are significant differences in materials provided by different manufacturers,

especially when cross-comparing and interpreting toxicological studies. Likewise, newly

emerging nanomaterial risk assessments [53] must explicitly acknowledge these

differences, as opposed to modeling the risk of a generic (i.e., over-simplified) SWCNT.

Different SWCNTs will act as carriers of diverse metals and hydrocarbons to the

environment. Furthermore, as both of these impurity classes affect the surface properties

and reactivity of the SWCNTs, they will influence the overall environmental fate of the

nanomaterials. Perhaps most importantly, SWCNT manufacturers can weigh the

SWCNT-specific risk assessments and design synthetic processes to achieve

environmental objectives while simultaneously considering performance and

manufacturing cost. If we fail to use chemical understanding to strategically avoid

unintended environmental consequences, the nanomaterial revolution may come to a halt

with deteriorated public opinion, product bans, and expensive clean up efforts, such as

those associated with other industrially important materials of the past (e.g., asbestos).
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SUPPORTING INFORMATION

(Note: This information did not appear
Nanotechnology).

in or with the original manuscript published by

Figure S1. Carbon Nanotech Inc. (HiPCO ® CNTs) in various organic solvents in 60-mL
glass vials. Roughly equivalent volumes of dry CNTs were added to each vial that
contained organic solvent. (Solvent was added to the vial first, then CNTs were
introduced to minimize release of the CNTs into the laboratory air). These photographs
were taken after CNTs had settled for over 30 minutes. If the vials were agitated,
differences between the organic solvent CNT suspensions were indiscernible to the eye.
Ethyl acetate was chosen as a carrier solvent, as it had been used historically as a vector
for black carbon in our laboratory. Prior to use, the ethyl acetate suspension was
vigorously agitated by hand to break up agglomerated CNT particles. For a sense of
scale, the approximate diameter of the each vial in this photo is -2.5 cm.
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CHAPTER 3:
ANALYSIS OF SINGLE-WALLED CARBON NANOTUBES

IN ENVIRONMENTAL MATRICES
BY THERMOGRAVIMETRY-MASS SPECTROMETRY

By

Desiree L. Plata



ABSTRACT

Single-walled carbon nanotube (SWCNT) production is expanding and releases of

SWCNTs to the environment are expected to increase accordingly. In spite of this rapid

development, there are no established methods with which to detect or quantify SWCNTs

in environmental matrices (e.g., air or sediment). Thus, there is no way to gauge

biological exposure to, or regulate the release of, these novel nanomaterials. SWCNTs

have relatively high thermal stabilities, similar to black carbon (BC), and we investigated

the use of thermal techniques to isolate and quantify SWCNTs. Test materials included

ten types of commercially available SWCNTs, C60 fullerene, multi-walled CNTs,

representative biological molecules, BC soot, natural coastal sediments, and SWCNT-

amended sediments. SWCNTs exhibited a broad range in degradation temperatures that

varied with the metal catalyst, and thermal analytical methods may require SWCNT-type

specific parameters. To improve identification capabilities of a select SWCNT, gases

evolved during thermal treatments were measured by mass spectrometry. SWCNTs

produced diagnostic ion ratios. Current detection limits are on the order of 10 ugswcNT

per sample, and this is set by interfering ions that arise from the instrument's non-airtight

design and co-degrading natural materials. While future instrumental modifications may

improve this limitation, the current method is sufficient for quantifying SWCNTs in

laboratories and industrial sites where SWCNTs are handled, but not adequate for

environmental levels of SWCNTs (which we estimate to be less than 10 PgswcNT g

Isediment). Nevertheless, the method is able to distinguish between natural (e.g., BC soot)

and engineered (e.g., SWCNTs) nanoparticles. Thus, in the case of some SWCNTs, we

present a low-cost, high-throughput approach to ensure that the materials are not released

from expected point sources at unacceptable levels.



INTRODUCTION

Carbon nanotubes (CNTs) have exceptional electrical, mechanical, and thermal

properties. They have generated an impressive list of potential and demonstrated

applications'-3; and the CNT industry is growing at a remarkable rate, doubling nearly

every two years 4. Although industrially promising, preliminary toxicological studies

suggest that powdered CNTs are cytotoxic to alveolar macrophages 5' 6, may result in pre-

cancerous, pulmonary granulomas 7, and adversely affect the life cycle development of

marine organisms that play a critical role in nutrient cycling in the upper ocean8.

Historically, no industrially important chemical has been synthesized, used, and disposed

of without some release to the environment (e.g., polycholorinated biphenyls (PCBs),

methyl-tert butyl ether (MTBE), and perfluorooctanoic acids (PFOAs)). Thus, we expect

a growth in environmental levels of CNTs with the growth of the nanotube industry.

Present CNT analytic techniques are limited to electron microscopy (EM) and

spectroscopic analyses of small (mg), relatively pure samples (i.e., as-produced SWCNTs

that are not mixed with other components). There are no established procedures with

which to measure CNTs in complex environmental matrices. Consequently, there is no

way to monitor the release of industrially synthesized CNTs or gauge their transport,

accumulation, and ultimate biological exposure levels.

Successful isolation and detection of CNTs from environmental mixtures (e.g.,

air, water, soil, or sediment) will ultimately rely on unique chemical or physical

properties of the CNTs that are distinct from other ubiquitous carbon forms. CNTs are

cylinders of sp2-hybridized carbon atoms arranged in repeating, aromatic hexagonal

rings. While variations in synthetic approaches and post-fabrication handling result in a

diverse class of materials9, the majority of CNTs will exist as agglomerated, hydrophobic

particles'o. Black carbon soot (BC soot) also forms clusters of hydrophobic

nanoparticles, and its aromatic carbon skeleton is chemically similar to that of CNTs.

Furthermore, these two materials have similar optical and physical properties (e.g., black

color, hydrophobicity, and thermal stability). Methods to measure BC in environmental

samples have been under development for approximately 30 years", and a recent



laboratory inter-comparison 12 revealed that thermal oxidation techniques (e.g.,

chemothermal oxidation at 3750C (CTO-375)13) successfully isolate BC soot from other

BC materials, such as wood char. Thus, particles with similar chemical structures and

physical properties can be separated and quantified using thermal analysis. Thermal

methods (e.g, thermogravimetric analysis (TGA)) are also used to determine the purity of

commercial carbon nanotubes, which typically contain several forms of carbon (e.g.,

single-walled CNTs (SWCNTs), multi-walled CNTs (MWCNTs), "multi-shell" carbon' 4,

fullerenes, and amorphous carbon), as well as residual metal catalysts, and there is

promise that similar techniques may be used to isolate CNTs in environmental samples.

To establish the feasibility and limitations of such analyses for the detection of

CNTs in the environment, we determined the thermal stability of several commercially

available SWCNT powders, MWCNTs, fullerenes, representative biological materials

(e.g., bovine serum albumin and methylcellulose), and representative environmental

mixtures (e.g., urban dust, diesel particulate matter, marine sediments, and SWCNT-

amended sediments). To improve identification capabilities and potentially reduce

detection limits, we monitored evolved gases during temperature-programmed oxidations

(TPO) and hydrogen-assisted thermal degradations (HATD) by online mass spectrometry

(MS). Using unique mass loss temperatures and evolved gases, we evaluated the

limitations and promise of TGA-MS as a tool to separate and quantify several forms of

natural and engineered organic matter.

EXPERIMENTAL METHODS

Samples. SWCNT powders were purchased from multiple manufacturers

between September 2005 and March 2006 and were characterized as described in Plata et

al9. SWCNT samples contained variable quantities and types of metal catalysts, as

outlined in Table 1. Non-SWCNT materials included potentially interfering materials

(fullerenes (C60, Materials and Electrochemical Research Corporation) and MWCNTs

(Nanocyl)), as well a non-interfering representative compounds (methylcellulose). Un-



amended environmental matrices and mixtures included a sediment sample collected

from Dorchester Bay, Massachusetts (as described in Accardi-Dey and Gschwend' 5),

urban dust (National Institute of Standards and Technology Standard Reference Material

(NIST SRM) 1649a), diesel particulate matter (NIST SRM 1650), and chestnut wood

char (as described in Hammes et al.12).

SWCNT-amended sediments were prepared by thoroughly mixing a known mass

of SouthWest Nanotechnologies Purified (SWP) SWCNTs to a known mass of pre-

sieved, ground, and homogenized Dorchester Bay sediment (DBS). Less-concentrated

sediment samples were prepared by serial dilutions of this initial stock with un-amended

DBS.

Table 1. Single-walled carbon nanotubes used in this study
SWCNT supplier namea  Symbolb Metal content c (wt %)

SES Research SES 0.47 Fe, 2.8 Co, 0.69 Mo
Carbon Solutions Inc. CSI 22.4 Ni, 6.0 Y
CarboLex, Inc. CLex 24.3 Ni, 5.0 Y
Materials & Electrochemical MER 3.53 Ni, 10.5 Co

Research Corp.
Helix Material Solutions Helix 15.3 Ni, 5.3 Y
Manufacturer Xd ManX 1.21 Fe, 0.08 Mo
Nanocs Inc. Nanocs 20.3 Ni, 4.2 Y
Nanostructured & Amorphous NanoAm 0.24 Fe, 2.87 Co, 1.00 Mo

Materials
SouthWest NanoTechnologies SWP 0.07 Fe, 4.1 Co, 6.9 Mo

Inc. (SWeNT, Inc.)
Carbon Nanotechnologies Inc. CNI 22 Fe
aCompanies that manufactured single-walled carbon nanotubes (SWCNTs) for
commercial sale in the United States during September 2005 and March 2006 are
listed. bSymbols used in the tables, figures, and text of this paper do not represent
notations employed by the manufacturers. CAs determined in Plata et al.9

dManufacturer closed on April 26, 2006 and requested that we protect the identity of
the business name.

Thermogravimetric analysis-mass spectrometry. TPOs and HATDs were

performed using a TA Instruments Q50 thermogravimetric analyzer (TGA) interfaced to

a Pfeiffer ThermoStar quadrupole mass spectrometer (MS; heated (2000C) quartz



capillary transfer line, CH-TRON detector with secondary electron multiplier; 1-300 amu

possible scan range; sampling rate of 2 standard cubic centimeters per minute). Sample

sizes were between 3-3.3 mg for relatively pure samples (i.e., non-sedimentary material)

and between 40-44 mg for environmental matrices (e.g., sediments and soils). Oxygen-

assisted degradations in dry air (100 mL min- ) were heated to 800C, held for 10 min (to

stabilize the temperature), ramped at 50C min -' to 9000 C, and held for 60 min. HATDs in

ultra high purity hydrogen (10 mL min- ) were heated to 80 0C, held for 60 min, ramped at

5C min -' to 9000C, and held for 60 min. Ion currents were collected for 60 seconds and

scanned in sequence for m/z 2, 4, 12, 14, 16, 18, and 20-79. Between runs, platinum

sample pans were washed with 25 % (v/v) HN0 3 (trace metal grade), rinsed with copious

Milli-Q water (18 MQ), and then combusted at 9000C in air for at least 1 hour.

Data processing. Mass spectral data was normalized and/or background

subtracted as described below, depending on particular ion interferences that arise from

choice of carrier gas.

Correction for TPOs: To account for instrumental drift between each sample

analysis, each ion ratio (X sampleY sample, e.g., 18sample/ 4 4 sample) was normalized to an

arbitrarily selected standard run using the ratio of the average ion current m/z 28 ( 2 8sample)

in the sample to the average ion current m/z 28 in the standard (2 8standard) (Eqn 1).

44sample samplee 
28

4 4 saple corrected 4 4 ame 28standard (1)

Correction for HA TDs: Our particular TGA-MS was not designed to be airtight

(although airtight models are available), and small air leaks in the system gave relatively

high background signals due to N2, 02, and Ar (ion currents 28, 32, 40, respectively).

The N2 and 02 interferences were not improved by placing the TGA-MS in a sealed Ar-

filled chamber. Ethene (ion current m/z 28) is an important mass formed by carbon

nanotube (CNT) reaction with H2, and to lower interference from N2, the ion current m/z



28 for each sample was background subtracted. The correction was performed by

subtracting the average ion current m/z 28 during a "blank" segment (no sample

degradation) of each analysis ( 2 8 background), normalized for signal drift using ion current

m/z 40, from the ion current m/z 28 during the rest of the thermal program ((2 8sampe) Eqn

2).

2 8 sample,subtraced =28saP -28 backgrod ( (2)

Ion ratios were then normalized as described by Eqn 1.

Blanks and precision of mass and temperature. Several materials that were

expected to be free of organic carbon were analyzed. These included pre-combusted and

ground (to a fine, sediment-like powder) Ottawa quartz sand, pre-combusted quartz fiber

filters (QFFs), and pre-combusted and acid-washed platinum sample pans. The oxidation

temperature was reproducible to within 0.1 C, and the mass was precise to 0.01 mg.

RESULTS AND DISCUSSION
When subjected to an increasing temperature program in a reactive atmosphere,

carbonaceous materials lose mass at characteristic (relative) temperatures, which are

reflective of their structures and potentially other factors (e.g., metals mixed with the

material). Each mass loss event ("peaks" in a plot of differentiated mass loss) can then

be attributed to a distinct phase in the sample.

TPO ofSWCNTs and natural organic materials. SWCNTs exhibited a diverse

range of oxidative temperatures, from 3750C to 5400C, and varying proportions of

carbonaceous impurities (Figure 1). The majority of SWCNT powders produced two

oxidation peaks: (1) a lower thermal stability signal that is conventionally presumed to be

due to the oxidation of amorphous carbon and (2) a higher thermal stability signal that is

conventionally presumed to be due to the oxidation of SWCNTs. In some cases (e.g.,



SES), contaminant phases were not amorphous carbon, but instead, higher thermal

stability material, such as MWCNTs or multi-shell carbon (i.e., soot). In other cases

(e.g., Nano Am., MER, and potentially CNI and ManX), only one phase was readily

apparent in the thermogram, and this could be the result of either very pure SWCNTs or

the co-oxidation of multiple phases. All mass losses were due to the oxidation of

carbonaceous material (as confirmed by MS and discussed later), except in the case of the

volatilization of molybdenum oxides (around 690'C) from the SWP sample.

Several factors can influence the apparent thermal stability of a material, including the

heating rate, oxygen supply, and oxygen's access to the carbon surfaces (e.g., surface

area and material packing'" 7 ). The temperature program, sample size, and bulk oxygen

supply were well controlled in these experiments, and the observed differences in

SWCNT oxidation temperatures must be due to some intrinsic property (or properties) of

the SWCNTs. Several researchers'4,1 8 have noted that the SWCNT oxidation temperature

is inversely related to the total metal content, suggesting that metals may catalyze the

oxidation. Presumably, this catalysis results from the formation of metal oxides that

generate concentrated microenvironments of oxygen in close proximity to the SWCNT

lattice 19. However, it is also possible that different catalytic metals may produce

SWCNTs with distinct properties (e.g., average surface area of SWCNTs) that influence

the oxidation temperatures of the nanotube products. While there was a very loose

relationship with metal content and the oxidation temperature (in the data reported here, n

= 10, correlation coefficient of 0.28), the type of metal mixture was critically important to

the oxidation temperature of the SWCNTs (Figure 2). For example, all Ni/Y catalyzed

SWCNTs had maximum thermal oxidation temperatures around 4200C (413 - 4280C,

excluding the CSI sample, which has a relatively complex thermogram), while Fe/Co/Mo

catalyzed samples exhibited much higher thermal stabilities (between 510 and 5400C).

Furthermore, in spite of a large spread in Ni content (range of 10 wt %) of Ni/Y catalyzed

samples, the oxidation temperatures were fairly consistent between samples. Thus, metal

concentration did not significantly impact the oxidation temperature of SWCNTs. To our

knowledge, there has been no systematic study of metal catalyzed oxidation of
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recalcitrant carbon forms. However, NiO is known to be an efficient oxidation catalyst ,2 0

and others have shown that different transition metals have distinct effects on the

degradation of test materials (e.g., S20 8
2- -mediated metal catalyzed oxidation of peptides

(with Fe, Co, Ni, or Mn) 21 or the oxidation of atmospheric sulfur by Mn or Fe22).

While maximum oxidation temperatures are relatively consistent between samples

with similar catalytic metal composition, the wide distribution in SWCNT thermal

stability across catalyst types demonstrates that no single thermal oxidation technique

will quantify all SWCNTs. Indeed, the need for "compound-specific" analytical

techniques exists for many anthropogenic pollutants (e.g., PCB congeners have distinct

gas chromatographic retention times and/or molecular ions). Knowing the specific type

of SWCNT likely to be present in a field or lab sample (e.g., Ni- vs. Co- catalyzed), one

could tailor the analytical method to isolate and quantify the desired variety of SWCNTs.

Here, we will focus on developing techniques to isolate the SWP nanotubes, which have

been selected as a standard material for SWCNTs by NISTa. This approach requires that

there is minimal overlap in the thermal stability of SWP SWCNTs and other natural

materials.

Several representative "natural" materials were chosen, including samples that

contain no BC or SWCNT (i.e., a carbohydrate, methylcellulose, and a protein, bovine

serum albumin) and samples that contain different types of BC (i.e., wood char and diesel

particulate matter) (Figure 3). Methylcellulose had a low thermal stability that did not

interfere with SWP, which is promising for the analysis of CNTs on cellulose filters.

Bovine serum albumin (BSA), on the other hand, had a broad oxidation range that

interfered with SWP. Molecules with high nitrogen contents have a tendency to char,

forming higher stability materials during the thermal treatment. Visible charring was

evident following BSA oxidation, and we expect that environmental matrices with high

protein contents will suffer from significant interference. These may be overcome with

a Note that this designation was made in July 2008, whereas our SWP nanotubes were
purchased in January 2007. SWeNT, Inc. may have modified their production process
between these two dates.



tandem analyses (e.g., TGA-MS) that enable the distinction between evolved gases due to

char-derived BC and native BC in the sample. Natural BC in a sample matrix may exist

in several forms, including wood char or BC soot. Wood char had a lower thermal

stability than SWP, likely due to greater oxygen access resulting from the porous

structure of char, yet there was slight interference with the oxidation onset of the

SWCNTs. BC soot, on the other hand, was thermally distinct from SWP. The higher

stability of the former is likely due to the multi-layer structure of aromatic sheets present

in BC soot spheres23, which limits the oxygen access to the dense interior of the

nanoparticles and increases their ultimate oxidation temperature. In contrast, SWCNTs

are made up of hollow cylinders that have higher surface-area-to-carbon ratios. This

structural difference between BC and SWCNTs may provide an opportunity to

distinguish the two materials using thermal techniques.
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Figure 2. Temperature of maximum SWCNT mass loss rate as a function of total metal
and type of metal. The metal content of each SWCNT powder is detailed in Table 1.
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TPO of complex environmental matrices. In more complex environmental

matrices, a broad range of material exists, and full resolution of the diverse carbon phases

may not be possible using thermal methods alone. Aerosol concentrates of urban dust

had significant mass loss throughout the thermogram to 6000C, co-oxidizing with most

SWCNTs (Figure 3b). These interferences likely arose from the presence of recalcitrant

chemicals and particles derived from incomplete combustion processes in urban

environments, such as automobile exhaust and industrial emissions. Sediment collected

from Dorchester Bay, MA had a thermal distribution consistent with the presence of less

combustion-derived, high-thermal stability material (Figure 3c). As a result, there was

less interference with SWP SWCNTs. Nevertheless, the co-oxidizing phases were non-

negligible, and an additional dimension of information, chemical composition, was

sought to improve detection limits of SWCNTs in environmental mixtures.

TPO-MS: Unique ion ratios from SWCNTs. Using mass spectral analysis of the

gases evolved during the thermal program, we identified important masses associated

with each compound class. An expected combustion product, CO 2 (m/z 44), was

produced from all test materials (Supporting Information). (Similarly, CO (m/z 28) was

evident when the carrier gas was a He/0 2 (80: 20 % v/v) mixture, as opposed to dry air,

which has an interfering signal due to N2 in air (m/z 28)). The oxidation of

methylcellulose and BSA also formed H20 (m/z 18) and either NO and/or CH20 (m/z

30). This is consistent with the appreciable H, 0, and N contents of these materials. In

contrast, oxidation of BC soot and SWCNTs produced no measurable H20, NO, or

CH 20. Historically, geochemists have taken advantage of these differences in chemical

structure to identify distinct materials in complex mixtures. For example, BC soot, with

very few functional groups, has O/C and H/C ratios below 0.3, whereas most chars have

O/C ratios from 0.3-0.5 and H/C ratios from 0.3-0.7524. Thus, the two closely related

materials can be distinguished with elemental analysis, and it is possible that SWCNT

and BC may be identified by analogous means.

The variability in H-to-C and O-to-C ratios in natural materials can be represented

in a van Krevelen diagram (a plot of H/C ratios vs. O/C ratios, originally employed for



the study of coals), where materials extremely depleted in H and O are considered BC or

soot-like. Using a similar approach, we invetigated the mass spectral signals evolved

during the oxidation of native coastal sediments and SWCNT-amended sediments.

Depletions in the ion ratios 18/44 (i.e., H20/CO2) and 30/44 (i.e., CH20 or NO/CO 2)

were observed and mapped in van Krevelen space (Figure 4). As expected, pure

SWCNTs had extremely low levels of ion ratios 18/44 and 30/44 relative to native

sediments. As the SWCNT content of the amended sediment increased, there were

measurable reductions in ion ratios 18/44 and 30/44, which were detectable at

concentrations as low as 30 UgSWCNT g1 sediment.

While these detection limits are sufficient for many laboratory-based experiments

and indoor air concentrates where SWCNTs are being handled or produced (50 ug m-3) 25

they are not sensitive enough to measure SWCNTs in environmental samples. Natural

abundances of SWCNTs are estimated to be on the order of pg g sediment, pg m-3air, and

less than one pg L-lwater presently26, six orders of magnitude below current TGA-MA

detection capabilities. The current detection limit for SWCNTs is controlled by baseline

CO 2 that is derived from natural sedimentary organic matter and CO 2 leaks. Attempts to

circumvent this enhanced background signal were unsuccessful. First, we used an altered

thermal programs designed to degrade non-SWCNT material while preserving SWCNTs

(e.g., rapid heating to and prolonged stasis at a temperature close to, but below, SWCNT

degradation temperature), but this did not reduce the interference (Supporting

Information). Second, we hypothesized that a multi-dimension approach could offer

improved detection limits (e.g., TGA-isotope ratio MS (TGA-IRMS)). Plata et al.9

demonstrated that SWP SWCNTs have a depleted 13C signature (613CsP = - 49.8 o/oo)

relative to most marine sedimentary organic matter (61 3 CDorchester Bay Sediment = - 20.4 o/oo

(Supporting Information)). Evolved gases from thermal analysis could be cryogenically
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focused during the relevant thermal regime and subsequently analyzed (either off or

online) by IRMS. The isotopic content of the isolated material would reflect

contributions of background organic matter in the sediment as well as the SWCNTs, and

the proportion of SWCNTs could be constructed mathematically. Such a calculation

would require some knowledge of the 13C content of the organic material in the sediment

that remained at high temperature. This stable material is typically petrogenic or

pyrogenic (petroleum or fire-derived, respectively) in origin, with 613C values between -

25 - -270/oo 27 (Supporting Information). Using this assumption and considering that

interfering material could be up to 0.1% of the mass of the original sediment (based on

typical BC levels in coastal sediments)'3 , we determined that the detection limit of such

an approach would be approximately 100 ugswcNT g- sediment; no improvement on the

current tandem analysis (TGA-MS).

As CO 2 is a generic product of oxidation of organic carbon, it will likely present a

barrier to the detection of a trace contaminant in any sample matrix (i.e., air, water,

sediment, or soil). Therefore, we investigated the use of an alternate reactive gas, H2

instead of O2, to potentially produce SWCNT-specific masses.

HA TD of SWCNTs, natural organic materials, and complex environmental

matrices. Heating SWCNTs in pure hydrogen, rather than dry air, increased the

maximum degradation temperature of all SWCNTs (Figure 5). In some cases, the thermal

program did not reach high enough temperatures to degrade the SWCNTs (ManX, CLex)

or associated contaminants (SES), in spite of a prolonged exposure (60 min) to H2 at

9000C. In addition to shifts in the thermal stability, there was increased resolution of

previously co-oxidizing phases in some samples (MER, which is known to contain

fullerenes and MWCNTs, and NanoAm.). Phases that were not observed in TPOs

became apparent in HATDs, and this demonstrates that the use of TPO alone is not

sufficient to determine the purity of SWCNTs. TPO is often used exclusively to

determine the quantity of carbonaceous and metallic impurities in SWCNTs in industry28,

materials engineering' 8, and even environmental chemistry19 (where low thermal stability

peaks are considered amorphous carbon and the mass remaining at the end of the TPO is
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considered to be metal oxide. While the approach appears to be valid in some cases (e.g.,

for the CNI sample), TPO does not necessarily separate all carbon-based SWCNT co-

products.

In addition to offering increased phase resolution in SWCNT powders, HATD

reduces interferences from natural materials (Figure 6). Methylcellulose and BSA's

principle mass losses occur below 350 and 450'C, respectively, well below SWCNT

degradation temperatures. As in TPO, BSA charred into high thermal stability

material(s), and 20% of the initial mass remained after the HATD. This material was at

least as stable as BC soot, which did not degrade below 9000C. Diesel particulate matter

only experienced a very small mass loss during HATD, and this was due to low thermal

stability organic compounds associated with the BC particles. As SWP SWCNTs

degraded between 750 and 9000C, they can be separated from BC soot using HATD.

However, interferences from complex environmental mixtures persisted. In the case of

urban dust, mass losses overlapped with those of SWP SWCNTs to a greater extent than

under TPO. Coastal sediments had almost identical co-degradation in the thermal region

of SWP degradation during both TPO and HATD. In order to overcome this limitation,

diagnostic masses from SWCNT degradation were sought to identify the materials in

natural environments.

HATD-MS: Unique ion ratios from SWCNTs. The mass spectra of evolved

gases during HATD showed that all test materials produced ethene (m/z 28) (Supporting

Information). Methylcellulose and BSA also produced H20 (m/z 18), reflecting the

enriched oxygen content of these materials relative to SWCNTs and MWCNTs, which

produced no detectable H20. There were few other diagnostic masses that were produced

by the HATD of the test materials, but SWCNTs degraded at rates that were sufficient to

draw down the signal from the reactant gas, H2 (m/z 2). This consumption of H2 and

depletion of H20 was detectable in SWCNT-amended sediments down to (at least) 100

ugSWCNT g- sediment (Figure 7).
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The detection limit in the HATDs was set by either (1) co-degradation of

sedimentary phases or (2) interference in the mass 28 signal due to an air leak in the

TGA-MS, which was not designed to be airtight (Figure 8). The latter limitation could

be overcome by a modified instrument design where the TGA furnace and associated

flush lines were air tight and any leaks in the mass spectrometer were addressed. Very

sensitive mass spectrometers (with detection limits in the picogram range) exist, and the

use of such an instrument over this residual gas analyzer (RGA) MS (whose detection

limit is on the order of micrograms) would automatically improve the sensitivity of the

analysis. In addition, the use of a larger sample size may increase the signal due to

ethene, driving it above the interfering N2 signal. Currently, the volume of the sample

pan (300 uL) in the TA Instruments Q50 TGA limits the deliverable sample mass

(approximately 45-60 mg of sediment, roughly 3-10 mg of SWCNTs, depending on their

density), as the balance is capable of measuring masses up to 200 mg. Modifications in

the pan shape and size and/or the balance mechanism may allow for larger input sample

sizes. However, based on a pg g- sediment SWCNT content (estimated by Plata et al.26),

1,000 kg of sediment would be needed to overcome the 10 ug sensitivity of the TGA-MS.

Clearly, substantial improvements in the instrumentation (e.g., reduced air leaks and

increased MS sensitivity) are needed, as balance modifications are unreasonable at

present.

Current applications of TGA-MS to detect SWCNTs in the environment. In

spite of the limited sensitivity of this method, it can successfully distinguish between

natural and engineered nanoparticles (i.e., BC soot and SWCNTs). Until now, this has

been a significant challenge and presented an impasse to the quantification of engineered

nanoparticle release from industrial and research-scale manufacturing sites. For example,

several groups25,30,3 1 have relied on light-scattering techniques to measure the release of

nanoparticles during CNT production or post-fabrication handling. In all cases, 30-50 nm

particles were detected, but it was unclear whether these were BC soot or CNTs.

Occasionally, EM is used to distinguish the two materials, but this method is not

quantitative and is expensive and labor-intensive. Using TGA-MS, the particles could be
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collected and subjected to HATD, where SWCNTs would be degraded and quantified,

while BC soot would be preserved for subsequent quantification (e.g., by elemental

analysis). Thus, thermal analysis provides a low-cost, high-throughput method for the

isolation and quantification of carbon phases that are otherwise difficult to distinguish.

Given the simplicity of the approach, it is reasonable to expect that all interested parties

(i.e., industry, government, and academic researchers) perform the analysis where there is

potential for SWCNT release. This would allow industries and regulatory agencies to put

an upper bound on sources of SWCNTs to the environment (e.g., 100 ugswcNT g 1 sample).

If the detection limit is exceeded, measures can be taken to prevent further release and

potential ecological damage. At this early stage of development, these efforts are critical

to preserving human and environmental health, as well as the public's confidence in the

growing nanomaterials industry.
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Figure 8. The sample-derived C2H4 signal can be visualized as a change in the ion
current ratio 28/40 from its baseline, which is due to an air leak in the TGA-MS (which is
not designed to be airtight). The 28/40 current in air is constant, and the C2H4 signal due
to SWCNTs decreases steadily with decreasing SWCNT content of SWCNT-amended
sediments. The background signal of 28 (due to an air leak) in a blank run of pure H2
carrier gas is not substantially different than the signal generated from the degradation of
SWCNT-free sediments. Thus, it may be possible to reduce the current detection limit by
eliminating the air leak in the TGA-MS.
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SUPPORTING INFORMATION

Potential oxidizing power of SWCNT metal catalysts

Table S1. Reduction potentials for various metals present in SWCNT powders.
Half-reaction Reduction potential (EO (V))

Y(III) + 3e- = Y(O) (s) -2.37
Fe(II) + 2e- = Fe(0) (s) -0.44

Co(II) + 2e- = Co(0) (s) -0.28
Ni(II) + 2e- = Ni(0) (s) -0.25

MoO2(s) + 4H+ + 4e = Mo(0) (s) + 2H20 -0.15
Fe(III) + 3e = Fe(0) (s) -0.04

Comparing two-electron transfer reactions, Ni(II) is a superior oxidant compared to both

Co(II) and Fe(II). Thus, from a very simplified perspective (ignoring, for example, metal

abundance and oxygen physisorption processes), one might expect that SWCNTs that

contain Ni(II) will have the lower oxidation temperatures than SWCNTs that contain

Co(II) and Fe(II). Ni-containing CNTs (Ni and Y) did have lower oxidation temperatures

(Tmax,oxidation = 413-4280C) than SWCNTs that contained Fe, Co, and Mo (Tmax,oxidation =

510-5400C) or Fe and Mo alone (Tmax,oxidation = 5050C) (Figure 2). However, Fe(III) and

Mo(IV) are more efficient oxidants than Ni(II), and so SWCNTs that contain Mo(IV) and

Fe(III) might be expected to have lower oxidation temperatures than were observed.

Considering the relatively high thermal stabilities of the Fe/Mo- and Fe/Mo/Co-

containing SWCNTs as compared to the Ni-containing SWCNTs (and ignoring the metal

catalysts' abundances, influence on SWCNT structure, and ability to physisorb oxygen),

one might infer that the Fe and Mo present in the Fe/Mo- and Fe/Mo/Co-containing

SWCNTs is not Fe(III) or Mo(IV). The SWCNT sample that contained purely Fe had a

low oxidation temperature, consistent with the presence of Fe(III) (but note that the mass

of Fe in this sample was very high). Y(III) is expected to be a poor oxidant, but all Ni/Y

samples had low oxidation temperatures, perhaps suggesting that Ni(II) was principally

responsible for the oxidation of Ni-containing SWCNTs.
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Mass spectra of evolved gases from the thermal treatment of standard materials

Data processing. Mass spectral data was normalized and/or background subtracted,

depending on particular ion interferences that arise from choice of carrier gas.

Generating mass spectra for test materials:

For each test material, the spectrum of ions, i, at the peak oxidation temperature

(Yi,maximum,sample) was corrected for the background signal and contributions from

unresolved phases of the test material. We chose the mass spectrum at an oxidation

minimum (trough or valley) preceding or following the peak of interest to represent the

contributions from background and unresolved phases (Yi,minimum,background). To account

for signal drift during the thermal program, the minimum signal was normalized using

ion current 40 (for the pyrolyses) or ion current 28 (for the oxidations) (represented as ion

X in Eqn S ).

Y, ( - Y (Xmaximumsample (Si)
i,sample,corrected Yimaximum, sample Yi minimum background mimum. r (S1)

S Xminimum, background
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Figure S1. Mass spectra of evolved gases from the temperature programmed oxidation
(TPO) of(a) SWeNT Purified SWCNTs, (b) diesel particulate matter (NIST SRM 1650),
(c) methylcellulose, and (d) bovine serum albumin. All spectra were background
subtracted and are shown at the maximum oxidation temperature of the respective test
material.
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MWCNT and C60 thermal stability during TPO and HATD

Figure S2.
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Attempts to reduce interferences in SWCNT oxidation temperature using different
thermal programs.

Figure S4. Sediment and SWCNT-amended sediment were subjected to the following
temperature program in dry air: Ballistic heat to 80oC, 15 min hold, ballistic heat to
2000C, 15 min hold, ballistic heat to 3000C, 30 min hold, ballistic heat to 4250C, 30 min
hold, ballistic heat to 6000C, 300 min hold, ballistic heat to 9000C, 30 min hold. The
differentiated mass loss plot (a) and ion current for mass 44 (CO2) (b) are shown.
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Figure S5. SWCNTs (SWP) and diesel particulate matter (NIST 1650) were subjected to
the following temperature program in dry air: Ballistic heat to 80oC, 15 min hold,
ballistic heat to 2000C, 15 min hold, ballistic heat to 3000C, 30 min hold, ballistic heat to
4250C, 30 min hold, ballistic heat to 6000C, 300 min hold, ballistic heat to 9000C, 30 min
hold. The differentiated mass loss plot (a) and ion current for mass 44 (C0 2) (b) are
shown.

-. 4
" (-SWCNTs
C (a) -diesel particulate matter

200 400
temp (OC)

600 800

-SWCNTs
-diesel particulate matter

"It
N

E
1-

-

.,

Co0k
e- L

100
time (min)

150 200

112

,

%, 0.3

C)V)

E
S0.1

0 C
V

-10
x104;

(b)



Figure S6. SWCNTs (SWP) and diesel particulate matter (NIST 1650) were subjected to
the following temperature program in dry air: Ballistic heat to 80oC, 15 min hold,
ballistic heat to 3750C, 30 min hold, ballistic heat to 5000C, 60 min hold, ballistic heat to
9000C, 15 min hold. The differentiated mass loss plot (a) and ion current for mass 44
(CO2) (b) are shown.
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Figure S7. Sediment and SWCNT-amended sediment were subjected to the following
temperature program in dry air: Ballistic heat to 80oC, 15 min hold, ballistic heat to
3750C, 90 min hold (not this step is 60 minutes longer than in Figure S6 (relatively pure
materials), to allow sufficient time for sedimentary phases to oxidize before the next
ramp step), ballistic heat to 500C, 60 min hold, ballistic heat to 9000C, 15 min hold. The
differentiated mass loss plot (a) and ion current for mass 44 (CO2) (b) are shown.
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Figure S8. Sediment and SWCNT-amended sediment were subjected to the following
temperature program in dry air: Ballistic heat to 80oC, 5 min hold, ramp at 20 OC min - to
250'C, 5 min hold, ramp at 20 oC min -' to 3750C, 60 min hold, ballistic heat to 5000 C, 15
min hold, ballistic heat to 6000C, 15 min hold, ballistic heat to 9000 C, 5 min hold. The
differentiated mass loss plot (a) and ion current for mass 44 (CO2) (b) are shown.
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Stable carbon isotopic content as a tool to quantify SWCNTs in complex mixtures

Figure S9. Stable carbon isotopic content of Dorchester Bay sediment and SWCNT-
amended Dorchester Bay sediment after varying degrees of thermal treatment. Isotopic
content is reported relative to a standard, Vienna Pee Dee Belemnite (VPDB), and the
"delta notation" is defined in Eqn S2. Experimental details are described in the text of
the Supporting Information.
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In this series of experiments, sediments from Dorchester Bay, MA were amended

with HiPCOTM SWCNTs produced by Carbon Nanotech, Inc. (CNI, now Unidym) at 0.2

% dry weight. These SWCNTs are depleted in 13C relative to the sediments (813Cswp = -

52.0 /oo). Native and amended sediments (5 mg samples) were well distributed in the

pan to provide adequate oxygen access, acidified with H2SO 3/H20 (50:50 v/v), and dried

overnight at 600C. Each sample was then oxidized at the test temperature (e.g., 200, 300,

or 4000C) in TOC air (very low carbon content for total organic carbon (TOC) analyzers)

for 1.5 hrs in pre-combusted silver pans in a furnace. Following oxidation, samples were
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enclosed in silver pans and sealed into pre-combusted quartz tubes that contained roughly

2 g of CuO. (Note that the silver pan is critical for the removal of residual sulfur from the

acidification step. Failure to remove sulfur will result the formation of interfering sulfur

oxides). After a 5-hr oxidation at 8000C, quartz tubes were cracked on a vacuum line,

and resultant gases were purified cryogenically, quantified, and analyzed for stable

carbon isotopic content following McNichol et al.'

The isotopic depletion due to the CNI SWCNTs was easily detected at the relatively high

SWCNT proportion of 0.2 % (about a factor of two higher than BC levels in most marine

sediments) (Figure S3). The isotopic content of the sediment changed as more labile

marine organic material (613 Csediment = - 20.4 O/oo) was removed and more recalcitrant,

isotopically depleted material remained. The increase in from b13 Csedient 300 to 4000C

was attributed to the preferential oxidation of the light isotope, which would make the

residual solid carbon enriched with respect to 13C.

Figure S10. Calculated SWCNT content of the SWCNT-amended sediment following
thermal oxidation.
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Using the isotopic content of the native and un-amended sediments, we calculated the

proportion of SWCNTs remaining at each step of the thermal treatment (Eqn S3, wheref

is the mass fraction of each respective material). The CNI SWCNTs began oxidize

between 200 and 300C and were largely degraded by 375C. This suggests that CNI

SWCNTs will not be quantified as BC by traditional methods that define BC as material

that survives a 24-hr oxidation at 3750 C in air (CTO-375 (Gustafsson & Gschwend)). A

similar approach could be used on gases evolved from thermal treatments by TGA, but

assumptions would have to be made about the initial, SWCNT-free isotopic content of

the sample matrix (i.e., 81 3 Csediment in marine sediments, soil, aqueous filtrate, or aerosol

concentrate). Additionally, this approach would not offer substantial improvements in

the current detection limit of TGA-MS technique (see manuscript text for discussion).

613C sedient+SWCNT = fsediment 13 sediment + fSWCNT61
3
CSWC NT (S3)
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Mass fragments generated during the hydrogen-assisted thermal decomposition of
SWCNTs and other test materials.

Figure S11. Mass spectra of evolved gases from the hydrogen-assisted thermal
decomposition (HATD) of (a) SWeNT Purified SWCNTs, (b) Nanocyl MWCNTs, (c)
methylcellulose, and (d) bovine serum albumin. No spectrum is shown for diesel
particulate matter, as it did not degrade substantially during thermal treatment with pure
H2. All spectra were background subtracted and are shown at the maximum degradation
temperature of the respective test material.
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In order to confirm that mass fragment 28 was due to ethene and not nitrogen that

may have been adsorbed or trapped inside the hollow SWCNTs, we thermally degraded

SWCNTs in He. Theoretically, if the mass fragment 28 was due to internally-sorbed N2,

then degradation of the nanotubes would release trapped N2. The amount of trapped N2

should increase with increasing mass of SWCNTs. Degradation of nanotubes in He

should not yield appreciable C2H4, since there is inadequate H2 to produce C2H4 from

solid C (i.e., SWCNTs). In contrast, degradation of the SWCNTs in H2 should yield

C2H4 from the reaction of solid C with H2 to form C2H4.

Since N2 is always present in this system due to air leaks (the TGA-MS is not

designed to be airtight), we monitor the 28/40 ion ratio (N2 or C2H4/Ar ratio). This ratio

is constant when the only N2 present is due to air, while it will change if there is a

production of N2 or C 2H4 .
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Figure S12. SWCNT degradation in He does not release N2 and SWCNT degradation in
H2 does form C2H4. (a) Differentiated mass loss thermograms of two different masses of
SWCNTs in He and one in H2. (b) A mass loss plot is shown to demonstrate the near
complete degradation of SWCNTs in He. (c) The ion ratio of mass 28 to mass 40 is
shown, and indicates that no N2 was released during SWCNT destruction in He.
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Two different masses of SWCNTs were completely degraded in a He atmosphere

(Figure S12). In spite of complete breakdown of the SWCNT, no increase in mass 28,

relative to mass 40, was observed. Thus, significant quantities of N2 were not adsorbed

to or trapped in the SWCNTs and could not have contributed to the mass 28 signal

observed during HATD of SWCNTs. In contrast, when reacted with H2, SWCNTs did

increase the 28/40 ratio, suggesting that C2H4 was produced from the HATD of

SWCNTs.
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Figure S13. Nitrogen leak and ethene calibration during HATD. (a) The mass 28 signal
due to N2 decreases throughout the run, with a drop at the start of the temperature
program (around cycle # 60). (b) The response of the mass 28 ion current to increasing
ethene concentration. The current when 0% (v/v) ethene is introduced drops as the run
progresses. All "15 min mean" data points represent the signal averaged over 15
minutes, over which the signal appeared to be stable. (c) The response of the mass 28 ion
current to increasing ethene concentration (g C mL-1 gas). In all of these experiments, H2
was the balance gas.
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ABSTRACT

The carbon nanotube (CNT) industry is rapidly expanding, yet little is known about the

potential environmental impacts of CNT manufacture. Historically, delayed evaluation

of environmental effects of industrial processes has resulted in costly, and often

irreparable, damages to public and ecological health. Here, we evaluate the

environmental consequences of a representative multi-walled CNT synthesis by catalytic

chemical vapor deposition (CVD). From a heated mixture of ethene and H2, we

identified and quantified over 45 side-products formed by thermal treatment of the

reactant gases, including methane, volatile organic compounds (VOCs), and polycyclic

aromatic hydrocarbons (PAHs). Several environmental concerns resulted, including

effects from discharges of the potent greenhouse gas, methane (up to 1.7 %), and toxins

such as benzene and 1,3-butadiene (up to 36,000 ppmv). Extrapolating these data to

future CNT production volumes, we estimate that contributions to VOC and PAH

emissions may become important on local scales, but will be small compared to national

industrial sources. As a first step toward reducing wasteful and unwanted emissions,

CNT length was measured in situ, and select thermally generated compounds correlated

with CNT growth rate. This suggests that important compounds could be delivered to the

catalyst without thermal treatment, thus eliminating the most energetically expensive

component of CVD synthesis (heating reactant gases) and minimizing the formation of

unintended by-products.

INTRODUCTION

Recent reports have highlighted the urgent need for improved understanding of

the environmental, health, and safety (EHS) risks associated with nanomaterials and their

fabrication -3 . Historically, chemical manufacturing procedures have been designed to

maximize material performance, minimize production costs, and accelerate the delivery

of products to market. However, little attention has been devoted to environmental

128



impact(s) mitigation during the design phase of these materials and their production

processes. This practice has resulted in severely delayed recognition of malignant

environmental and public health effects; and at an advanced stage of industrial

development, after substantial investment, it is very difficult to arrest, let alone rectify,

the resultant damages. As exemplified by other industrially important materials, retarded

identification of undesirable environmental impacts has necessitated costly reparation and

remediation efforts (e.g., perfluorooctanoic acid from Teflon@ manufacture) and

ultimately resulted in product bans and re-development of synthetic technologies 4-6.

Many industrial chemicals follow this pattern of initially rapid production, then

recognition of malignant environmental or public health effects, subsequent product bans,

and finally, replacement by new technologies on a "few decades" timeframe 7. Indeed, if

history provides a model, then ignoring environmental impacts will all but guarantee the

pre-mature departure of promising industries. Aware of this pattern and poised in an

aggressively expanding industry, nanoscientists have a unique opportunity to alter the

future approach to the development of all materials: by incorporating environmental

objectives early in the design phase of each novel chemical process. In doing so, they

will not only prevent unnecessary harm to the Earth and human health, but will also

preserve the public's confidence8 in a field that promises many far-reaching benefits to

society.

While the advantages of early efforts to incorporate environmental criteria along

with performance and cost metrics in nanomaterial manufacture optimization are quite

clear, the approach can be complex. Dahl et al.9 suggested an adaptation of the twelve

principles of green chemistrylo for the design of nanomaterials and their production

processes. This includes planning for (1) safer nanomaterials, (2) reduced environmental

impact, (3) waste reduction, (4) process safety, (5) materials efficiency, and (6) energy

efficiency 9. Objective 1 relies on structure-activity toxicity information, which will

require careful study of a broad spectrum of well-characterized materials in a variety of

biological systems"". Thus, it will likely be several more years before adequate

understanding enables the a priori design of safer materials. However, objectives 2
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through 6 can be addressed at the inception of a nanomaterial's fabrication technique. A

natural consequence of parallel optimization of environmental and material parameters is

the requirement of an interdisciplinary team of researchers (Figure 1). Materials

scientists guide the development of the nanomaterial for directed application(s) and offer

insight to the materials' intended uses and potential production volume. The latter data

are essential to an accurate projection of a material's life cycle impacts. Armed with this

information, an environmental chemist can then evaluate the process from chemical mass

balance and emission perspectives and offer approaches to limit waste (both in starting

materials and effluent streams) and maximize mass conversion and energy efficiency.

Then, these data must be fed back to the material engineer to minimize the internal (e.g.,

manufacture expenses) and external costs (e.g., future remediation expenses) of product

production. This iterative, interdisciplinary approach can be used to guide choices for

large-scale synthesis, allowing nanomaterial manufacture to develop unlike the majority

of industrial chemicals in our history: with "up front" consideration of environmental and

public health impacts prior to the observation of a malignant effect.

To provide a model for this co-operative approach, we evaluated a representative

synthesis for a promising nanomaterial, vertically aligned multi-walled carbon nanotubes

(VA-MWCNTs). While there are several approaches to manufacturing carbon nanotubes

(CNTs), including laser-ablation and arc-discharge, the preferred method for large-

volume production is catalytic chemical vapor deposition. Typical CVD procedures for

CNT growth require heating a carbonaceous gas to high temperature (500-1200oC) 14 ' 1 5 in

a reducing or inert atmosphere (e.g., H2, He, or Ar) and subsequent reaction of the heated

mixture at a nanoparticle surface (e.g., Fe, Co, Ni, Co/Mo), which templates CNT

growth. In combustion systems (when oxygen is present), the thermal treatment of

carbon-based gases promotes radical formation and recombination reactions that result in

the production of other volatile organic compounds (VOCs), polycyclic aromatic

hydrocarbons (PAHs), and amorphous carbon or soot16 - 19 . Similar mechanisms may

occur in oxygen-free systems, but there is limited theoretical and experimental data to

support this. Thus, one cannot rely on existing reaction kinetics models (e.g., derived
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from the combustion literature) to predict the evolution of by-products in a CVD reactor

for CNT production.

Materials scientist

Identify promising material

iterate esign process
Design process

Environmental chemist

- Develop detection methods,
- improve synthetic understanding

Evaluate:
energy use,

mass conversion efficiency,
by-product formation

Anticipate emissions:
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and projected scale secondary pollutants

Identify concems

Design solutions:
* reactor geometry, * mass conversion or re-use,
* flow regime, * energy use,
* reproducibility, * filtration technology,
* improved product performance * tunable product parameters

• ! . I
Choose improvements

Figure 1. Co-operative approach to material design: incorporating performance, cost, and
environmental objectives. Ideally, a collaboration that includes (but is not limited to)
materials scientists and environmental chemists begins early in a novel chemical's
development on a small-scale, model system. Depending on the fluidity of the synthetic
approach, environmental chemists can join the design process even after initial practice
has been established (dashed line). However, involvement following substantial and
irreversible investments on the part of a manufacturer is non-ideal. Additional team
members can include energy use experts' 2, risk analysts' 3, process engineers,
toxicologists, and synthetic chemists.
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Nevertheless, some of the compounds formed in reducing or inert gas conditions

may present environmental and public health concerns. In particular, photoactive VOCs

have long been recognized as contributors to smog and lower atmosphere ozone

formation, thereby exacerbating respiratory diseases (e.g., 1976 report from the National

Academy of Sciences 20). Furthermore, select PAHs have long been known to be

carginogenic, and soot influences public respiratory health2 1 as well as the radiative heat

balance of the atmosphere. In order to prevent the release of these materials, many CVD

effluents pass through "environmental scrubbers" (e.g., paraffin or water bubblers' 4), but

short contact times and low partition coefficients may not efficiently capture volatile

components. Earlier this year, the Environmental Protection Agency (EPA) strengthened

air quality standards 22 and several industrialized cities (e.g., Houston, TX and Los

Angeles, CA)23 already exceed these limits. To avoid these potential problems, we must

acquire quantitative knowledge of VOC, PAH, and particulate matter generated during

CNT manufacture and adjust synthetic conditions or improve filtration to reduce such

pollution.

To date, publicly available effluent analyses have relied on relatively insensitive

techniques, such as residual gas analysis (ca. ppm detection limits) 24-26. For example,

online analysis of an ethyne (acetylene)-based CNT production revealed a handful of

incompletely identified by-products: cyclohexane, a "cyclopentane fragment," and a

"hexane fragment" 26. An offline analysis of a different ethyne-based CNT synthesis

identified methane and several unsaturated hydrocarbons (specifically, ethene (ethylene),

1-buten-3-yne, pent-3-en-1-yne, two hexadiene-yne isomers, benzene, toluene, and

cyclooctatetrene) 27 . However, trace gas components (< ppm) are overlooked by these

methods, and these by-products may become important as the industry continues to grow.

For example, annual production of CNT powders already exceeds 300 tons28 (ton = 106

g) and is expected to double approximately every two years2 9 . If CVD processes have a

3% atom efficiency 30, then 10,000 tons of feedstock gas will be used for the present

production volume. A sub-ppm contaminant in this effluent (that is not captured before
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release) could be discharged to the atmosphere in large volumes, approximately 3.2 tons,

within ten years.

To avoid environmental damages from by-products and improve resource use in

VA-MWCNT production, we quantified and identified carbonaceous compounds formed

by the thermal treatment of reaction gases (C2H4/H2). In our CVD reactor (Figure 2), the

growth gas mixture was heated and cooled ("pre-heated") before it was impinged on the

VA-MWCNT catalyst, which was heated independently on a silicon platform in a closed

quartz tube. This physical separation de-convoluted thermal effects on the feedstock gas

from those on the metal catalyst and enabled investigation of the two critical processes in

isolation31. We previously showed that pre-heating is necessary for rapid growth of VA-

MWCNTs, enhancing the growth rate by over 2000% compared to when the gas is heated

only at the catalyst 32. VOCs were collected downstream of the pre-heater and upstream

of the catalyst, and the reported gas composition represents effects of the thermal

treatment only. Simultaneously, we measured VA-MWCNT height in situ using a laser

displacement sensor32' 33. The mixture of thermally generated carbonaceous material was

complex and included many VOCs and PAHs, some of which may diminish CNT

quality31 and present environmental or toxicology concerns. Here, we estimate the

potential contribution of two anticipated VA-MWCNT-based products, flat-panel

displays and thermal interface materials, to current national and/or local emissions of

VOCs and PAHs. With these results, we can begin to co-optimize the synthetic process

by (1) minimizing unwanted side-products, (2) minimizing cost by selecting potent

reagent gases that require minimal thermal treatment, and (3) maximizing production

growth rates.

This is the first step in an iterative process, where we identify opportunities to

reduce environmental impact, minimize waste, improve process safety (for the public and

occupational population), and maximize materials and energetic efficiency (objectives 2-

6, as described by Dahl et al.9). Subsequent studies will be required to demonstrate the

effectiveness of our suggested measures, but we provide a critical foundation that is
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CH.

Figure 2. Reactor design and sampling of thermally generated species during transport through a
two-stage CVD process, where the gas was first thermally treated in the pre-heater. Chemical
structures, particles, and quartz tubes are not drawn to scale. Hydrogen and ethylene were
introduced to a narrow-diameter (4 mm) pre-heater tube that was wrapped with a resistively

heated coil and covered with insulating material (insulation not shown). At high temperatures(e.g., 690 - 1200C), ethylene and hydrogen rearrange and form other molecules (e.g., methane,

1,3-butadiene, benzene, and fluoranthene) and soot-like particles. Solid carbon deposits formed
in the heated zone of the pre-heater tube, but were not deposited significantly outside of the
heated zone. (Sampling zone A was sectioned along the flow axis prior to quantification of solidcarbon depo2. Reactor designts). VOCs and PAHs survived transit through the pre-heater tube and were
delivered to a room-temperature reactor. Here, PAHs were lost from the reactant stream (see
Supporting Information) due to sorption to the cool quartz walls of the reactor. Some PAHs were
transported out of the reactor as effluent. VOCs were not retained on thed with a re walls, and
comparisons at sampling points B and C did not show distinct differences. VOC and PAH
abundances presented in subsequent figures of the text represent samples collected at sampling
points Bdeposits). VOCs and C, respectively. PAHs surviand VOCs were available foe-heater carbon nanotube growth

on the resistively heated platform, which supported a VA-MWCNT catalyst substrate.
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needed to advance CNT production and prevent unnecessary damage to the environment,

public health, and the public's opinion of nanotechnology as a whole.

RESULTS AND DISCUSSION

Improving CNT synthetic efficiency from an industrial perspective and

minimizing environmentally undesirable side products requires a deeper understanding of

the chemical reactions occurring in the gas phase of CVD reactors. Here, we sought to

identify and quantify the volatile, semi-volatile, and solid products formed as a function

of pre-heater temperature and reaction gas composition (e.g., H2/C2H4 ratio).

Simultaneously, we aimed to optimize the synthetic performance by monitoring in situ

CNT growth kinetics.

VOCs formed during VA-MWCNT synthesis: Effects ofpre-heater temperature.

The thermal pretreatment of VA-MWCNT reactant gases (C2H4/H2 = 70/330 standard

cubic centimeters per minute (sccm)) resulted in the formation of many VOCs (Figure 3).

None of these VOCs have been reported previously in an ethene-based CVD synthesis of

CNTs, but methane, ethane, benzene, and l-buten-3-yne (vinyl acetylene) have been

detected in the effluents of an ethyne-fed CVD reactor 27. Relatively small increases in

the pre-heater current lead to order-of-magnitude increases in the abundances of methane,

benzene, propyne, and pentane; whereas ethane, 1,3-butadiene, and 1,2-butadiene were

less sensitive to thermal treatment. VOC concentrations ranged from 4.7 + 0.3 ppmv

(1,3-cyclopentadiene) to 8,700 + 500 ppmv (ethane) at the lowest pre-heater current (1.5

A, 6900C) and from 17.6 ± 0.1 ppmv (1,3-cyclopentadiene) to 17,000 + 700 ppmv

(methane) at the highest pre-heater current (2.0 A, 10400C). Increasing pre-heater

temperature clearly accelerated VA-MWCNT growth (Figure 4), and this suggests some

of the VOCs may accelerate VA-MWCNT growth.
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Figure 3. VOC abundance as related to pre-heater current, a surrogate metric for pre-
heater temperature. Pre-heater current was related to temperature approximately as
follows: 1.5, 1.75, 1.86, 2.0 A = 690, 860, 920, 10400C, respectively. Error bars
represent one standard deviation on triplicate measurements of the same samples, and
non-visible error bars are smaller than the data marker.
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Figure 4. Thermal pre-treatment of reactant gases (H2/C2H4) affected VA-MWCNT
growth rate and terminal height. (a) Tube growth as a function of pre-heater current. (b)
The terminal height of the VA-MWCNT forest exhibited a maximum at 9200C, while (c)
the growth rate reached a plateau with increasing temperature. Pre-heater current was
related to temperature as follows: 1.75, 1.86, 2.0, 2.25 A = 860, 920, 1040, 12000C,
respectively.
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Although the effluent mixture was complex, some thermally generated

compounds were correlated to the increased growth rate observed at higher pre-heating

temperatures. There were strong correlations between the growth rate and the partial

pressures of methane, benzene, and 1-buten-3-yne (each with correlation coefficients of

0.99; n = 3). In our system, only the abundances of methane and ethane were sufficient

to account for the mass of VA-MWCNTs formed. Although less abundant, the

unsaturated compounds could accelerate VA-MWCNT growth by co-polymerizing with

ethene at the metal catalyst, an effect that has been observed in polyethylene

synthesis 34-36.

Interestingly, the abundances of the same VOCs did not correlate with the

absolute CNT height, which maximized at the 1.86 A pre-heater current and decreased

sharply at 2.00 A (3.6 and 0.52 mm, T = 920 and 10400C, respectively). Instead, the

terminal height was directly correlated to ethane abundance (correlation coefficient of

0.97; n = 3), suggesting that reducing conditions that lead to ethane formation also play a

role in sustaining catalyst activity.

Since production of such VOCs could be environmentally problematic (see

below) and wasteful, these results suggest it may be possible to selectively deliver only

the appropriate reactants to the catalyst, rather than relying on thermal techniques to

generate a suite of diverse reactants. Consequently, we would avoid the thermal pre-

treatment step, and thus prevent the formation of potentially interfering products (e.g.,

soot), minimize unnecessary toxin formation, and eliminate the most expensive

component of VA-MWCNT synthesis (heating the reactant gases37). Furthermore, this

technique could dramatically improve the carbon-to-VA-MWCNT mass conversion

efficiency.

VOCs formed during VA-MWCNT synthesis: Effects of hydrogen gas content.

Several reports suggest that the partial pressure of hydrogen (pH2) in the CNT feedstock

gas can influence the diameter 38 and purity of CNTs39 . Hydrogen species (H*, H2) play

critical roles in gas-phase radical reactions6, 17, 19 40, so it is reasonable to expect changes

in pH2 to alter VOC formation. At 0 pH 2, the VOC abundances were relatively low
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(normalized to total carbon abundance; Figure 5). As pH2 increased, ethene, of course,

decreased chiefly by dilution. Ethane and methane's abundances relative to ethene

increased with pH2, while all the other VOCs showed a maximum presence at mid pH2.

As observed in earlier tests of the effects of temperature, ethane abundance was

correlated to VA-MWCNT terminal height (230, 1300, 1950 um for 0, 0.5, and 0.8 atm

H2, respectively; correlation coefficient of 0.98, n = 3). Thus, reducing conditions

substantially influenced the VOCs formed, as well as the terminal height of the product.

100 10__0 10 1 (b)' 0 hydrogen

o 0:o 0 ethene

10' 100  o 0 o methane

o * ethane

M 10-' 1 3 butaine
210 * benzene

0.* -2 propene
0 101.c "9 * propyne

10 * pentane
10 A 1, r3Yne

" 1-. 1,2-butadiene
10 1 10 * 1,3-butadiene

•* 5 1,3-cyclopentadiene
___ 5 _ propane

10- . 10
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Partial pressure H2 (atm) Partial pressure H2 (atm)

Figure 5. The abundance of VOCs varies with the partial pressure of hydrogen.
Individual VOCs concentrations are shown (a) in absolute partial pressure or (b)
normalized to the partial pressure of ethene. Note that some H2 was present in the post-
pre-heater gas mixure of the 0 pH2 case, as some H2 is generated from the thermal
decomposition of ethenel 6 17. Error bars show standard deviation of triplicate analyses of
the same sample. All experiments were conducted with a pre-heater current of 1.86 A
(920 oC).
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Safety concerns and environmental implications of extrapolating VOC

emissions to industrial scale. While pre-heating and varying the composition of the

C2H4/H2 feedstock can enable tuning of VA-MWCNTs growth rate and height, several of

the thermally generated VOCs can also have undesirable environmental and public health

effects. Of particular concern are: (1) methane, a potent greenhouse gas, (2) photoactive

VOCs, which contribute to smog formation, and (3) benzene and 1,3-butadiene, which

are regulated as hazardous air pollutants and occupational chemical hazards (by the EPA

and the Occupational Safety and Health Administration (OSHA), respectively). At all of

the tested pre-heater currents, benzene concentrations were over 40 times higher than

time-weighted average permissible exposure limits (TWA PEL; 1 ppmv). Similarly, 1,3-

butadiene concentrations exceeded the TWA PEL (1 ppmv) by over a factor of 1000,

increasing from 1,300 ± 100 ppmv to 3,600 ± 200 ppmv over the tested pre-heater range.

At the highest current, the 1,3-butadiene and benzene contents of the effluent stream are

considered immediately dangerous to life and health (IDLH; limits of 2000 and 500

ppmv, respectively 41). Typically, great care is taken to protect employee health, and

effluents are vented through fume hoods. However, if the reactant mixture is discharged

to the atmosphere without sufficient treatment, industrial-scale CNT synthesis may result

in unacceptable environmental and public health consequences, and thus threaten the

ultimate success of the CNT market 2.

As the commercial market for CNT-based products is relatively nascent, there is a

great deal of uncertainty surrounding the magnitude of production and the details of

industrial-scale synthesis. (For example, CVD is favored for large-scale CNT

production, but ethene may not be a preferred carbon feedstock). Acknowledging the

inherent uncertainty in the future magnitude of the industry, we estimated the prospective

contributions of CNT manufacture to the anthropogenic VOC flux, focusing on two

potential large-scale applications of VA-MWCNTs: flat panel displays (FPDs) and
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thermal interface materials (TIMs). In our reactora, 0.5 cm2 VA-MWCNTs grew to a

height of 2 mm and released 0.70 ± 0.04 g VOCs (at the 1.86 A pre-heater current, T=

920oC; pH2 = 0.8 atm). We scale this effluent mass to account for the shorter nanotubes

and larger areas required by each respective VA-MWCNT application (see Supporting

Information). For the sake of argument, we assume that VA-MWCNT use will reach the

same magnitude in FPDs as liquid crystal displays (LCDs) and that VA-MWCNTs will

be used as TIMs in home computersb. If we scale VA-MWCNT production to account

for the annual LCD and home computer CPU (central processing unit) sales (in total

surface area, see Supporting Information) 43' 44, then roughly 50 ± 3 Gg VOCs yr-' and

0.40 ± 0.02 Gg VOCs yr-1 will be generated by FPD and TIM technologies, respectively

(Table 1, note 1 Gg = 109 g). These emissions would represent between 0.34 and 0.002%

of all the anthropogenic VOC emissions from all other sources in the United States (16

Tg yr-') 45, including industrial, residential, and automotive sources. The dramatic

difference between the FPD and TIM estimates results from the distinct surface areas

required for each, the former requiring a much larger area of VA-MWCNTs than the

latter (3.8 x 10"11 and 2.7 x 109 cm2, respectively). While the total VOC output influences

tropospheric ozone formation, which is regulated by the EPA, each VOC has unique

photoreactivity, toxicity, and greenhouse gas potential. Extending these estimates to

individual compounds, we predict 1.00 ± 0.03 Gg yr' methane, 2.0 + 0.1 Gg yr-' 1,3-

butadiene, and 0.30 ± 0.01 Gg yr-1 benzene would be generated from VA-MWCNT

synthesis for FPDs. VA-MWCNT manufacture for TIMs would generate lesser

emissions; 7.0 ± 0.2 Mg yr-1 methane, 10 ± 1 Mg yr-1 1,3-butadiene, and 2.0 ± 0.1 Mg yr

1 benzene (note: 1 Mg = 106 g). On a national scale, these contributions are small

a This reactor is considered efficient (high mass conversion of feedstock to CNT; here 0.2
%) compared to other research-scale reactors, but is likely less efficient than would be
expected for an industrial-scale reactor (3% reported for single walled CNT powders).
b Note that LCDs are very competitive in terms of cost and performance, and substantial
advances in CNT technology are required before VA-MWCNT FPDs become a
commercial reality42. VA-MWCNT TIMs are in the early stages of development, but
they are very promising. If ultimately successful, their market applications will extend to
all electronics, not just home computers.
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compared to total annual emissions of methane (25,000 Gg yr-1) 46 and benzene ((2.4 Gg

yr-' )47, but can exceed emissions of 1,3-butadiene (0.7 Gg yr-') 4 7 from all other industrial

sources. On a local scale, benzene and 1,3-butadiene releases due to VA-MWCNT

manufacture for FPDs could surpass or approach the total emissions from residential and

industrial releases combined. For example, in Houston, TX (one of the United States'

most industrialized cities), total 1,3-butadiene emissions are 0.68 Gg yr'- and total

benzene emissions are 1.7 Gg yr-1 48. Thus, if 20% of the VA-MWCNT-based FPDs

were manufactured in Houston, 1,3-butadiene outputs would increase by almost 50% and

benzene emissions would increase by over 3%. In contrast, contributions from VA-

MWCNT-based TIMs would be marginal. Clearly, the relative impact of a CNT-based

material is very sensitive to both the size of the market and the specific application

requirements (e.g., large mass or surface area), and such estimates should be considered

for each novel technology.

Table 1. Projected emissions due to CVD synthesis of VA-MWCNTs for potential
applications compared to national and local emissions.

Annual emissions (Gg yr-'; Gg = 109 g)
Compound(s)

FPDs" TIMs" Houston, TX United States

1VOCs 50 + 3 0.40 ± 0.02 ___b 16,000c

methaned 1.00 + 0.03 0.0070 ± 0.0002 --- b 25,000e

1,3-butadiene 2.0 + 0.1 0.010 + 0.001 0.68f  0.7g

benzene 0.30 + 0.01 0.0020 + 0.0001 1.7' 2.4g

aMethods used to estimate emissions from VA-MWCNT synthesis for FPDs (flat-panel
displays) and TIMs (thermal interface materials) are presented in the Supplemental
Information.
bData not available.
cEnvironmental Protection Agency 45

dMethane is not classified as a VOC by the EPA, as it is not photoactive.
eEnvironmental Protection Agency46

fAll emissions sources, Evironmental Protection Agency48

gAll industrial emissions sources, Environmental Protection Agency 47
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PAH formation during VA-MWCNT synthesis: Effects of temperature and

hydrogen gas content Several PAHs, formed during VA-MWCNT synthesis, survived

transit through the quartz reactor (Figure 6, samples collected at point C in Figure 2).

Our analytical method concentrates hydrophobic PAHs over the course of the reaction,

and so PAH concentrations reported here are given relative to the total amount of carbon

delivered during the VA-MWCNT growth. Naphthalene was the most abundant PAH at

all pre-heater currents (0.38 ± 0.4 to 12 ± 3 ug gcarbon feedstock- 1 from 1.75 to 2.0 A, 860 to

10400C, respectively), and anthracene was the least abundant (14.2 ± 0.2 to 95 ± 20 ng

gcarbon feedstock-l).
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Figure 6. PAH content as related to pre-heater current. The sampling method
concentrated PAHs over the course of the reaction, and PAH content is reported relative
to the total amount of carbon delivered to the reactor (left-hand axis). Assuming uniform
PAH production during the synthesis, we can calculate an average concentration of PAH
in the effluent gas (right-hand axis), which enables comparison with NIOSH and EPA
regulations. Pre-heater current was related to temperature approximately as follows: 1.75,
1.86, 1.93, 2.0 A = 860, 920, 970, 10400C, respectively.
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Individual PAHs increased by orders of magnitude with increasing pre-heater

current (Figure 6). Changes in pH2 also influenced the PAH content of the effluent,
where higher PAH abundances were observed at higher pH2 (Figure 7b). Naphthalene,
fluoranthene, and pyrene production were correlated to the increasing VA-MWCNT

growth rate (in temperature experiments, correlation coefficients of 0.99, 0.99, 0.99,
respectively, n=3). Select PAHs are thought to be important for CNT nucleation (e.g.,
fluoranthene 49), but the role of PAHs in CNT growth (and/or inhibition) has yet to be
explored experimentally. To date, on-line analysis of CVD reactants have had limited
sensitivity (detection limits in the ppmv range), precluding the identification of trace
components. The pre-concentration methods used in this study offer detection limits in
the sub parts per trillion (10-12) range. Without this sensitivity, none of the PAHs formed
during the tested syntheses would have been observed. Similarly, if private

manufacturers use on-line techniques to monitor toxin formation in their reactors, they
may unknowingly release PAHs to the atmosphere.
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Figure 7. PAH abundances as influenced by the partial pressure of hydrogen. PAH
concentration is reported relative to (a) to the total volume of gas filtered by the
polyurethane foam and (b) the total amount of carbon delivered to the reactor. Error bars
represent one standard deviation on triplicate analysis of the same sample. Invisible error
bars are smaller than the symbol.
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PAH safety concerns and environmental implications of extrapolating to

industrial scale. Many PAHs are toxic and subject to regulation by the EPA and OSHA.

To determine if the PAHs formed in the reactor may present an occupational risk, we

calculated the average concentration of the PAH in the effluent stream by assuming

constant PAH formation over the course of the reaction (Figure 7a). At the highest pre-

heater current, the runtime-average naphthalene content was 0.33 ± 0.01 ppm (1.7 + 0.1

mg m-3). This does not exceed the TWA PEL (10 ppm) 40, but the total PAH content of

the effluent stream (EPAHEPApriority 1.8 ± 0.1 mg m-3 ) was concentrated relative to engine

exhaust (IPAHEPApriority 0.1-0.8 mg m-3 )50' 51. Extrapolating these results (as done before

for VOCs), we estimate that future possible PAH emissions from VA-MWCNT synthesis

for FPDs and TIMs will be small (15 ± 0.1 and 0.11 ± 0.01 Mg yr', respectively)

compared to national emissions (_16 Gg yr') 52, but may be important on a local scale. If

so, it will be necessary to find ways to either limit PAH release to the atmosphere (e.g.,

by filtration) or minimize PAH formation. Indeed, minimizing PAH formation may

prove to be beneficial, not only for the environment, but also for the quality of the CNT

product3 .

There are several sources of PAHs to the environment, and diagnostic PAH ratios

have been used to indicate the origin and formation temperature of PAHs 53' 54

Fluoranthene/pyrene ratios from VA-MWCNT synthesis were between 0.7 and 0.8, very

similar to those found in urban aerosols (0.6 to 0.8), and phenanthrene/anthracene ratios

were between 4 and 5, consistent with pyrogenic PAH formation

(phenanthene/anthracene < 10) 55 . High-temperature processes (i.e., > approximately

800'C) often favor non-alkylated PAH formation, and methylated PAH-to-parent PAH

ratios from VA-MWCNT synthesis are low, as expected, decreasing from 0.38 to 0.06

with increasing pre-heater current. While VA-MWCNT-derived PAH ratios are not

distinct from other high-temperature processes, there are some unique compounds in the

CVD effluent stream that may be useful for tracking emissions. Acephenanthrylene, an

isomer of fluoranthene and pyrene, is rarely observed in the natural world56. The

presence of this unique isomer (see Supporting Information) in VA-MWCNT effluent
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may be useful for tracing CVD reactant streams near the point-of-release. However, the

atmospheric lifetime of these chemicals must be explored before they can offer

conclusive information about PAH sources in aged environmental samples.

Solid carbon formation during VA-MWCNT synthesis: Effects of temperature

and hydrogen gas content Large PAHs are also pre-cursors to soot57 , and controlling

PAH formation during VA-MWCNT synthesis may allow one to limit the co-production

of sooty or amorphous carbon phases, which are interfering contaminants in many CNT-

based applications. In this system, carbonaceous solids were deposited on the inner walls

of the pre-heater tube, but were not visible in the reactor tube (where VA-MWCNT

growth occurred). Solid C deposition increased from 0.2 to 4.0 mg gcarbon feedstock -I as the

pre-heater current increased from 1.75 to 1.93 A (860 to 970 oC, Table 2), but then

decreased at the highest pre-heater current (2.6 mg gcarbon feedstock -1 at 2.00 A, 10400C). In

relation to pH 2 levels, carbon deposits were highest at low pH 2 (e.g., 3.6 mg gcarbon feedstock

-1 at 0.5 atm pH2, Table 3). Solvent extraction of the solid carbon phases yielded no

detectable PAHs (< 1 ng per 10 cm of tube), but deposits in the reactor have been shown

to influence PAH formation during subsequent uses58 . In the absence of sorptive surfaces

upstream (e.g., in a tube furnace), the large PAHs and solid phases could impinge on the

reactive catalyst and potentially interfere with the reaction dynamics and resultant

product purity3 . These competing processes could be eliminated with selective delivery

of critical CNT precursors, rather than relying on thermal generation to provide a subset

of necessary reactants in a complex mixture of chemicals, some of which present

ecological and occupational concerns.
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Table 2. Carbonaceous deposits formed in the quartz pre-heater tube.

Mass of solid C deposited
Pre-heater

(mg C deposited
(g C feedstock)-')a

1.75 0.22 ± 0.02
1.86 1.9 ± 0.2
1.93 4.0 + 0.4
2.00 2.6 ± 0.3

aBlack, carbonaceous material that was not soluble in dichloromethane/methanol (90:10
mixture, at high pressure and temperature) was formed during the thermal pre-treatment
of ethylene. The partial pressure of hydrogen in these experiments was 0.8 atm. Pre-
heater current was related to temperature approximately as follows: 1.75, 1.86, 1.93, 2.0
A = 860, 920, 970, 10400C, respectively.

Table 3. Carbonaceous deposits formed in the quartz pre-heater as a function of
hydrogen partial pressure.

Partial Mass of soot deposited
pressure H2  (mg C deposited

(atm) (g C feedstock)-')a

0.0 3.2 ± 0.3
0.5 3.6 ± 0.4
0.8 1.9 ± 0.2

aBlack, carbonaceous material that was not soluble in dichloromethane/methanol (90:10
mixture, at high pressure and temperature) was formed during the thermal pre-treatment
of ethylene. Soot deposition was minimized at the highest partial pressure of hydrogen.
The pre-heater current of these experiments was 1.86 A (920C).
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Additional carbonaceous materials in the effluent contribute to smog

formation. Many (>25) other carbonaceous side products were formed during the CVD

synthesis (Figures 6 and 7). Comprehensive two-dimensional gas chromatography

(GCxGC) with time of flight mass spectrometry (TOF-MS) enabled the identification of

the most abundant compounds, which included styrene, indene, and indane. Substituted

benzenes, indenes, and naphthalenes were also formed during the CVD synthesis of VA-

MWCNTs. In general, abundances of these side products increased with increasing

temperature (see Supporting information, quantification by GCxGC- flame ionization

detection (FID)). While no concentrations exceeded occupational health guidelines, all

of these compounds can contribute to smog formation, and must be quantified with

photoactive VOC fraction of the effluent.
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Figure 8. VOC and PAH structures of compounds identified in CVD effluent during VA-
MWCNT synthesis. Bold-faced numbers refer to peak numbers that appear in Figure 9.
Compounds 20 and 21 are C2-indene isomers with no double bond in the alkyl
substituent(s), whereas compounds 22-24 are C2-indene isomers with one double bond in
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Figure 9. Comprehensive two-dimensional gas chromatogram of hydrophobic materials
collected from the CVD effluent. Numbers correspond to compound identities noted in
Figure 8. Here, the FID trace is shown as a three-dimensional plot and peak volume
corresponds to compound abundance. A mathematically reconstructed one-dimensional
trace is shown in white in the background. Compounds that were more abundant (by a
factor of 3 or more) than in a blank PUF are labeled with a number. There was a series of
compounds in the foreground that are unlabelled, as they are present in the PUF blank.
These were alkanes (the most abundant is n-C 1 1) and xylenes.

Extension to alternative CNTproduction methods. Within a single synthetic

approach, small variations in system parameters (e.g., temperature, H/C ratio in feedstock

mixture) can cause dramatic differences in the abundance and identity of the resultant by-

products. Thus, we expect that there will be substantial differences among the various

methods to produce CNTs, such as arc discharge, laser ablation, and CVD using alternate

starting materials (e.g., CO or CH 4). Additionally, we argue that each method should be

evaluated with respect to (a) energy consumption, (b) starting material use30' 59, and (c)

the unintended by-products formed during the synthesis. With this comprehensive

comparison of environmental metrics (and simultaneous consideration of product

quality), the most benign production methods can be selected at this relatively early

stage.

While it would be naive to draw inferences from a single study to any other

method, it is reasonable to suggest that the high temperature thermal treatment of any

gaseous hydrocarbon will lead to the production of VOCs, PAHs, and soot. Further, one
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might expect that larger or more reactive starting materials (e.g., benzene or acetylene,

respectively) will produce larger VOC, PAH, and soot species for a given amount of

thermal energy. Similarly, small, less reactive compounds (e.g. methane) will produce

fewer by-products for a given amount of heat delivered. Indeed, CNTs produced by

methane-based CVD often yield higher-purity CNTs and acetylene-based syntheses often

require minimal thermal treatment of the feedstock gas (e.g., by low temperature or low

thermal contact time) to avoid "over sooting". CNT production from non-hydrocarbon

feedstock gas (e.g., CO) is purported to yield very little amorphous carbon material60 and

online mass spectral analysis shows only CO 2 as a by-product 61 . Arc-discharge and laser

ablation techniques, which rely on the construction of CNT structures from solid

graphite, might be expected to yield more solid-phase by-products (e.g., soot), but it is

certainly possible that semi-volatile and volatile contaminants could form in these high-

energy environments.

Conclusions and implications for future CNTproduction management We

have demonstrated that thermal decomposition of reagent gases (C2 H4 /H2) during CVD

growth of CNTs results in the formation of numerous hazardous air pollutants,

greenhouse gases, and carcinogens. While currently negligible relative to other

emissions, their environmental signal may increase to unacceptable levels as the industry

continues to grow. At this early stage in the growth of the CNT industry, it is possible to

circumvent the potential problems these may cause in several ways: (1) implement

adequate filtration technologies (e.g., paraffin bubblers with short contact times may not

be adequate) for effluent treatment, (2) recycle effluents for reuse in subsequent CNT

syntheses by removing trace contaminants and soot, recollecting critical feedstock

components, and generating energy onsite from appropriate materials (e.g., H2), or (3)

reduce the formation of compounds of concern through a modified synthetic approach.

The former two approaches require little-to-no technological development, simply

commitment from the responsible parties. The latter approach requires iterative

collaboration between materials scientists and environmental chemists (Figure 1), and

this data set enables the first steps toward improved synthetic techniques.
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Additionally, armed with a thorough description of the thermally derived

products, we can begin to consider which compounds are most active as CNT precursors.

By selecting the appropriate gaseous component(s) as starting materials, instead of

relying on thermal generation of the compounds, one could substantially improve

resource use during VA-MWCNT synthesis. In particular, (1) reaction efficiency may

improve (in our studies, carbon conversion efficiencies did not exceed 0.2%!), (2)

chemical and energetic costs will be greatly reduced, (3) amorphous carbon formation

will decrease, thereby increasing the purity and performance of the product"', (4)

formation of undesirable compounds of environmental concern will be reduced, and (5)

future clean-up and public health reparations will be avoided.

EXPERIMENTAL METHODS

CNT synthesis. In order to assess the effect of thermal pretreatment of reaction

gases on CNT growth, we utilized a custom-built CVD reactor 31, 32, in which substrate

(supporting the catalyst) and gas temperature were controlled independently. Pre-mixed

gases were heated in a quartz pre-heater tube (4 x 300 mm (inner diameter x length), 75

mm heated zone) and delivered to a quartz reactor tube (4.8 x 22.9 cm). Inside the

reactor tube, VA-MWCNT thin films were grown on electron-beam deposited Fe (1.2

nm) with an A120 3 (10 nm) under layer on a Si (600 um) support. The catalyst substrate

temperature was regulated by a localized, resistively heated silicon platform, thereby

minimizing homogenous gas phase reactions in the reactor tube. The temperature of the

pre-heater tube was determined by a thermocouple placed in the center of the resistively

heated coils on the outside of the quartz tube. The transit time of the gas across the

heated zone was roughly 130 ms, and heat transfer estimates suggest that roughly 30 ms

were needed to bring the gas to the target temperature. The temperature of the silicon

platform was measured using an infrared sensor mounted below the reactor tube, and the

VA-MWCNT film height was measured in real-time using a laser displacement sensor

mounted above the chamber.
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In order to eliminate effects of tube age58, pre-heater tubes were pre-combusted

and changed for each experiment. Reactant gases were introduced according to the

following program: He at 2000 seem for 8 min (where the pre-heater is turned on after 5

min), He and H2 at 70 and 330 seem for 4 min, respectively, (where the substrate is

turned on after 2 min), and then C2H4 and H2 at 70 and 330 seem, respectively, for the

duration of the VA-CNT growth. The end of the CNT growth was designated as the time

at which the height of the VA-CNT film stopped increasing.

VOC collection and analysis. Stainless-steel 300-mL gas canisters were placed

downstream from the pre-heater and reactor tubes. Considering the flow rate of the

gases, we note that these samples represent a 45-second integrated signal of VOCs

forming during the reaction. Gas samples were collected just after growth termination

and sealed with stainless-steel ball valves.

VOCs were quantified by gas chromatography with a flame ionization detector

(GC-FID) on an HP5890 II (HayeSep-Q, 80/100 mesh, 6' x 1/8" x 0.085", 15 mL min-'

He carrier gas flow, 500C for 10 min, 60C min-1 to 1000C, 80C min-' to 1600C, 120C min-1

to 2300 C, 7 min hold) calibrated with standard gas mixtures. Gas samples were pre-

focused using a cryogenic (N2()) trap of Porasil-C treated silica beads. Unidentified

carbonaceous species were analyzed by GC-mass spectrometry (GC-MS) on an HP

G1530A (DB-624, 60 m x 0.25 mm I.D. x 1.4 um film, 32 cm s-1', 45°C for 10 min, 12C

min-' to 190 0C, 2 min hold, 60C min-1' to 2250 C, 1 min hold) interfaced to an HP 5873

MSD. The C0 2, He, and H2 contents were quantified by GC interfaced to a thermal

conductivity detector (HP 5890 II, MoleSieve, 80/100 mesh, 6' x 1/8" x 0.085", N2

carrier gas, 700C isothermal).

Unfortunately, the large quantity of ethene in our samples inhibited the

quantification of ethyne, as the two components could not be fully resolved by gas

chromatography in our system. Using mass spectral reconstruction of selected ions, we

were able to confirm the presence of ethyne in these samples (as an unresolved shoulder

on a large ethene peak). Previous studies have suggested that unheated ethyne

(acetylene) can add directly to a growing VA-MWCNT carbon lattice at the Fe catalyst49.
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In addition, ethyne may play a role in gas phase reactions in the pre-heater that give rise

to larger carbonaceous species. For example, ethyne is able to react with a CI-compound

to form propyne 2 , which was relatively abundant (36 ± 2 to 460 ± 50 ppm) in the

effluent gas.

PAH collection and analysis. PAHs were concentrated on two consecutive

polyurethane foam (PUF) filters (3" length x 1" diameter). These filters were in place for

the entire duration of CNT growth, and the reported PAH abundances represent an

integrated signal throughout the growth period. The PUF filters were downstream of two

quartz fiber filters (QFFs), which collect particulate material (> 0.2 um).

PUFs were pre-cleaned by triplicate accelerated solvent extractions (ASE) with a

90:10 dichloromethane: methanol mixture at 100C and 1000 psi for 5 min. The same

routine was used to extract PAHs from the filters. The three serial extracts were

combined, concentrated by rotary evaporation, and analyzed by GC-MS (HP 6890- JEOL

GCmate, HP5-MS column, 30 m x 0.25 mm I.D. x 0.25 um film). Sample recovery was

assessed using internal standards (dio-acenaphthalene, m-terphenyl, and d12-perylene) and

ranged from 75 ± 1% for low molecular weight PAHs (128 to 154 amu) to greater than

90 + 1% for higher molecular weight PAHs (> 166 amu). Injection efficiency was

monitored using a second suite of deuterated standards (dio-phenanthrene, djo-pyrene,

d2-chrysene). PUF extracts were also analyzed by comprehensive two-dimensional gas

chromatography (GCxGC; LECO Pegasus IV- Agilent 6890N; column 1: RTX-1 (15 m x

0.25 mm I.D. x 0.25 um film); column 2: SGE BPE-50 (0.9 m x 0.10 mm I.D. x 0.10 um

film)).

Pre-heater tube deposits and adsorbed PAHs. Each pre-heater tube was

sectioned into an even number of segments. One set of these was used to quantify the

carbonaceous deposits, and the other set was used to identify sorbed compounds. Sorbed

PAHs were extracted by ASE and analyzed by GC-MS (as described earlier).

Carbonaceous deposits were quantified by closed-tube-combustion and vacuum line

quantification 63 . Briefly, segments of the tube were sealed in 9 mm quartz tubes with -2
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g cupric oxide and combusted for 5 hrs at 850 oC. The resultant CO2 was quantified on a

calibrated vacuum line.
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SUPPORTING INFORMATION

PAHs are retained on cool, room temperature walls of quartz reactor tube

10 5 .* naphthalene
0 acenaphthylene

S0 acenaphthene

* fluorene

0 o * phenanthrene

0 anthracene
o A fluoranthene

010e a A pyrene
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Figure S1. Polycyclic aromatic hydrogen content of gases exiting the pre-heater tube
(post-pre-heater) and exiting the reactor (post-reactor). Several compounds,
benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[e]pyrene, benzo[a]pyrene,
indeno[1,2,3-cd]pyrene, and benzo[g,h, i]perylene, are formed in the pre-heater, but do
not survive transit through the reactor tube. The total abundance of other PAHs decrease
as the gas mixture travels through the reactor tube. The total mass loss of the PAHs is
small compared to the mass of CNTs formed. Error bars are one standard deviation on
triplicate measurements.
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Scaling VA-MWCNT production to potential markets

In both estimates, we assume that relatively short (<100 um) VA-MWCNT forests will

suffice. This would require roughly 1/10th of the actual growth time, and we reduce our

emissions by a factor of 10 to account for the truncated growth. We then calculate the

average mass of ethylene that is delivered during that time, and knowing the mass of each

compound per gram of ethylene (for a 1.86 A growth), we determine the mass of each

compound that will be formed to synthesize 0.5 cm 2 of VA-MWCNTs. This area is

scaled up to account for the total surface area of the two applications described here:

(1) Scaling VA-MWCNTproduction to the size of the current liquid crystal display

market

Liquid crystal display (LCD) technology accounts for a fraction (90% of dollar revenues

in 2005) of the current flat panel display market. Annual sales of LCDs are recorded as

the number of unit sales according to diagonal display size and type (e.g., television or

laptop). Assuming an aspect ratio (e.g., 4:3 or 16:9) and applying the Pythagorean

theorem, we can calculate the total area of each display and multiply to account for the

total number of sales. Once we know the total area of LCD flat panel displays, we

assume that VA-MWCNT-based displays will reach the magnitude of the LCD market.

Then, the emissions generated to synthesize a given area of VA-MWCNTs are scaled to

account for the total display area of the market.
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Sample calculation: Here, we assume an aspect ratio of 16:9.

Table S1. Converting total liquid crystal display unit sales to total area.
Diagonal screen sizea (in) % of marketa Total area (cm 2)

LCD Television Screens (5.8 x 107 units)
40 7 1.8 x 10lo
37 15 3.3 x 10'0

32 28 4.6 x 10'0
30 50 7.2 x10'0

Subtotal 1.69x 10"
LCD Monitor Screens (2.35 x 10s units)

27 5 2.4 x 10'0
19 39 9.1 x 10l0

17 44 8.2 x 10'0
15 12 1.8 x 1010

Subtotal 2.15x 1011

Otherb (1. x 107 units)
4 100 4.9 x 108

Subtotal 4.9 x 108
Total area of LCD displays 3.8 x 10

aData from Frost & Sullivan using sales in 2007 (projected from base year of 2005).

bThis category includes mobile phones, PDAs, medical, public information, and
automotive displays. An average diagonal screen size of 4" was assumed.

If we assume an aspect ratio of 4:3, the total LCD area becomes 4.3 x 1011 cm 2. The

calculations presented in the manuscript text assume a 16:9 aspect ratio. Multiplying

those estimates by 1.1 (4.3 x 10"/ 3.8 x 1011) gives the emission output that would be

calculated by assuming a 4:3 aspect ratio, putting bounds on the error induced by the

aspect ratio assumption.

Note that these estimates are very sensitive to the VA-MWCNT area-to- effluent mass

ratio. In our study, the reactor geometry was optimized to synthesize 0.5 cm2 VA-

MWCNTs, and novel reactor geometries may enable larger areas for a given effluent

quantity. The largest area of CNTs synthesized in an array for a flat panel display was

~70 cm2 (Coll et al.). As an exercise, we can make the grand (unjustified) assumption

that the same effluent quantity was released during that synthesis. Then, the estimates
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presented in the manuscript text would be overestimated by a factor of 140 (70 cm 2/0.5

cm 2).

(2) Scaling VA-MWCNT production to the size of the current household computer central

processing unit (CPU) market

Annual sales of household computers were 134,826,800 in 2007 (Euromonitor

International). The average household computer contains between 1 and 3 cm 2 CPU, and

we assume a moderate value of 2 cm2 (personal communication, Intel®). Then, we

assume that the VA-MWCNT density must be at least 10% of the total surface area

occupied by the forest. As-grown VA-MWCNTs in our system have a forest density of

-I%, and this density can be increased by squeezing the forest down to a 10th of its

original size. Thus, the necessary area of VA-MWCNTs is 10-times larger than the area

of CPUs sold globally. Then, the area of CPUs in home computers is 2.7 x 108 cm2, and

the area of VA-MWCNT forests needed to act as efficient TIMs is 2.7 x 109 cm 2.
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Figure S2. Extracted ion chromatogram of m/z 202 ion. Acephenanthrene was formed
during CVD synthesis of MWCNTs. Pyrene and fluoranthene are commonly observed in
petrogenic (fluoranthene/pyrene << 1) and pyrogenic (fluoranthene/pyrene > 1)
emissions, but acephenanthrylene is rare (Yunker et al., Lima et al.). Acephenanthrylene
quickly isomerizes to fluoranthene by thermal interconversion during pyrogenesis
(Richter et al., Scott and Roeloffs).
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Effects of temperature on substituted benzene formation

Figure S3. Comprehensive two-dimensional gas-chromatography flame-ionization
detection chromatograms as a function of pre-heater current. The pre-heater current is

given in the upper left hand corner of the sub-figure. Peak volume is approximately
proportional to the abundance of the compound.

As pre-heater current increases, the abundance of many compounds increases. Indene is

an exception, with a minimum at the 1.93 A pre-heater current. Also, there is a group of

compounds that are maximized at the lowest pre-heater temperature. These unresolved

peaks appear at low retention times ( 1st and 2nd dimensions) and represent C2-substituted

benzenes (xylenes). In the blank and real samples, there is a series of alkanes in the

foreground of the GCxGC image. The most abundant alkane is n-C11.
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Identification of compounds formed by thermal treatment of reactant gases
Table S2. List of compounds and analytical methods used to identify the compound.

Identified and/or quantified by
Analytical methods (Stationary phase) GC ret. time MS spectrum AppropriateCompound name confirmed with consistent with relative GC ret.

standard standard/theory timea
GC-FID (Porasil C), GC-MS-FID (DBS-624)

hydrogen
ethene (ethylene) 

41,3-butadiene 
bbenzene 4

propene
propyne / 4pentane 4
1-buten-3-yne (vinyl acetylene) 4 41,2-butadiene 41,3-butadiyne 4 41,3-cyclopentadiene 4 44butane 4 4
propane 4

GC-MS (HP5-MS)
naphthalene
acenaphthylene 4 4
acenaphthene
fluorene
phenanthrene 4 4
anthracene 4
fluoranthene 4
acephanthrylene
pyrene 4 4

GCxGC-FID, GCxGC-MS (RTX-I x SGC BPE-50)
phenylethyne 4
styrene N
o-methyl styrene 4propyl benzene
m-methyl styrene 4cyclooctatetrene "1-methylethyl benzene/ N
2-propyl benzene 

N
1-propyl benzene 4indane 4
indene N
1,3-diethenyl benzene N
1,4-diethenyl benzene 4 44-phenylbut-3-ene-1-yne 

41-methyl 1H-indene
2-methyl 1H-indene 4
1,2-dihydronaphthalene 

N N
naphthalene 4/
C2-substituted benzenes N '1-methyl naphthalene 42-methyl naphthalene 

N
"Compound's retention time is consistent with reported boiling point or relative polarity.bColor of checkmark indicates instrument on which the analysis was made (i.e., double checkmarks
indicate that the compound was analyzed by two different instruments).
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Fate of 1,3-butadiene and benzene in the atmosphere

The primary route for human exposure to 1,3-butadiene is through air, especially in

urban environments with significant automotive sources or manufacturing facilities. In

the atmosphere, 1,3-butadiene is photooxidized by reaction with hydroxyl radicals, nitrate

radicals, and ozone. Removal half-lives are estimated to be on the order of hours8 ; where

daylight transformation in the troposphere is chiefly by reaction with hydroxyl radicals

and nighttime removal is principally by reaction with nitrate radicals 9. Physical removal

from the atmosphere occurs during rain events, but the volatility of 1,3-butadiene results

in return of the chemical to the atmosphere if it does not leach into the soil8 .

Benzene has similar atmospheric sources and fates as 1,3-butadienes, being

principally released to the atmosphere via automobile exhaust and industrial

manufacturing processes. The atmospheric half-life of benzene is on the order of two

weeks with hydroxyl radicals, and can be as fast as 4 hours in the presence of nitrogen

oxides of sulfur dioxide, which can accelerate benzene's indirect photooxidation removal

pathways I'. Fairly soluble in water, benzene is removed from the atmosphere during rain

events' .
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CHAPTER 5:
IMPROVED RESOURCE USE IN CARBON NANOTUBE SYNTHESIS:

RAPID GROWTH WITHOUT THERMAL TREATMENT
OF FEEDSTOCK GASES

By

Desiree L. Plata

This work was performed in collaboration with A. John Hart and Eric R. Meshot at the University
of Michigan in the Department of Mechanical Engineering. The writing and data presented in

this chapter are the work of D.L. Plata, principally.
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ABSTRACT

Carbon nanotube (CNT) production by catalytic chemical vapor deposition (CVD) is

increasing globally, with current production volumes at 300 tons (3 x 108 g), and recent

studies suggest that environmentally concerning compounds are generated by thermal

treatment of common CNT feedstock gasses (C2H4/H2). Eliminating thermal treatment

may prevent the formation of unwanted by-products (e.g., toxicants, greenhouse gases,

and smog-forming compounds), reduce energetic demands, and improve overall control

over the synthesis. However, heating the feedstock gas is necessary for rapid vertically

aligned multi-walled CNT (VA-MWCNT) growth, presumably due to the thermal

generation of critical CNT precursor molecules. Using in situ VA-MWCNT height

measurements and complementary gas analysis, we identified thermally generated

compounds that were correlated with VA-MWCNT formation rate (propyne and but-1-

en-3-yne). To demonstrate that these alkynes were responsible for rapid VA-MWCNT

growth, we delivered each chemical and typical feedstock gases, without heating, directly

to a locally heated metal catalyst substrate. The tested alkynes accelerated VA-MWCNT

formation to rates comparable to, or greater than, those achieved via thermal treatment of

the feedstock gas. Ethene and hydrogen were still required for efficient CNT formation,

but their input concentrations could be reduced by 20 and 40%, respectively, without

sacrificing CNT growth rate. Using this new approach of unheated, alkyne-assisted VA-

MWCNT growth, emissions of volatile organic compounds and polycyclic aromatic

hydrocarbons were reduced by more than an order of magnitude compared to traditional

CVD approaches. Furthermore, the chemical studies presented here shed new light on

the current understanding of CNT synthesis, suggesting that a metal-catalyzed

polymerization reaction may be involved in CNT formation.
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INTRODUCTION

The industrial and laboratory-scale production of carbon nanotubes (CNTs) has

been increasing for the last decade, with current production volumes at 300 tons year -1'

globally (ton = 106 g)'. The preferred method for large-volume CNT production,

catalytic chemical vapor deposition (CVD), is plagued by inefficiency, where no more

than 3 % of the introduced carbon feedstock is converted to CNT2. In some cases, the

unused feedstock is recycled for subsequent nanotube growth, but in many other cases,

the effluent and its associated by-products are vented to the atmosphere. These untreated

materials could amount to an annual release of 10,000 tons (10 x 109 g) of carbonaceous

material, and this will expand to 300,000 tons year-' (0.3 x 1012 g year-) within the next

decade if production accelerates as predicteda 3. Plata et al.4 recently demonstrated that

the effluent from an ethene-based CVD growth contained several compounds that pose

threats to the quality of the air, water and soil. These included toxics (e.g., benzene, 1,3-

butadiene, and aromatic hydrocarbons), greenhouse gases (e.g., methane), and

compounds that contribute to smog formation and exacerbate respiratory illness. To

avoid unnecessary environmental and public health damages from CNT fabrication,

efforts must be made to reduce emissions and improve the efficiency of CNT synthesis.

These preventative measures will not only save manufacturers immediate costs, but also

prevent future loss due to production bans, environmental remediation efforts, and

personal claims reparations.

Understanding the CNT formation mechanism(s) is a critical first step toward

improved efficiency. In general, all CVD processes involve the introduction of a gaseous

carbon precursor (e.g., CO, C2H4 , or CH4) to a heated (e.g., 700-10000C) reaction zone

that contains a free-floating or substrate-supported metal catalyst (e.g., Fe, Ni, or Co).

While the current "mechanism" is limited with respect to chemical details5-7, the CNT

growth process is generally described by three stages: nucleation, elongation, and

a With a doubling rate of once every two years and assuming that the CNT mass: US $
ratio is unchanged over the next ten years.
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termination. The prevailing thought is that during nucleation, the carbon-containing

precursor dissociates at the metal catalyst and forms a CNT cap 5'". During elongation,

carbon adds to the growing CNT by continual dissociation at, diffusion into, and

precipitation from the metal catalyst (i.e., the vapor-liquid-solid (VLS) model9. This

addition of single carbon units continues until termination, where mechanical stresso0,

catalyst encapsulation", and/or catalyst deactivation halts CNT growth 12. As reactions at

the catalyst are clearly important for CNT formation, little attention has been given to

gas-phase reactions in these syntheses. However, recent work by Hart et al. 13.1 4 has

shown that there are distinct effects that arise from the independent thermal treatment of

the carbonaceous feedstock and the metal catalyst. In particular, heating and cooling

("pre-heating") the feedstock gas prior to impingement on a metal catalyst is necessary

for rapid growth of vertically aligned multi walled CNTs (VA-MWCNTs), enhancing the

CNT formation rate by over 2000% compared to when the gas is heated only at the

catalyst 3.

The thermal pre-treatment step generates a suite of volatile organic compounds

(VOCs) from an ethene feedstock, 4 some of which may be responsible for enhanced CNT

formation and others of which may diminish CNT quality' 4 and present environmental

and occupational concern. These competing processes may be eliminated with selective

delivery of critical CNT precursors, rather than relying on thermal generation to provide a

subset of necessary reactants in a complex mixture of chemicals. Furthermore, avoiding

the thermal treatment of the feedstock gas would remove the most energetically

expensive component of the synthesis5',16 and potentially improve the carbon-to-CNT

mass conversion efficiency. Here, we aim to identify compounds on the critical path to

CNT formation by monitoring in situ VA-MWCNT growth rate as we deliver potentially

important molecules directly to the catalyst. With these results, we can begin to co-

optimize the synthetic process by (1) minimizing cost by selecting potent reagent gases

that require minimal thermal treatment5 '16, (2) maximizing production growth rates, and

(3) minimizing unwanted side-products that deteriorate product quality (e.g., soot and

polycyclic aromatic hydrocarbons (PAHs)) and threaten the health of the public and the
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environment (e.g., toxics, greenhouse gases, and compounds that promote the formation

of secondary pollutants).

EXPERIMENTAL METHODS

Chemical supplies. Helium, hydrogen, ethene, methane, ethyne, and 1% ethyne

(mixed with helium) were purchased from Metro Welding (Ann Arbor, MI) or AirGas

(all ultra high purity (UHP) grade). Before use and prior to introduction to a mass flow

controller, pure ethyne was filtered through a Porasil-C packed column immersed in a

cyrogenic solution (acetone/N 2(l) or acetonitrile/N 2(), both -39 - 41 0C) to remove

acetone (which is used as a stabilizer to prevent reaction in the ethyne tank). Mass

spectral analysis indicated that acetone was removed to below the detection limit (<

ppmv) by this method. To our knowledge, this is the first CNT growth study where

acetone has not been present as a co-reactant in ethyne-fed CVD experiments. The 1%

ethyne mixture did not require purification, as it was free of acetone when shipped from

the manufacturer. Other gases, including 1,3-butadiene, but-1-ene-3-yne (1 % mixture in

helium), propyne, ethane, and 1-butyne, were purchased from Air Liquide America

Specialty Gas in high purity. Diluted mixtures of methane and ethane were prepared by

flushing 300-mL stainless steel (SS) tanks with the gas of interest, pressurizing the tanks

to some low pressure (e.g., 5 psi), and then further pressurizing the tank with He to

approximately 250 psi. Benzene was prepared by adding over 30 mL of liquid benzene

to a 300-mL SS tank, flushing the tank with He (without removing the benzene), and

pressurizing the tank to 250 psi. In all cases where He (UHP grade) was used to prepare

test gases, it was further purified with a Porasil-C packed column immersed in N2(l).

CNT synthesis. In order to measure in situ VA-MWCNT height during the

reaction progress, we utilized a custom-built CVD reactor13' 17 with a laser displacement

sensor mounted above the growth chamber (see Supporting Information). In this reactor,

gases are pre-mixed and introduced to a resistively heated quartz pre-heater tube (4 x 300

mm (inner diameter x length)), cooled to room temperature, and then delivered to a
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quartz reactor tube (4.8 x 22.9 cm). Inside the reactor tube, VA-MWCNT thin films were

grown on electron-beam deposited Fe (1.2 nm) with an A120 3 (10 nm) under layer on a Si

(600 um) support. The catalyst substrate temperature was regulated by a localized,

resistively heated silicon platform, thereby minimizing gas phase reactions in the growth

chamber. The temperature of the silicon platform was measured using an infrared sensor

mounted below the reactor tube and fixed at 725C for all experiments (except where

noted). The temperature of the "cool-wall" reactor was less than 70 0C over the length of

the platform (4-5 cm) and room temperature elsewhere, as measured by a surface-contact

thermocouple place on the outside of the quartz wall. The pre-heater temperature was

determined by a thermocouple placed outside of the quartz tube in the center of the

resistively heated coils. The pre-heater was operated in two modes: (1) "on" at 1000 C

or (2) "off" at room temperature (21 C). In both modes, reactant gases (C2H4/ H2)

travelled through the pre-heater tube and connected to a three-way valve that was

installed downstream of the pre-heater. This allowed the introduction of helium carrier

gas and specific VOC test gases (e.g., propyne or but-l-en-3-yne) to the reactant stream

mixture prior to impingement on the catalyst. The sum of these flows (He + VOC test

gas) was constant, but the distribution varied; test gases were only introduced when the

pre-heater was "off." Given the varying He delivery, we sought to remove effects

associated with trace contaminants (e.g., methane or water) in the UHP grade He by

purifying the carrier gas using a N2(/) cold trap with Porasil-C treated silica beads.

While the mixture of reactant gases varied during the growth phase, the reactor

flush and annealing treatments were kept constant. A typical reactant gas program

included: He flush at 2000 sccm for 8 min (where the pre-heater is turned on after 5 min,

if applicable), He and H2 at 70 and 300 sccm, respectively, for 4 min (where the catalyst

substrate platform is turned on after 2 min), and C2H4, H2, the VOC test gas, and He were

introduced for the duration of the CNT growth (where the summed flow rate of these

gases was always 604 sccm, except where noted).

VOC collection and analysis. VOCs were collected and analyzed as detailed in

Plata et al.4 Briefly, stainless steel canisters were placed downstream of the reactor tube
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and flushed for the duration of CNT growth. Gas samples were collected just after

growth termination and sealed with stainless steel ball valves. Considering the flow rate

of the gas and volume of the cylinder, we note that these samples represent a 30-second

integrated signal of VOCs forming during the reaction. Simultaneous measurements of

VOC composition in the effluent gases were collected using an online mass spectrometer

(MS, Pfeiffer OmniStarTM ) and monitoring relevant ions (m/z 2, 4, 12-18, 25-30, 32, 39-

42, 44-45, 51-54, 65-66, 77-78, 91). These real-time analyses indicated that gas

composition over a 30-second interval during the growth cycle was stable. VOCs in the

stainless steel canisters were quantified by gas chromatography with a flame ionization

detector and thermal conductivity detector (GD-FID-TCD with He reference gas)

calibrated with standard gas mixtures. Gas samples were pre-focused using a cryogenic

(N2(l)) trap of Porasil-C treated silica beads before injection on the HayeSep Q column.

Detection limits were around 0.1 ppmv. He and H2 were quantified using an additional

GC-TCD with a N2 reference gas.

PAH collection and analysis. PAHs were collected and analyzed as detailed in

Plata et al. 4 Briefly, PAHs were concentrated on two consecutive, pre-cleaned

polyurethane foam (PUF) filters (3" length x 1" diameter). These filters were in place for

the entire duration of CNT growth, and the reported PAH abundances represent an

integrated signal throughout the growth period. PUFs were extracted by triplicate

accelerated solvent extractions (ASE) with a 90:10 dichloromethane: methanol mixture at

100 0C and 1000 psi for 5 min. Each extract was concentrated by rotary evaporation, and

analyzed by GC-MS. Sample recovery was assessed using internal standards (do-

acenaphthalene, m-terphenyl, and dl2-perylene) and ranged from 75 ± 1% for low

molecular weight PAHs (128 to 154 amu) to greater than 90 + 1% for higher molecular

weight PAHs (> 166 amu). Detection limits were around 1 ng gc feedstock -1 (an average of

0.001 parts per trillion by volume).
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RESULTS AND DISCUSSION

Accelerated CNT growth with thermal pre-treatment offeedstock gas. Using a

decoupled CVD reactor, we independently controlled the temperature of VA-MWCNT

metal catalyst and C2H4/H2 feedstock while monitoring the composition of gases evolved

from the pre-heater, as well as the in situ VA-MWCNT forest growth rate. As the pre-

heater temperature increased (from 690 to 12000C), the growth rate of the VA-MWCNT

forest increased4,14, and we hypothesized that some subset of thermally generated

compounds was responsible for the accelerated CNT formation. Indeed, there were

strong linear correlations between the growth rate and the partial pressures of methane,

benzene, and but-1-en-3-yne (each with a correlation coefficient of 0.99; n = 4, Figure 1).

As the abundance of propyne increased, the growth accelerated to a point of apparent

saturation, indicating that at relatively high propyne concentrations, something other than

substrate concentration limited the rate of VA-MWCNT formation. The hyperbolic

behavior is characteristic of catalysis reactions (see Supporting Information), suggesting

that the metal catalyst may play a role in CNT formation beyond simply providing a

template for highly-ordered carbon precipitation, as described by the VLS model.

The VLS model has been used to describe the probability of CNT growth from

various carbon precursors, such as methane. Methane is a common CVD feedstock gas,

and recent models suggest it gives effective CNT growth via decomposition on Fe

catalyst surfaces' . Benzene has been discussed as an important intermediate in CNT

formation, but the alkynes propyne and but-1-en-3-yne have not been recognized as

active molecules in the CNT formation pathway. Ethyne, however, has been noted for its

relatively efficient conversion to CNT in molecular beam experiments (where gas phase

reactions are minimized) 19. Unfortunately, in those studies, acetone was present as a

trace (< 1%) component of the commercially available ethyne, and it is unclear if the

enhanced growth was an effect of the ethyne itself or the oxygen-containing acetone.

(Oxygen-containing compounds can enhance CNT growth 20). Nevertheless, in

homogeneous transition metal catalysis, alkynes have been shown to react with alkenes to
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Figure 1. Thermally generated compounds correlate with increase VA-MWCNT growth
rate. In all subplots, the symbols are measured data4 and the line is the best-fit curve. (a)
Methane's abundance was linearly related to the growth rate (R2 = 0.99, n =4). (b)
Benzene (red circles) and but-1-en-3-yne (blue squares) were linearly related to the
growth rate (R2 = 0.99, n =4). (c) The relationship between propyne and the VA-
MWCNT growth rate was described by a hyperbola. In these experiments, the gas flow
during growth was C2H4/H2/He = 70/330/0 sccm and the catalyst substrate temperature
was 825C.
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form cyclic intermediates, which are subsequently released from the active meta12 1-24 .

Although CVD is a heterogeneous catalysis, it is possible that alkynes are playing a

similar role in CNT formation.

Accelerated CNT growth without heating feedstock gases. To demonstrate that

members of a chemical class, small alkynes (with Cn<4), are responsible for the

accelerated VA-MWCNT growth, we delivered each potential pre-cursor molecule to a

heated metal catalyst without thermal treatment of the feedstock gas. To simulate the

growth environment that would be generated by the pre-heater (without the convolution

of the more than 40 thermally generated compounds) 4, we delivered trace amounts of the

test gas (e.g., < 1% by vol), along with a supply of ethene (18.7 % by vol) and hydrogen

(51.3 % by vol, balance He), to the heated metal catalyst. When equal

partial pressures (9.8 x 10-3 atm) of each test gas were delivered, ethyne and propyne

enhanced the growth rate of CNTs to a greater extent than either 1,3-butadiene or

methane (Figure 2a; growth rates (all in um s-') of 3.5 + 0.1 for both ethyne and propyne,

and 1.1 ± 0.1 and 0.7 ± 0.1 for 1,3-butadiene and methane, respectively). (Note that mass

spectral analysis showed no acetone in our cryogenically purified ethyne). The addition

of ethane, an abundant product of the thermal treatment of ethene 4, did not accelerate

CNT growth beyond that observed without any additional test gas (the "pre-heater off')

case. A third alkyne was tested, but at a slightly lower partial pressure (3.0 x 10-3 atm),

due to concentration limitations on but-l-en-3-yne (which is unstable at high

concentrations). In spite of over a factor-of-3 dilution compared to ethyne and propyne,

the CNT growth rate of but-l-en-3-yne was only 1.3 times slower (2.7 ± 0.1 um s- vs.

3.5 ± 0.1 um s-1). Thus, if these concentrations are within the linear response range of

but-l-en-3-yne's effect on growth, then but-l-en-3-yne could be more active than both

propyne and ethyne.

We hypothesized that the additional activity of but-i -en-3-yne might arise from

the double bond at the head of the molecule. To probe the effect of this functional group,

we explored the accelerating effects of 1-butyne (which lacks a double bond). At the

same partial pressures (3.3 x 10-4 atm), 1-butyne accelerated the growth of CNTs to a
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lesser extent than but-1-en-3-yne (Figure 2b). This suggests that the alkene group has a

role in promoting CNT formation beyond the effects of the alkyne alone, and potential

mechanisms will be discussed in light of further results (that appear later). For

completeness, benzene, which was correlated to VA-MWCNT growth rate, was delivered

to the catalyst as a test gas. There was limited acceleration in CNT formation at this low

abundance of benzene (vapor pressure limits prevent the use of higher concentrations),

but 3.3 x 10-4 atm is within the range expected from thermal generation. Similarly,

relevant concentrations of methane did not promote CNT formation rates. Thus,

correlation with rate does not necessarily indicate that benzene or methane was acting to

accelerate VA-MWCNT growth at the catalyst, as they may simply have been

synthesized in sequence from another critical component (e.g., benzene formation

propyne-derived radicals 25).

It was possible that the perceived inactivity of methane could be due to its low

carbon content (per mol gas) as compared to longer alkenes and alkynes. To ensure that

the observed rate enhancements were not merely the result of differences in content, we

normalized the delivery of each test precursor to a constant mass (5.5 + 0.4 ug C sccm -1,

where sccm is a standard cubic centimeter per minute). On a mass basis, but-1-en-3-yne

exhibited the greatest rate acceleration, followed by ethyne, propyne, 1,3-butadiene, and

methane (Figure 2c). Thus, the accelerating effects of alkynes on CNT growth are not

simply due to their relative carbon contents, but are intimately related to their structures.

Ultimately, it is clear that rapid CNT growth can be achieved without heating

feedstock gas, which will reduce energy requirements of industrial scale CVD synthesis

and likely limit the formation of unintended by-products (e.g., toxicants and greenhouse

gases).

181



'0 5 10 15 20
Time (min)

2 r ---------- ---

1.5-
pre-heater on + but--en-3-yne

+ 1-butyne

+ benzene
0.5

pre-heater off
+ ethane

5 10 15 20 25
Time (min)

2.5
+ but-1-en-3-yne

(c) + propyne

2-

+ 1 3-butadieneE
El. pre-heater on

D 1 - +methane

+ ethane

0.5- pre-heater off

5 10 15 20 25 30
Time (min)

Figure 2. Effects of chemical structure on VA-MWCNT growth. In all experiments,
standard growth gasses (C2H4/ H2 = 120/310 sccm) were delivered without pre-heating
in addition to either (1) no test gas ("pre-heater off') or (2) a test gas (e.g., propyne or
methane). To provide a reference for typical growth conditions, a "pre-heater on" case
(where only C2H4 and H2 are delivered) is also shown. (a) Test gases were delivered at
equal partial pressures (9.8 x 10-3 atm), except for but-1-en-3-yne, which was more dilute
(3.0 x 10- atm). All alkynes significantly accelerated growth compared to when they
were not delivered (pre-heater off case). Test gases were then delivered at (b) lower
partial pressures (3.3 x 10-4 atm) or (c) equal masses (5.5 + 0.4 ug C sccm 1).
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Reduced by-product formation without sacrificing CNT growth. Although

feedstock gases were not heated prior to impingement on the metal catalyst, they were

subject to local heating in the proximity of the resistively heated catalyst substrate

platform. Thus, gas phase rearrangements in the reactor tube could result in the

formation of unintended side products. In the typical CVD approach, with the pre-heater

on, many volatile organic compounds are generated from the thermal treatment of ethene

and hydrogen (Figure 3), including methane (a potent greenhouse gas), benzene, and 1,3-

butadiene (hazardous air pollutants regulated by the EPA). Omitting pre-heating

drastically reduces the abundance of all VOCs (except ethane) by more than an order of

magnitude (see Supporting Information for reduction factors). Several compounds,

benzene, 1,3-butadiyne, cyclopentadiene, pentene, and pentane, were not formed in

detectable quantities (> 0.1 ppmv) when the pre-heater was off. Thus, CNT fabrication

techniques that limit the thermal treatment of the feedstock gas offer substantial

reductions in unnecessary emissions. However, neglecting to pre-heat requires the

addition of an alkyne to achieve comparable CNT growth rates and heights. The addition

of propyne and but-1-en-3-yne did increase the VOC content of the effluent gas, but not

above levels produced by thermal treatment of the feedstock. Compared to pre-heating,

methane formation was reduced by about a factor of 30 during alkyne-assisted CNT

growth; 1,3-butadiene formation was reduced by more than a factor of 60; and benzene

formation was reduced below the detection limit (< 0.1 ppmv). Benzene was only

formed when 1,3-butadiene was added to the unheated feedstock gases, and VOCs were

highest compared to all other experiments without thermal treatment. The addition of

either methane or ethane did not substantially increase the VOC load of the effluent, but

it did augment the formation of propyne in gas phase reactions around the heated

substrate (potentially due to the combination of methane radicals with ethene25).

VOCs are the most abundant components of the CVD effluent, but several toxic

PAHs are also formed and emitted4 . Eliminating thermal treatment of the feedstock gases

reduced the total PAH load by an order of magnitude (Figure 4, Supporting Information).

Naphthalene, fluoranthene, and pyrene were most sensitive to changes in thermal pre-
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treatment, reduced by factors of 20, 60, and 40, respectively. The acenaphthylene,

acenaphthene, fluorene, phenanthrene, and anthracene contents of the effluent were only

slightly reduced by foregoing thermal pre-treatment. Interestingly, adding ethane

resulted in a measurable reduction in fluoranthene and pyrene, and 1,3-butadiene-assisted

CNT growth did not yield measurable fluroanthene or pyrene. In contrast, fluoranthene

and pyrene were elevated in alkyne-assisted CNT syntheses relative to unassisted

growths. Some have postulated that fluoranthene, whose structure resembles a CNT cap,

is responsible for CNT nucleation19 . The increased abundance of these four-ringed PAHs

in enhanced syntheses, and their reduced presence in reactions that showed no

enhancement, suggests they may have a role in CNT formation. However, further studies

are needed to establish the function of PAHs in CNT formation reactions.

The total PAH content of alkyne-assisted CNT syntheses was elevated relative to

unassisted growths, but was reduced by over an order of magnitude compared to

traditional thermal pre-treatment techniques. Thus, the potential environmental impact of

CNT manufacture can be markedly reduced without sacrificing CNT growth rate.

Furthermore, selective delivery of important CNT precursor molecules will ultimately

afford greater control over the reaction, as thermally generated compounds that interfere

with product quality will be avoided or minimized. For example, PAHs may contribute

to the formation of amorphous carbon, a significant, interfering, and difficult to remove

co-product generated with almost all CNTs. We hypothesize that the reduced PAH

content of alkyne-assisted syntheses will yield high purity CNTs with limited amorphous

carbon coatings/ 4, and these studies are on going.
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Figure 3. Eliminating thermal pre-treatment of feedstock gases reduced VOC formation. Labels shown on the abscissa
indicate the identity of the test gas and correspond to the growth curves shown in Figure 2a. In the "pre-heater on" and "pre-
heater off" case, no test gas was added to the typical feedstock gas (C2H4/H2/He = 120/310/174 seem). Error bars represent one
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Minimizing the use of ethene and hydrogen: Optimizing feedstock

requirements. While a relatively small concentration of alkyne added to the unheated

ethene feedstock accelerated CNT growth, the mass of alkyne was not sufficient to

account for the mass of CNT formed, and additional compounds must have added to the

growing CNT lattice. The principle feedstock, ethene, may serve as a co-reactant at the

metal catalyst to form CNTs. If so, we would expect to see a reduction in the rate of

CNT formation as C2H4 abundance is reduced. As mentioned earlier, transition-metal

catalyzed cyclization reactions rely on both an alkyne and an alkene to form new carbon-

carbon bonds, ultimately forming unsaturated rings with carbon backbones. In these

reactions, the metal must be reduced in order to have catalytic activity, and the electrons

are necessary to promote bond formation. In CNT synthesis, most catalysts must be

reduced (usually with H2) prior to CNT growth (except for, most notably, Fe(CO)5, which

is used in HiPCO® syntheses and is already reduced (has an Fe(O) oxidation state) in its

native form). If the catalyst continually transfers electrons to carbonaceous reactants to

form long CNTs, we would expect H2 (an electron donor) to be required for sustained

catalytic activity. However, hydrogen's influence will not be strictly limited to catalytic

effects, as it is also important to gas-phase reactions during CNT synthesis4. To explore

the role of H2 and C2H4 in an alkyne-assisted CNT synthesis, we varied the concentration

of each independently while fixing ethyne (the cheapest of the tested alkynes).

Furthermore, we aimed to identify the minimal H2 and C2H4 quantities necessary to

obtain rapid, sufficient CNT formation, so as to minimize initial feedstock costs and

minimize waste.
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Figure 5. Effects of ethene and hydrogen on nanotube growth rate and catalyst lifetime
during ethyne-assisted CNT growth. Acetone-free ethyne was delivered at 1.0 x 10-3 atm
in all experiments; when C2H4 was varied, H2 was constant 0.51 atm; when H2 was
varied, C2H4 was constant at 0.20 atm; helium was used to maintain a constant total flow
rate of 604 sccm. The ethene content influenced the CNT growth rate (a), but had little
effect on the catalyst lifetime (b). The hydrogen content influenced the growth rate at
low partial pressure (c) and had a large impact on catalyst lifetime (d).
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As C2H4 abundance was reduced, a decrease in CNT growth rate was observed

(Figure 5a). This is consistent with ethene having a co-catalytic role with the alkyne in

the CNT formation reaction. In contrast, the abundance of C2H 4 delivered as feedstock

gas did not have a clear relationship with the catalyst lifetime (Figure 5b). Unless C2H4

concentration promotes significant soot formation over the catalyst, or increased C2H4

terminates the reaction, there is no a priori reason to expect that C2H4 levels would

influence the duration of growth. A reduction in C2H4 (from 0.2 atm to 0.16 atm) did not

affect the growth duration (catalyst lifetime) or the growth rate appreciably. Thus, the

initial feedstock concentration of ethene can be reduced by 20% without sacrificing CNT

growth rate or yield.

As expected, the partial pressure of H2 (pH2) had a significant impact on the

catalyst lifetime (Figure 5d). At low pH 2 (<0.31 atm), there was a sharp decrease in the

catalyst lifetime, consistent with hydrogen's role as a sustained source of electrons

necessary to re-reduce the catalyst after it has been oxidized (presumably by donating

electrons for metal-carbon or carbon-carbon bond formation). While a minimum amount

of hydrogen was necessary to sustain catalyst activity, excess pH2 reduced the catalyst

lifetime. In polyethylene (polyethene) polymerization reactions, an abrupt increase in

pH2 can terminate chain propagation by adding to the metal catalyst, blocking monomer

addition, and it is often used to control the ultimate length of the polymer26-28. If the

CNT formation reaction has analogous polymerization character, high pH2 would be

expected to induce a termination event, as observed. Alternatively, termination events

could be induced via protonation by water to yield a reductive coupling product (e.g.,

adding H to the CNT and cleaving the metal-CNT bond), and recent observations of

water-induced cleavage of CNT-catalyst contact support this mechanism for

termination 20

In addition to having a substantial influence on catalyst lifetime, low pH2 (< 0.17

atm) affected CNT growth rate (Figure 5a). There are two potential explanations for this

that rely on either gas-phase or catalyst-based reactions: (1) in the gas phase, inadequate

hydrogen can limit the formation of VOCs 4 (possibly denying the catalyst of a necessary
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precursor) and also promote polyethyne formation29 (which may disfavor structures with

long-range order) or (2) at the catalyst, excess hydrocarbon-derived hydrogen must be

removed from the growing CNT backbone, and H2-derived H radicals could abstract

these, leaving a conjugated n-system in place.

Clearly, H2 serves a complicated and multi-faceted role in the CNT formation

reaction. Although it is helpful to understand the dominant reaction processes of novel

industrial materials, complete mechanistic knowledge is not necessary to minimize

environmental damages from the process. Without compromising CNT growth rate or

catalyst lifetime, the amount of input hydrogen can be reduced from 0.51 to 0.31 atm, a

40% reduction that will translate to cost savings for the manufacturer. Earlier, we noted

that a 20% reduction in ethene input was also possible (with pH 2 = 0.51), and there are

evident opportunities to reduce both initial feedstock costs and the total amount of

carbonaceous material being vented to the atmosphere. Furthermore, eliminating the

thermal treatment of feedstock gases by supplying the necessary precursors directly to the

metal catalyst reduces the formation of potentially harmful and unintended by-products,

saves on energetic costs associated with synthesis, and limits unnecessary damage to the

environment without sacrificing production quality.
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SUPPORTING INFORMATION

Linear and log-linear relationships between CNT precursor molecule abundance
and CNT growth rate

The hyperbolic relationship (Figure 1) between propyne abundance and growth

rate and can be used to determine the asymptotic maximum rate (vmax) and a characteristic

concentration of propyne (concentration at half of the maximum growth rate, Charm).

The maximum possible rate, 13.5 um s-', was greater than the observed maximum VA-

MWCNT growth rate of 9.1 um s' 1, suggesting that higher VA-MWCNT formation rates

were possible. (The characteristic propyne concentration at half of the maximum growth

rate was 7.5 x 10 4 atm). The saturating behavior, where product (i.e., VA-MWCNT)

formation does not continually increase with higher substrate (i.e., propyne)

concentration, is characteristic of surface-catalyzed reactions'.
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Figure S1. Kinetic treatment of surface-catalyzed reactions. The relationship between
VA-MWCNT formation and propyne abundance (inverse of propyne abundance plotted
on the x-axis and the inverse of the growth rate plotted on the y-axis) was used to extract
relevant kinetic parameters. Here, the y-intercept is equal to the inverse of the maximum
possible growth rate (Vm,,). The slope is equal to the concentration of propyne at half of
the maximum growth rate (Chai-max) divided by the maximum growth rate (Vma).
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Figure S2. Schematic diagram of experimental apparatus. Traditional growth feedstock
gases (C2H4/ H2) and annealing gases (He/H2) are introduced via a resistively heated pre-
heater tube that was operated in two modes: (1) "on" at 1000 0C and (2) "off' at room
temperature (21 0C). With the pre-heater off, test gases (e.g., 1,3-butadiene, ethyne, propyne,
1-butyne, but-l-en-3-yne, methane, ethane, or benzene) were introduced during the growth
phase via a secondary input line, which could be flushed to a vent via a 3-way valve during
the flush and anneal phases. The flow rate of the test gas was balanced with an additional
helium line that was cryogenically purified with a Porasil-C column immersed in liquid
nitrogen. For all experiments, the total flow of gas (C2H4+ H2+He+test gas) was 604 sccm,
except where noted. These were introduced to a cold-walled quartz reactor tube that housed
a resistively heated silicon platform, which supported the vertically aligned multi-wall carbon
nanotube (VA-MWCNT) catalyst substrate. The temperature of the platform was monitored
and controlled (via feedback) by an infrared (IR) temperature sensor, and the growth rate of
the VA-MWCNT forest was monitored using a laser displacement sensor. Effluent gases
were continually monitored by online mass spectrometry (MS, 2 sccm sampling rate), and
subsequently flushed to either a vent (during anneal and flush) or though a stainless steel
sampling tank (SS Tank, to collect VOCs, He, and H2), quartz fiber filters (to collect particles
>0.2 um), and polyurethane foams (PUFs, to collect PAHs).
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Table S1 (a). VOC content of test gas reaction effluents. These entries correspond to the CNT growth rate curves that appear
in Figure 2a. The entries are partial pressures (atm) at room temperature (20 0C) and within each column, the concentration is
reported before its standard deviation (shown
parentheses (e.g., 4.0(-4)= 4.0 x 10-4 atm).

in italics). Values should be multiplied by 10 raised to the power given in the

methane

ethane

propylene

propane

propyne

1,3-butadiene

but-l-en-3-yne

1,2-butadiene

1,3-butadiyne

cyclopentadiene

pentene

pentane

hexene

benzene

Pre-heater on

3.7(-3)

1.7(-2)

7.1(-4)

3.2(-5)

1.7(-4)

3.6(-3)

2.7(-4)

1.2(-4)

3.0(-5)

1.4(-5)

1.2(-5)

1.7(-4)

3.1(-4)

1(-4)

1(-3)

2(-5)

1(-6)

1(-5)

1(-4)

1(-5)

1(-5)

1(-6)

1(-6)

1(-6)

1(-5)

Pre-heater off

6.7(-5)

8.8(-3)

2.0(-5)

2.0(-6)

4.4(-7)

8.4(-5)

1.1(-5)

1.3(-6)
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+ methane + ethane

6(-6)

8(-4)

2(-6)

8(-7)

5(-8)

8(-6)

1(-6)

1(-7)

1.2(-2)

7.8(-3)

3.7(-5)

3.9(-6)

4.8(-5)

7.9(-5)

1.1(-5)

1.5(-6)

1(-3)

3(-4)

2(-6)

2(-7)

2(-6)

3(-6)

1(-6)

1(-7)

9.1(-5)

2.1(-2)

4.8(-5)

5.3(-6)

4.8(-5)

2.2(-4)

2.5(-5)

8(-6)

2(-3)

4(-6)

4(-7)

4(-6)

2(-5)

2(-6)



Table S1 (b). VOC content of test gas reaction effluents (continued). These entries correspond to the CNT growth rate curves
that appear in Figure 2a. The entries are partial pressures (atm) and within each column, the concentration is reported before
its standard deviation (shown in italics). Values should be multiplied by 10 raised to the power given in the parentheses (e.g.,
4.0(-4)= 4.0 x 10-4 atm).

+ 1,3-butadiene + but-l-en-3-yne + propyne

methane 4.0(-4) 1(-5) 1.0(-4) 1(-5) 3.3(-4) 1(-5)

ethane 9.3(-3) 1(-4) 8.5(-3) 5(-4) 6.1(-3) 1(-4)

propylene 2.8(-4) 1(-5) 5.8(-5) 4(-6) 1.3(-3) 1(-4)

propane 1.5(-5) 2(-6) 4.2(-6) 1(-6) 1.3(-4) 1(-5)

propyne 1.0(-4) 1(-5) 8.9(-6) 2(-6) 8.5(-3) 1(-4)

1,3-butadiene 1.0(-2) 1(-3) 5.2(-4) 3.3(-5) 1.5(-4) 1(-5)

but-1-en-3-yne 6.4(-4) 1(-5) 4.3(-5) 3(-6) 2.2(-5) 1(-6)

1,2-butadiene 2.8(-4) 4(-5) 1.1(-5) 1(-6) 2.2(-6) 1(-7)

1,3-butadiyne 2.4(-6) 4(-7) 1.5(-6) 1(-7)

cyclopentadiene 1.2(-5) 1(-6) 7.0(-6) 2(-6)

pentene 3.2(-6) 4(-7) 6.5(-6) 1(-7)

pentane 2.5(-6) 1(-7) 3.7(-5) 1(-6)

hexene 3.5(-4) 1(-5)

benzene 1.0(-4) 5(-5)
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Table S2 (a). PAH content of test gas reaction effluents. These entries correspond to the CNT growth rate curves that appear
in Figure 2a. The entries are mass PAH per mass C feedstock (ng g-1) and within each column, the concentration is reported
before its standard deviation (shown in italics). Values should be multiplied by 10 raised to the power given in the parentheses
(e.g., 8.3(3)= 8.3 x 103 ng PAH g C feedstock-).

naphthalene

acenaphthylene

acenaphthene

fluorene

phenanthrene

anthracene

fluoranthene

pyrene

IPAH

gC per synthesis
_________________ L

Pre-heater on

8.3(3)

5.4(2)

1.2(2)

5.2(1)

1.1(1)

2.2

1.2(1)

2.2

9.1(3)

8(2)

1(1)

1(1)

2

2(-1)

1(-1)

4(-1)

1(-1)

8(2)

Pre-heater off

3.6(2)

2.9(2)

8.2(1)

3.2(1)

7.0

1.7

2.0

4.5(-1)

7.7(2)

3(1)

1(1)

5

1

1

1(-1)

1(-1)

5(-2)

3(1)

2.3
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+ methane + ethane

2.8(2)

1.2(2)

4.1(1)

2.7(1)

5.5

1.1

1.7

4.0(-1)

4.7(2)

2(1)

1(1)

1

1

3(-1)

1(-1)

1(-1)

3(-2)

2(1)

2.4(2)

7.0(1)

2.2(1)

1.3(1)

5.2

1.1

7.4(-1)

2.6(-1)

3.6(2)

3(1)

3

1

1

1(-1)

1(-1)

1(-2)

1(-2)

3(1)

2.5 2.7



Table S2 (b). PAH content of test gas reaction effluents (continuted). These entries correspond to the CNT growth rate curves
that appear in Figure 2a. The entries are mass PAH per mass C feedstock (ng g-') and within each column, the concentration is
reported before its standard deviation (shown in italics). Values should be multiplied by 10 raised to the power given in the
parentheses (e.g., 8.3(3)= 8.3 x 103 ng PAH g C feedstock-').

+ 1,3-butadiene + but-l-en-3-yne + propyne

naphthalene 4.6(2) 6(1) 7.2(2) 1(1) 4.7(2) 5(1)

acenaphthylene 9.0(1) 5(-1) 1.6(2) 1(1) 9.4(1) 1

acenaphthene 3.1(1) 2 4.4(1) 2 3.3(1) 3

fluorene 2.6(1) 1 3.8(1) 1 2.7(1) 1

phenanthrene 1.2(1) 6 1.4(1) 1 2.7(1) 1

anthracene 2.4 3(-1) 2.3 1 (-1) 5.8 2(-1)

fluoranthene 3.4 3(-1) 3.9 3(-1)

pyrene 1.1 2(-1) 1.7 1(-1)

ZPAH 6.2(2) 6(1) 9.8(2) 1(1) 6.6(2) 5(1)

gC per synthesis 1.7 2.4 0.9
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Anneal phase: Reduce catalyst with H2

Fe20 3 + 3H1-2 - 2Fe + 3H20

Growth phase: Ethene and ethyne coupling to form initial cyclic structures

R'
H (or H H

H H H
H H H

H Fe() H Fe(+II) H

H H
H

H H

H H/+ nRH
H- + (2-n)HH

Fe(+II) H H Fe
S(+II) HFe(O)

H

H H -H

Figure S3(a). Proposed CNT growth mechanism. During the anneal phase of CNT
production, the catalyst was reduced and subject to morphological changes that yield
metal nanoparticles 2. There is precedence in the literature for both (1) coupling reactions
between alkynes and alkenes that proceed via metallocycles (e.g., Jeganmohan and
Chen 3) and (2) alkane insertion to a growing C-chain. Excess hydrogen atoms must be
liberated without increasing the C-C bond order, but no mechanism for this is proposed
here.
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Growth phase continued: Elongation by sequential alkyne or alkene addition
(alkyne shown)

+ 4R'
+2RfH + RH + RH +

I Fe(O) Fe(O)
Figure S3(b). Proposed CNT growth mechanism (continued). Here, we present possible
propagation steps, but these need to be vetted experimentally. An unstable transition
state is depicted here, where excess hydrogen atoms are liberated by reaction with
radicals (R-) and resultant electrons add to the CNT lattice and ultimately reduce the
metal catalyst. Colors are used to guide the eyes.
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Termination events: Net H2 addition

Fe(+ll) 1 \ /
H H

Figure S3(c). Proposed CNT termination mechanism. There is precedence in the
literature for water to cleave catalyst-CNT bonds4, and our results suggest that excess
gas-phase hydrogen could terminate growth. Colors are used to guide the eyes.
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CHAPTER 6:
REFLECTIONS ON AND FORECASTS OF THIS WORK:

CONTRIBUTIONS, CRITICISMS,
PRECEDENT, AND OPPORTUNITIES

By

Desiree L. Plata
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CONTRIBUTIONS

In our history, no industrially important chemical has been produced, used, and

disposed of without some release to the environment. Furthermore, chemical

manufacturing procedures are often designed to maximize material performance and

minimize production costs, with little attention devoted to environmental impact

mitigation. This model results in postponed recognition of malignant environmental and

public health effects, and at an advanced stage of industrial development, it is very

difficult to arrest, let alone rectify, the resultant damages. Aware of this pattern and

poised at the expansion of the carbon nanotube (CNT) industry, engineers and

environmental scientists have a unique opportunity to alter the future approach to the

development of all materials: by incorporating environmental objectives prior to

industrial scale-up of synthesis. In doing so, we will not only prevent unnecessary harm

to the earth and human health, but will also preserve the public's confidence in a field

that promises many benefits to society.

To achieve this vital goal, I investigated the potential impacts of promising novel

materials, CNTs, on the Earth system. There are two primary objectives to this research:

(1) to assess emissions from a common CNT production method and use improved

mechanistic understanding to reduce the release of compounds of environmental concern

(e.g., green house gases, toxins, and materials that form secondary pollutants, such as

smog and aerosols), and (2) to develop a method to monitor the fate of and biological

exposure to CNTs in complex environmental matrices (e.g., air, water, soil, and

sediment).

Potential impacts from the manufacture of CNTs. The industrially favored

production method, carbon vapor deposition (CVD), is plagued by inefficiency. Less

than 3% of the source carbon feedstock becomes CNT product, while the remaining

-97% is often vented to the atmospherea. This material was almost completely

a Some CNT manufacturers reuse their effluents a few times each day, ultimately venting
unused materials. Alternatively, some manufacturers "flame" their effluents, in an
attempt to convert unused material to CO2.
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uncharacterized prior to my dissertation research, but I hypothesized that the reaction

conditions (heating carbonaceous gas to high temperatures, 500-1200 oC) would result in

the formation of volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons

(PAHs), and soot. All of these raise environmental and public heath concern: photoactive

VOCs contribute to smog and lower atmosphere ozone formation, which can exacerbate

respiratory disease; select PAHs are toxic; and soot influences respiratory health as well

as the radiative heat balance of the atmosphere. Using a representative, laboratory-scale

CVD reactor (fed with ethene and hydrogen), I developed a collection apparatus that

enabled detection of compounds (PAHs) at parts per trillion levels; six orders of

magnitude lower than previously possible for these systems. My results showed, as

expected, that VOCs, PAHs, soot, and the potent greenhouse gas, methane, were formed

and released.

Assuming that the effluent-to-CNT ratio would be the same for an industrial-scale

synthetic process b, I estimated contributions to the national VOC and PAH emissions due

to two future CNT-based applications. I found that, compared to national emissions, the

quantity of VOCs and PAHs produced from CNT production (for thermal interface

materials (TIMs) and flat panel displays (FPDs) only) would be relatively small.

However, these emissions could become important on a local scale. In particular,

assuming that 20% of of TIM and FPD production occurred in Houston, TX (one of the

United States' most industrialized cities), emissions of the toxic hazardous air pollutants

1,3-butadiene and benzene would increase by almost 50% and over 3%, respectively.

I found these potential outputs to be unacceptable (for reasons discussed later in

"Criticism" section), and I sought to refine the CNT formation process to reduce the

initial production of environmentally concerning compounds. I noted that increasing the

temperature of thermal treatment of the reactant gasses (ethene and hydrogen) increased

b I recognize that this assumption likely flawed, but it is the best estimate that can be
developed until industrial scale processes are fully developed. Further, the estimate is
intended to guide the selection of synthetic practices with minimal environmental impact
by providing future emissions projections, rather than assert that manufacturing practices
will be unchanged or emissions-to-CNT ratios will be fixed.
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the quantity of VOCs and PAHs, but at the same time, increased CNT formation rate. I

hypothesized that only select thermally generated compounds were necessary for rapid

CNT growth, while others were interfering chemicals that might reduce CNT quality and

increase negative environmental impacts of the production. By avoiding thermal

treatment of the feedstock gas and, instead, delivering the critical precursors directly to

the CNT catalyst, I expected that rapid, high-quality, low-polluting, lower energy

consumption CNT growth was possible.

By monitoring the in situ kinetics of CNT formation (using a laser displacement

measurement of the height of vertically aligned CNTs) and corresponding gas analysis, I

was able to identify which of the thermally generated products were important for the

CNT growth. Small alkyne precursors were most effective at accelerating CNT growth,

and the data suggest that they are acting in concert with ethene to form CNTs.

Additionally, I found that hydrogen plays a role in both sustaining catalyst activity and

gas phase reactions. Nevertheless, the input levels of ethene and hydrogen could be

reduced by 20 and 40%, respectively, without sacrificing CNT growth. This represents

an automatic savings in both costs and emissions. Furthermore, the VOC and PAH

emissions due to alkyne-assisted, unheated CNT formation were reduced by more than an

order of magnitude. The energetic costs of the synthesis will drastically decrease, which

will translate into CO 2 savings if the electricity source is carbon-derived. In addition, I

expect that the product quality of CNTs will increase (i.e., reduced coating of amorphous

carbon, which can interfere with CNT electrical conductivity) when PAH formation

decreases, and early results suggest this may be the case (Figure 1). If this is verified,

then not only were emissions, energetic costs, and feedstock costs reduced, but the

product quality may also be improved. Thus, it would seem only sensible for a

manufacturer to adopt this environmentally conscientious synthetic approach.
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gas prior to growth

Figure 1. High-resolution transmission electron micrograph of MWCNTs grown in the
absence (left panel) and presence (right panel) or PAHs. I hypothesize that PAHs may
contribute to the formation of amorphous carbon on CNTs. As an initial, first-order test
of this theory, I filtered PAHs from the post-heated ethene/hydrogen feedstock prior to
delivery to the CNT metal catalyst. In the left panel (no PAHs), there was no noticeable
deposition of amorphous carbon. In the right panel, nanotubes grown in the presence of
PAHs had amorphous carbon deposits (non-linear structures on top of the CNT). Note
that the right panel tubes were grown under slightly different synthetic conditions (hence
the smaller diameter), but are representative of typically observed amorphous coatings.
Studies to vet this hypothesis are ongoing. (Images courtesy of Matteo Seita (ETH
Zurich) and Eric Meshot (University of Michigan)).
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Developing a method to detect CNTs in the natural world. There is some

concern that CNTs themselves, which have demonstrated toxicity -6, are released in the

effluent of CVD reactors. However, there was no established method for detecting CNTs

in complex environmental matrices (e.g., air, water, sediments) at the onset of this

investigation. This limitation precludes the study of CNT fate in the environment, limits

the ability of government agencies to enforce regulation, and prevents the assessment of

biological exposure to CNTs. A large portion of my dissertation research was dedicated

to overcoming this challenge.

I developed a method for CNT detection using thermal gravimetric analysis-mass

spectrometry (TGA-MS). First, I showed that commercially available SWCNTs exhibit a

wide range in oxidation temperatures, perhaps related to the type of metal catalyst present

with the CNT. All SWCNTs were less thermally stable than black carbon (BC) soot,

more thermally stable than methylcellulose, and exhibited significant to marginal co-

degradation with environmental matrices (e.g., aerosol concentrates and sediments,

respectively). Using a SWCNT sample that exhibited minimal co-degradation with

natural organic phases, I monitored gases evolved during a thermal degradation in either

dry air or hydrogen atmospheres. As SWCNTs have very low hydrogen and oxygen

contents relative to other natural materials, SWCNTs exhibited very low H20/CO2 ratios

in air and low H20/C 2H4 ratios in hydrogen. Using these depletions, I was able to detect

quantities as low as 10 ug SWCNT in sedimentary samples (40 mg sample size), which

was set by co-oxidation of organic phases (in air experiments) and leaks of air (which has

an interfering mass fragment) into the TGA-MS (in hydrogen experiments). While this

method is not yet sensitive enough for current environmental CNT levels (pg m-3 of air,

pg g of sediment, based on results of a dynamic mass balance model that I developed in

Chapter 1 of this thesis), it is sufficient for detection of CNTs in production facility air

and perhaps near effluent towers. TGA-MS is a high-throughput, low-cost, accessible

method that could be used by many individuals in industry, government, and academia to

put an upper bound on the potential releases of CNTs. If the detection limit was
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exceeded, measures could be made to reduce the release of CNTs from these potential

point sources.

In spite of the current detection limit, there are uses for the methods presented

here. For example, all of the current CNTs contained in consumer products sold today

are sold as CNT-epoxy or CNT-polymer composites. CNTs are fairly concentrated in

these samples, and so, the CNT content of a product might be tested using the present

TGA-MS method. In addition, all studies of carbon nanomaterial release from

production facilities so far have relied on light-scattering techniques to detect

nanoparticles. These methods are unable to distinguish between engineered (i.e., CNTs)

and natural (i.e., BC) nanomaterials, and therefore, it is not known whether soots or

CNTs are being released into the ambient environment or workplace. The TGA method

described in this thesis should be able to distinguish between BC and SWCNTs, as BC

has a much higher thermal stability. Thus, air concentrates on quartz or cellulose filters

could be assayed to determine the distribution between CNTs and BC in the collected

particles, which should be more quantitative, faster, and cheaper than the current

approach (investigation of deposited particles by electron microscopy).

Multi-walled CNTs vs. single-walled CNTs. This investigation has shown that

there is a great deal of diversity among materials that are identified as "CNTs." Perhaps

the simplest distinction that can be made to classify members of the CNT family is the

existence of single or concentric CNT cylinders (SWCNTs and MWCNTs, respectively).

While both materials exhibit great industrial promise, the market demand for SWCNTs is

expected to expand more than that for MWCNTs, which are currently produced in larger

volumes7'8 (Table 1).
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BY TYPE
Single-walled CNTs 0 95 600
Multi-walled CNTs 6 120 470

BY END USE
Electronics 0 90 395
Automotive 1 31 165
Aerospace/ Defense 0 10 65
Other 5 84 445

BY REGION
U.S. 2 57 290
Western Europe 1 32 180
Asia/Pacific 3 113 500
Other 0 13 100

Table 1. Anticipated growth in the CNT markets
region. Adapted from Thayer (2007)8.

by type, end use, and

Given the future promise of SWCNTs, I initially focused on developing an

analytical method for the detection of SWCNTs in the environment (Chapters 2 and 3).

As the study progressed, it became apparent that the "packing" of the carbon atoms had

an influence on a material's thermal stability. For example, I hypothesized that the

higher oxidation temperatures of black carbon (BC) soot (compared to SWCNTs)

resulted from reduced oxygen access to the interior shells of carbon present in BC soot.

Applying this rationale, I expected the MWCNTs would have a higher thermal stability

than SWCNTs. Indeed, the MWCNT sample had a higher thermal stability (Tmax oxidation =

6000C) than other SWCNTs (Tmax oxidation = 375-5400 C). The higher thermal stability

MWCNTs are expected to have decreased interference with sedimentary organic matter

(e.g., Dorchester Bay sediment) but an increased interference with black carbon (BC)

soot under temperature-programmed oxidation (TPO). Thus, while it may be possible to
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distinguish between SWCNTs and MWCNTs in mixed samples using thermal

techniques, it might be difficult to isolate MWCNTs from BC soot. As MWCNTs have

been produced for over twenty-five yearsc, and since they dominate the current CNT

market, it is critically important that MWCNT analytical methods are developed

alongside techniques for the detection of SWCNTs in the environment.

Currently, the majority of CNTs manufactured worldwide are MWCNTs 7, and the

laboratory-scale CNT reactor used in this study was designed to produce MWCNTs

(Chapters 4 and 5). The principle difference between MWCNT and SWCNT production

by CVD is the choice of catalyst, and hydrocarbon precursors (or CO) are heated to high

temperatures in both cases. Since this study focused on thermal rearrangements of the

feedstock gas, rather than catalyst-mediated transformations, I expect that a similar

product distribution would be observed in SWCNT syntheses that involve heating

hydrocarbons to high temperatures. Furthermore, I expect that alkyne-assisted CVD

growth will reduce the formation of dangerous VOC and PAH emissions regardless of

whether MWCNTs or SWCNTs are desired, since the thermal pre-treatment of the

hydrocarbon precursor is not necessary with this approach.

The proposed CNT formation mechanism presented in Chapter 5 is generic and

does not consider differences between SWCNTs and MWCNTs. The choice to illustrate

only one growing CNT wall is for clarity's sake, and it is not meant to imply that there

are no differences between the two formation processes. Indeed, I expect that there

critical distinctions between the synthesis of SWCNTs and MWCNTs. For example, the

transport of carbon to the catalyst may be different in SWCNT production compared to

MWCNT production. Carbon supply to interior walls of a growing MWCNT could

proceed via (1) diffusion through the catalyst, (2) migration from outer CNT walls to

inner CNT walls, or (3) through a precursor shuttling mechanism between catalytic metal

centers from the outside of the MWCNT to its inner walls. Clearly, there are important

implications for the CNT formation mechanisms, and these will have to be investigated

c Hyperion Catalysis in Cambridge, MA has been producing MWCNTs for sale in CNT-
doped polymers since 1982, referring to the materials as carbon "FIBRILSTM."
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with careful consideration of physical transport processes, as well as chemical reactivity

at the metal catalyst. Nevertheless, I expect that the enhanced chemical reactivity of

alkynes toward CNT formation that was observed for MWCNTs in Chapter 5 will hold

for SWCNT production. Indeed, much more study is needed before the mechanisms

controlling the formation of SWCNTs and MWCNTs are truly understood.

CRITICISM

Historically, industrial engineers and environmental chemists have had competing

interests, where the former feel unjustly scrutinized and policed by the latter. This "good

vs. evil" paradigm is deep-rooted and substantial inertia prevents both parties from

overcoming these traditional barriers. Here, I endeavored to work with industry,

mechanical engineers, and materials scientists to design materials and production

practices in a safe way. While somewhat cooperative, most of my collaborators were

skeptical of my results. The primary criticisms were that (1) not all CNT manufacture by

CVD uses the same feedstock gas, (2) some manufacturers recycle their effluents, (3) a

laboratory-scale synthesis is not representative of an industrial-scale production, and (4)

other typical processes (e.g., driving cars) contribute more VOC and PAH emissions than

will CNT production. All of these points are valid and justified, but they are not

sufficient grounds to avoid investigating and mitigating the environmental ramifications

of production practices early in the design phase of novel materials. I will respond to

these here:

(1) While not all CNT production relies on the same feedstock gas, many employ

a hydrocarbon precursor. I would argue that high-temperature gas phase reactions of

these compounds have relatively generic mechanisms, and while the quantities of

compounds might vary (with hydrogen content and temperature, for example), many of

the same compounds will be formed. (Note that a synthesis that does not employ a

hydrocarbon, but instead, CO, may have very different reaction products). Further, I

strongly suggest that each manufacturer use adequately sensitive (e.g., not online mass
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spectrometry by residual gas analysis) techniques to assess the content of their effluent.

Their data would provide stronger evidence to either confirm or deny the supposition that

they are not polluting. Thus, I am not suggesting that my results apply to all cases, but

rather that each production be evaluated on a case-by-case basis. (This will have the

added benefit of uncovering the most environmental benign of the synthetic approaches).

(2) Although it is true that some manufacturers recycle their effluent (at least two

of ten US manufacturers do and many European companies adopt the practice), at the end

of a days production, effluents are vented. Thus, releases may be non-trivial. Also, in

some effluent recycling schemes, the feedstock gas of interest (e.g., C2H4) is captured

while other materials are "flamed." Flaming is intended to convert potentially dangerous

materials to CO 2 (which we know is not environmentally benign). However, just as there

are few studies related to the content of the effluent, there are even fewer studies that

assay the products of the flame and optimal flame conditions may not be established.

The result is that incomplete combustion processes could lead to the generation of

"natural" nanoparticles (e.g., BC soot) or PAHs, similar to those that result from forest

fires and combustion engines. Simple inspection of a flame stack from a CNT production

facility illustrates this point (Figure 2, note visible black particles at crest of flame).

Figure 2. The flame torch used at
a CNT production facility
intended to convert pollutants or
toxicants to CO 2. It is clear from
the picture that particle formation
is taking place, and it is likely that
PAHs will be formed here also.
At this factory, C2H4 is the
feedstock gas for the CVD
synthesis of CNTs, but this is
trapped and reused, not flamed.
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(3) Perhaps the most common criticism of this work is that a laboratory-scale

synthesis is not representative of an industrial scale production. I agree that that is true,

and I will sample at a production plant someday. However, I would argue (as I did in

point 1) that the formation mechanisms may be similar between analogous syntheses

(e.g., temperature and feedstock gas choice similar) and though the quantities might

change, the distribution of chemicals may be comparable. Second, production practices

are continually evolving, and processes measured today will likely be different a year

from now. Thus, any projection of future emissions due to industrial scale CNT synthesis

will be flawed (even when one doesn't consider the large uncertainties in anticipated

production volumes). Nevertheless, these projections can help guide the evolution of the

design process. That is, one could estimate potential emissions from several different

synthetic scenarios and select the practice that has minimal potential to have a negative

impact on the environment or public health and maximum production benefits (e.g.,

minimum cost, maximum product performance). In this way, environmentally dangerous

practices can be avoided before significant financial investments result in a static

infrastructure that is steadfastly routed in unsound, unsustainable production practice.

Finally, to argue that early evaluations of laboratory scale processes are an invalid way to

gauge potential environmental impact is essentially arguing that early environmental

assessment should not be conducted at all. (There is no alternative to determine potential

impacts if early measurements are not taken). It is not possible to predict the future

synthetic approach, volume, or location of production, and so, if one waits until the

industry is fully expanded, she will be too late to effect PREVENTATIVE measures.

While 100% accurate extrapolations to the future are not likely, it is possible to forecast

to the best of our ability and endeavor to avoid irreparable damage to human and

environmental health.

(4) The argument that pollution is condonable when there are others nearby who

pollute in larger quantities can be flawed. While large investments to avoid small (e.g.,

<< 1%) inputs to the total industrial pollution burden in a city are often unjustifiable,

more substantial contributions could result in deteriorated public or environmental health.
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For example, Houston, TX has the United States' largest petrochemical refineries and

also some of the highest benzene and 1,3-butadiene levels in the country (1,3-butadiene

concentrations are 20 times higher than in any other US city"). Recent studies (i.e., 1995-

2004 data, 2008 publication'0 ) have shown that children (but not adults) living within the

Houston shipping channel had a 60% higher chance of contracting leukemia than children

living in clean-air areas, and this cancer incidence correlated to benzene and 1,3-

butadiene concentrations in the air. In response to that study, the Mayor of Houston hired

environmental consultants and lawyers to demand immediate reductions in industrially

derived VOCs. My estimates suggest that moving a reasonable fraction of CNT

production (20% of the production from only two of the myriad potential applications) to

Houston would more than double 1,3-butadiene emissions and increase benzene

emissions by 20%. Clearly, such increases would be unacceptable to Houston's

environmental task force and should be unacceptable to anyone who believes that

children should not be made sick as a result of where they live.

It is important to note that over 90% of the population living in Houston's

shipping channel is Hispanic". Thus, failure to protect all members of society from

industrial contaminants could quickly become an issue of social injustice, as well as

environmental negligence.
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PRECEDENT

As a nascent technology, the CNT industry is continually evolving. Thus, the

CNTs measured in this study may not be the CNTs that are used 10 years from now, and

the production methods will likely undergo change as well. The analytical method I

outlined here will require additional "tuning" to optimize for detection in environmental

samples, and the emissions estimates will almost certainly diverge from those that result

from increased global CNT production. However, the procedures and approaches

described in this work are valid and should be continually repeated as the industry

expands, in order to inform best use practices as they develop. In particular, I emphasize

that we must (1) adopt a proactive approach to prevent the indiscriminant use and

inadvertent release of potentially harmful chemicals and (2) work with industry and

materials engineers to co-optimize synthetic parameters for both product performance

and environmental objectives. This would represent a departure from traditional

interactions between environmental chemists and industrial engineers, who have had

antagonistic relationships focused on chemicals that have already done significant

damage to the environment and public health. Thus, it is my hope that this work will not

only ensure the safe and conscientious advancement of the CNT industry, but also serve

as a model for the early, sustainable, collaborative development of all novel materials.
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OPPORTUNITIES

There is a great deal of uncertainty surrounding the role that carbon nanotubes

will play in the environment and much work remains before we are able to predict, a

priori, the influence, partitioning, and lifetime of CNTs in the environment. Given the

breadth of the thesis, I will organize the most pressing ensuing studies in reference to

thesis chapters.

Chapter 2. Characterization.

CNT reactivity. PAHs are formed during carbon nanotube synthesis from ethene

(Chapter 4), and CNTs, which are extremely hydrophobic, should adsorb some of these

PAHs from the gas phase. Indeed, PAHs are coated with an "amorphous carbon" phase.

However, dichloromethane (DCM) extractions of CNTs yield sparse quantities of PAHs.

Low recoveries of aromatic internal standards in CNT suspensions (but not CNT free

controls) suggest that CNTs (or some DCM-CNT interaction) are acting to degrade the

aromatic compounds. If so, then CNTs may have some ability to degrade pollutants in

the environment. On the contrary, if the mechanism by which the CNTs degraded the

internal standards involved a DCM-derived free radical, then CNTs in contact with

chlorinated contaminants in the environment could produce even more toxic materials.

Since there is interest in using CNTs to purify surface drinking and ground water, it will

be very important to understand these possible reactions prior to introducing the materials

to the human drinking water supply.

Isotopicfractionation. The distribution of stable carbon isotopic signatures in

commercially available CNTs appeared to be related to the expected 13C content of their

starting materials (i.e., carbon feedstock gas or graphite rod). As most CNT formation

reactions take place at very high temperature (e.g., 500 -1200 0C), it is reasonable to

expect that there is very little isotopic fractionation from the starting material to the CNT

product. However, given the stability of the aromatic bonds in CNTs, it is possible that

there is an isotopic fractionation. If so, this might provide valuable insight into the CNT

formation mechanism, and such fractionation processes should be explored.
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Chapter 3. Analytical method for CNTs in the environment. There are several

properties of CNTs that might distinguish them from other natural organic matter and

allow their quantification in the environment. For example, CNTs have remarkable

mechanical strength and heat transfer properties. Single CNTs are said to improve the

performance of thermal interface materials 12, and if that is true, then it is possible that

thermal conductance measurements could detect single CNTs. Similarly, very low

masses of CNTs are reported to afford increased mechanical strength in composite

materials. Mechanical tests on native and CNT-doped sediments might indicate the

presence of CNTs in sedimentary samples (although it is likely that such an analysis

would require a CNT-free sediment end member to quantify the CNTs). Fluorescently

labeled anti-bodies against CNT agglomerates might enable visualization of CNTs and

eventual quantification using the fluorescence intensity. Antibodies are roughly 10 nm in

size, and CNT agglomerates (but not single SWCNTs) should be big enough to elicit an

immune response.

In addition to providing an analytical tool to detect CNTs, TGA could be used as

a rapid, minimum interference purification step for isolating CNTs from CNT-organic

matter mixtures. For example, investigations of CNT behavior in the natural aquatic

systems will inevitably require CNTs to be in close association with natural organic

mater (NOM)'3 . NOM has a demonstrated ability to generate high concentrations of

singlet oxygen in adjacent microenvironments 14,d, and CNT surfaces may be oxidized by

NOM-derived singlet oxygen. This functionalization of the CNT surface has clear and

significant implications for the environmental transport of the material, as the addition of

oxygen-containing moities will increase the hydrophilicity of an otherwise hydrophobic

nanoparticle. In order to determine whether or not CNTs are functionalized by NOM-

generated singlet oxygen, the CNTs will have to be separated from NOM following any

d There is speculation that CNTs can generate 102 independently. The excited state
energies of select CNTs are inversely related to their diameter (e.g., 1.36 eV for 0.7 nm
and 0.80 eV for 1.3 nm CNTs) 15. Thus, energy transfer to triplet oxygen to form '02 (1.07
eV singlet-triplet gap) is out of reach for all but the smallest CNTs, with diameters below
approximately 0.9 nm.
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experimentation. Presuming that NOM has a lower thermal stability than CNTs, one

could oxidize the NOM at a low temperature at which CNTs are preserved. The CNTs

could then be recovered and interrogated by x-ray photoelectron spectroscopy for surface

functionality and aggregation kinetics of the resultant, modified CNTs could be assayed

using a dynamic light scattering technique. Kinetic parameters from the oxidative aging

and aggregation experiments will be very useful to improve CNT mass balance models,

such as that presented in Chapter 1 (which assumes a static, hydrophobic nanoparticle).

Chapter 4. Effluents formed during CNT synthesis. The solid carbon forms

generated during CVD include (1) the CNTs themselves, which are typically fixed to the

growth substrate, (2) soot that may form and exit the reactor, and (3) solid carbon

deposits on the walls of the pre-heater tube. The latter solid carbon forms were not

identified, but I am confident that they are not typical BC soot. I oxidized the material in

air at 4500C for over 24 hrs, and it did not degrade. The material did oxidize in a closed

tube combustion at 850 0C for 5 hours over cupric oxide (as an oxygen source). This

suggests that the material is not BC soot, but may be some more stable material. Its color

was not as dark as BC soot, but instead, a shimmering gray color (similar to graphite or

graphene). In syntheses where the pre-heater is on, this material represents the largest

sink for the feedstock ethene, and thus, it may be important to identify. (Note, the

material is not formed during unheated (e.g., alkyne-asisted) syntheses).

Filters collected at the effluent should be analyzed for soot and CNT content. In

particular, a CNT synthesis where free-floating (rather than substrate-affixed) catalyst are

employed, should be investigated to determine if CNT release is more likely when CNTs

are not affixed to a substrate-bound growth catalyst.

Chapter 5. Improved resource use for CNT manufacture. The principle

limitation of the reactor used in this study is that there is only physical space for one

catalyst piece (at most 1 cm2). While I expect (as it was relatively facile to limit CNT

growth with a 20% reduction in C2H4 input) that we are operating near the optimal C-

precursor: metal catalyst ratio, it is possible that more nanotubes could be grown from the
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same amount of carbon feedstock gas. Improvements in the C feedstock: metal catalyst

would offer immediate improvements in the reaction efficiency.

As mentioned earlier, I hypothesize that the amorphous carbon coating formed on

CNTs is partly due to the presence of PAHs in the CNT reactors. Using unheated,

alkyne-assisted reactions, I expect that the carbon purity of CNTs (e.g., CNT to

amorphous C ratio) will increase. This should offer an improvement in the electrical

conductivity of the sample, and thus, product performance and environmental

optimization would have been achieved simultaneously.

While we are still far from understanding the exact reaction mechanism of CNT

formation, the recent results highlight areas for future exploration. Our proposed

mechanism offers a potential route to chirality observed in real world CNTs. This

chirality could be controlled by the initial ring formation between an alkene and an

alkyne and subsequent additions that align with the initial chirality established. I am

interested to see if different sterically hindered precursors with terminal alkynes will

yield CNTs of different chiral wrapping.

More specifically, in the ring formation mechanism between an alkene and a

terminal alkyne, carbon chains that dangle from the terminal alkyne (e.g., the alkene

group at the end of but-1-en-3-yne) generally stick out of the plane of the ring. If this

were true, one would not expect a significant difference in the reactivity of 1-butyne and

but-1-en-3-yne. However, a difference in the reactivity of these compounds was

observed, and that suggests that the double bond on the head of but-1-en-3-yne is

involved in the chain elongation reaction. If so, I would expect the whole but-1-en-3-yne

molecule to deposit in the lattice of the growing nanotube (i.e., all 4 carbon atoms are in

the aromatic system of the CNT). The distinction between these two reactions

mechanisms could be tested with either (1) deuterated test compounds (e.g., d4-but- -en-

3-yne) and 82H isotopic values of H2 evolved during the CNT formation reaction and/or

(2) infrared spectroscopy to determine function groups protruding from the CNT

backbone. If the whole but-l-en-3-yne molecule folds into the CNT lattice, then all of

the hydrogen atoms (or deuterium atoms) must be removed from the original carbon
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chain and these would show up in the gas phase of the H2 evolved during the reaction. In

contrast the deuterium atoms will remain bound to the tail of the molecule and dangle

from the CNT structure. Whether deuterium or hydrogen, the C-H (or C-D) stretches due

to these atoms should be visible using spectroscopic techniques.

Irrespective of a mechanistic understanding, I have shown that measurable

improvements in CNT synthetic approach can be made early on in the design process. In

addition, there is promise toward the development of a sensitive analytical technique for

CNTs in the environment. These results will improve our ability to study and then

predict the long-range transport and human and ecological exposure to CNTs. This will

become increasingly important as the toxicity of these materials is established. With an

understanding of nanoparticle fate, informed choices for CNT use in consumer products

can be made. In this way, we may prevent unacceptable ecological and human health

consequences, and thereby alter the, so far, unfortunate trajectory of industrial chemicals

in the Earth system.
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Build today, then strong and sure, with afirm and ample base;
and ascending and secure, shall tomorrow find its place.

-Henry Wadsworth Longfellow,
a son ofPortland, Maine
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