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Local Genetic Control and Evolutionary Rate 

 Heritability provides a measure of the potential of a trait to respond to selection (Roff, 2000). 

Gene expression level as a quantitative trait has a heritable component and for many genes, expression 

level can be predicted, to a degree measured by heritability and in a tissue-dependent manner, based 

on genetic polymorphism data (Gamazon et al., 2015). We, therefore, set out to quantify the 

contribution of the degree of genetic control of gene expression to evolutionary rate. In particular, this 

analysis would show the extent to which the degree of genetic control correlates with evidence for 

purifying selection (dN/dS<1) or positive selection (dN/dS>1) (or relaxed constraint). Because current 

sample sizes still have insufficient power to detect trans expression quantitative trait loci (eQTLs) in 

available transcriptome data, we focus primarily on local (cis) regulation of gene expression (using the 

residual after adjusting for hidden confounders; see Methods). For heritability estimated in the DGN 

data set (whole blood, N=922) (Battle et al., 2014), we find a significant correlation with dN/dS 

(Spearman’s ρ=0.092, p=4.4x10-21), dN (Spearman’s ρ=0.154, p=5.1x10-60), and dS (Spearman’s ρ=0.136, 

p=1.8x10-47), using the human-chimp comparison. (These estimates are conservative relative to the 

human-mouse comparison.) Thus, conserved genes tend to have lower cis heritability than other genes 

(Figure 2C for comparison with fast-evolving genes in whole blood transcriptome, Mann-Whitney U 

p=1.2x10-17). Since heritability is the ratio of genetic variance to phenotypic variance, conserved genes 

may show lower cis heritability due to lower genetic variance from local variation, larger phenotypic 

variance, or both. For example, for conserved genes in GTEx skeletal muscle tissue, cis eQTL effect sizes 

are significantly lower (Spearman’s ρ=0.204 between effect size and dN/dS, p=1.3 10-133) while 

expression variance is significantly larger (Spearman’s ρ=-0.270, p=3.7x10-267).  

 EPRCA shows that the correlation between dN/dS and heritability (estimated in DGN whole 

blood) after controlling for MaxVariance remains significant (Spearman’s ρ=0.097, permutation 



p<0.001). Similarly, the correlation between dN/dS and MaxVariance after adjusting for heritability is 

significant (Spearman’s ρ=-0.119, permutation p<0.001). These results provide strong evidence for 

independent contributions to variance in evolutionary rate from these features. Furthermore, we find a 

modest but significant correlation between heritability and MaxVariance (Spearman’s ρ=0.038, 

p=4.04x10-5), but not maximum expression level.  

Branch assignment 

Gene age estimation is a complex problem with different domains of a gene possibly having 

different ages (Capra et al., 2013) and, in addition, requires caution in the interpretation of trends given 

the possibility of phylostratigraphic bias (Moyers & Zhang, 2017). We utilized gene branch assignments 

based on orthologous presence in the vertebrate phylogeny, as previously described (Zhang et al., 

2010). This approach tended to identify young genes more conservatively than a previous approach 

(Church et al., 2009). The final gene branch assignments included 17,162 protein-coding genes, 182 

lincRNAs, and 806 pseudogenes (GENCODE (Harrow et al., 2012) annotation v19). Unless otherwise 

stated, we restricted the analysis to protein-coding genes. Of the protein-coding genes, 700 were 

primate-specific, mapping to the Rhesus-Orangutan-Chimp-Human phylogenetic branches (i.e., between 

branches 8 and 12; Supplementary Table 3). Branches are ordered from 0 to 12, with branch 0 being the 

oldest and indicative of a gene shared among vertebrates, while branch 12 is human-specific. 

We compared branch assignment to expression for each tissue (Supplementary Figure 3). Highly 

expressed genes tend to be evolutionarily old (i.e., map to lower branch number), while newer genes 

tend to have lower expression (Spearman’s ρ=-0.47 to -0.31, p<2.2x10-16). Brain tissues tend to show the 

strongest effect (Spearman’s ρ=-0.47 to -0.45), in terms of variance explained, of branch assignment on 

expression level, with the cortical tissues having the highest absolute magnitude. Testis shows the 

lowest absolute effect (Spearman’s ρ=-0.31), with branch assignment explaining two thirds of the 



variability in expression level relative to brain. Whole blood is the next lowest (Spearman’s ρ=-0.357), 

once again reinforcing the observation that the transcriptome in the most accessible tissue is an outlier 

in key aspects of protein sequence evolution. Although the effect of branch assignment on expression 

level and on expression variance across tissues is highly correlated (Spearman’s ρ=0.975, p<2.2x10-16), 

gene age accounts for a significantly greater proportion of the variability in expression level than in 

expression variance (median of 19.5% vs 16.5%, Mann-Whitney p=3.7x10-7). 

Branch assignment significantly determines expression breadth (Spearman’s ρ=0.24 between 

branch and 𝜏, p<2.2x10-16), which indicates increasing broadness of expression of a gene throughout its 

evolutionary lifespan.  

Gene network node properties 

 The extent of integration into gene networks may constrain protein sequence evolution. 

Perturbation of genes central to a biophysical network may imply a greater fitness cost, as such 

perturbation can lead to downstream effects across multiple gene networks. Here we utilized the 

STRING protein-protein interaction network (see Methods). The 100 genes with the highest degree 

(each with at least 1000 interaction partners) are enriched for adenosine 5'-triphosphate (ATP) binding 

(n=48, Benjamini-Hochberg adjusted p=6.5x10-27) and actin-related proteins (n=21, Benjamini-Hochberg 

adjusted p=1.0x10-32) crucial to the formation of the cytoskeleton.  

Widely expressed genes tend to have more interactions with other genes (Spearman’s ρ=-

0.1855 between 𝜏 and node degree, p<2.2x10-16). The number of interactions significantly constrains 

sequence evolution (Spearman’s ρ=-0.06 between dN/dS and node degree, p=4.667x10-10). We did find a 

unique gene, Uridine Monophosphate Synthetase (UMPS), with more than 1,300 interaction partners 

and evidence for positive selection based on human-chimp divergence but not based on human-mouse 

divergence. Furthermore, the gene is of ancient origin (shared among vertebrates; branch 0) and 



associated with a Mendelian disorder (OMIM 613891). This example not only illustrates the dependence 

of the evidence for positive selection on evolutionary time-scale, but also raises the hypothesis that 

adaptive evolution may work through biophysical networks, with genes under positive selection 

potentially interacting and genes in central network positions having a strong influence on fitness.  

The variance in node degree observed for older genes (branches 0-3) is much larger than for 

younger genes (branches 4-12) (F=1.247, p=8.242x10-07), so that the genes with the largest number of 

interactions come from the oldest phylogenetic branches (Supplementary Figure 4). Genes on the oldest 

branch with few (1 to 10) interactions are enriched for homeodomain genes (Benjamini-Hochberg 

adjusted p=5.61x10-18).  

 We tested whether node degree and expression level independently constrain evolutionary 

rate. Gene connectivity and expression show no significant correlation (p=0.33) with each other. We find 

support for independent contribution from these features in our data (Spearman’s ρ=-0.1583, 

permutation p<0.001, mean permutation null=-4.481x10-5, std dev permutation null=0.011 for 

correlation of protein evolutionary rate with maximum expression level (across the tissues) while 

controlling for node degree and Spearman’s ρ=-0.0591, permutation p<0.001, mean permutation null=-

7.634x10-5, std dev permutation null=0.012 for correlation with node degree while adjusting for 

maximum expression level). 

Although network characteristics and topology clearly correlate significantly with expression 

variance in all tissues (maximum p-value=3.6x10-11 from the correlation with node degree), we observed 

a tissue dependence in the strength of the correlation between number of interaction partners and 

expression variance.  Lung shows the lowest correlation (Spearman’s ρ=0.059) despite having a 

relatively large sample size (n=238, Supplementary Table 1) while transformed lymphocytes (LCLs) 

(n=219) and cultured primary fibroblasts (n=85) show the highest correlations (Spearman’s ρ=0.21, 



p=2.07x10-125 and Spearman’s ρ=0.19, p=9.6x10-98 respectively). Interestingly, the correlation for the 

primary tissues of origin for the LCLs (i.e., whole blood) and for the fibroblasts (i.e., fresh skin) show 

substantially lower correlation (Spearman’s ρ=0.12, p<2.2x10-16 and Spearman’s ρ=0.085, p<2.2x10-16, 

respectively), suggesting global changes in expression profile, with important consequences for network 

constraints, in the cell lines. 

Gene regulation and evolutionary rate on specific gene sets 

 We examined expression features and protein evolutionary rate in specific sets of genes 

compared to their complement in the set of protein-coding genes (Supplementary Table 5). Mendelian 

disease genes show higher expression level (Mann-Whitney W=12961000, p<2.2x10-16) and lower 

protein evolutionary rate (W=13293000, p=7.68x10-13) than other protein-coding genes. However, 

unexpectedly, Mendelian disease genes do not show greater expression breadth or node degree in PPI 

networks. Conversely, LOF-tolerant genes show higher protein evolutionary rate (W=439220, p=4.92x10-

06) and greater tissue specificity of expression (W=696830, p=8x10-4) than other protein-coding genes. 

Essential genes are of significantly more ancient origin (W=1969600, p=1.924x10-8) and under greater 

purifying selection (W=1590800, p=1.236x10-12) than Mendelian disease genes. Furthermore, essential 

genes show higher expression level (W=25579000, p<2.2x10-16), greater expression breadth 

(W=17996000, p<2.2x10-16), and higher connectivity (W= 10663000, p=0.01) than other protein-coding 

genes. We find (using random sampling [N=1000] without replacement of protein-coding genes of the 

same count) that Mendelian disease genes are enriched in the oldest branches (0 through 3) and show a 

depletion in the subsequent branches of the phylogeny (4 through 12) (Supplementary Figure 5). The 

branch in which the transition from enrichment to depletion for Mendelian disease genes is observed 

(branch 3) separates mammals from other vertebrates, suggesting that Mendelian disease genes may 

largely predate the emergence of mammals. However, given the spurious findings that may arise from 



the method of gene age estimation, analysis restricted to “error-resistant genes” should reduce 

phylostratigraphic bias (Moyers & Zhang, 2017). 

Finally, we analyzed genes that interact with the environment: immune response genes and 

olfactory genes. Immune response genes show significantly higher expression (W=9641000, p<2.2x10-16) 

and expression breadth (W=11596000, p=1.34x10-09), but fewer network interactions (W=5991100, 

p=0.0002) than other protein-coding genes, but do not show significantly higher evolutionary rate. 

Adaptive immune response genes, however, do show significantly higher evolutionary rate (W= 

2115600, p=0.0006). Olfactory genes have significantly lower expression (W=7231900, p<2.2x10-16) and 

higher evolutionary rate (W=971270, p<2.2x10-16) than the rest of the protein-coding genes, but also 

show a narrower expression breadth (W=2165500, p<2.2x10-16).  

 We sought to utilize the spectrum of clinical manifestations represented by these sets of genes 

to probe potential mechanisms underlying the observed relationship between expression features and 

evolutionary rate. We found that Mendelian disease genes (Spearman’s ρ=-0.078, p=0.002) and 

essential genes (Spearman’s ρ=-0.112, p=1.19x10-7) show substantially lower effect, in terms of 

variability explained, on evolutionary rate than the full set of proteins (Spearman’s ρ ranges from -0.34 

to -0.17, p<3.63x10-102). Using 1000 random sample sets of genes (of the same size as the list of 

Mendelian disease genes and the list of essential genes, separately analyzed, and matched on variation 

in expression level and variation in dN for these gene sets since these sets generally have lower such 

variations) drawn from the complete set of protein-coding genes, the observed correlation estimates 

are significantly higher than expected; no random set matches or exceeds the observed correlation 

estimate for each gene set (empirical p<0.001; Figure 4C). Thus, expression level explains a significantly 

lower proportion of the variance in evolutionary rate for Mendelian disease and essential genes. This 

result suggests that gene function may interact with expression level in influencing evolutionary rate 



and that the important correlation may vary for gene sets across the genome depending on gene 

function. In support of this, we find that an interaction model that incorporates gene expression and 

LOF-tolerance provides a significantly better fit to the data than a regular regression model (anova Chi-

square test p=5.24x10-5). 
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Supplementary Legends 

 

Supplementary Figure 1.  Expression breadth statistic 𝜏 by gene type for GENCODE v19 annotation. 

 

Supplementary Figure 2.  Density plot of 𝜏 in protein-coding (red) and lincRNA (blue).   

 

Supplementary Figure 3. Comparison of gene age estimate and expression level and variance. 

 

Supplementary Figure 4.  Genes showing the largest number of interactions come from the oldest 

phylogenetic branches.  

 

Supplementary Figure 5. Mendelian disease genes are enriched in the oldest branches (0 through 3) and 

show a depletion in the subsequent branches of the phylogeny (4 through 12).  

 

Supplementary Table 1.  Table of the number of samples in each tissue and genes that have dN and dS 

information for each tissue. 

 

Supplementary Table 2.  Summary statistics of correlation between expression level and protein 

evolutionary rates. 

 

Supplementary Table 3.  Input Data. 

 

Supplementary Table 4.  Trait model AIC values from univariate models based on human-mouse 

comparisons.  

 

Supplementary Table 5.  Mann-Whitney results of gene group comparisons. 

 



 

Supplementary Table 6. Correlation between out-of-sample prediction R2 for gene expression and 

evolutionary rate. 

 


